xref: /openbmc/linux/fs/dlm/lowcomms.c (revision 2c59b0b7)
1 /******************************************************************************
2 *******************************************************************************
3 **
4 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
5 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
6 **
7 **  This copyrighted material is made available to anyone wishing to use,
8 **  modify, copy, or redistribute it subject to the terms and conditions
9 **  of the GNU General Public License v.2.
10 **
11 *******************************************************************************
12 ******************************************************************************/
13 
14 /*
15  * lowcomms.c
16  *
17  * This is the "low-level" comms layer.
18  *
19  * It is responsible for sending/receiving messages
20  * from other nodes in the cluster.
21  *
22  * Cluster nodes are referred to by their nodeids. nodeids are
23  * simply 32 bit numbers to the locking module - if they need to
24  * be expanded for the cluster infrastructure then that is its
25  * responsibility. It is this layer's
26  * responsibility to resolve these into IP address or
27  * whatever it needs for inter-node communication.
28  *
29  * The comms level is two kernel threads that deal mainly with
30  * the receiving of messages from other nodes and passing them
31  * up to the mid-level comms layer (which understands the
32  * message format) for execution by the locking core, and
33  * a send thread which does all the setting up of connections
34  * to remote nodes and the sending of data. Threads are not allowed
35  * to send their own data because it may cause them to wait in times
36  * of high load. Also, this way, the sending thread can collect together
37  * messages bound for one node and send them in one block.
38  *
39  * lowcomms will choose to use either TCP or SCTP as its transport layer
40  * depending on the configuration variable 'protocol'. This should be set
41  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
42  * cluster-wide mechanism as it must be the same on all nodes of the cluster
43  * for the DLM to function.
44  *
45  */
46 
47 #include <asm/ioctls.h>
48 #include <net/sock.h>
49 #include <net/tcp.h>
50 #include <linux/pagemap.h>
51 #include <linux/file.h>
52 #include <linux/mutex.h>
53 #include <linux/sctp.h>
54 #include <net/sctp/user.h>
55 #include <net/ipv6.h>
56 
57 #include "dlm_internal.h"
58 #include "lowcomms.h"
59 #include "midcomms.h"
60 #include "config.h"
61 
62 #define NEEDED_RMEM (4*1024*1024)
63 #define CONN_HASH_SIZE 32
64 
65 struct cbuf {
66 	unsigned int base;
67 	unsigned int len;
68 	unsigned int mask;
69 };
70 
71 static void cbuf_add(struct cbuf *cb, int n)
72 {
73 	cb->len += n;
74 }
75 
76 static int cbuf_data(struct cbuf *cb)
77 {
78 	return ((cb->base + cb->len) & cb->mask);
79 }
80 
81 static void cbuf_init(struct cbuf *cb, int size)
82 {
83 	cb->base = cb->len = 0;
84 	cb->mask = size-1;
85 }
86 
87 static void cbuf_eat(struct cbuf *cb, int n)
88 {
89 	cb->len  -= n;
90 	cb->base += n;
91 	cb->base &= cb->mask;
92 }
93 
94 static bool cbuf_empty(struct cbuf *cb)
95 {
96 	return cb->len == 0;
97 }
98 
99 struct connection {
100 	struct socket *sock;	/* NULL if not connected */
101 	uint32_t nodeid;	/* So we know who we are in the list */
102 	struct mutex sock_mutex;
103 	unsigned long flags;
104 #define CF_READ_PENDING 1
105 #define CF_WRITE_PENDING 2
106 #define CF_CONNECT_PENDING 3
107 #define CF_INIT_PENDING 4
108 #define CF_IS_OTHERCON 5
109 	struct list_head writequeue;  /* List of outgoing writequeue_entries */
110 	spinlock_t writequeue_lock;
111 	int (*rx_action) (struct connection *);	/* What to do when active */
112 	void (*connect_action) (struct connection *);	/* What to do to connect */
113 	struct page *rx_page;
114 	struct cbuf cb;
115 	int retries;
116 #define MAX_CONNECT_RETRIES 3
117 	int sctp_assoc;
118 	struct hlist_node list;
119 	struct connection *othercon;
120 	struct work_struct rwork; /* Receive workqueue */
121 	struct work_struct swork; /* Send workqueue */
122 };
123 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
124 
125 /* An entry waiting to be sent */
126 struct writequeue_entry {
127 	struct list_head list;
128 	struct page *page;
129 	int offset;
130 	int len;
131 	int end;
132 	int users;
133 	struct connection *con;
134 };
135 
136 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
137 static int dlm_local_count;
138 
139 /* Work queues */
140 static struct workqueue_struct *recv_workqueue;
141 static struct workqueue_struct *send_workqueue;
142 
143 static struct hlist_head connection_hash[CONN_HASH_SIZE];
144 static DEFINE_MUTEX(connections_lock);
145 static struct kmem_cache *con_cache;
146 
147 static void process_recv_sockets(struct work_struct *work);
148 static void process_send_sockets(struct work_struct *work);
149 
150 
151 /* This is deliberately very simple because most clusters have simple
152    sequential nodeids, so we should be able to go straight to a connection
153    struct in the array */
154 static inline int nodeid_hash(int nodeid)
155 {
156 	return nodeid & (CONN_HASH_SIZE-1);
157 }
158 
159 static struct connection *__find_con(int nodeid)
160 {
161 	int r;
162 	struct hlist_node *h;
163 	struct connection *con;
164 
165 	r = nodeid_hash(nodeid);
166 
167 	hlist_for_each_entry(con, h, &connection_hash[r], list) {
168 		if (con->nodeid == nodeid)
169 			return con;
170 	}
171 	return NULL;
172 }
173 
174 /*
175  * If 'allocation' is zero then we don't attempt to create a new
176  * connection structure for this node.
