1 // SPDX-License-Identifier: GPL-2.0-only 2 /****************************************************************************** 3 ******************************************************************************* 4 ** 5 ** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 6 ** Copyright (C) 2004-2009 Red Hat, Inc. All rights reserved. 7 ** 8 ** 9 ******************************************************************************* 10 ******************************************************************************/ 11 12 /* 13 * lowcomms.c 14 * 15 * This is the "low-level" comms layer. 16 * 17 * It is responsible for sending/receiving messages 18 * from other nodes in the cluster. 19 * 20 * Cluster nodes are referred to by their nodeids. nodeids are 21 * simply 32 bit numbers to the locking module - if they need to 22 * be expanded for the cluster infrastructure then that is its 23 * responsibility. It is this layer's 24 * responsibility to resolve these into IP address or 25 * whatever it needs for inter-node communication. 26 * 27 * The comms level is two kernel threads that deal mainly with 28 * the receiving of messages from other nodes and passing them 29 * up to the mid-level comms layer (which understands the 30 * message format) for execution by the locking core, and 31 * a send thread which does all the setting up of connections 32 * to remote nodes and the sending of data. Threads are not allowed 33 * to send their own data because it may cause them to wait in times 34 * of high load. Also, this way, the sending thread can collect together 35 * messages bound for one node and send them in one block. 36 * 37 * lowcomms will choose to use either TCP or SCTP as its transport layer 38 * depending on the configuration variable 'protocol'. This should be set 39 * to 0 (default) for TCP or 1 for SCTP. It should be configured using a 40 * cluster-wide mechanism as it must be the same on all nodes of the cluster 41 * for the DLM to function. 42 * 43 */ 44 45 #include <asm/ioctls.h> 46 #include <net/sock.h> 47 #include <net/tcp.h> 48 #include <linux/pagemap.h> 49 #include <linux/file.h> 50 #include <linux/mutex.h> 51 #include <linux/sctp.h> 52 #include <linux/slab.h> 53 #include <net/sctp/sctp.h> 54 #include <net/ipv6.h> 55 56 #include <trace/events/dlm.h> 57 #include <trace/events/sock.h> 58 59 #include "dlm_internal.h" 60 #include "lowcomms.h" 61 #include "midcomms.h" 62 #include "memory.h" 63 #include "config.h" 64 65 #define DLM_SHUTDOWN_WAIT_TIMEOUT msecs_to_jiffies(5000) 66 #define NEEDED_RMEM (4*1024*1024) 67 68 struct connection { 69 struct socket *sock; /* NULL if not connected */ 70 uint32_t nodeid; /* So we know who we are in the list */ 71 /* this semaphore is used to allow parallel recv/send in read 72 * lock mode. When we release a sock we need to held the write lock. 73 * 74 * However this is locking code and not nice. When we remove the 75 * othercon handling we can look into other mechanism to synchronize 76 * io handling to call sock_release() at the right time. 77 */ 78 struct rw_semaphore sock_lock; 79 unsigned long flags; 80 #define CF_APP_LIMITED 0 81 #define CF_RECV_PENDING 1 82 #define CF_SEND_PENDING 2 83 #define CF_RECV_INTR 3 84 #define CF_IO_STOP 4 85 #define CF_IS_OTHERCON 5 86 struct list_head writequeue; /* List of outgoing writequeue_entries */ 87 spinlock_t writequeue_lock; 88 int retries; 89 struct hlist_node list; 90 /* due some connect()/accept() races we currently have this cross over 91 * connection attempt second connection for one node. 92 * 93 * There is a solution to avoid the race by introducing a connect 94 * rule as e.g. our_nodeid > nodeid_to_connect who is allowed to 95 * connect. Otherside can connect but will only be considered that 96 * the other side wants to have a reconnect. 97 * 98 * However changing to this behaviour will break backwards compatible. 99 * In a DLM protocol major version upgrade we should remove this! 100 */ 101 struct connection *othercon; 102 struct work_struct rwork; /* receive worker */ 103 struct work_struct swork; /* send worker */ 104 wait_queue_head_t shutdown_wait; 105 unsigned char rx_leftover_buf[DLM_MAX_SOCKET_BUFSIZE]; 106 int rx_leftover; 107 int mark; 108 int addr_count; 109 int curr_addr_index; 110 struct sockaddr_storage addr[DLM_MAX_ADDR_COUNT]; 111 spinlock_t addrs_lock; 112 struct rcu_head rcu; 113 }; 114 #define sock2con(x) ((struct connection *)(x)->sk_user_data) 115 116 struct listen_connection { 117 struct socket *sock; 118 struct work_struct rwork; 119 }; 120 121 #define DLM_WQ_REMAIN_BYTES(e) (PAGE_SIZE - e->end) 122 #define DLM_WQ_LENGTH_BYTES(e) (e->end - e->offset) 123 124 /* An entry waiting to be sent */ 125 struct writequeue_entry { 126 struct list_head list; 127 struct page *page; 128 int offset; 129 int len; 130 int end; 