1 // SPDX-License-Identifier: GPL-2.0-only 2 /****************************************************************************** 3 ******************************************************************************* 4 ** 5 ** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 6 ** Copyright (C) 2004-2009 Red Hat, Inc. All rights reserved. 7 ** 8 ** 9 ******************************************************************************* 10 ******************************************************************************/ 11 12 /* 13 * lowcomms.c 14 * 15 * This is the "low-level" comms layer. 16 * 17 * It is responsible for sending/receiving messages 18 * from other nodes in the cluster. 19 * 20 * Cluster nodes are referred to by their nodeids. nodeids are 21 * simply 32 bit numbers to the locking module - if they need to 22 * be expanded for the cluster infrastructure then that is its 23 * responsibility. It is this layer's 24 * responsibility to resolve these into IP address or 25 * whatever it needs for inter-node communication. 26 * 27 * The comms level is two kernel threads that deal mainly with 28 * the receiving of messages from other nodes and passing them 29 * up to the mid-level comms layer (which understands the 30 * message format) for execution by the locking core, and 31 * a send thread which does all the setting up of connections 32 * to remote nodes and the sending of data. Threads are not allowed 33 * to send their own data because it may cause them to wait in times 34 * of high load. Also, this way, the sending thread can collect together 35 * messages bound for one node and send them in one block. 36 * 37 * lowcomms will choose to use either TCP or SCTP as its transport layer 38 * depending on the configuration variable 'protocol'. This should be set 39 * to 0 (default) for TCP or 1 for SCTP. It should be configured using a 40 * cluster-wide mechanism as it must be the same on all nodes of the cluster 41 * for the DLM to function. 42 * 43 */ 44 45 #include <asm/ioctls.h> 46 #include <net/sock.h> 47 #include <net/tcp.h> 48 #include <linux/pagemap.h> 49 #include <linux/file.h> 50 #include <linux/mutex.h> 51 #include <linux/sctp.h> 52 #include <linux/slab.h> 53 #include <net/sctp/sctp.h> 54 #include <net/ipv6.h> 55 56 #include <trace/events/dlm.h> 57 #include <trace/events/sock.h> 58 59 #include "dlm_internal.h" 60 #include "lowcomms.h" 61 #include "midcomms.h" 62 #include "memory.h" 63 #include "config.h" 64 65 #define DLM_SHUTDOWN_WAIT_TIMEOUT msecs_to_jiffies(5000) 66 #define NEEDED_RMEM (4*1024*1024) 67 68 struct connection { 69 struct socket *sock; /* NULL if not connected */ 70 uint32_t nodeid; /* So we know who we are in the list */ 71 /* this semaphore is used to allow parallel recv/send in read 72 * lock mode. When we release a sock we need to held the write lock. 73 * 74 * However this is locking code and not nice. When we remove the 75 * othercon handling we can look into other mechanism to synchronize 76 * io handling to call sock_release() at the right time. 77 */ 78 struct rw_semaphore sock_lock; 79 unsigned long flags; 80 #define CF_APP_LIMITED 0 81 #define CF_RECV_PENDING 1 82 #define CF_SEND_PENDING 2 83 #define CF_RECV_INTR 3 84 #define CF_IO_STOP 4 85 #define CF_IS_OTHERCON 5 86 struct list_head writequeue; /* List of outgoing writequeue_entries */ 87 spinlock_t writequeue_lock; 88 int retries; 89 struct hlist_node list; 90 /* due some connect()/accept() races we currently have this cross over 91 * connection attempt second connection for one node. 92 * 93 * There is a solution to avoid the race by introducing a connect 94 * rule as e.g. our_nodeid > nodeid_to_connect who is allowed to 95 * connect. Otherside can connect but will only be considered that 96 * the other side wants to have a reconnect. 97 * 98 * However changing to this behaviour will break backwards compatible. 99 * In a DLM protocol major version upgrade we should remove this! 100 */ 101 struct connection *othercon; 102 struct work_struct rwork; /* receive worker */ 103 struct work_struct swork; /* send worker */ 104 wait_queue_head_t shutdown_wait; 105 unsigned char rx_leftover_buf[DLM_MAX_SOCKET_BUFSIZE]; 106 int rx_leftover; 107 int mark; 108 int addr_count; 109 int curr_addr_index; 110 struct sockaddr_storage addr[DLM_MAX_ADDR_COUNT]; 111 spinlock_t addrs_lock; 112 struct rcu_head rcu; 113 }; 114 #define sock2con(x) ((struct connection *)(x)->sk_user_data) 115 116 struct listen_connection { 117 struct socket *sock; 118 struct work_struct rwork; 119 }; 120 121 #define DLM_WQ_REMAIN_BYTES(e) (PAGE_SIZE - e->end) 122 #define DLM_WQ_LENGTH_BYTES(e) (e->end - e->offset) 123 124 /* An entry waiting to be sent */ 125 struct writequeue_entry { 126 struct list_head list; 127 struct page *page; 128 int offset; 129 int len; 130 int end; 131 int users; 132 bool dirty; 133 struct connection *con; 134 struct list_head msgs; 135 struct kref ref; 136 }; 137 138 struct dlm_msg { 139 struct writequeue_entry *entry; 140 struct dlm_msg *orig_msg; 141 bool retransmit; 142 void *ppc; 143 int len; 144 int idx; /* new()/commit() idx exchange */ 145 146 struct list_head list; 147 struct kref ref; 148 }; 149 150 struct processqueue_entry { 151 unsigned char *buf; 152 int nodeid; 153 int buflen; 154 155 struct list_head list; 156 }; 157 158 struct dlm_proto_ops { 159 bool try_new_addr; 160 const char *name; 161 int proto; 162 163 int (*connect)(struct connection *con, struct socket *sock, 164 struct sockaddr *addr, int addr_len); 165 void (*sockopts)(struct socket *sock); 166 int (*bind)(struct socket *sock); 167 int (*listen_validate)(void); 168 void (*listen_sockopts)(struct socket *sock); 169 int (*listen_bind)(struct socket *sock); 170 }; 171 172 static struct listen_sock_callbacks { 173 void (*sk_error_report)(struct sock *); 174 void (*sk_data_ready)(struct sock *); 175 void (*sk_state_change)(struct sock *); 176 void (*sk_write_space)(struct sock *); 177 } listen_sock; 178 179 static struct listen_connection listen_con; 180 static struct sockaddr_storage dlm_local_addr[DLM_MAX_ADDR_COUNT]; 181 static int dlm_local_count; 182 183 /* Work queues */ 184 static struct workqueue_struct *io_workqueue; 185 static struct workqueue_struct *process_workqueue; 186 187 static struct hlist_head connection_hash[CONN_HASH_SIZE]; 188 static DEFINE_SPINLOCK(connections_lock); 189 DEFINE_STATIC_SRCU(connections_srcu); 190 191 static const struct dlm_proto_ops *dlm_proto_ops; 192 193 #define DLM_IO_SUCCESS 0 194 #define DLM_IO_END 1 195 #define DLM_IO_EOF 2 196 #define DLM_IO_RESCHED 3 197 198 static void process_recv_sockets(struct work_struct *work); 199 static void process_send_sockets(struct work_struct *work); 200 static void process_dlm_messages(struct work_struct *work); 201 202 static DECLARE_WORK(process_work, process_dlm_messages); 203 static DEFINE_SPINLOCK(processqueue_lock); 204 static bool process_dlm_messages_pending; 205 static LIST_HEAD(processqueue); 206 207 bool