177  */
178 static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
179 {
180 	struct connection *con = NULL;
181 	int r;
182 
183 	con = __find_con(nodeid);
184 	if (con || !alloc)
185 		return con;
186 
187 	con = kmem_cache_zalloc(con_cache, alloc);
188 	if (!con)
189 		return NULL;
190 
191 	r = nodeid_hash(nodeid);
192 	hlist_add_head(&con->list, &connection_hash[r]);
193 
194 	con->nodeid = nodeid;
195 	mutex_init(&con->sock_mutex);
196 	INIT_LIST_HEAD(&con->writequeue);
197 	spin_lock_init(&con->writequeue_lock);
198 	INIT_WORK(&con->swork, process_send_sockets);
199 	INIT_WORK(&con->rwork, process_recv_sockets);
200 
201 	/* Setup action pointers for child sockets */
202 	if (con->nodeid) {
203 		struct connection *zerocon = __find_con(0);
204 
205 		con->connect_action = zerocon->connect_action;
206 		if (!con->rx_action)
207 			con->rx_action = zerocon->rx_action;
208 	}
209 
210 	return con;
211 }
212 
213 /* Loop round all connections */
214 static void foreach_conn(void (*conn_func)(struct connection *c))
215 {
216 	int i;
217 	struct hlist_node *h, *n;
218 	struct connection *con;
219 
220 	for (i = 0; i < CONN_HASH_SIZE; i++) {
221 		hlist_for_each_entry_safe(con, h, n, &connection_hash[i], list){
222 			conn_func(con);
223 		}
224 	}
225 }
226 
227 static struct connection *nodeid2con(int nodeid, gfp_t allocation)
228 {
229 	struct connection *con;
230 
231 	mutex_lock(&connections_lock);
232 	con = __nodeid2con(nodeid, allocation);
233 	mutex_unlock(&connections_lock);
234 
235 	return con;
236 }
237 
238 /* This is a bit drastic, but only called when things go wrong */
239 static struct connection *assoc2con(int assoc_id)
240 {
241 	int i;
242 	struct hlist_node *h;
243 	struct connection *con;
244 
245 	mutex_lock(&connections_lock);
246 
247 	for (i = 0 ; i < CONN_HASH_SIZE; i++) {
248 		hlist_for_each_entry(con, h, &connection_hash[i], list) {
249 			if (con && con->sctp_assoc == assoc_id) {
250 				mutex_unlock(&connections_lock);
251 				return con;
252 			}
253 		}
254 	}
255 	mutex_unlock(&connections_lock);
256 	return NULL;
257 }
258 
259 static int nodeid_to_addr(int nodeid, struct sockaddr *retaddr)
260 {
261 	struct sockaddr_storage addr;
262 	int error;
263 
264 	if (!dlm_local_count)
265 		return -1;
266 
267 	error = dlm_nodeid_to_addr(nodeid, &addr);
268 	if (error)
269 		return error;
270 
271 	if (dlm_local_addr[0]->ss_family == AF_INET) {
272 		struct sockaddr_in *in4  = (struct sockaddr_in *) &addr;
273 		struct sockaddr_in *ret4 = (struct sockaddr_in *) retaddr;
274 		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
275 	} else {
276 		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &addr;
277 		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) retaddr;
278 		ipv6_addr_copy(&ret6->sin6_addr, &in6->sin6_addr);
279 	}
280 
281 	return 0;
282 }
283 
284 /* Data available on socket or listen socket received a connect */
285 static void lowcomms_data_ready(struct sock *sk, int count_unused)
286 {
287 	struct connection *con = sock2con(sk);
288 	if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
289 		queue_work(recv_workqueue, &con->rwork);
290 }
291 
292 static void lowcomms_write_space(struct sock *sk)
293 {
294 	struct connection *con = sock2con(sk);
295 
296 	if (con && !test_and_set_bit(CF_WRITE_PENDING, &con->flags))
297 		queue_work(send_workqueue, &con->swork);
298 }
299 
300 static inline void lowcomms_connect_sock(struct connection *con)
301 {
302 	if (!test_and_set_bit(CF_CONNECT_PENDING, &con->flags))
303 		queue_work(send_workqueue, &con->swork);
304 }
305 
306 static void lowcomms_state_change(struct sock *sk)
307 {
308 	if (sk->sk_state == TCP_ESTABLISHED)
309 		lowcomms_write_space(sk);
310 }
311 
312 int dlm_lowcomms_connect_node(int nodeid)
313 {
314 	struct connection *con;
315 
316 	if (nodeid == dlm_our_nodeid())
317 		return 0;
318 
319 	con = nodeid2con(nodeid, GFP_NOFS);
320 	if (!con)
321 		return -ENOMEM;
322 	lowcomms_connect_sock(con);
323 	return 0;
324 }
325 
326 /* Make a socket active */
327 static int add_sock(struct socket *sock, struct connection *con)
328 {
329 	con->sock = sock;
330 
331 	/* Install a data_ready callback */
332 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
333 	con->sock->sk->sk_write_space = lowcomms_write_space;
334 	con->sock->sk->sk_state_change = lowcomms_state_change;
335 	con->sock->sk->sk_user_data = con;
336 	con->sock->sk->sk_allocation = GFP_NOFS;
337 	return 0;
338 }
339 
340 /* Add the port number to an IPv6 or 4 sockaddr and return the address
341    length */
342 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
343 			  int *addr_len)
344 {
345 	saddr->ss_family =  dlm_local_addr[0]->ss_family;
346 	if (saddr->ss_family == AF_INET) {
347 		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
348 		in4_addr->sin_port = cpu_to_be16(port);
349 		*addr_len = sizeof(struct sockaddr_in);
350 		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
351 	} else {
352 		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
353 		in6_addr->sin6_port = cpu_to_be16(port);
354 		*addr_len = sizeof(struct sockaddr_in6);
355 	}
356 	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
357 }
358 
359 /* Close a remote connection and tidy up */
360 static void close_connection(struct connection *con, bool and_other)
361 {
362 	mutex_lock(&con->sock_mutex);
363 
364 	if (con->sock) {
365 		sock_release(con->sock);
366 		con->sock = NULL;
367 	}
368 	if (con->othercon && and_other) {
369 		/* Will only re-enter once. */
370 		close_connection(con->othercon, false);
371 	}
372 	if (con->rx_page) {
373 		__free_page(con->rx_page);
374 		con->rx_page = NULL;
375 	}
376 
377 	con->retries = 0;
378 	mutex_unlock(&con->sock_mutex);
379 }
380 
381 /* We only send shutdown messages to nodes that are not part of the cluster */
382 static void sctp_send_shutdown(sctp_assoc_t associd)
383 {
384 	static char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
385 	struct msghdr outmessage;
386 	struct cmsghdr *cmsg;
387 	struct sctp_sndrcvinfo *sinfo;
388 	int ret;
389 	struct connection *con;
390 
391 	con = nodeid2con(0,0);
392 	BUG_ON(con == NULL);
393 
394 	outmessage.msg_name = NULL;
395 	outmessage.msg_namelen = 0;
396 	outmessage.msg_control = outcmsg;
397 	outmessage.msg_controllen = sizeof(outcmsg);
398 	outmessage.msg_flags = MSG_EOR;
399 
400 	cmsg = CMSG_FIRSTHDR(&outmessage);
401 	cmsg->cmsg_level = IPPROTO_SCTP;
402 	cmsg->cmsg_type = SCTP_SNDRCV;
403 	cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
404 	outmessage.msg_controllen = cmsg->cmsg_len;
405 	sinfo = CMSG_DATA(cmsg);
406 	memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
407 
408 	sinfo->sinfo_flags |= MSG_EOF;
409 	sinfo->sinfo_assoc_id = associd;
410 
411 	ret = kernel_sendmsg(con->sock, &outmessage, NULL, 0, 0);
412 
413 	if (ret != 0)
414 		log_print("send EOF to node failed: %d", ret);
415 }
416 
417 static void sctp_init_failed_foreach(struct connection *con)
418 {
419 	con->sctp_assoc = 0;
420 	if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
421 		if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
422 			queue_work(send_workqueue, &con->swork);
423 	}
424 }
425 
426 /* INIT failed but we don't know which node...