131 int users; 132 bool dirty; 133 struct connection *con; 134 struct list_head msgs; 135 struct kref ref; 136 }; 137 138 struct dlm_msg { 139 struct writequeue_entry *entry; 140 struct dlm_msg *orig_msg; 141 bool retransmit; 142 void *ppc; 143 int len; 144 int idx; /* new()/commit() idx exchange */ 145 146 struct list_head list; 147 struct kref ref; 148 }; 149 150 struct processqueue_entry { 151 unsigned char *buf; 152 int nodeid; 153 int buflen; 154 155 struct list_head list; 156 }; 157 158 struct dlm_proto_ops { 159 bool try_new_addr; 160 const char *name; 161 int proto; 162 163 int (*connect)(struct connection *con, struct socket *sock, 164 struct sockaddr *addr, int addr_len); 165 void (*sockopts)(struct socket *sock); 166 int (*bind)(struct socket *sock); 167 int (*listen_validate)(void); 168 void (*listen_sockopts)(struct socket *sock); 169 int (*listen_bind)(struct socket *sock); 170 }; 171 172 static struct listen_sock_callbacks { 173 void (*sk_error_report)(struct sock *); 174 void (*sk_data_ready)(struct sock *); 175 void (*sk_state_change)(struct sock *); 176 void (*sk_write_space)(struct sock *); 177 } listen_sock; 178 179 static struct listen_connection listen_con; 180 static struct sockaddr_storage dlm_local_addr[DLM_MAX_ADDR_COUNT]; 181 static int dlm_local_count; 182 183 /* Work queues */ 184 static struct workqueue_struct *io_workqueue; 185 static struct workqueue_struct *process_workqueue; 186 187 static struct hlist_head connection_hash[CONN_HASH_SIZE]; 188 static DEFINE_SPINLOCK(connections_lock); 189 DEFINE_STATIC_SRCU(connections_srcu); 190 191 static const struct dlm_proto_ops *dlm_proto_ops; 192 193 #define DLM_IO_SUCCESS 0 194 #define DLM_IO_END 1 195 #define DLM_IO_EOF 2 196 #define DLM_IO_RESCHED 3 197 198 static void process_recv_sockets(struct work_struct *work); 199 static void process_send_sockets(struct work_struct *work); 200 static void process_dlm_messages(struct work_struct *work); 201 202 static DECLARE_WORK(process_work, process_dlm_messages); 203 static DEFINE_SPINLOCK(processqueue_lock); 204 static bool process_dlm_messages_pending; 205 static LIST_HEAD(processqueue); 206 207 bool dlm_lowcomms_is_running(void) 208 { 209 return !!listen_con.sock; 210 } 211 212 static void lowcomms_queue_swork(struct connection *con) 213 { 214 assert_spin_locked(&con->writequeue_lock); 215 216 if (!test_bit(CF_IO_STOP, &con->flags) && 217 !test_bit(CF_APP_LIMITED, &con->flags) && 218 !test_and_set_bit(CF_SEND_PENDING, &con->flags)) 219 queue_work(io_workqueue, &con->swork); 220 } 221 222 static void lowcomms_queue_rwork(struct connection *con) 223 { 224 #ifdef CONFIG_LOCKDEP 225 WARN_ON_ONCE(!lockdep_sock_is_held(con->sock->sk)); 226 #endif 227 228 if (!test_bit(CF_IO_STOP, &con->flags) && 229 !test_and_set_bit(CF_RECV_PENDING, &con->flags)) 230 queue_work(io_workqueue, &con->rwork); 231 } 232 233 static void writequeue_entry_ctor(void *data) 234 { 235 struct writequeue_entry *entry = data; 236 237 INIT_LIST_HEAD(&entry->msgs); 238 } 239 240 struct kmem_cache *dlm_lowcomms_writequeue_cache_create(void) 241 { 242 return kmem_cache_create("dlm_writequeue", sizeof(struct writequeue_entry), 243 0, 0, writequeue_entry_ctor); 244 } 245 246 struct kmem_cache *dlm_lowcomms_msg_cache_create(void) 247 { 248 return kmem_cache_create("dlm_msg", sizeof(struct dlm_msg), 0, 0, NULL); 249 } 250 251 /* need to held writequeue_lock */ 252 static struct writequeue_entry *con_next_wq(struct connection *con) 253 { 254 struct writequeue_entry *e; 255 256 e = list_first_entry_or_null(&con->writequeue, struct writequeue_entry, 257 list); 258 /* if len is zero nothing is to send, if there are users filling 259 * buffers we wait until the users are done so we can send more. 260 */ 261 if (!e || e->users || e->len == 0) 262 return NULL; 263 264 return e; 265 } 266 267 static struct connection *__find_con(int nodeid, int r) 268 { 269 struct connection *con; 270 271 hlist_for_each_entry_rcu(con, &connection_hash[r], list) { 272 if (con->nodeid == nodeid) 273 return con; 274 } 275 276 return NULL; 277 } 278 279 static void dlm_con_init(struct connection *con, int nodeid) 280 { 281 con->nodeid = nodeid; 282 init_rwsem(&con->sock_lock); 283 INIT_LIST_HEAD(&con->writequeue); 284 spin_lock_init(&con->writequeue_lock); 285 INIT_WORK(&con->swork, process_send_sockets); 286 INIT_WORK(&con->rwork, process_recv_sockets); 287 spin_lock_init(&con->addrs_lock); 288 init_waitqueue_head(&con->shutdown_wait); 289 } 290 291 /* 292 * If 'allocation' is zero then we don't attempt to create a new 293 * connection structure for this node. 294 */ 295 static struct connection *nodeid2con(int nodeid, gfp_t alloc) 296 { 297 struct connection *con, *tmp; 298 int r; 299 300 r = nodeid_hash(nodeid); 301 con = __find_con(nodeid, r); 302 if (con || !alloc) 303 return con; 304 305 con = kzalloc(sizeof(*con), alloc); 306 if (!con) 307 return NULL; 308 309 dlm_con_init(con, nodeid); 310 311 spin_lock(&connections_lock); 312 /* Because multiple workqueues/threads calls this function it can 313 * race on multiple cpu's. Instead of locking hot path __find_con() 314 * we just check in rare cases of recently added nodes again 315 * under protection of connections_lock. If this is the case we 316 * abort our connection creation and return the existing connection. 