dlm_lowcomms_is_running(void) 208 { 209 return !!listen_con.sock; 210 } 211 212 static void lowcomms_queue_swork(struct connection *con) 213 { 214 assert_spin_locked(&con->writequeue_lock); 215 216 if (!test_bit(CF_IO_STOP, &con->flags) && 217 !test_bit(CF_APP_LIMITED, &con->flags) && 218 !test_and_set_bit(CF_SEND_PENDING, &con->flags)) 219 queue_work(io_workqueue, &con->swork); 220 } 221 222 static void lowcomms_queue_rwork(struct connection *con) 223 { 224 #ifdef CONFIG_LOCKDEP 225 WARN_ON_ONCE(!lockdep_sock_is_held(con->sock->sk)); 226 #endif 227 228 if (!test_bit(CF_IO_STOP, &con->flags) && 229 !test_and_set_bit(CF_RECV_PENDING, &con->flags)) 230 queue_work(io_workqueue, &con->rwork); 231 } 232 233 static void writequeue_entry_ctor(void *data) 234 { 235 struct writequeue_entry *entry = data; 236 237 INIT_LIST_HEAD(&entry->msgs); 238 } 239 240 struct kmem_cache *dlm_lowcomms_writequeue_cache_create(void) 241 { 242 return kmem_cache_create("dlm_writequeue", sizeof(struct writequeue_entry), 243 0, 0, writequeue_entry_ctor); 244 } 245 246 struct kmem_cache *dlm_lowcomms_msg_cache_create(void) 247 { 248 return kmem_cache_create("dlm_msg", sizeof(struct dlm_msg), 0, 0, NULL); 249 } 250 251 /* need to held writequeue_lock */ 252 static struct writequeue_entry *con_next_wq(struct connection *con) 253 { 254 struct writequeue_entry *e; 255 256 e = list_first_entry_or_null(&con->writequeue, struct writequeue_entry, 257 list); 258 /* if len is zero nothing is to send, if there are users filling 259 * buffers we wait until the users are done so we can send more. 260 */ 261 if (!e || e->users || e->len == 0) 262 return NULL; 263 264 return e; 265 } 266 267 static struct connection *__find_con(int nodeid, int r) 268 { 269 struct connection *con; 270 271 hlist_for_each_entry_rcu(con, &connection_hash[r], list) { 272 if (con->nodeid == nodeid) 273 return con; 274 } 275 276 return NULL; 277 } 278 279 static void dlm_con_init(struct connection *con, int nodeid) 280 { 281 con->nodeid = nodeid; 282 init_rwsem(&con->sock_lock); 283 INIT_LIST_HEAD(&con->writequeue); 284 spin_lock_init(&con->writequeue_lock); 285 INIT_WORK(&con->swork, process_send_sockets); 286 INIT_WORK(&con->rwork, process_recv_sockets); 287 spin_lock_init(&con->addrs_lock); 288 init_waitqueue_head(&con->shutdown_wait); 289 } 290 291 /* 292 * If 'allocation' is zero then we don't attempt to create a new 293 * connection structure for this node. 294 */ 295 static struct connection *nodeid2con(int nodeid, gfp_t alloc) 296 { 297 struct connection *con, *tmp; 298 int r; 299 300 r = nodeid_hash(nodeid); 301 con = __find_con(nodeid, r); 302 if (con || !alloc) 303 return con; 304 305 con = kzalloc(sizeof(*con), alloc); 306 if (!con) 307 return NULL; 308 309 dlm_con_init(con, nodeid); 310 311 spin_lock(&connections_lock); 312 /* Because multiple workqueues/threads calls this function it can 313 * race on multiple cpu's. Instead of locking hot path __find_con() 314 * we just check in rare cases of recently added nodes again 315 * under protection of connections_lock. If this is the case we 316 * abort our connection creation and return the existing connection. 317 */ 318 tmp = __find_con(nodeid, r); 319 if (tmp) { 320 spin_unlock(&connections_lock); 321 kfree(con); 322 return tmp; 323 } 324 325 hlist_add_head_rcu(&con->list, &connection_hash[r]); 326 spin_unlock(&connections_lock); 327 328 return con; 329 } 330 331 static int addr_compare(const struct sockaddr_storage *x, 332 const struct sockaddr_storage *y) 333 { 334 switch (x->ss_family) { 335 case AF_INET: { 336 struct sockaddr_in *sinx = (struct sockaddr_in *)x; 337 struct sockaddr_in *siny = (struct sockaddr_in *)y; 338 if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr) 339 return 0; 340 if (sinx->sin_port != siny->sin_port) 341 return 0; 342 break; 343 } 344 case AF_INET6: { 345 struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x; 346 struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y; 347 if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr)) 348 return 0; 349 if (sinx->sin6_port != siny->sin6_port) 350 return 0; 351 break; 352 } 353 default: 354 return 0; 355 } 356 return 1; 357 } 358 359 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out, 360 struct sockaddr *sa_out, bool try_new_addr, 361 unsigned int *mark) 362 { 363 struct sockaddr_storage sas; 364 struct connection *con; 365 int idx; 366 367 if (!dlm_local_count) 368 return -1; 369 370 idx = srcu_read_lock(&connections_srcu); 371 con = nodeid2con(nodeid, 0); 372 if (!con) { 373 srcu_read_unlock(&connections_srcu, idx); 374 return -ENOENT; 375 } 376 377 spin_lock(&con->addrs_lock); 378 if (!con->addr_count) { 379 spin_unlock(&con->addrs_lock); 380 srcu_read_unlock(&connections_srcu, idx); 381 return -ENOENT; 382 } 383 384 memcpy(&sas, &con->addr[con->curr_addr_index], 385 sizeof(struct sockaddr_storage)); 386 387 if (try_new_addr) { 388 con->curr_addr_index++; 389 if (con->curr_addr_index == con->addr_count) 390 con->curr_addr_index = 0; 391 } 392 393 *mark = con->mark; 394 spin_unlock(&con->addrs_lock); 395 396 if (sas_out) 397 memcpy(sas_out, &sas, sizeof(struct sockaddr_storage)); 398 399 if (!sa_out) { 400 srcu_read_unlock(&connections_srcu, idx); 401 return 0; 402 } 403 404 if (dlm_local_addr[0].ss_family == AF_INET) { 405 struct sockaddr_in *in4 = (struct sockaddr_in *) &sas; 406 struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out; 407 ret4->sin_addr.s_addr = in4->sin_addr.s_addr; 408 } else { 409 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) &sas; 410 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out; 411 ret6->sin6_addr = in6->sin6_addr; 412 } 413 414 srcu_read_unlock(&connections_srcu, idx); 415 return 0; 416 } 417 418 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid, 419 unsigned int *mark) 420 { 421 struct connection *con; 422 int i, idx, addr_i; 423 424 idx = srcu_read_lock(&connections_srcu); 425 for (i = 0; i < CONN_HASH_SIZE; i++) { 426 hlist_for_each_entry_rcu(con, &connection_hash[i], list) { 427 WARN_ON_ONCE(!con->addr_count); 428 429 spin_lock(&con->addrs_lock); 430 for (addr_i = 0; addr_i < con->addr_count; addr_i++) { 431 if (addr_compare(&con->addr[addr_i], addr)) { 432 *nodeid = con->nodeid; 433 *mark = con->mark; 434 spin_unlock(&con->addrs_lock); 435 srcu_read_unlock(&connections_srcu, idx); 436 return 0; 437 } 438 } 439 spin_unlock(&con->addrs_lock); 440 } 441 } 442 srcu_read_unlock(&connections_srcu, idx); 443 444 return -ENOENT; 445 } 446 447 static bool dlm_lowcomms_con_has_addr(const struct connection *con, 448 const struct sockaddr_storage *addr) 449 { 450 int i; 451 452 for (i = 0; i < con->addr_count; i++) { 453 if (addr_compare(&con->addr[i], addr)) 454 return true; 455 } 456 457 return false; 458 } 459 460 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len) 461 { 462 struct connection *con; 463 bool ret, idx; 464 465 idx = srcu_read_lock(&connections_srcu); 466 con = nodeid2con(nodeid, GFP_NOFS); 