427    restart INIT on all pending nodes */
428 static void sctp_init_failed(void)
429 {
430 	mutex_lock(&connections_lock);
431 
432 	foreach_conn(sctp_init_failed_foreach);
433 
434 	mutex_unlock(&connections_lock);
435 }
436 
437 /* Something happened to an association */
438 static void process_sctp_notification(struct connection *con,
439 				      struct msghdr *msg, char *buf)
440 {
441 	union sctp_notification *sn = (union sctp_notification *)buf;
442 
443 	if (sn->sn_header.sn_type == SCTP_ASSOC_CHANGE) {
444 		switch (sn->sn_assoc_change.sac_state) {
445 
446 		case SCTP_COMM_UP:
447 		case SCTP_RESTART:
448 		{
449 			/* Check that the new node is in the lockspace */
450 			struct sctp_prim prim;
451 			int nodeid;
452 			int prim_len, ret;
453 			int addr_len;
454 			struct connection *new_con;
455 			struct file *file;
456 			sctp_peeloff_arg_t parg;
457 			int parglen = sizeof(parg);
458 
459 			/*
460 			 * We get this before any data for an association.
461 			 * We verify that the node is in the cluster and
462 			 * then peel off a socket for it.
463 			 */
464 			if ((int)sn->sn_assoc_change.sac_assoc_id <= 0) {
465 				log_print("COMM_UP for invalid assoc ID %d",
466 					 (int)sn->sn_assoc_change.sac_assoc_id);
467 				sctp_init_failed();
468 				return;
469 			}
470 			memset(&prim, 0, sizeof(struct sctp_prim));
471 			prim_len = sizeof(struct sctp_prim);
472 			prim.ssp_assoc_id = sn->sn_assoc_change.sac_assoc_id;
473 
474 			ret = kernel_getsockopt(con->sock,
475 						IPPROTO_SCTP,
476 						SCTP_PRIMARY_ADDR,
477 						(char*)&prim,
478 						&prim_len);
479 			if (ret < 0) {
480 				log_print("getsockopt/sctp_primary_addr on "
481 					  "new assoc %d failed : %d",
482 					  (int)sn->sn_assoc_change.sac_assoc_id,
483 					  ret);
484 
485 				/* Retry INIT later */
486 				new_con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
487 				if (new_con)
488 					clear_bit(CF_CONNECT_PENDING, &con->flags);
489 				return;
490 			}
491 			make_sockaddr(&prim.ssp_addr, 0, &addr_len);
492 			if (dlm_addr_to_nodeid(&prim.ssp_addr, &nodeid)) {
493 				int i;
494 				unsigned char *b=(unsigned char *)&prim.ssp_addr;
495 				log_print("reject connect from unknown addr");
496 				for (i=0; i<sizeof(struct sockaddr_storage);i++)
497 					printk("%02x ", b[i]);
498 				printk("\n");
499 				sctp_send_shutdown(prim.ssp_assoc_id);
500 				return;
501 			}
502 
503 			new_con = nodeid2con(nodeid, GFP_NOFS);
504 			if (!new_con)
505 				return;
506 
507 			/* Peel off a new sock */
508 			parg.associd = sn->sn_assoc_change.sac_assoc_id;
509 			ret = kernel_getsockopt(con->sock, IPPROTO_SCTP,
510 						SCTP_SOCKOPT_PEELOFF,
511 						(void *)&parg, &parglen);
512 			if (ret) {
513 				log_print("Can't peel off a socket for "
514 					  "connection %d to node %d: err=%d\n",
515 					  parg.associd, nodeid, ret);
516 			}
517 			file = fget(parg.sd);
518 			new_con->sock = SOCKET_I(file->f_dentry->d_inode);
519 			add_sock(new_con->sock, new_con);
520 			fput(file);
521 			put_unused_fd(parg.sd);
522 
523 			log_print("got new/restarted association %d nodeid %d",
524 				 (int)sn->sn_assoc_change.sac_assoc_id, nodeid);
525 
526 			/* Send any pending writes */
527 			clear_bit(CF_CONNECT_PENDING, &new_con->flags);
528 			clear_bit(CF_INIT_PENDING, &con->flags);
529 			if (!test_and_set_bit(CF_WRITE_PENDING, &new_con->flags)) {
530 				queue_work(send_workqueue, &new_con->swork);
531 			}
532 			if (!test_and_set_bit(CF_READ_PENDING, &new_con->flags))
533 				queue_work(recv_workqueue, &new_con->rwork);
534 		}
535 		break;
536 
537 		case SCTP_COMM_LOST:
538 		case SCTP_SHUTDOWN_COMP:
539 		{
540 			con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
541 			if (con) {
542 				con->sctp_assoc = 0;
543 			}
544 		}
545 		break;
546 
547 		/* We don't know which INIT failed, so clear the PENDING flags
548 		 * on them all.  if assoc_id is zero then it will then try
549 		 * again */
550 
551 		case SCTP_CANT_STR_ASSOC:
552 		{
553 			log_print("Can't start SCTP association - retrying");
554 			sctp_init_failed();
555 		}
556 		break;
557 
558 		default:
559 			log_print("unexpected SCTP assoc change id=%d state=%d",
560 				  (int)sn->sn_assoc_change.sac_assoc_id,
561 				  sn->sn_assoc_change.sac_state);
562 		}
563 	}
564 }
565 
566 /* Data received from remote end */
567 static int receive_from_sock(struct connection *con)
568 {
569 	int ret = 0;
570 	struct msghdr msg = {};
571 	struct kvec iov[2];
572 	unsigned len;
573 	int r;
574 	int call_again_soon = 0;
575 	int nvec;
576 	char incmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
577 
578 	mutex_lock(&con->sock_mutex);
579 
580 	if (con->sock == NULL) {
581 		ret = -EAGAIN;
582 		goto out_close;
583 	}
584 
585 	if (con->rx_page == NULL) {
586 		/*
587 		 * This doesn't need to be atomic, but I think it should
588 		 * improve performance if it is.