317 */ 318 tmp = __find_con(nodeid, r); 319 if (tmp) { 320 spin_unlock(&connections_lock); 321 kfree(con); 322 return tmp; 323 } 324 325 hlist_add_head_rcu(&con->list, &connection_hash[r]); 326 spin_unlock(&connections_lock); 327 328 return con; 329 } 330 331 static int addr_compare(const struct sockaddr_storage *x, 332 const struct sockaddr_storage *y) 333 { 334 switch (x->ss_family) { 335 case AF_INET: { 336 struct sockaddr_in *sinx = (struct sockaddr_in *)x; 337 struct sockaddr_in *siny = (struct sockaddr_in *)y; 338 if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr) 339 return 0; 340 if (sinx->sin_port != siny->sin_port) 341 return 0; 342 break; 343 } 344 case AF_INET6: { 345 struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x; 346 struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y; 347 if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr)) 348 return 0; 349 if (sinx->sin6_port != siny->sin6_port) 350 return 0; 351 break; 352 } 353 default: 354 return 0; 355 } 356 return 1; 357 } 358 359 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out, 360 struct sockaddr *sa_out, bool try_new_addr, 361 unsigned int *mark) 362 { 363 struct sockaddr_storage sas; 364 struct connection *con; 365 int idx; 366 367 if (!dlm_local_count) 368 return -1; 369 370 idx = srcu_read_lock(&connections_srcu); 371 con = nodeid2con(nodeid, 0); 372 if (!con) { 373 srcu_read_unlock(&connections_srcu, idx); 374 return -ENOENT; 375 } 376 377 spin_lock(&con->addrs_lock); 378 if (!con->addr_count) { 379 spin_unlock(&con->addrs_lock); 380 srcu_read_unlock(&connections_srcu, idx); 381 return -ENOENT; 382 } 383 384 memcpy(&sas, &con->addr[con->curr_addr_index], 385 sizeof(struct sockaddr_storage)); 386 387 if (try_new_addr) { 388 con->curr_addr_index++; 389 if (con->curr_addr_index == con->addr_count) 390 con->curr_addr_index = 0; 391 } 392 393 *mark = con->mark; 394 spin_unlock(&con->addrs_lock); 395 396 if (sas_out) 397 memcpy(sas_out, &sas, sizeof(struct sockaddr_storage)); 398 399 if (!sa_out) { 400 srcu_read_unlock(&connections_srcu, idx); 401 return 0; 402 } 403 404 if (dlm_local_addr[0].ss_family == AF_INET) { 405 struct sockaddr_in *in4 = (struct sockaddr_in *) &sas; 406 struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out; 407 ret4->sin_addr.s_addr = in4->sin_addr.s_addr; 408 } else { 409 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) &sas; 410 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out; 411 ret6->sin6_addr = in6->sin6_addr; 412 } 413 414 srcu_read_unlock(&connections_srcu, idx); 415 return 0; 416 } 417 418 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid, 419 unsigned int *mark) 420 { 421 struct connection *con; 422 int i, idx, addr_i; 423 424 idx = srcu_read_lock(&connections_srcu); 425 for (i = 0; i < CONN_HASH_SIZE; i++) { 426 hlist_for_each_entry_rcu(con, &connection_hash[i], list) { 427 WARN_ON_ONCE(!con->addr_count); 428 429 spin_lock(&con->addrs_lock); 430 for (addr_i = 0; addr_i < con->addr_count; addr_i++) { 431 if (addr_compare(&con->addr[addr_i], addr)) { 432 *nodeid = con->nodeid; 433 *mark = con->mark; 434 spin_unlock(&con->addrs_lock); 435 srcu_read_unlock(&connections_srcu, idx); 436 return 0; 437 } 438 } 439 spin_unlock(&con->addrs_lock); 440 } 441 } 442 srcu_read_unlock(&connections_srcu, idx); 443 444 return -ENOENT; 445 } 446 447 static bool dlm_lowcomms_con_has_addr(const struct connection *con, 448 const struct sockaddr_storage *addr) 449 { 450 int i; 451 452 for (i = 0; i < con->addr_count; i++) { 453 if (addr_compare(&con->addr[i], addr)) 454 return true; 455 } 456 457 return false; 458 } 459 460 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len) 461 { 462 struct connection *con; 463 bool ret, idx; 464 465 idx = srcu_read_lock(&connections_srcu); 466 con = nodeid2con(nodeid, GFP_NOFS); 467 if (!con) { 468 srcu_read_unlock(&connections_srcu, idx); 469 return -ENOMEM; 470 } 471 472 spin_lock(&con->addrs_lock); 473 if (!con->addr_count) { 474 memcpy(&con->addr[0], addr, sizeof(*addr)); 475 con->addr_count = 1; 476 con->mark = dlm_config.ci_mark; 477 spin_unlock(&con->addrs_lock); 478 srcu_read_unlock(&connections_srcu, idx); 479 return 0; 480 } 481 482 ret = dlm_lowcomms_con_has_addr(con, addr); 483 if (ret) { 484 spin_unlock(&con->addrs_lock); 