467 if (!con) { 468 srcu_read_unlock(&connections_srcu, idx); 469 return -ENOMEM; 470 } 471 472 spin_lock(&con->addrs_lock); 473 if (!con->addr_count) { 474 memcpy(&con->addr[0], addr, sizeof(*addr)); 475 con->addr_count = 1; 476 con->mark = dlm_config.ci_mark; 477 spin_unlock(&con->addrs_lock); 478 srcu_read_unlock(&connections_srcu, idx); 479 return 0; 480 } 481 482 ret = dlm_lowcomms_con_has_addr(con, addr); 483 if (ret) { 484 spin_unlock(&con->addrs_lock); 485 srcu_read_unlock(&connections_srcu, idx); 486 return -EEXIST; 487 } 488 489 if (con->addr_count >= DLM_MAX_ADDR_COUNT) { 490 spin_unlock(&con->addrs_lock); 491 srcu_read_unlock(&connections_srcu, idx); 492 return -ENOSPC; 493 } 494 495 memcpy(&con->addr[con->addr_count++], addr, sizeof(*addr)); 496 srcu_read_unlock(&connections_srcu, idx); 497 spin_unlock(&con->addrs_lock); 498 return 0; 499 } 500 501 /* Data available on socket or listen socket received a connect */ 502 static void lowcomms_data_ready(struct sock *sk) 503 { 504 struct connection *con = sock2con(sk); 505 506 trace_sk_data_ready(sk); 507 508 set_bit(CF_RECV_INTR, &con->flags); 509 lowcomms_queue_rwork(con); 510 } 511 512 static void lowcomms_write_space(struct sock *sk) 513 { 514 struct connection *con = sock2con(sk); 515 516 clear_bit(SOCK_NOSPACE, &con->sock->flags); 517 518 spin_lock_bh(&con->writequeue_lock); 519 if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) { 520 con->sock->sk->sk_write_pending--; 521 clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags); 522 } 523 524 lowcomms_queue_swork(con); 525 spin_unlock_bh(&con->writequeue_lock); 526 } 527 528 static void lowcomms_state_change(struct sock *sk) 529 { 530 /* SCTP layer is not calling sk_data_ready when the connection 531 * is done, so we catch the signal through here. 532 */ 533 if (sk->sk_shutdown == RCV_SHUTDOWN) 534 lowcomms_data_ready(sk); 535 } 536 537 static void lowcomms_listen_data_ready(struct sock *sk) 538 { 539 trace_sk_data_ready(sk); 540 541 queue_work(io_workqueue, &listen_con.rwork); 542 } 543 544 int dlm_lowcomms_connect_node(int nodeid) 545 { 546 struct connection *con; 547 int idx; 548 549 if (nodeid == dlm_our_nodeid()) 550 return 0; 551 552 idx = srcu_read_lock(&connections_srcu); 553 con = nodeid2con(nodeid, 0); 554 if (WARN_ON_ONCE(!con)) { 555 srcu_read_unlock(&connections_srcu, idx); 556 return -ENOENT; 557 } 558 559 down_read(&con->sock_lock); 560 if (!con->sock) { 561 spin_lock_bh(&con->writequeue_lock); 562 lowcomms_queue_swork(con); 563 spin_unlock_bh(&con->writequeue_lock); 564 } 565 up_read(&con->sock_lock); 566 srcu_read_unlock(&connections_srcu, idx); 567 568 cond_resched(); 569 return 0; 570 } 571 572 int dlm_lowcomms_nodes_set_mark(int nodeid, unsigned int mark) 573 { 574 struct connection *con; 575 int idx; 576 577 idx = srcu_read_lock(&connections_srcu); 578 con = nodeid2con(nodeid, 0); 579 if (!con) { 580 srcu_read_unlock(&connections_srcu, idx); 581 return -ENOENT; 582 } 583 584 spin_lock(&con->addrs_lock); 585 con->mark = mark; 586 spin_unlock(&con->addrs_lock); 587 srcu_read_unlock(&connections_srcu, idx); 588 return 0; 589 } 590 591 static void lowcomms_error_report(struct sock *sk) 592 { 593 struct connection *con = sock2con(sk); 594 struct inet_sock *inet; 595 596 inet = inet_sk(sk); 597 switch (sk->sk_family) { 598 case AF_INET: 599 printk_ratelimited(KERN_ERR "dlm: node %d: socket error " 600 "sending to node %d at %pI4, dport %d, " 601 "sk_err=%d/%d\n", dlm_our_nodeid(), 602 con->nodeid, &inet->inet_daddr, 603 ntohs(inet->inet_dport), sk->sk_err, 604 READ_ONCE(sk->sk_err_soft)); 605 break; 606 #if IS_ENABLED(CONFIG_IPV6) 607 case AF_INET6: 608 printk_ratelimited(KERN_ERR "dlm: node %d: socket error " 609 "sending to node %d at %pI6c, " 610 "dport %d, sk_err=%d/%d\n", dlm_our_nodeid(), 611 con->nodeid, &sk->sk_v6_daddr, 612 ntohs(inet->inet_dport), sk->sk_err, 613 READ_ONCE(sk->sk_err_soft)); 614 break; 615 #endif 616 default: 617 printk_ratelimited(KERN_ERR "dlm: node %d: socket error " 618 "invalid socket family %d set, " 619 "sk_err=%d/%d\n", dlm_our_nodeid(), 620 sk->sk_family, sk->sk_err, 621 READ_ONCE(sk->sk_err_soft)); 622 break; 623 } 624 625 dlm_midcomms_unack_msg_resend(con->nodeid); 626 627 listen_sock.sk_error_report(sk); 628 } 629 630 static void restore_callbacks(struct sock *sk) 631 { 632 #ifdef CONFIG_LOCKDEP 633 WARN_ON_ONCE(!lockdep_sock_is_held(sk)); 634 #endif 635 636 sk->sk_user_data = NULL; 637 sk->sk_data_ready = listen_sock.sk_data_ready; 638 sk->sk_state_change = listen_sock.sk_state_change; 639 sk->sk_write_space = listen_sock.sk_write_space; 640 sk->sk_error_report = listen_sock.sk_error_report; 641 } 642 643 /* Make a socket active */ 644 static void add_sock(struct socket *sock, struct connection *con) 645 { 646 struct sock *sk = sock->sk; 647 648 lock_sock(sk); 649 con->sock = sock; 650 651 sk->sk_user_data = con; 652 sk->sk_data_ready = lowcomms_data_ready; 653 sk->sk_write_space = lowcomms_write_space; 654 if (dlm_config.ci_protocol == DLM_PROTO_SCTP) 655 sk->sk_state_change = lowcomms_state_change; 656 sk->sk_allocation = GFP_NOFS; 657 sk->sk_use_task_frag = false; 658 sk->sk_error_report = lowcomms_error_report; 659 release_sock(sk); 660 } 661 662 /* Add the port number to an IPv6 or 4 sockaddr and return the address 663 length */ 664 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port, 665 int *addr_len) 666 { 667 saddr->ss_family = dlm_local_addr[0].ss_family; 668 if (saddr->ss_family == AF_INET) { 669 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr; 670 in4_addr->sin_port = cpu_to_be16(port); 671 *addr_len = sizeof(struct sockaddr_in); 672 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero)); 673 } else { 674 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr; 675 in6_addr->sin6_port = cpu_to_be16(port); 676 *addr_len = sizeof(struct sockaddr_in6); 677 } 678 memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len); 679 } 680 681 static void dlm_page_release(struct kref *kref) 682 { 683 struct writequeue_entry *e = container_of(kref, struct writequeue_entry, 684 ref); 685 686 __free_page(e->page); 687 dlm_free_writequeue(e); 688 } 689 690 static void dlm_msg_release(struct kref *kref) 691 { 692 struct dlm_msg *msg = container_of(kref, struct dlm_msg, ref); 693 694 kref_put(&msg->entry->ref, dlm_page_release); 695 dlm_free_msg(msg); 696 } 697 698 static void free_entry(struct writequeue_entry *e) 699 { 700 struct dlm_msg *msg, *tmp; 701 702 list_for_each_entry_safe(msg, tmp, &e->msgs, list) { 703 if (msg->orig_msg) { 704 msg->orig_msg->retransmit = false; 705 kref_put(&msg->orig_msg->ref, dlm_msg_release); 706 } 707 708 list_del(&msg->list); 709 kref_put(&msg->ref, dlm_msg_release); 710 } 711 712 list_del(&e->list); 713 kref_put(&e->ref, dlm_page_release); 714 } 715 716 static void dlm_close_sock(struct socket **sock) 717 { 718 lock_sock((*sock)->sk); 719 restore_callbacks((*sock)->sk); 720 release_sock((*sock)->sk); 