589 		 */
590 		con->rx_page = alloc_page(GFP_ATOMIC);
591 		if (con->rx_page == NULL)
592 			goto out_resched;
593 		cbuf_init(&con->cb, PAGE_CACHE_SIZE);
594 	}
595 
596 	/* Only SCTP needs these really */
597 	memset(&incmsg, 0, sizeof(incmsg));
598 	msg.msg_control = incmsg;
599 	msg.msg_controllen = sizeof(incmsg);
600 
601 	/*
602 	 * iov[0] is the bit of the circular buffer between the current end
603 	 * point (cb.base + cb.len) and the end of the buffer.
604 	 */
605 	iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
606 	iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
607 	iov[1].iov_len = 0;
608 	nvec = 1;
609 
610 	/*
611 	 * iov[1] is the bit of the circular buffer between the start of the
612 	 * buffer and the start of the currently used section (cb.base)
613 	 */
614 	if (cbuf_data(&con->cb) >= con->cb.base) {
615 		iov[0].iov_len = PAGE_CACHE_SIZE - cbuf_data(&con->cb);
616 		iov[1].iov_len = con->cb.base;
617 		iov[1].iov_base = page_address(con->rx_page);
618 		nvec = 2;
619 	}
620 	len = iov[0].iov_len + iov[1].iov_len;
621 
622 	r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len,
623 			       MSG_DONTWAIT | MSG_NOSIGNAL);
624 	if (ret <= 0)
625 		goto out_close;
626 
627 	/* Process SCTP notifications */
628 	if (msg.msg_flags & MSG_NOTIFICATION) {
629 		msg.msg_control = incmsg;
630 		msg.msg_controllen = sizeof(incmsg);
631 
632 		process_sctp_notification(con, &msg,
633 				page_address(con->rx_page) + con->cb.base);
634 		mutex_unlock(&con->sock_mutex);
635 		return 0;
636 	}
637 	BUG_ON(con->nodeid == 0);
638 
639 	if (ret == len)
640 		call_again_soon = 1;
641 	cbuf_add(&con->cb, ret);
642 	ret = dlm_process_incoming_buffer(con->nodeid,
643 					  page_address(con->rx_page),
644 					  con->cb.base, con->cb.len,
645 					  PAGE_CACHE_SIZE);
646 	if (ret == -EBADMSG) {
647 		log_print("lowcomms: addr=%p, base=%u, len=%u, "
648 			  "iov_len=%u, iov_base[0]=%p, read=%d",
649 			  page_address(con->rx_page), con->cb.base, con->cb.len,
650 			  len, iov[0].iov_base, r);
651 	}
652 	if (ret < 0)
653 		goto out_close;
654 	cbuf_eat(&con->cb, ret);
655 
656 	if (cbuf_empty(&con->cb) && !call_again_soon) {
657 		__free_page(con->rx_page);
658 		con->rx_page = NULL;
659 	}
660 
661 	if (call_again_soon)
662 		goto out_resched;
663 	mutex_unlock(&con->sock_mutex);
664 	return 0;
665 
666 out_resched:
667 	if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
668 		queue_work(recv_workqueue, &con->rwork);
669 	mutex_unlock(&con->sock_mutex);
670 	return -EAGAIN;
671 
672 out_close:
673 	mutex_unlock(&con->sock_mutex);
674 	if (ret != -EAGAIN) {
675 		close_connection(con, false);
676 		/* Reconnect when there is something to send */
677 	}
678 	/* Don't return success if we really got EOF */
679 	if (ret == 0)
680 		ret = -EAGAIN;
681 
682 	return ret;
683 }
684 
685 /* Listening socket is busy, accept a connection */
686 static int tcp_accept_from_sock(struct connection *con)
687 {
688 	int result;
689 	struct sockaddr_storage peeraddr;
690 	struct socket *newsock;
691 	int len;
692 	int nodeid;
693 	struct connection *newcon;
694 	struct connection *addcon;
695 
696 	memset(&peeraddr, 0, sizeof(peeraddr));
697 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
698 				  IPPROTO_TCP, &newsock);
699 	if (result < 0)
700 		return -ENOMEM;
701 
702 	mutex_lock_nested(&con->sock_mutex, 0);
703 
704 	result = -ENOTCONN;
705 	if (con->sock == NULL)
706 		goto accept_err;
707 
708 	newsock->type = con->sock->type;
709 	newsock->ops = con->sock->ops;
710 
711 	result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK);
712 	if (result < 0)
713 		goto accept_err;
714 
715 	/* Get the connected socket's peer */
716 	memset(&peeraddr, 0, sizeof(peeraddr));
717 	if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
718 				  &len, 2)) {
719 		result = -ECONNABORTED;
720 		goto accept_err;
721 	}
722 
723 	/* Get the new node's NODEID */
724 	make_sockaddr(&peeraddr, 0, &len);
725 	if (dlm_addr_to_nodeid(&peeraddr, &nodeid)) {
726 		log_print("connect from non cluster node");
727 		sock_release(newsock);
728 		mutex_unlock(&con->sock_mutex);
729 		return -1;
730 	}
731 
732 	log_print("got connection from %d", nodeid);
733 
734 	/*  Check to see if we already have a connection to this node. This
735 	 *  could happen if the two nodes initiate a connection at roughly
736 	 *  the same time and the connections cross on the wire.