485 srcu_read_unlock(&connections_srcu, idx); 486 return -EEXIST; 487 } 488 489 if (con->addr_count >= DLM_MAX_ADDR_COUNT) { 490 spin_unlock(&con->addrs_lock); 491 srcu_read_unlock(&connections_srcu, idx); 492 return -ENOSPC; 493 } 494 495 memcpy(&con->addr[con->addr_count++], addr, sizeof(*addr)); 496 srcu_read_unlock(&connections_srcu, idx); 497 spin_unlock(&con->addrs_lock); 498 return 0; 499 } 500 501 /* Data available on socket or listen socket received a connect */ 502 static void lowcomms_data_ready(struct sock *sk) 503 { 504 struct connection *con = sock2con(sk); 505 506 trace_sk_data_ready(sk); 507 508 set_bit(CF_RECV_INTR, &con->flags); 509 lowcomms_queue_rwork(con); 510 } 511 512 static void lowcomms_write_space(struct sock *sk) 513 { 514 struct connection *con = sock2con(sk); 515 516 clear_bit(SOCK_NOSPACE, &con->sock->flags); 517 518 spin_lock_bh(&con->writequeue_lock); 519 if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) { 520 con->sock->sk->sk_write_pending--; 521 clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags); 522 } 523 524 lowcomms_queue_swork(con); 525 spin_unlock_bh(&con->writequeue_lock); 526 } 527 528 static void lowcomms_state_change(struct sock *sk) 529 { 530 /* SCTP layer is not calling sk_data_ready when the connection 531 * is done, so we catch the signal through here. 532 */ 533 if (sk->sk_shutdown == RCV_SHUTDOWN) 534 lowcomms_data_ready(sk); 535 } 536 537 static void lowcomms_listen_data_ready(struct sock *sk) 538 { 539 trace_sk_data_ready(sk); 540 541 queue_work(io_workqueue, &listen_con.rwork); 542 } 543 544 int dlm_lowcomms_connect_node(int nodeid) 545 { 546 struct connection *con; 547 int idx; 548 549 if (nodeid == dlm_our_nodeid()) 550 return 0; 551 552 idx = srcu_read_lock(&connections_srcu); 553 con = nodeid2con(nodeid, 0); 554 if (WARN_ON_ONCE(!con)) { 555 srcu_read_unlock(&connections_srcu, idx); 556 return -ENOENT; 557 } 558 559 down_read(&con->sock_lock); 560 if (!con->sock) { 561 spin_lock_bh(&con->writequeue_lock); 562 lowcomms_queue_swork(con); 563 spin_unlock_bh(&con->writequeue_lock); 564 } 565 up_read(&con->sock_lock); 566 srcu_read_unlock(&connections_srcu, idx); 567 568 cond_resched(); 569 return 0; 570 } 571 572 int dlm_lowcomms_nodes_set_mark(int nodeid, unsigned int mark) 573 { 574 struct connection *con; 575 int idx; 576 577 idx = srcu_read_lock(&connections_srcu); 578 con = nodeid2con(nodeid, 0); 579 if (!con) { 580 srcu_read_unlock(&connections_srcu, idx); 581 return -ENOENT; 582 } 583 584 spin_lock(&con->addrs_lock); 585 con->mark = mark; 586 spin_unlock(&con->addrs_lock); 587 srcu_read_unlock(&connections_srcu, idx); 588 return 0; 589 } 590 591 static void lowcomms_error_report(struct sock *sk) 592 { 593 struct connection *con = sock2con(sk); 594 struct inet_sock *inet; 595 596 inet = inet_sk(sk); 597 switch (sk->sk_family) { 598 case AF_INET: 599 printk_ratelimited(KERN_ERR "dlm: node %d: socket error " 600 "sending to node %d at %pI4, dport %d, " 601 "sk_err=%d/%d\n", dlm_our_nodeid(), 602 con->nodeid, &inet->inet_daddr, 603 ntohs(inet->inet_dport), sk->sk_err, 604 sk->sk_err_soft); 605 break; 606 #if IS_ENABLED(CONFIG_IPV6) 607 case AF_INET6: 608 printk_ratelimited(KERN_ERR "dlm: node %d: socket error " 609 "sending to node %d at %pI6c, " 610 "dport %d, sk_err=%d/%d\n", dlm_our_nodeid(), 611 con->nodeid, &sk->sk_v6_daddr, 612 ntohs(inet->inet_dport), sk->sk_err, 613 sk->sk_err_soft); 614 break; 615 #endif 616 default: 617 printk_ratelimited(KERN_ERR "dlm: node %d: socket error " 618 "invalid socket family %d set, " 619 "sk_err=%d/%d\n", dlm_our_nodeid(), 620 sk->sk_family, sk->sk_err, sk->sk_err_soft); 621 break; 622 } 623 624 dlm_midcomms_unack_msg_resend(con->nodeid); 625 626 listen_sock.sk_error_report(sk); 627 } 628 629 static void restore_callbacks(struct sock *sk) 630 { 631 #ifdef CONFIG_LOCKDEP 632 WARN_ON_ONCE(!lockdep_sock_is_held(sk)); 633 #endif 634 635 sk->sk_user_data = NULL; 636 sk->sk_data_ready = listen_sock.sk_data_ready; 637 sk->sk_state_change = listen_sock.sk_state_change; 638 sk->sk_write_space = listen_sock.sk_write_space; 639 sk->sk_error_report = listen_sock.sk_error_report; 640 } 641 642 /* Make a socket active */ 643 static void add_sock(struct socket *sock, struct connection *con) 644 { 645 struct sock *sk = sock->sk; 646 647 lock_sock(sk); 648 con->sock = sock; 649 650 sk->sk_user_data = con; 651 sk->sk_data_ready = lowcomms_data_ready; 652 sk->sk_write_space = lowcomms_write_space; 653 if (dlm_config.ci_protocol == DLM_PROTO_SCTP) 654 sk->sk_state_change = lowcomms_state_change; 655 sk->sk_allocation = GFP_NOFS; 656 sk->sk_use_task_frag = false; 657 sk->sk_error_report = lowcomms_error_report; 658 release_sock(sk); 659 } 660 661 /* Add the port number to an IPv6 or 4 sockaddr and return the address 