721 722 sock_release(*sock); 723 *sock = NULL; 724 } 725 726 static void allow_connection_io(struct connection *con) 727 { 728 if (con->othercon) 729 clear_bit(CF_IO_STOP, &con->othercon->flags); 730 clear_bit(CF_IO_STOP, &con->flags); 731 } 732 733 static void stop_connection_io(struct connection *con) 734 { 735 if (con->othercon) 736 stop_connection_io(con->othercon); 737 738 down_write(&con->sock_lock); 739 if (con->sock) { 740 lock_sock(con->sock->sk); 741 restore_callbacks(con->sock->sk); 742 743 spin_lock_bh(&con->writequeue_lock); 744 set_bit(CF_IO_STOP, &con->flags); 745 spin_unlock_bh(&con->writequeue_lock); 746 release_sock(con->sock->sk); 747 } else { 748 spin_lock_bh(&con->writequeue_lock); 749 set_bit(CF_IO_STOP, &con->flags); 750 spin_unlock_bh(&con->writequeue_lock); 751 } 752 up_write(&con->sock_lock); 753 754 cancel_work_sync(&con->swork); 755 cancel_work_sync(&con->rwork); 756 } 757 758 /* Close a remote connection and tidy up */ 759 static void close_connection(struct connection *con, bool and_other) 760 { 761 struct writequeue_entry *e; 762 763 if (con->othercon && and_other) 764 close_connection(con->othercon, false); 765 766 down_write(&con->sock_lock); 767 if (!con->sock) { 768 up_write(&con->sock_lock); 769 return; 770 } 771 772 dlm_close_sock(&con->sock); 773 774 /* if we send a writequeue entry only a half way, we drop the 775 * whole entry because reconnection and that we not start of the 776 * middle of a msg which will confuse the other end. 777 * 778 * we can always drop messages because retransmits, but what we 779 * cannot allow is to transmit half messages which may be processed 780 * at the other side. 781 * 782 * our policy is to start on a clean state when disconnects, we don't 783 * know what's send/received on transport layer in this case. 784 */ 785 spin_lock_bh(&con->writequeue_lock); 786 if (!list_empty(&con->writequeue)) { 787 e = list_first_entry(&con->writequeue, struct writequeue_entry, 788 list); 789 if (e->dirty) 790 free_entry(e); 791 } 792 spin_unlock_bh(&con->writequeue_lock); 793 794 con->rx_leftover = 0; 795 con->retries = 0; 796 clear_bit(CF_APP_LIMITED, &con->flags); 797 clear_bit(CF_RECV_PENDING, &con->flags); 798 clear_bit(CF_SEND_PENDING, &con->flags); 799 up_write(&con->sock_lock); 800 } 801 802 static void shutdown_connection(struct connection *con, bool and_other) 803 { 804 int ret; 805 806 if (con->othercon && and_other) 807 shutdown_connection(con->othercon, false); 808 809 flush_workqueue(io_workqueue); 810 down_read(&con->sock_lock); 811 /* nothing to shutdown */ 812 if (!con->sock) { 813 up_read(&con->sock_lock); 814 return; 815 } 816 817 ret = kernel_sock_shutdown(con->sock, SHUT_WR); 818 up_read(&con->sock_lock); 819 if (ret) { 820 log_print("Connection %p failed to shutdown: %d will force close", 821 con, ret); 822 goto force_close; 823 } else { 824 ret = wait_event_timeout(con->shutdown_wait, !con->sock, 825 DLM_SHUTDOWN_WAIT_TIMEOUT); 826 if (ret == 0) { 827 log_print("Connection %p shutdown timed out, will force close", 828 con); 829 goto force_close; 830 } 831 } 832 833 return; 834 835 force_close: 836 close_connection(con, false); 837 } 838 839 static struct processqueue_entry *new_processqueue_entry(int nodeid, 840 int buflen) 841 { 842 struct processqueue_entry *pentry; 843 844 pentry = kmalloc(sizeof(*pentry), GFP_NOFS); 845 if (!pentry) 846 return NULL; 847 848 pentry->buf = kmalloc(buflen, GFP_NOFS); 849 if (!pentry->buf) { 850 kfree(pentry); 851 return NULL; 852 } 853 854 pentry->nodeid = nodeid; 855 return pentry; 856 } 857 858 static void free_processqueue_entry(struct processqueue_entry *pentry) 859 { 860 kfree(pentry->buf); 861 kfree(pentry); 862 } 863 864 struct dlm_processed_nodes { 865 int nodeid; 866 867 struct list_head list; 868 }; 869 870 static void add_processed_node(int nodeid, struct list_head *processed_nodes) 871 { 872 struct dlm_processed_nodes *n; 873 874 list_for_each_entry(n, processed_nodes, list) { 875 /* we already remembered this node */ 876 if (n->nodeid == nodeid) 877 return; 878 } 879 880 /* if it's fails in worst case we simple don't send an ack back. 881 * We try it next time. 882 */ 883 n = kmalloc(sizeof(*n), GFP_NOFS); 884 if (!n) 885 return; 886 887 n->nodeid = nodeid; 888 list_add(&n->list, processed_nodes); 889 } 890 891 static void process_dlm_messages(struct work_struct *work) 892 { 893 struct dlm_processed_nodes *n, *n_tmp; 894 struct processqueue_entry *pentry; 895 LIST_HEAD(processed_nodes); 896 897 spin_lock(&processqueue_lock); 898 pentry = list_first_entry_or_null(&processqueue, 899 struct processqueue_entry, list); 900 if (WARN_ON_ONCE(!pentry)) { 901 spin_unlock(&processqueue_lock); 902 return; 903 } 904 905 list_del(&pentry->list); 906 spin_unlock(&processqueue_lock); 907 908 for (;;) { 909 dlm_process_incoming_buffer(pentry->nodeid, pentry->buf, 910 pentry->buflen); 911 add_processed_node(pentry->nodeid, &processed_nodes); 912 free_processqueue_entry(pentry); 913 914 spin_lock(&processqueue_lock); 915 pentry = list_first_entry_or_null(&processqueue, 916 struct processqueue_entry, list); 917 if (!pentry) { 918 process_dlm_messages_pending = false; 919 spin_unlock(&processqueue_lock); 920 break; 921 } 922 923 list_del(&pentry->list); 924 spin_unlock(&processqueue_lock); 925 } 926 927 /* send ack back after we processed couple of messages */ 928 list_for_each_entry_safe(n, n_tmp, &processed_nodes, list) { 929 list_del(&n->list); 930 dlm_midcomms_receive_done(n->nodeid); 931 kfree(n); 932 } 933 } 934 935 /* Data received from remote end */ 936 static int receive_from_sock(struct connection *con, int buflen) 937 { 938 struct processqueue_entry *pentry; 939 int ret, buflen_real; 940 struct msghdr msg; 941 struct kvec iov; 942 943 pentry = new_processqueue_entry(con->nodeid, buflen); 944 if (!pentry) 945 return DLM_IO_RESCHED; 946 947 memcpy(pentry->buf, con->rx_leftover_buf, con->rx_leftover); 948 949 /* calculate new buffer parameter regarding last receive and 950 * possible leftover bytes 951 */ 952 iov.iov_base = pentry->buf + con->rx_leftover; 953 iov.iov_len = buflen - con->rx_leftover; 954 955 memset(&msg, 0, sizeof(msg)); 956 msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL; 957 clear_bit(CF_RECV_INTR, &con->flags); 958 again: 959 ret = kernel_recvmsg(con->sock, &msg, &iov, 1, iov.iov_len, 960 msg.msg_flags); 961 trace_dlm_recv(con->nodeid, ret); 962 if (ret == -EAGAIN) { 963 lock_sock(con->sock->sk); 964 if (test_and_clear_bit(CF_RECV_INTR, &con->flags)) { 965 release_sock(con->sock->sk); 966 goto again; 967 } 968 969 clear_bit(CF_RECV_PENDING, &con->flags); 970 release_sock(con->sock->sk); 971 free_processqueue_entry(pentry); 972 return DLM_IO_END; 973 } else if (ret == 0) { 974 /* close will clear CF_RECV_PENDING */ 975 free_processqueue_entry(pentry); 976 return DLM_IO_EOF; 977 } else if (ret < 0) { 978 free_processqueue_entry(pentry); 979 return ret; 980 } 981 982 /* new buflen according readed bytes and leftover from last receive */ 983 buflen_real = ret + con->rx_leftover; 984 ret = dlm_validate_incoming_buffer(con->nodeid, pentry->buf, 985 buflen_real); 986 if (ret < 0) { 987 free_processqueue_entry(pentry); 988 return ret; 989 } 990 991 pentry->buflen = ret; 992 993 /* calculate leftover bytes from process and put it into begin of 994 * the receive buffer, so next receive we have the full message 995 * at the start address of the receive buffer. 