737 	 *  In this case we store the incoming one in "othercon"
738 	 */
739 	newcon = nodeid2con(nodeid, GFP_NOFS);
740 	if (!newcon) {
741 		result = -ENOMEM;
742 		goto accept_err;
743 	}
744 	mutex_lock_nested(&newcon->sock_mutex, 1);
745 	if (newcon->sock) {
746 		struct connection *othercon = newcon->othercon;
747 
748 		if (!othercon) {
749 			othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
750 			if (!othercon) {
751 				log_print("failed to allocate incoming socket");
752 				mutex_unlock(&newcon->sock_mutex);
753 				result = -ENOMEM;
754 				goto accept_err;
755 			}
756 			othercon->nodeid = nodeid;
757 			othercon->rx_action = receive_from_sock;
758 			mutex_init(&othercon->sock_mutex);
759 			INIT_WORK(&othercon->swork, process_send_sockets);
760 			INIT_WORK(&othercon->rwork, process_recv_sockets);
761 			set_bit(CF_IS_OTHERCON, &othercon->flags);
762 		}
763 		if (!othercon->sock) {
764 			newcon->othercon = othercon;
765 			othercon->sock = newsock;
766 			newsock->sk->sk_user_data = othercon;
767 			add_sock(newsock, othercon);
768 			addcon = othercon;
769 		}
770 		else {
771 			printk("Extra connection from node %d attempted\n", nodeid);
772 			result = -EAGAIN;
773 			mutex_unlock(&newcon->sock_mutex);
774 			goto accept_err;
775 		}
776 	}
777 	else {
778 		newsock->sk->sk_user_data = newcon;
779 		newcon->rx_action = receive_from_sock;
780 		add_sock(newsock, newcon);
781 		addcon = newcon;
782 	}
783 
784 	mutex_unlock(&newcon->sock_mutex);
785 
786 	/*
787 	 * Add it to the active queue in case we got data
788 	 * beween processing the accept adding the socket
789 	 * to the read_sockets list
790 	 */
791 	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
792 		queue_work(recv_workqueue, &addcon->rwork);
793 	mutex_unlock(&con->sock_mutex);
794 
795 	return 0;
796 
797 accept_err:
798 	mutex_unlock(&con->sock_mutex);
799 	sock_release(newsock);
800 
801 	if (result != -EAGAIN)
802 		log_print("error accepting connection from node: %d", result);
803 	return result;
804 }
805 
806 static void free_entry(struct writequeue_entry *e)
807 {
808 	__free_page(e->page);
809 	kfree(e);
810 }
811 
812 /* Initiate an SCTP association.
813    This is a special case of send_to_sock() in that we don't yet have a
814    peeled-off socket for this association, so we use the listening socket
815    and add the primary IP address of the remote node.
816  */
817 static void sctp_init_assoc(struct connection *con)
818 {
819 	struct sockaddr_storage rem_addr;
820 	char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
821 	struct msghdr outmessage;
822 	struct cmsghdr *cmsg;
823 	struct sctp_sndrcvinfo *sinfo;
824 	struct connection *base_con;
825 	struct writequeue_entry *e;
826 	int len, offset;
827 	int ret;
828 	int addrlen;
829 	struct kvec iov[1];
830 
831 	if (test_and_set_bit(CF_INIT_PENDING, &con->flags))
832 		return;
833 
834 	if (con->retries++ > MAX_CONNECT_RETRIES)
835 		return;
836 
837 	log_print("Initiating association with node %d", con->nodeid);
838 
839 	if (nodeid_to_addr(con->nodeid, (struct sockaddr *)&rem_addr)) {
840 		log_print("no address for nodeid %d", con->nodeid);
841 		return;
842 	}
843 	base_con = nodeid2con(0, 0);
844 	BUG_ON(base_con == NULL);
845 
846 	make_sockaddr(&rem_addr, dlm_config.ci_tcp_port, &addrlen);
847 
848 	outmessage.msg_name = &rem_addr;
849 	outmessage.msg_namelen = addrlen;
850 	outmessage.msg_control = outcmsg;
851 	outmessage.msg_controllen = sizeof(outcmsg);
852 	outmessage.msg_flags = MSG_EOR;
853 
854 	spin_lock(&con->writequeue_lock);
855 	e = list_entry(con->writequeue.next, struct writequeue_entry,
856 		       list);
857 
858 	BUG_ON((struct list_head *) e == &con->writequeue);
859 
860 	len = e->len;
861 	offset = e->offset;
862 	spin_unlock(&con->writequeue_lock);
863 
864 	/* Send the first block off the write queue */
865 	iov[0].iov_base = page_address(e->page)+offset;
866 	iov[0].iov_len = len;
867 
868 	cmsg = CMSG_FIRSTHDR(&outmessage);
869 	cmsg->cmsg_level = IPPROTO_SCTP;
870 	cmsg->cmsg_type = SCTP_SNDRCV;
871 	cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
872 	sinfo = CMSG_DATA(cmsg);
873 	memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
874 	sinfo->sinfo_ppid = cpu_to_le32(dlm_our_nodeid());
875 	outmessage.msg_controllen = cmsg->cmsg_len;
876 
877 	ret = kernel_sendmsg(base_con->sock, &outmessage, iov, 1, len);
878 	if (ret < 0) {
879 		log_print("Send first packet to node %d failed: %d",
880 			  con->nodeid, ret);
881 
882 		/* Try again later */
883 		clear_bit(CF_CONNECT_PENDING, &con->flags);
884 		clear_bit(CF_INIT_PENDING, &con->flags);
885 	}
886 	else {
887 		spin_lock(&con->writequeue_lock);
888 		e->offset += ret;
889 		e->len -= ret;
890 
891 		if (e->len == 0 && e->users == 0) {
892 			list_del(&e->list);
893 			free_entry(e);
894 		}
895 		spin_unlock(&con->writequeue_lock);
896 	}
897 }
898 
899 /* Connect a new socket to its peer */
900 static void tcp_connect_to_sock(struct connection *con)
901 {
902 	int result = -EHOSTUNREACH;
903 	struct sockaddr_storage saddr, src_addr;
904 	int addr_len;
905 	struct socket *sock = NULL;
906 
907 	if (con->nodeid == 0) {
908 		log_print("attempt to connect sock 0 foiled");
909 		return;
910 	}
911 
912 	mutex_lock(&con->sock_mutex);
913 	if (con->retries++ > MAX_CONNECT_RETRIES)
914 		goto out;
915 
916 	/* Some odd races can cause double-connects, ignore them */
917 	if (con->sock) {
918 		result = 0;
919 		goto out;
920 	}
921 
922 	/* Create a socket to communicate with */
923 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
924 				  IPPROTO_TCP, &sock);
925 	if (result < 0)
926 		goto out_err;
927 
928 	memset(&saddr, 0, sizeof(saddr));
929 	if (dlm_nodeid_to_addr(con->nodeid, &saddr)) {
930 		sock_release(sock);
931 		goto out_err;
932 	}
933 
934 	sock->sk->sk_user_data = con;
935 	con->rx_action = receive_from_sock;
936 	con->connect_action = tcp_connect_to_sock;
937 	add_sock(sock, con);
938 
939 	/* Bind to our cluster-known address connecting to avoid
940 	   routing problems */
941 	memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
942 	make_sockaddr(&src_addr, 0, &addr_len);
943 	result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
944 				 addr_len);
945 	if (result < 0) {
946 		log_print("could not bind for connect: %d", result);
947 		/* This *may* not indicate a critical error */
948 	}
949 
950 	make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
951 
952 	log_print("connecting to %d", con->nodeid);
953 	result =
954 		sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
955 				   O_NONBLOCK);
956 	if (result == -EINPROGRESS)
957 		result = 0;
958 	if (result == 0)
959 		goto out;
960 
961 out_err:
962 	if (con->sock) {
963 		sock_release(con->sock);
964 		con->sock = NULL;
965 	} else if (sock) {
966 		sock_release(sock);
967 	}
968 	/*
969 	 * Some errors are fatal and this list might need adjusting. For other
970 	 * errors we try again until the max number of retries is reached.