662 length */ 663 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port, 664 int *addr_len) 665 { 666 saddr->ss_family = dlm_local_addr[0].ss_family; 667 if (saddr->ss_family == AF_INET) { 668 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr; 669 in4_addr->sin_port = cpu_to_be16(port); 670 *addr_len = sizeof(struct sockaddr_in); 671 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero)); 672 } else { 673 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr; 674 in6_addr->sin6_port = cpu_to_be16(port); 675 *addr_len = sizeof(struct sockaddr_in6); 676 } 677 memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len); 678 } 679 680 static void dlm_page_release(struct kref *kref) 681 { 682 struct writequeue_entry *e = container_of(kref, struct writequeue_entry, 683 ref); 684 685 __free_page(e->page); 686 dlm_free_writequeue(e); 687 } 688 689 static void dlm_msg_release(struct kref *kref) 690 { 691 struct dlm_msg *msg = container_of(kref, struct dlm_msg, ref); 692 693 kref_put(&msg->entry->ref, dlm_page_release); 694 dlm_free_msg(msg); 695 } 696 697 static void free_entry(struct writequeue_entry *e) 698 { 699 struct dlm_msg *msg, *tmp; 700 701 list_for_each_entry_safe(msg, tmp, &e->msgs, list) { 702 if (msg->orig_msg) { 703 msg->orig_msg->retransmit = false; 704 kref_put(&msg->orig_msg->ref, dlm_msg_release); 705 } 706 707 list_del(&msg->list); 708 kref_put(&msg->ref, dlm_msg_release); 709 } 710 711 list_del(&e->list); 712 kref_put(&e->ref, dlm_page_release); 713 } 714 715 static void dlm_close_sock(struct socket **sock) 716 { 717 lock_sock((*sock)->sk); 718 restore_callbacks((*sock)->sk); 719 release_sock((*sock)->sk); 720 721 sock_release(*sock); 722 *sock = NULL; 723 } 724 725 static void allow_connection_io(struct connection *con) 726 { 727 if (con->othercon) 728 clear_bit(CF_IO_STOP, &con->othercon->flags); 729 clear_bit(CF_IO_STOP, &con->flags); 730 } 731 732 static void stop_connection_io(struct connection *con) 733 { 734 if (con->othercon) 735 stop_connection_io(con->othercon); 736 737 down_write(&con->sock_lock); 738 if (con->sock) { 739 lock_sock(con->sock->sk); 740 restore_callbacks(con->sock->sk); 741 742 spin_lock_bh(&con->writequeue_lock); 743 set_bit(CF_IO_STOP, &con->flags); 744 spin_unlock_bh(&con->writequeue_lock); 745 release_sock(con->sock->sk); 746 } else { 747 spin_lock_bh(&con->writequeue_lock); 748 set_bit(CF_IO_STOP, &con->flags); 749 spin_unlock_bh(&con->writequeue_lock); 750 } 751 up_write(&con->sock_lock); 752 753 cancel_work_sync(&con->swork); 754 cancel_work_sync(&con->rwork); 755 } 756 757 /* Close a remote connection and tidy up */ 758 static void close_connection(struct connection *con, bool and_other) 759 { 760 struct writequeue_entry *e; 761 762 if (con->othercon && and_other) 763 close_connection(con->othercon, false); 764 765 down_write(&con->sock_lock); 766 if (!con->sock) { 767 up_write(&con->sock_lock); 768 return; 769 } 770 771 dlm_close_sock(&con->sock); 772 773 /* if we send a writequeue entry only a half way, we drop the 774 * whole entry because reconnection and that we not start of the 775 * middle of a msg which will confuse the other end. 776 * 777 * we can always drop messages because retransmits, but what we 778 * cannot allow is to transmit half messages which may be processed 779 * at the other side. 780 * 781 * our policy is to start on a clean state when disconnects, we don't 782 * know what's send/received on transport layer in this case. 783 */ 784 spin_lock_bh(&con->writequeue_lock); 785 if (!list_empty(&con->writequeue)) { 786 e = list_first_entry(&con->writequeue, struct writequeue_entry, 787 list); 788 if (e->dirty) 789 free_entry(e); 790 } 791 spin_unlock_bh(&con->writequeue_lock); 792 793 con->rx_leftover = 0; 794 con->retries = 0; 795 clear_bit(CF_APP_LIMITED, &con->flags); 796 clear_bit(CF_RECV_PENDING, &con->flags); 797 clear_bit(CF_SEND_PENDING, &con->flags); 798 up_write(&con->sock_lock); 799 } 800 801 static void shutdown_connection(struct connection *con, bool and_other) 802 { 803 int ret; 804 805 if (con->othercon && and_other) 806 shutdown_connection(con->othercon, false); 807 808 flush_workqueue(io_workqueue); 809 down_read(&con->sock_lock); 810 /* nothing to shutdown */ 811 if (!con->sock) { 812 up_read(&con->sock_lock); 813 return; 814 } 815 816 ret = kernel_sock_shutdown(con->sock, SHUT_WR); 817 up_read(&con->sock_lock); 818 if (ret) { 819 log_print("Connection %p failed to shutdown: %d will force close", 820 con, ret); 821 goto force_close; 822 } else { 823 ret = wait_event_timeout(con->shutdown_wait, !con->sock, 824 DLM_SHUTDOWN_WAIT_TIMEOUT); 825 if (ret == 0) { 826 log_print("Connection %p shutdown timed out, will force close", 827 con); 828 goto force_close; 829 } 830 } 831 832 return; 833 834 force_close: 835 