996 */ 997 con->rx_leftover = buflen_real - ret; 998 memmove(con->rx_leftover_buf, pentry->buf + ret, 999 con->rx_leftover); 1000 1001 spin_lock(&processqueue_lock); 1002 list_add_tail(&pentry->list, &processqueue); 1003 if (!process_dlm_messages_pending) { 1004 process_dlm_messages_pending = true; 1005 queue_work(process_workqueue, &process_work); 1006 } 1007 spin_unlock(&processqueue_lock); 1008 1009 return DLM_IO_SUCCESS; 1010 } 1011 1012 /* Listening socket is busy, accept a connection */ 1013 static int accept_from_sock(void) 1014 { 1015 struct sockaddr_storage peeraddr; 1016 int len, idx, result, nodeid; 1017 struct connection *newcon; 1018 struct socket *newsock; 1019 unsigned int mark; 1020 1021 result = kernel_accept(listen_con.sock, &newsock, O_NONBLOCK); 1022 if (result == -EAGAIN) 1023 return DLM_IO_END; 1024 else if (result < 0) 1025 goto accept_err; 1026 1027 /* Get the connected socket's peer */ 1028 memset(&peeraddr, 0, sizeof(peeraddr)); 1029 len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2); 1030 if (len < 0) { 1031 result = -ECONNABORTED; 1032 goto accept_err; 1033 } 1034 1035 /* Get the new node's NODEID */ 1036 make_sockaddr(&peeraddr, 0, &len); 1037 if (addr_to_nodeid(&peeraddr, &nodeid, &mark)) { 1038 switch (peeraddr.ss_family) { 1039 case AF_INET: { 1040 struct sockaddr_in *sin = (struct sockaddr_in *)&peeraddr; 1041 1042 log_print("connect from non cluster IPv4 node %pI4", 1043 &sin->sin_addr); 1044 break; 1045 } 1046 #if IS_ENABLED(CONFIG_IPV6) 1047 case AF_INET6: { 1048 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&peeraddr; 1049 1050 log_print("connect from non cluster IPv6 node %pI6c", 1051 &sin6->sin6_addr); 1052 break; 1053 } 1054 #endif 1055 default: 1056 log_print("invalid family from non cluster node"); 1057 break; 1058 } 1059 1060 sock_release(newsock); 1061 return -1; 1062 } 1063 1064 log_print("got connection from %d", nodeid); 1065 1066 /* Check to see if we already have a connection to this node. This 1067 * could happen if the two nodes initiate a connection at roughly 1068 * the same time and the connections cross on the wire. 1069 * In this case we store the incoming one in "othercon" 1070 */ 1071 idx = srcu_read_lock(&connections_srcu); 1072 newcon = nodeid2con(nodeid, 0); 1073 if (WARN_ON_ONCE(!newcon)) { 1074 srcu_read_unlock(&connections_srcu, idx); 1075 result = -ENOENT; 1076 goto accept_err; 1077 } 1078 1079 sock_set_mark(newsock->sk, mark); 1080 1081 down_write(&newcon->sock_lock); 1082 if (newcon->sock) { 1083 struct connection *othercon = newcon->othercon; 1084 1085 if (!othercon) { 1086 othercon = kzalloc(sizeof(*othercon), GFP_NOFS); 1087 if (!othercon) { 1088 log_print("failed to allocate incoming socket"); 1089 up_write(&newcon->sock_lock); 1090 srcu_read_unlock(&connections_srcu, idx); 1091 result = -ENOMEM; 1092 goto accept_err; 1093 } 1094 1095 dlm_con_init(othercon, nodeid); 1096 lockdep_set_subclass(&othercon->sock_lock, 1); 1097 newcon->othercon = othercon; 1098 set_bit(CF_IS_OTHERCON, &othercon->flags); 1099 } else { 1100 /* close other sock con if we have something new */ 1101 close_connection(othercon, false); 1102 } 1103 1104 down_write(&othercon->sock_lock); 1105 add_sock(newsock, othercon); 1106 1107 /* check if we receved something while adding */ 1108 lock_sock(othercon->sock->sk); 1109 lowcomms_queue_rwork(othercon); 1110 release_sock(othercon->sock->sk); 1111 up_write(&othercon->sock_lock); 1112 } 1113 else { 1114 /* accept copies the sk after we've saved the callbacks, so we 1115 don't want to save them a second time or comm errors will 1116 result in calling sk_error_report recursively. */ 1117 add_sock(newsock, newcon); 1118 1119 /* check if we receved something while adding */ 1120 lock_sock(newcon->sock->sk); 1121 lowcomms_queue_rwork(newcon); 1122 release_sock(newcon->sock->sk); 1123 } 1124 up_write(&newcon->sock_lock); 1125 srcu_read_unlock(&connections_srcu, idx); 1126 1127 return DLM_IO_SUCCESS; 1128 1129 accept_err: 1130 if (newsock) 1131 sock_release(newsock); 1132 1133 return result; 1134 } 1135 1136 /* 1137 * writequeue_entry_complete - try to delete and free write queue entry 1138 * @e: write queue entry to try to delete 1139 * @completed: bytes completed 1140 * 1141 * writequeue_lock must be held. 1142 */ 1143 static void writequeue_entry_complete(struct writequeue_entry *e, int completed) 1144 { 1145 e->offset += completed; 1146 e->len -= completed; 1147 /* signal that page was half way transmitted */ 1148 e->dirty = true; 1149 1150 if (e->len == 0 && e->users == 0) 1151 free_entry(e); 1152 } 1153 1154 /* 1155 * sctp_bind_addrs - bind a SCTP socket to all our addresses 1156 */ 1157 static int sctp_bind_addrs(struct socket *sock, uint16_t port) 1158 { 1159 struct sockaddr_storage localaddr; 1160 struct sockaddr *addr = (struct sockaddr *)&localaddr; 1161 int i, addr_len, result = 0; 1162 1163 for (i = 0; i < dlm_local_count; i++) { 1164 memcpy(&localaddr, &dlm_local_addr[i], sizeof(localaddr)); 1165 make_sockaddr(&localaddr, port, &addr_len); 1166 1167 if (!i) 1168 result = kernel_bind(sock, addr, addr_len); 1169 else 1170 result = sock_bind_add(sock->sk, addr, addr_len); 1171 1172 if (result < 0) { 1173 log_print("Can't bind to %d addr number %d, %d.\n", 1174 port, i + 1, result); 1175 break; 1176 } 1177 } 1178 return result; 1179 } 1180 1181 /* Get local addresses */ 1182 static void init_local(void) 1183 { 1184 struct sockaddr_storage sas; 1185 int i; 1186 1187 dlm_local_count = 0; 1188 for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) { 1189 if (dlm_our_addr(&sas, i)) 1190 break; 1191 1192 memcpy(&dlm_local_addr[dlm_local_count++], &sas, sizeof(sas)); 1193 } 1194 } 1195 1196 static struct writequeue_entry *new_writequeue_entry(struct connection *con) 1197 { 1198 struct writequeue_entry *entry; 1199 1200 entry = dlm_allocate_writequeue(); 1201 if (!entry) 1202 return NULL; 1203 1204 entry->page = alloc_page(GFP_ATOMIC | __GFP_ZERO); 1205 if (!entry->page) { 1206 dlm_free_writequeue(entry); 1207 return NULL; 1208 } 1209 1210 entry->offset = 0; 1211 entry->len = 0; 1212 entry->end = 0; 1213 entry->dirty = false; 1214 entry->con = con; 1215 entry->users = 1; 1216 kref_init(&entry->ref); 1217 return entry; 1218 } 1219 1220 static struct writequeue_entry *new_wq_entry(struct connection *con, int len, 1221 char **ppc, void (*cb)(void *data), 1222 void *data) 1223 { 1224 struct writequeue_entry *e; 1225 1226 spin_lock_bh(&con->writequeue_lock); 1227 if (!list_empty(&con->writequeue)) { 1228 e = list_last_entry(&con->writequeue, struct writequeue_entry, list); 1229 if (DLM_WQ_REMAIN_BYTES(e) >= len) { 1230 kref_get(&e->ref); 1231 1232 *ppc = page_address(e->page) + e->end; 1233 if (cb) 1234 cb(data); 1235 1236 e->end += len; 1237 e->users++; 1238 goto out; 1239 } 1240 } 1241 1242 e = new_writequeue_entry(con); 1243 if (!e) 1244 goto out; 1245 1246 kref_get(&e->ref); 1247 *ppc = page_address(e->page); 1248 e->end += len; 1249 if (cb) 1250 cb(data); 1251 1252 list_add_tail(&e->list, &con->writequeue); 1253 1254 out: 1255 spin_unlock_bh(&con->writequeue_lock); 1256 return e; 1257 }; 1258 1259 static struct dlm_msg *dlm_lowcomms_new_msg_con(struct connection *con, int len, 1260 gfp_t allocation, char **ppc, 1261 void (*cb)(void *data), 1262 void *data) 1263 { 1264 struct writequeue_entry *e; 1265 struct dlm_msg *msg; 1266 1267 msg = dlm_allocate_msg(allocation); 1268 if (!msg) 1269 return NULL; 1270 1271 kref_init(&msg->ref); 1272 1273 e = new_wq_entry(con, len, ppc, cb, data); 1274 if (!e) { 1275 dlm_free_msg(msg); 1276 return NULL; 1277 } 1278 1279 msg->retransmit = false; 1280 msg->orig_msg = NULL; 1281 msg->ppc = *ppc; 1282 msg->len = len; 1283 msg->entry = e; 1284 1285 return msg; 1286 } 1287 1288 /* avoid false positive for nodes_srcu, unlock happens in 1289 * dlm_lowcomms_commit_msg which is a must call if success 1290 */ 1291 #ifndef __CHECKER__ 1292 struct dlm_msg *dlm_lowcomms_new_msg(int nodeid, int len, gfp_t allocation, 1293 char **ppc, void (*cb)(void *data), 1294 void *data) 1295 { 1296 struct connection *con; 1297 struct dlm_msg *msg; 1298 int idx; 1299 1300 if (len > DLM_MAX_SOCKET_BUFSIZE || 1301 len < sizeof(struct dlm_header)) { 1302 BUILD_BUG_ON(PAGE_SIZE < DLM_MAX_SOCKET_BUFSIZE); 1303 log_print("failed to allocate a buffer of size %d", len); 1304 WARN_ON_ONCE(1); 1305 return NULL; 1306 } 1307 1308 idx = srcu_read_lock(&connections_srcu); 1309 con = nodeid2con(nodeid, 0); 1310 if (WARN_ON_ONCE(!con)) { 1311 srcu_read_unlock(&connections_srcu, idx); 1312 return NULL; 1313 } 1314 1315 msg = dlm_lowcomms_new_msg_con(con, len, allocation, ppc, cb, data); 1316 if (!msg) { 1317 srcu_read_unlock(&connections_srcu, idx); 1318 return NULL; 1319 } 1320 1321 /* for dlm_lowcomms_commit_msg() */ 1322 kref_get(&msg->ref); 1323 /* we assume if successful commit must called */ 1324 msg->idx = idx; 1325 return msg; 1326 } 1327 #endif 1328 1329 static void _dlm_lowcomms_commit_msg(struct dlm_msg *msg) 1330 { 1331 struct writequeue_entry *e = msg->entry; 1332 struct connection *con = e->con; 1333 int users; 1334 1335 spin_lock_bh(&con->writequeue_lock); 1336 kref_get(&msg->ref); 1337 list_add(&msg->list, &e->msgs); 1338 1339 users = --e->users; 1340 if (users) 1341 goto out; 1342 1343 e->len = DLM_WQ_LENGTH_BYTES(e); 1344 1345 lowcomms_queue_swork(con); 1346 1347 out: 1348 spin_unlock_bh(&con->writequeue_lock); 1349 return; 1350 } 1351 1352 /* avoid false positive for nodes_srcu, lock was happen in 1353 * dlm_lowcomms_new_msg 1354 */ 1355 #ifndef __CHECKER__ 1356 void dlm_lowcomms_commit_msg(struct dlm_msg *msg) 1357 { 1358 _dlm_lowcomms_commit_msg(msg); 1359 srcu_read_unlock(&connections_srcu, msg->idx); 1360 /* because dlm_lowcomms_new_msg() */ 1361 kref_put(&msg->ref, dlm_msg_release); 1362 } 1363 #endif 1364 1365 void dlm_lowcomms_put_msg(struct dlm_msg *msg) 1366 { 1367 kref_put(&msg->ref, dlm_msg_release); 1368 } 1369 1370 /* does not held connections_srcu, usage lowcomms_error_report only */ 1371 int dlm_lowcomms_resend_msg(struct dlm_msg *msg) 1372 { 1373 struct dlm_msg *msg_resend; 1374 char *ppc; 1375 1376 if (msg->retransmit) 1377 return 1; 1378 1379 msg_resend = dlm_lowcomms_new_msg_con(msg->entry->con, msg->len, 1380 GFP_ATOMIC, &ppc, NULL, NULL); 1381 if (!msg_resend) 1382 return -ENOMEM; 1383 1384 msg->retransmit = true; 1385 kref_get(&msg->ref); 1386 msg_resend->orig_msg = msg; 1387 1388 memcpy(ppc, msg->ppc, msg->len); 1389 _dlm_lowcomms_commit_msg(msg_resend); 1390 dlm_lowcomms_put_msg(msg_resend); 1391 1392 return 0; 1393 } 1394 1395 /* Send a message */ 1396 static int send_to_sock(struct connection *con) 1397 { 1398 const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL; 1399 struct writequeue_entry *e; 1400 int len, offset, ret; 1401 1402 spin_lock_bh(&con->writequeue_lock); 1403 e = con_next_wq(con); 1404 if (!e) { 1405 clear_bit(CF_SEND_PENDING, &con->flags); 1406 spin_unlock_bh(&con->writequeue_lock); 1407 return DLM_IO_END; 1408 } 1409 1410 len = e->len; 1411 offset = e->offset; 1412 WARN_ON_ONCE(len == 0 && e->users == 0); 1413 spin_unlock_bh(&con->writequeue_lock); 1414 1415 ret = kernel_sendpage(con->sock, e->page, offset, len, 1416 msg_flags); 1417 trace_dlm_send(con->nodeid, ret); 1418 if (ret == -EAGAIN || ret == 0) { 1419 lock_sock(con->sock->sk); 1420 spin_lock_bh(&con->writequeue_lock); 1421 if (test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) && 1422 !test_and_set_bit(CF_APP_LIMITED, &con->flags)) { 1423 /* Notify TCP that we're limited by the 1424 * application window size. 1425 */ 1426 set_bit(SOCK_NOSPACE, &con->sock->sk->sk_socket->flags); 1427 con->sock->sk->sk_write_pending++; 1428 1429 clear_bit(CF_SEND_PENDING, &con->flags); 1430 spin_unlock_bh(&con->writequeue_lock); 1431 release_sock(con->sock->sk); 1432 1433 /* wait for write_space() event */ 1434 return DLM_IO_END; 1435 } 1436 spin_unlock_bh(&con->writequeue_lock); 1437 release_sock(con->sock->sk); 1438 1439 return DLM_IO_RESCHED; 1440 } else if (ret < 0) { 1441 return ret; 1442 } 1443 1444 spin_lock_bh(&con->writequeue_lock); 1445 writequeue_entry_complete(e, ret); 1446 spin_unlock_bh(&con->writequeue_lock); 1447 1448 return DLM_IO_SUCCESS; 1449 } 1450 1451 static void clean_one_writequeue(struct connection *con) 1452 { 1453 struct writequeue_entry *e, *safe; 1454 1455 spin_lock_bh(&con->writequeue_lock); 1456 list_for_each_entry_safe(e, safe, &con->writequeue, list) { 1457 free_entry(e); 1458 } 1459 spin_unlock_bh(&con->writequeue_lock); 1460 } 1461 1462 static void connection_release(struct rcu_head *rcu) 1463 { 1464 struct connection *con = container_of(rcu, struct connection, rcu); 1465 1466 WARN_ON_ONCE(!list_empty(&con->writequeue)); 1467 WARN_ON_ONCE(con->sock); 1468 kfree(con); 1469 } 1470 1471 /* Called from recovery when it knows that a node has 1472 left the cluster */ 1473 int dlm_lowcomms_close(int nodeid) 1474 { 1475 struct connection *con; 1476 int idx; 1477 1478 log_print("closing connection to node %d", nodeid); 1479 1480 idx = srcu_read_lock(&connections_srcu); 1481 con = nodeid2con(nodeid, 0); 1482 if (WARN_ON_ONCE(!con)) { 1483 srcu_read_unlock(&connections_srcu, idx); 1484 return -ENOENT; 1485 } 1486 1487 stop_connection_io(con); 1488 log_print("io handling for node: %d stopped", nodeid); 1489 close_connection(con, true); 1490 1491 spin_lock(&connections_lock); 1492 hlist_del_rcu(&con->list); 1493 spin_unlock(&connections_lock); 1494 1495 clean_one_writequeue(con); 