971 	 */
972 	if (result != -EHOSTUNREACH && result != -ENETUNREACH &&
973 	    result != -ENETDOWN && result != -EINVAL
974 	    && result != -EPROTONOSUPPORT) {
975 		lowcomms_connect_sock(con);
976 		result = 0;
977 	}
978 out:
979 	mutex_unlock(&con->sock_mutex);
980 	return;
981 }
982 
983 static struct socket *tcp_create_listen_sock(struct connection *con,
984 					     struct sockaddr_storage *saddr)
985 {
986 	struct socket *sock = NULL;
987 	int result = 0;
988 	int one = 1;
989 	int addr_len;
990 
991 	if (dlm_local_addr[0]->ss_family == AF_INET)
992 		addr_len = sizeof(struct sockaddr_in);
993 	else
994 		addr_len = sizeof(struct sockaddr_in6);
995 
996 	/* Create a socket to communicate with */
997 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
998 				  IPPROTO_TCP, &sock);
999 	if (result < 0) {
1000 		log_print("Can't create listening comms socket");
1001 		goto create_out;
1002 	}
1003 
1004 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
1005 				   (char *)&one, sizeof(one));
1006 
1007 	if (result < 0) {
1008 		log_print("Failed to set SO_REUSEADDR on socket: %d", result);
1009 	}
1010 	sock->sk->sk_user_data = con;
1011 	con->rx_action = tcp_accept_from_sock;
1012 	con->connect_action = tcp_connect_to_sock;
1013 	con->sock = sock;
1014 
1015 	/* Bind to our port */
1016 	make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1017 	result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1018 	if (result < 0) {
1019 		log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1020 		sock_release(sock);
1021 		sock = NULL;
1022 		con->sock = NULL;
1023 		goto create_out;
1024 	}
1025 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
1026 				 (char *)&one, sizeof(one));
1027 	if (result < 0) {
1028 		log_print("Set keepalive failed: %d", result);
1029 	}
1030 
1031 	result = sock->ops->listen(sock, 5);
1032 	if (result < 0) {
1033 		log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1034 		sock_release(sock);
1035 		sock = NULL;
1036 		goto create_out;
1037 	}
1038 
1039 create_out:
1040 	return sock;
1041 }
1042 
1043 /* Get local addresses */
1044 static void init_local(void)
1045 {
1046 	struct sockaddr_storage sas, *addr;
1047 	int i;
1048 
1049 	dlm_local_count = 0;
1050 	for (i = 0; i < DLM_MAX_ADDR_COUNT - 1; i++) {
1051 		if (dlm_our_addr(&sas, i))
1052 			break;
1053 
1054 		addr = kmalloc(sizeof(*addr), GFP_KERNEL);
1055 		if (!addr)
1056 			break;
1057 		memcpy(addr, &sas, sizeof(*addr));
1058 		dlm_local_addr[dlm_local_count++] = addr;
1059 	}
1060 }
1061 
1062 /* Bind to an IP address. SCTP allows multiple address so it can do
1063    multi-homing */
1064 static int add_sctp_bind_addr(struct connection *sctp_con,
1065 			      struct sockaddr_storage *addr,
1066 			      int addr_len, int num)
1067 {
1068 	int result = 0;
1069 
1070 	if (num == 1)
1071 		result = kernel_bind(sctp_con->sock,
1072 				     (struct sockaddr *) addr,
1073 				     addr_len);
1074 	else
1075 		result = kernel_setsockopt(sctp_con->sock, SOL_SCTP,
1076 					   SCTP_SOCKOPT_BINDX_ADD,
1077 					   (char *)addr, addr_len);
1078 
1079 	if (result < 0)
1080 		log_print("Can't bind to port %d addr number %d",
1081 			  dlm_config.ci_tcp_port, num);
1082 
1083 	return result;
1084 }
1085 
1086 /* Initialise SCTP socket and bind to all interfaces */
1087 static int sctp_listen_for_all(void)
1088 {
1089 	struct socket *sock = NULL;
1090 	struct sockaddr_storage localaddr;
1091 	struct sctp_event_subscribe subscribe;
1092 	int result = -EINVAL, num = 1, i, addr_len;
1093 	struct connection *con = nodeid2con(0, GFP_KERNEL);
1094 	int bufsize = NEEDED_RMEM;
1095 
1096 	if (!con)
1097 		return -ENOMEM;
1098 
1099 	log_print("Using SCTP for communications");
1100 
1101 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_SEQPACKET,
1102 				  IPPROTO_SCTP, &sock);
1103 	if (result < 0) {
1104 		log_print("Can't create comms socket, check SCTP is loaded");
1105 		goto out;
1106 	}
1107 
1108 	/* Listen for events */
1109 	memset(&subscribe, 0, sizeof(subscribe));
1110 	subscribe.sctp_data_io_event = 1;
1111 	subscribe.sctp_association_event = 1;
1112 	subscribe.sctp_send_failure_event = 1;
1113 	subscribe.sctp_shutdown_event = 1;
1114 	subscribe.sctp_partial_delivery_event = 1;
1115 
1116 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
1117 				 (char *)&bufsize, sizeof(bufsize));
1118 	if (result)
1119 		log_print("Error increasing buffer space on socket %d", result);
1120 
1121 	result = kernel_setsockopt(sock, SOL_SCTP, SCTP_EVENTS,
1122 				   (char *)&subscribe, sizeof(subscribe));
1123 	if (result < 0) {
1124 		log_print("Failed to set SCTP_EVENTS on socket: result=%d",
1125 			  result);
1126 		goto create_delsock;
1127 	}
1128 
1129 	/* Init con struct */
1130 	sock->sk->sk_user_data = con;
1131 	con->sock = sock;
1132 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