close_connection(con, false); 836 } 837 838 static struct processqueue_entry *new_processqueue_entry(int nodeid, 839 int buflen) 840 { 841 struct processqueue_entry *pentry; 842 843 pentry = kmalloc(sizeof(*pentry), GFP_NOFS); 844 if (!pentry) 845 return NULL; 846 847 pentry->buf = kmalloc(buflen, GFP_NOFS); 848 if (!pentry->buf) { 849 kfree(pentry); 850 return NULL; 851 } 852 853 pentry->nodeid = nodeid; 854 return pentry; 855 } 856 857 static void free_processqueue_entry(struct processqueue_entry *pentry) 858 { 859 kfree(pentry->buf); 860 kfree(pentry); 861 } 862 863 struct dlm_processed_nodes { 864 int nodeid; 865 866 struct list_head list; 867 }; 868 869 static void add_processed_node(int nodeid, struct list_head *processed_nodes) 870 { 871 struct dlm_processed_nodes *n; 872 873 list_for_each_entry(n, processed_nodes, list) { 874 /* we already remembered this node */ 875 if (n->nodeid == nodeid) 876 return; 877 } 878 879 /* if it's fails in worst case we simple don't send an ack back. 880 * We try it next time. 881 */ 882 n = kmalloc(sizeof(*n), GFP_NOFS); 883 if (!n) 884 return; 885 886 n->nodeid = nodeid; 887 list_add(&n->list, processed_nodes); 888 } 889 890 static void process_dlm_messages(struct work_struct *work) 891 { 892 struct dlm_processed_nodes *n, *n_tmp; 893 struct processqueue_entry *pentry; 894 LIST_HEAD(processed_nodes); 895 896 spin_lock(&processqueue_lock); 897 pentry = list_first_entry_or_null(&processqueue, 898 struct processqueue_entry, list); 899 if (WARN_ON_ONCE(!pentry)) { 900 spin_unlock(&processqueue_lock); 901 return; 902 } 903 904 list_del(&pentry->list); 905 spin_unlock(&processqueue_lock); 906 907 for (;;) { 908 dlm_process_incoming_buffer(pentry->nodeid, pentry->buf, 909 pentry->buflen); 910 add_processed_node(pentry->nodeid, &processed_nodes); 911 free_processqueue_entry(pentry); 912 913 spin_lock(&processqueue_lock); 914 pentry = list_first_entry_or_null(&processqueue, 915 struct processqueue_entry, list); 916 if (!pentry) { 917 process_dlm_messages_pending = false; 918 spin_unlock(&processqueue_lock); 919 break; 920 } 921 922 list_del(&pentry->list); 923 spin_unlock(&processqueue_lock); 924 } 925 926 /* send ack back after we processed couple of messages */ 927 list_for_each_entry_safe(n, n_tmp, &processed_nodes, list) { 928 list_del(&n->list); 929 dlm_midcomms_receive_done(n->nodeid); 930 kfree(n); 931 } 932 } 933 934 /* Data received from remote end */ 935 static int receive_from_sock(struct connection *con, int buflen) 936 { 937 struct processqueue_entry *pentry; 938 int ret, buflen_real; 939 struct msghdr msg; 940 struct kvec iov; 941 942 pentry = new_processqueue_entry(con->nodeid, buflen); 943 if (!pentry) 944 return DLM_IO_RESCHED; 945 946 memcpy(pentry->buf, con->rx_leftover_buf, con->rx_leftover); 947 948 /* calculate new buffer parameter regarding last receive and 949 * possible leftover bytes 950 */ 951 iov.iov_base = pentry->buf + con->rx_leftover; 952 iov.iov_len = buflen - con->rx_leftover; 953 954 memset(&msg, 0, sizeof(msg)); 955 msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL; 956 clear_bit(CF_RECV_INTR, &con->flags); 957 again: 958 ret = kernel_recvmsg(con->sock, &msg, &iov, 1, iov.iov_len, 959 msg.msg_flags); 960 trace_dlm_recv(con->nodeid, ret); 961 if (ret == -EAGAIN) { 962 lock_sock(con->sock->sk); 963 if (test_and_clear_bit(CF_RECV_INTR, &con->flags)) { 964 release_sock(con->sock->sk); 965 goto again; 966 } 967 968 clear_bit(CF_RECV_PENDING, &con->flags); 969 release_sock(con->sock->sk); 970 free_processqueue_entry(pentry); 971 return DLM_IO_END; 972 } else if (ret == 0) { 973 /* close will clear CF_RECV_PENDING */ 974 free_processqueue_entry(pentry); 975 return DLM_IO_EOF; 976 } else if (ret < 0) { 977 free_processqueue_entry(pentry); 978 return ret; 979 } 980 981 /* new buflen according readed bytes and leftover from last receive */ 982 buflen_real = ret + con->rx_leftover; 983 ret = dlm_validate_incoming_buffer(con->nodeid, pentry->buf, 984 buflen_real); 985 if (ret < 0) { 986 free_processqueue_entry(pentry); 987 return ret; 988 } 989 990 pentry->buflen = ret; 991 992 /* calculate leftover bytes from process and put it into begin of 993 * the receive buffer, so next receive we have the full message 994 * at the start address of the receive buffer. 