1496 call_srcu(&connections_srcu, &con->rcu, connection_release); 1497 if (con->othercon) { 1498 clean_one_writequeue(con->othercon); 1499 if (con->othercon) 1500 call_srcu(&connections_srcu, &con->othercon->rcu, connection_release); 1501 } 1502 srcu_read_unlock(&connections_srcu, idx); 1503 1504 /* for debugging we print when we are done to compare with other 1505 * messages in between. This function need to be correctly synchronized 1506 * with io handling 1507 */ 1508 log_print("closing connection to node %d done", nodeid); 1509 1510 return 0; 1511 } 1512 1513 /* Receive worker function */ 1514 static void process_recv_sockets(struct work_struct *work) 1515 { 1516 struct connection *con = container_of(work, struct connection, rwork); 1517 int ret, buflen; 1518 1519 down_read(&con->sock_lock); 1520 if (!con->sock) { 1521 up_read(&con->sock_lock); 1522 return; 1523 } 1524 1525 buflen = READ_ONCE(dlm_config.ci_buffer_size); 1526 do { 1527 ret = receive_from_sock(con, buflen); 1528 } while (ret == DLM_IO_SUCCESS); 1529 up_read(&con->sock_lock); 1530 1531 switch (ret) { 1532 case DLM_IO_END: 1533 /* CF_RECV_PENDING cleared */ 1534 break; 1535 case DLM_IO_EOF: 1536 close_connection(con, false); 1537 wake_up(&con->shutdown_wait); 1538 /* CF_RECV_PENDING cleared */ 1539 break; 1540 case DLM_IO_RESCHED: 1541 cond_resched(); 1542 queue_work(io_workqueue, &con->rwork); 1543 /* CF_RECV_PENDING not cleared */ 1544 break; 1545 default: 1546 if (ret < 0) { 1547 if (test_bit(CF_IS_OTHERCON, &con->flags)) { 1548 close_connection(con, false); 1549 } else { 1550 spin_lock_bh(&con->writequeue_lock); 1551 lowcomms_queue_swork(con); 1552 spin_unlock_bh(&con->writequeue_lock); 1553 } 1554 1555 /* CF_RECV_PENDING cleared for othercon 1556 * we trigger send queue if not already done 1557 * and process_send_sockets will handle it 1558 */ 1559 break; 1560 } 1561 1562 WARN_ON_ONCE(1); 1563 break; 1564 } 1565 } 1566 1567 static void process_listen_recv_socket(struct work_struct *work) 1568 { 1569 int ret; 1570 1571 if (WARN_ON_ONCE(!listen_con.sock)) 1572 return; 1573 1574 do { 1575 ret = accept_from_sock(); 1576 } while (ret == DLM_IO_SUCCESS); 1577 1578 if (ret < 0) 1579 log_print("critical error accepting connection: %d", ret); 1580 } 1581 1582 static int dlm_connect(struct connection *con) 1583 { 1584 struct sockaddr_storage addr; 1585 int result, addr_len; 1586 struct socket *sock; 1587 unsigned int mark; 1588 1589 memset(&addr, 0, sizeof(addr)); 1590 result = nodeid_to_addr(con->nodeid, &addr, NULL, 1591 dlm_proto_ops->try_new_addr, &mark); 1592 if (result < 0) { 1593 log_print("no address for nodeid %d", con->nodeid); 1594 return result; 1595 } 1596 1597 /* Create a socket to communicate with */ 1598 result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family, 1599 SOCK_STREAM, dlm_proto_ops->proto, &sock); 1600 if (result < 0) 1601 return result; 1602 1603 sock_set_mark(sock->sk, mark); 1604 dlm_proto_ops->sockopts(sock); 1605 1606 result = dlm_proto_ops->bind(sock); 1607 if (result < 0) { 1608 sock_release(sock); 1609 return result; 1610 } 1611 1612 add_sock(sock, con); 1613 1614 log_print_ratelimited("connecting to %d", con->nodeid); 1615 make_sockaddr(&addr, dlm_config.ci_tcp_port, &addr_len); 1616 result = dlm_proto_ops->connect(con, sock, (struct sockaddr *)&addr, 1617 addr_len); 1618 switch (result) { 1619 case -EINPROGRESS: 1620 /* not an error */ 1621 fallthrough; 1622 case 0: 1623 break; 1624 default: 1625 if (result < 0) 1626 dlm_close_sock(&con->sock); 1627 1628 break; 1629 } 1630 1631 return result; 1632 } 1633 1634 /* Send worker function */ 1635 static void process_send_sockets(struct work_struct *work) 1636 { 1637 struct connection *con = container_of(work, struct connection, swork); 1638 int ret; 1639 1640 WARN_ON_ONCE(test_bit(CF_IS_OTHERCON, &con->flags)); 1641 1642 down_read(&con->sock_lock); 1643 if (!con->sock) { 1644 up_read(&con->sock_lock); 1645 down_write(&con->sock_lock); 1646 if (!con->sock) { 1647 ret = dlm_connect(con); 1648 switch (ret) { 1649 case 0: 1650 break; 1651 case -EINPROGRESS: 1652 /* avoid spamming resched on connection 1653 * we might can switch to a state_change 1654 * event based mechanism if established 1655 */ 1656 msleep(100); 1657 break; 1658 default: 1659 /* CF_SEND_PENDING not cleared */ 1660 up_write(&con->sock_lock); 1661 log_print("connect to node %d try %d error %d", 1662 con->nodeid, con->retries++, ret); 1663 msleep(1000); 1664 /* For now we try forever to reconnect. In 1665 * future we should send a event to cluster 1666 * manager to fence itself after certain amount 1667 * of retries. 1668 */ 1669 queue_work(io_workqueue, &con->swork); 1670 return; 1671 } 1672 } 1673 downgrade_write(&con->sock_lock); 1674 } 1675 1676 do { 1677 ret = send_to_sock(con); 1678 } while (ret == DLM_IO_SUCCESS); 1679 up_read(&con->sock_lock); 1680 1681 switch (ret) { 1682 case DLM_IO_END: 1683 /* CF_SEND_PENDING cleared */ 1684 break; 1685 case DLM_IO_RESCHED: 1686 /* CF_SEND_PENDING not cleared */ 1687 cond_resched(); 1688 queue_work(io_workqueue, &con->swork); 1689 break; 1690 default: 1691 if (ret < 0) { 1692 close_connection(con, false); 1693 1694 /* CF_SEND_PENDING cleared */ 1695 spin_lock_bh(&con->writequeue_lock); 1696 lowcomms_queue_swork(con); 1697 spin_unlock_bh(&con->writequeue_lock); 1698 break; 1699 } 1700 1701 WARN_ON_ONCE(1); 1702 break; 1703 } 1704 } 1705 1706 static void work_stop(void) 1707 { 1708 if (io_workqueue) { 1709 destroy_workqueue(io_workqueue); 1710 io_workqueue = NULL; 1711 } 1712 1713 if (process_workqueue) { 1714 destroy_workqueue(process_workqueue); 1715 process_workqueue = NULL; 1716 } 1717 } 1718 1719 static int work_start(void) 1720 { 1721 io_workqueue = alloc_workqueue("dlm_io", WQ_HIGHPRI | WQ_MEM_RECLAIM | 1722 WQ_UNBOUND, 0); 1723 if (!io_workqueue) { 1724 log_print("can't start dlm_io"); 1725 return -ENOMEM; 1726 } 1727 1728 /* ordered dlm message process queue, 1729 * should be converted to a tasklet 1730 */ 1731 process_workqueue = alloc_ordered_workqueue("dlm_process", 1732 WQ_HIGHPRI | WQ_MEM_RECLAIM); 1733 if (!process_workqueue) { 1734 log_print("can't start dlm_process"); 1735 destroy_workqueue(io_workqueue); 1736 io_workqueue = NULL; 1737 return -ENOMEM; 1738 } 1739 1740 return 0; 1741 } 1742 1743 void dlm_lowcomms_shutdown(void) 1744 { 1745 struct connection *con; 1746 int i, idx; 1747 1748 /* stop lowcomms_listen_data_ready calls */ 1749 lock_sock(listen_con.sock->sk); 1750 listen_con.sock->sk->sk_data_ready = listen_sock.sk_data_ready; 1751 release_sock(listen_con.sock->sk); 1752 1753 cancel_work_sync(&listen_con.rwork); 1754 dlm_close_sock(&listen_con.sock); 1755 1756 idx = srcu_read_lock(&connections_srcu); 1757 for (i = 0; i < CONN_HASH_SIZE; i++) { 1758 hlist_for_each_entry_rcu(con, &connection_hash[i], list) { 1759 shutdown_connection(con, true); 1760 stop_connection_io(con); 1761 flush_workqueue(process_workqueue); 1762 close_connection(con, true); 1763 1764 