1133 	con->rx_action = receive_from_sock;
1134 	con->connect_action = sctp_init_assoc;
1135 
1136 	/* Bind to all interfaces. */
1137 	for (i = 0; i < dlm_local_count; i++) {
1138 		memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
1139 		make_sockaddr(&localaddr, dlm_config.ci_tcp_port, &addr_len);
1140 
1141 		result = add_sctp_bind_addr(con, &localaddr, addr_len, num);
1142 		if (result)
1143 			goto create_delsock;
1144 		++num;
1145 	}
1146 
1147 	result = sock->ops->listen(sock, 5);
1148 	if (result < 0) {
1149 		log_print("Can't set socket listening");
1150 		goto create_delsock;
1151 	}
1152 
1153 	return 0;
1154 
1155 create_delsock:
1156 	sock_release(sock);
1157 	con->sock = NULL;
1158 out:
1159 	return result;
1160 }
1161 
1162 static int tcp_listen_for_all(void)
1163 {
1164 	struct socket *sock = NULL;
1165 	struct connection *con = nodeid2con(0, GFP_KERNEL);
1166 	int result = -EINVAL;
1167 
1168 	if (!con)
1169 		return -ENOMEM;
1170 
1171 	/* We don't support multi-homed hosts */
1172 	if (dlm_local_addr[1] != NULL) {
1173 		log_print("TCP protocol can't handle multi-homed hosts, "
1174 			  "try SCTP");
1175 		return -EINVAL;
1176 	}
1177 
1178 	log_print("Using TCP for communications");
1179 
1180 	sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1181 	if (sock) {
1182 		add_sock(sock, con);
1183 		result = 0;
1184 	}
1185 	else {
1186 		result = -EADDRINUSE;
1187 	}
1188 
1189 	return result;
1190 }
1191 
1192 
1193 
1194 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1195 						     gfp_t allocation)
1196 {
1197 	struct writequeue_entry *entry;
1198 
1199 	entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1200 	if (!entry)
1201 		return NULL;
1202 
1203 	entry->page = alloc_page(allocation);
1204 	if (!entry->page) {
1205 		kfree(entry);
1206 		return NULL;
1207 	}
1208 
1209 	entry->offset = 0;
1210 	entry->len = 0;
1211 	entry->end = 0;
1212 	entry->users = 0;
1213 	entry->con = con;
1214 
1215 	return entry;
1216 }
1217 
1218 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1219 {
1220 	struct connection *con;
1221 	struct writequeue_entry *e;
1222 	int offset = 0;
1223 	int users = 0;
1224 
1225 	con = nodeid2con(nodeid, allocation);
1226 	if (!con)
1227 		return NULL;
1228 
1229 	spin_lock(&con->writequeue_lock);
1230 	e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1231 	if ((&e->list == &con->writequeue) ||
1232 	    (PAGE_CACHE_SIZE - e->end < len)) {
1233 		e = NULL;
1234 	} else {
1235 		offset = e->end;
1236 		e->end += len;
1237 		users = e->users++;
1238 	}
1239 	spin_unlock(&con->writequeue_lock);
1240 
1241 	if (e) {
1242 	got_one:
1243 		*ppc = page_address(e->page) + offset;
1244 		return e;
1245 	}
1246 
1247 	e = new_writequeue_entry(con, allocation);
1248 	if (e) {
1249 		spin_lock(&con->writequeue_lock);
1250 		offset = e->end;
1251 		e->end += len;
1252 		users = e->users++;
1253 		list_add_tail(&e->list, &con->writequeue);
1254 		spin_unlock(&con->writequeue_lock);
1255 		goto got_one;
1256 	}
1257 	return NULL;
1258 }
1259 
1260 void dlm_lowcomms_commit_buffer(void *mh)
1261 {
1262 	struct writequeue_entry *e = (struct writequeue_entry *)mh;
1263 	struct connection *con = e->con;
1264 	int users;
1265 
1266 	spin_lock(&con->writequeue_lock);
1267 	users = --e->users;
1268 	if (users)
1269 		goto out;
1270 	e->len = e->end - e->offset;
1271 	spin_unlock(&con->writequeue_lock);
1272 
1273 	if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
1274 		queue_work(send_workqueue, &con->swork);
1275 	}
1276 	return;
1277 
1278 out:
1279 	spin_unlock(&con->writequeue_lock);
1280 	return;
1281 }
1282 
1283 /* Send a message */
1284 static void send_to_sock(struct connection *con)
1285 {
1286 	int ret = 0;
1287 	ssize_t(*sendpage) (struct socket *, struct page *, int, size_t, int);
1288 	const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1289 	struct writequeue_entry *e;
1290 	int len, offset;
1291 
1292 	mutex_lock(&con->sock_mutex);
1293 	if (con->sock == NULL)
1294 		goto out_connect;
1295 
1296 	sendpage = con->sock->ops->sendpage;
1297 
1298 	spin_lock(&con->writequeue_lock);
1299 	for (;;) {
1300 		e = list_entry(con->writequeue.next, struct writequeue_entry,
1301 			       list);
1302 		if ((struct list_head *) e == &con->writequeue)
1303 			break;
1304 
1305 		len = e->len;
1306 		offset = e->offset;
1307 		BUG_ON(len == 0 && e->users == 0);
1308 		spin_unlock(&con->writequeue_lock);
1309 
1310 		ret = 0;
1311 		if (len) {
1312 			ret = sendpage(con->sock, e->page, offset, len,
1313 				       msg_flags);
1314 			if (ret == -EAGAIN || ret == 0) {
1315 				cond_resched();
1316 				goto out;
1317 			}
1318 			if (ret <= 0)
1319 				goto send_error;
1320 		}
1321 			/* Don't starve people filling buffers */
1322 			cond_resched();
1323 
1324 		spin_lock(&con->writequeue_lock);