995 */ 996 con->rx_leftover = buflen_real - ret; 997 memmove(con->rx_leftover_buf, pentry->buf + ret, 998 con->rx_leftover); 999 1000 spin_lock(&processqueue_lock); 1001 list_add_tail(&pentry->list, &processqueue); 1002 if (!process_dlm_messages_pending) { 1003 process_dlm_messages_pending = true; 1004 queue_work(process_workqueue, &process_work); 1005 } 1006 spin_unlock(&processqueue_lock); 1007 1008 return DLM_IO_SUCCESS; 1009 } 1010 1011 /* Listening socket is busy, accept a connection */ 1012 static int accept_from_sock(void) 1013 { 1014 struct sockaddr_storage peeraddr; 1015 int len, idx, result, nodeid; 1016 struct connection *newcon; 1017 struct socket *newsock; 1018 unsigned int mark; 1019 1020 result = kernel_accept(listen_con.sock, &newsock, O_NONBLOCK); 1021 if (result == -EAGAIN) 1022 return DLM_IO_END; 1023 else if (result < 0) 1024 goto accept_err; 1025 1026 /* Get the connected socket's peer */ 1027 memset(&peeraddr, 0, sizeof(peeraddr)); 1028 len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2); 1029 if (len < 0) { 1030 result = -ECONNABORTED; 1031 goto accept_err; 1032 } 1033 1034 /* Get the new node's NODEID */ 1035 make_sockaddr(&peeraddr, 0, &len); 1036 if (addr_to_nodeid(&peeraddr, &nodeid, &mark)) { 1037 switch (peeraddr.ss_family) { 1038 case AF_INET: { 1039 struct sockaddr_in *sin = (struct sockaddr_in *)&peeraddr; 1040 1041 log_print("connect from non cluster IPv4 node %pI4", 1042 &sin->sin_addr); 1043 break; 1044 } 1045 #if IS_ENABLED(CONFIG_IPV6) 1046 case AF_INET6: { 1047 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&peeraddr; 1048 1049 log_print("connect from non cluster IPv6 node %pI6c", 1050 &sin6->sin6_addr); 1051 break; 1052 } 1053 #endif 1054 default: 1055 log_print("invalid family from non cluster node"); 1056 break; 1057 } 1058 1059 sock_release(newsock); 1060 return -1; 1061 } 1062 1063 log_print("got connection from %d", nodeid); 1064 1065 /* Check to see if we already have a connection to this node. This 1066 * could happen if the two nodes initiate a connection at roughly 1067 * the same time and the connections cross on the wire. 1068 * In this case we store the incoming one in "othercon" 1069 */ 1070 idx = srcu_read_lock(&connections_srcu); 1071 newcon = nodeid2con(nodeid, 0); 1072 if (WARN_ON_ONCE(!newcon)) { 1073 srcu_read_unlock(&connections_srcu, idx); 1074 result = -ENOENT; 1075 goto accept_err; 1076 } 1077 1078 sock_set_mark(newsock->sk, mark); 1079 1080 down_write(&newcon->sock_lock); 1081 if (newcon->sock) { 1082 struct connection *othercon = newcon->othercon; 1083 1084 if (!othercon) { 1085 othercon = kzalloc(sizeof(*othercon), GFP_NOFS); 1086 if (!othercon) { 1087 log_print("failed to allocate incoming socket"); 1088 up_write(&newcon->sock_lock); 1089 srcu_read_unlock(&connections_srcu, idx); 1090 result = -ENOMEM; 1091 goto accept_err; 1092 } 1093 1094 dlm_con_init(othercon, nodeid); 1095 lockdep_set_subclass(&othercon->sock_lock, 1); 1096 newcon->othercon = othercon; 1097 set_bit(CF_IS_OTHERCON, &othercon->flags); 1098 } else { 1099 /* close other sock con if we have something new */ 1100 close_connection(othercon, false); 1101 } 1102 1103 down_write(&othercon->sock_lock); 1104 add_sock(newsock, othercon); 1105 1106 /* check if we receved something while adding */ 1107 lock_sock(othercon->sock->sk); 1108 lowcomms_queue_rwork(othercon); 1109 release_sock(othercon->sock->sk); 1110 up_write(&othercon->sock_lock); 1111 } 1112 else { 1113 /* accept copies the sk after we've saved the callbacks, so we 1114 don't want to save them a second time or comm errors will 1115 result in calling sk_error_report recursively. */ 1116 add_sock(newsock, newcon); 1117 1118 /* check if we receved something while adding */ 1119 lock_sock(newcon->sock->sk); 1120 lowcomms_queue_rwork(newcon); 1121 release_sock(newcon->sock->sk); 1122 } 1123 up_write(&newcon->sock_lock); 1124 srcu_read_unlock(&connections_srcu, idx); 1125 1126 return DLM_IO_SUCCESS; 1127 1128 accept_err: 1129 if (newsock) 1130 sock_release(newsock); 1131 1132 return result; 1133 } 1134 1135 /* 1136 * writequeue_entry_complete - try to delete and free write queue entry 1137 * @e: write queue entry to try to delete 1138 * @completed: bytes completed 1139 * 1140 * writequeue_lock must be held. 1141 */ 1142 static void writequeue_entry_complete(struct writequeue_entry *e, int completed) 1143 { 1144 e->offset += completed; 1145 e->len -= completed; 1146 /* signal that page was half way transmitted */ 1147 e->dirty = true; 1148 1149 if (e->len == 0 && e->users == 0) 1150 free_entry(e); 1151 } 1152 1153 /* 1154 * sctp_bind_addrs - bind a SCTP socket to all our addresses 1155 */ 1156 static int sctp_bind_addrs(struct socket *sock, uint16_t port) 1157 { 1158 struct sockaddr_storage localaddr; 1159 struct sockaddr *addr = (struct sockaddr *)&localaddr; 1160 int i, addr_len, result = 0; 1161 1162 for (i = 0; i < dlm_local_count; i++) { 1163 memcpy(&localaddr, &dlm_local_addr[i], sizeof(localaddr)); 1164 make_sockaddr(&localaddr, port, &addr_len); 1165 1166 if (!i) 1167 result = kernel_bind(sock, addr, addr_len); 1168 else 1169 result = sock_bind_add(sock->sk, addr, addr_len); 1170 1171 if (result < 0) { 1172 log_print("Can't bind to %d addr number %d, %d.