clean_one_writequeue(con); 1765 if (con->othercon) 1766 clean_one_writequeue(con->othercon); 1767 allow_connection_io(con); 1768 } 1769 } 1770 srcu_read_unlock(&connections_srcu, idx); 1771 } 1772 1773 void dlm_lowcomms_stop(void) 1774 { 1775 work_stop(); 1776 dlm_proto_ops = NULL; 1777 } 1778 1779 static int dlm_listen_for_all(void) 1780 { 1781 struct socket *sock; 1782 int result; 1783 1784 log_print("Using %s for communications", 1785 dlm_proto_ops->name); 1786 1787 result = dlm_proto_ops->listen_validate(); 1788 if (result < 0) 1789 return result; 1790 1791 result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family, 1792 SOCK_STREAM, dlm_proto_ops->proto, &sock); 1793 if (result < 0) { 1794 log_print("Can't create comms socket: %d", result); 1795 return result; 1796 } 1797 1798 sock_set_mark(sock->sk, dlm_config.ci_mark); 1799 dlm_proto_ops->listen_sockopts(sock); 1800 1801 result = dlm_proto_ops->listen_bind(sock); 1802 if (result < 0) 1803 goto out; 1804 1805 lock_sock(sock->sk); 1806 listen_sock.sk_data_ready = sock->sk->sk_data_ready; 1807 listen_sock.sk_write_space = sock->sk->sk_write_space; 1808 listen_sock.sk_error_report = sock->sk->sk_error_report; 1809 listen_sock.sk_state_change = sock->sk->sk_state_change; 1810 1811 listen_con.sock = sock; 1812 1813 sock->sk->sk_allocation = GFP_NOFS; 1814 sock->sk->sk_use_task_frag = false; 1815 sock->sk->sk_data_ready = lowcomms_listen_data_ready; 1816 release_sock(sock->sk); 1817 1818 result = sock->ops->listen(sock, 128); 1819 if (result < 0) { 1820 dlm_close_sock(&listen_con.sock); 1821 return result; 1822 } 1823 1824 return 0; 1825 1826 out: 1827 sock_release(sock); 1828 return result; 1829 } 1830 1831 static int dlm_tcp_bind(struct socket *sock) 1832 { 1833 struct sockaddr_storage src_addr; 1834 int result, addr_len; 1835 1836 /* Bind to our cluster-known address connecting to avoid 1837 * routing problems. 1838 */ 1839 memcpy(&src_addr, &dlm_local_addr[0], sizeof(src_addr)); 1840 make_sockaddr(&src_addr, 0, &addr_len); 1841 1842 result = sock->ops->bind(sock, (struct sockaddr *)&src_addr, 1843 addr_len); 1844 if (result < 0) { 1845 /* This *may* not indicate a critical error */ 1846 log_print("could not bind for connect: %d", result); 1847 } 1848 1849 return 0; 1850 } 1851 1852 static int dlm_tcp_connect(struct connection *con, struct socket *sock, 1853 struct sockaddr *addr, int addr_len) 1854 { 1855 return sock->ops->connect(sock, addr, addr_len, O_NONBLOCK); 1856 } 1857 1858 static int dlm_tcp_listen_validate(void) 1859 { 1860 /* We don't support multi-homed hosts */ 1861 if (dlm_local_count > 1) { 1862 log_print("TCP protocol can't handle multi-homed hosts, try SCTP"); 1863 return -EINVAL; 1864 } 1865 1866 return 0; 1867 } 1868 1869 static void dlm_tcp_sockopts(struct socket *sock) 1870 { 1871 /* Turn off Nagle's algorithm */ 1872 tcp_sock_set_nodelay(sock->sk); 1873 } 1874 1875 static void dlm_tcp_listen_sockopts(struct socket *sock) 1876 { 1877 dlm_tcp_sockopts(sock); 1878 sock_set_reuseaddr(sock->sk); 1879 } 1880 1881 static int dlm_tcp_listen_bind(struct socket *sock) 1882 { 1883 int addr_len; 1884 1885 /* Bind to our port */ 1886 make_sockaddr(&dlm_local_addr[0], dlm_config.ci_tcp_port, &addr_len); 1887 return sock->ops->bind(sock, (struct sockaddr *)&dlm_local_addr[0], 1888 addr_len); 1889 } 1890 1891 static const struct dlm_proto_ops dlm_tcp_ops = { 1892 .name = "TCP", 1893 .proto = IPPROTO_TCP, 1894 .connect = dlm_tcp_connect, 1895 .sockopts = dlm_tcp_sockopts, 1896 .bind = dlm_tcp_bind, 1897 .listen_validate = dlm_tcp_listen_validate, 1898 .listen_sockopts = dlm_tcp_listen_sockopts, 1899 .listen_bind = dlm_tcp_listen_bind, 1900 }; 1901 1902 static int dlm_sctp_bind(struct socket *sock) 1903 { 1904 return sctp_bind_addrs(sock, 0); 1905 } 1906 1907 static int dlm_sctp_connect(struct connection *con, struct socket *sock, 1908 struct sockaddr *addr, int addr_len) 1909 { 1910 int ret; 1911 1912 /* 1913 * Make sock->ops->connect() function return in specified time, 1914 * since O_NONBLOCK argument in connect() function does not work here, 1915 * then, we should restore the default value of this attribute. 1916 */ 1917 sock_set_sndtimeo(sock->sk, 5); 1918 ret = sock->ops->connect(sock, addr, addr_len, 0); 1919 sock_set_sndtimeo(sock->sk, 0); 1920 return ret; 1921 } 1922 1923 static int dlm_sctp_listen_validate(void) 1924 { 1925 if (!IS_ENABLED(CONFIG_IP_SCTP)) { 1926 log_print("SCTP is not enabled by this kernel"); 1927 return -EOPNOTSUPP; 1928 } 1929 1930 request_module("sctp"); 1931 return 0; 1932 } 1933 1934 static int dlm_sctp_bind_listen(struct socket *sock) 1935 { 1936 return sctp_bind_addrs(sock, dlm_config.ci_tcp_port); 1937 } 1938 1939 static void dlm_sctp_sockopts(struct socket *sock) 1940 { 1941 /* Turn off Nagle's algorithm */ 1942 sctp_sock_set_nodelay(sock->sk); 1943 sock_set_rcvbuf(sock->sk, NEEDED_RMEM); 1944 } 1945 1946 static const struct dlm_proto_ops dlm_sctp_ops = { 1947 .name = "SCTP", 1948 .proto = IPPROTO_SCTP, 1949 .try_new_addr = true, 1950 .connect = dlm_sctp_connect, 1951 .sockopts = dlm_sctp_sockopts, 1952 .bind = dlm_sctp_bind, 1953 .listen_validate = dlm_sctp_listen_validate, 1954 .listen_sockopts = dlm_sctp_sockopts, 1955 .listen_bind = dlm_sctp_bind_listen, 1956 }; 1957 1958 int dlm_lowcomms_start(void) 1959 { 1960 int error; 1961 1962 init_local(); 1963 if (!dlm_local_count) { 1964 error = -ENOTCONN; 1965 log_print("no local IP address has been set"); 1966 goto fail; 1967 } 1968 1969 error = work_start(); 1970 if (error) 1971 goto fail; 1972 1973 /* Start listening */ 1974 switch (dlm_config.ci_protocol) { 1975 case DLM_PROTO_TCP: 1976 dlm_proto_ops = &dlm_tcp_ops; 1977 break; 1978 case DLM_PROTO_SCTP: 1979 dlm_proto_ops = &dlm_sctp_ops; 1980 break; 1981 default: 1982 log_print("Invalid protocol identifier %d set", 1983 dlm_config.ci_protocol); 1984 error = -EINVAL; 1985 goto fail_proto_ops; 1986 } 1987 1988 error = dlm_listen_for_all(); 1989 if (error) 1990 goto fail_listen; 1991 1992 return 0; 1993 1994 fail_listen: 1995 dlm_proto_ops = NULL; 1996 fail_proto_ops: 1997 work_stop(); 1998 fail: 1999 return error; 2000 } 2001 2002 void dlm_lowcomms_init(void) 2003 { 2004 int i; 2005 2006 for (i = 0; i < CONN_HASH_SIZE; i++) 2007 INIT_HLIST_HEAD(&connection_hash[i]); 2008 2009 INIT_WORK(&listen_con.rwork, process_listen_recv_socket); 2010 } 2011 2012 void dlm_lowcomms_exit(void) 2013 { 2014 struct connection *con; 2015 int i, idx; 2016 2017 idx = srcu_read_lock(&connections_srcu); 2018 for (i = 0; i < CONN_HASH_SIZE; i++) { 2019 hlist_for_each_entry_rcu(con, &connection_hash[i], list) { 2020 spin_lock(&connections_lock); 2021 hlist_del_rcu(&con->list); 2022 spin_unlock(&connections_lock); 2023 2024 if (con->othercon) 2025 call_srcu(&connections_srcu, &con->othercon->rcu, 2026 connection_release); 2027 call_srcu(&connections_srcu, &con->rcu, connection_release); 2028 } 2029 } 2030 srcu_read_unlock(&connections_srcu, idx); 2031 } 2032