1325 		e->offset += ret;
1326 		e->len -= ret;
1327 
1328 		if (e->len == 0 && e->users == 0) {
1329 			list_del(&e->list);
1330 			free_entry(e);
1331 			continue;
1332 		}
1333 	}
1334 	spin_unlock(&con->writequeue_lock);
1335 out:
1336 	mutex_unlock(&con->sock_mutex);
1337 	return;
1338 
1339 send_error:
1340 	mutex_unlock(&con->sock_mutex);
1341 	close_connection(con, false);
1342 	lowcomms_connect_sock(con);
1343 	return;
1344 
1345 out_connect:
1346 	mutex_unlock(&con->sock_mutex);
1347 	if (!test_bit(CF_INIT_PENDING, &con->flags))
1348 		lowcomms_connect_sock(con);
1349 	return;
1350 }
1351 
1352 static void clean_one_writequeue(struct connection *con)
1353 {
1354 	struct writequeue_entry *e, *safe;
1355 
1356 	spin_lock(&con->writequeue_lock);
1357 	list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1358 		list_del(&e->list);
1359 		free_entry(e);
1360 	}
1361 	spin_unlock(&con->writequeue_lock);
1362 }
1363 
1364 /* Called from recovery when it knows that a node has
1365    left the cluster */
1366 int dlm_lowcomms_close(int nodeid)
1367 {
1368 	struct connection *con;
1369 
1370 	log_print("closing connection to node %d", nodeid);
1371 	con = nodeid2con(nodeid, 0);
1372 	if (con) {
1373 		clean_one_writequeue(con);
1374 		close_connection(con, true);
1375 	}
1376 	return 0;
1377 }
1378 
1379 /* Receive workqueue function */
1380 static void process_recv_sockets(struct work_struct *work)
1381 {
1382 	struct connection *con = container_of(work, struct connection, rwork);
1383 	int err;
1384 
1385 	clear_bit(CF_READ_PENDING, &con->flags);
1386 	do {
1387 		err = con->rx_action(con);
1388 	} while (!err);
1389 }
1390 
1391 /* Send workqueue function */
1392 static void process_send_sockets(struct work_struct *work)
1393 {
1394 	struct connection *con = container_of(work, struct connection, swork);
1395 
1396 	if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
1397 		con->connect_action(con);
1398 	}
1399 	clear_bit(CF_WRITE_PENDING, &con->flags);
1400 	send_to_sock(con);
1401 }
1402 
1403 
1404 /* Discard all entries on the write queues */
1405 static void clean_writequeues(void)
1406 {
1407 	foreach_conn(clean_one_writequeue);
1408 }
1409 
1410 static void work_stop(void)
1411 {
1412 	destroy_workqueue(recv_workqueue);
1413 	destroy_workqueue(send_workqueue);
1414 }
1415 
1416 static int work_start(void)
1417 {
1418 	int error;
1419 	recv_workqueue = create_workqueue("dlm_recv");
1420 	error = IS_ERR(recv_workqueue);
1421 	if (error) {
1422 		log_print("can't start dlm_recv %d", error);
1423 		return error;
1424 	}
1425 
1426 	send_workqueue = create_singlethread_workqueue("dlm_send");
1427 	error = IS_ERR(send_workqueue);
1428 	if (error) {
1429 		log_print("can't start dlm_send %d", error);
1430 		destroy_workqueue(recv_workqueue);
1431 		return error;
1432 	}
1433 
1434 	return 0;
1435 }
1436 
1437 static void stop_conn(struct connection *con)
1438 {
1439 	con->flags |= 0x0F;
1440 	if (con->sock && con->sock->sk)
1441 		con->sock->sk->sk_user_data = NULL;
1442 }
1443 
1444 static void free_conn(struct connection *con)
1445 {
1446 	close_connection(con, true);
1447 	if (con->othercon)
1448 		kmem_cache_free(con_cache, con->othercon);
1449 	hlist_del(&con->list);
1450 	kmem_cache_free(con_cache, con);
1451 }
1452 
1453 void dlm_lowcomms_stop(void)
1454 {
1455 	/* Set all the flags to prevent any
1456 	   socket activity.
1457 	*/
1458 	mutex_lock(&connections_lock);
1459 	foreach_conn(stop_conn);
1460 	mutex_unlock(&connections_lock);
1461 
1462 	work_stop();
1463 
1464 	mutex_lock(&connections_lock);
1465 	clean_writequeues();
1466 
1467 	foreach_conn(free_conn);
1468 
1469 	mutex_unlock(&connections_lock);
1470 	kmem_cache_destroy(con_cache);
1471 }
1472 
1473 int dlm_lowcomms_start(void)
1474 {
1475 	int error = -EINVAL;
1476 	struct connection *con;
1477 	int i;
1478 
1479 	for (i = 0; i < CONN_HASH_SIZE; i++)
1480 		INIT_HLIST_HEAD(&connection_hash[i]);
1481 
1482 	init_local();
1483 	if (!dlm_local_count) {
1484 		error = -ENOTCONN;
1485 		log_print("no local IP address has been set");
1486 		goto out;
1487 	}
1488 
1489 	error = -ENOMEM;
1490 	con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1491 				      __alignof__(struct connection), 0,
1492 				      NULL);
1493 	if (!con_cache)
1494 		goto out;
1495 
1496 	/* Start listening */
1497 	if (dlm_config.ci_protocol == 0)
1498 		error = tcp_listen_for_all();
1499 	else
1500 		error = sctp_listen_for_all();
1501 	if (error)
1502 		goto fail_unlisten;
1503 
1504 	error = work_start();
1505 	if (error)
1506 		goto fail_unlisten;
1507 
1508 	return 0;
1509 
1510 fail_unlisten:
1511 	con = nodeid2con(0,0);
1512 	if (con) {
1513 		close_connection(con, false);
1514 		kmem_cache_free(con_cache, con);
1515 	}
1516 	kmem_cache_destroy(con_cache);
1517 
1518 out:
1519 	return error;
1520 }
1521