\n", 1173 port, i + 1, result); 1174 break; 1175 } 1176 } 1177 return result; 1178 } 1179 1180 /* Get local addresses */ 1181 static void init_local(void) 1182 { 1183 struct sockaddr_storage sas; 1184 int i; 1185 1186 dlm_local_count = 0; 1187 for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) { 1188 if (dlm_our_addr(&sas, i)) 1189 break; 1190 1191 memcpy(&dlm_local_addr[dlm_local_count++], &sas, sizeof(sas)); 1192 } 1193 } 1194 1195 static struct writequeue_entry *new_writequeue_entry(struct connection *con) 1196 { 1197 struct writequeue_entry *entry; 1198 1199 entry = dlm_allocate_writequeue(); 1200 if (!entry) 1201 return NULL; 1202 1203 entry->page = alloc_page(GFP_ATOMIC | __GFP_ZERO); 1204 if (!entry->page) { 1205 dlm_free_writequeue(entry); 1206 return NULL; 1207 } 1208 1209 entry->offset = 0; 1210 entry->len = 0; 1211 entry->end = 0; 1212 entry->dirty = false; 1213 entry->con = con; 1214 entry->users = 1; 1215 kref_init(&entry->ref); 1216 return entry; 1217 } 1218 1219 static struct writequeue_entry *new_wq_entry(struct connection *con, int len, 1220 char **ppc, void (*cb)(void *data), 1221 void *data) 1222 { 1223 struct writequeue_entry *e; 1224 1225 spin_lock_bh(&con->writequeue_lock); 1226 if (!list_empty(&con->writequeue)) { 1227 e = list_last_entry(&con->writequeue, struct writequeue_entry, list); 1228 if (DLM_WQ_REMAIN_BYTES(e) >= len) { 1229 kref_get(&e->ref); 1230 1231 *ppc = page_address(e->page) + e->end; 1232 if (cb) 1233 cb(data); 1234 1235 e->end += len; 1236 e->users++; 1237 goto out; 1238 } 1239 } 1240 1241 e = new_writequeue_entry(con); 1242 if (!e) 1243 goto out; 1244 1245 kref_get(&e->ref); 1246 *ppc = page_address(e->page); 1247 e->end += len; 1248 if (cb) 1249 cb(data); 1250 1251 list_add_tail(&e->list, &con->writequeue); 1252 1253 out: 1254 spin_unlock_bh(&con->writequeue_lock); 1255 return e; 1256 }; 1257 1258 static struct dlm_msg *dlm_lowcomms_new_msg_con(struct connection *con, int len, 1259 gfp_t allocation, char **ppc, 1260 void (*cb)(void *data), 1261 void *data) 1262 { 1263 struct writequeue_entry *e; 1264 struct dlm_msg *msg; 1265 1266 msg = dlm_allocate_msg(allocation); 1267 if (!msg) 1268 return NULL; 1269 1270 kref_init(&msg->ref); 1271 1272 e = new_wq_entry(con, len, ppc, cb, data); 1273 if (!e) { 1274 dlm_free_msg(msg); 1275 return NULL; 1276 } 1277 1278 msg->retransmit = false; 1279 msg->orig_msg = NULL; 1280 msg->ppc = *ppc; 1281 msg->len = len; 1282 msg->entry = e; 1283 1284 return msg; 1285 } 1286 1287 /* avoid false positive for nodes_srcu, unlock happens in 1288 * dlm_lowcomms_commit_msg which is a must call if success 1289 */ 1290 #ifndef __CHECKER__ 1291 struct dlm_msg *dlm_lowcomms_new_msg(int nodeid, int len, gfp_t allocation, 1292 char **ppc, void (*cb)(void *data), 1293 void *data) 1294 { 1295 struct connection *con; 1296 struct dlm_msg *msg; 1297 int idx; 1298 1299 if (len > DLM_MAX_SOCKET_BUFSIZE || 1300 len < sizeof(struct dlm_header)) { 1301 BUILD_BUG_ON(PAGE_SIZE < DLM_MAX_SOCKET_BUFSIZE); 1302 log_print("failed to allocate a buffer of size %d", len); 1303 WARN_ON_ONCE(1); 1304 return NULL; 1305 } 1306 1307 idx = srcu_read_lock(&connections_srcu); 1308 con = nodeid2con(nodeid, 0); 1309 if (WARN_ON_ONCE(!con)) { 1310 srcu_read_unlock(&connections_srcu, idx); 1311 return NULL; 1312 } 1313 1314 msg = dlm_lowcomms_new_msg_con(con, len, allocation, ppc, cb, data); 1315 if (!msg) { 1316 srcu_read_unlock(&connections_srcu, idx); 1317 return NULL; 1318 } 1319 1320 /* for dlm_lowcomms_commit_msg() */ 1321 kref_get(&msg->ref); 1322 /* we assume if successful commit must called */ 1323 msg->idx = idx; 1324 return msg; 1325 } 1326 #endif 1327 1328 static void _dlm_lowcomms_commit_msg(struct dlm_msg *msg) 1329 { 1330 struct writequeue_entry *e = msg->entry; 1331 struct connection *con = e->con; 1332 int users; 1333 1334 spin_lock_bh(&con->writequeue_lock); 1335 kref_get(&msg->ref); 1336 list_add(&msg->list, &e->msgs); 1337 1338 users = --e->users; 1339 if (users) 1340 goto out; 1341 1342 e->len = DLM_WQ_LENGTH_BYTES(e); 1343 1344 lowcomms_queue_swork(con); 1345 1346 out: 1347 spin_unlock_bh(&con->writequeue_lock); 1348 return; 1349 } 1350 1351 /* avoid false positive for nodes_srcu, lock was happen in 1352 * dlm_lowcomms_new_msg 1353 */ 1354 #ifndef __CHECKER__ 1355 void dlm_lowcomms_commit_msg(struct dlm_msg *msg) 1356 { 1357 _dlm_lowcomms_commit_msg(msg); 1358 srcu_read_unlock(&connections_srcu, msg->idx); 1359 /* because dlm_lowcomms_new_msg() */ 1360 kref_put(&msg->ref, dlm_msg_release); 1361 } 1362 #endif 1363 1364 void dlm_lowcomms_put_msg(struct dlm_msg *msg) 1365 { 1366 kref_put(&msg->ref, dlm_msg_release); 1367 } 1368 1369 /* does not held connections_srcu, usage lowcomms_error_report only */ 1370 int dlm_lowcomms_resend_msg(struct dlm_msg *msg) 1371 { 1372 struct dlm_msg *msg_resend; 1373 char *ppc; 1374 1375 if (msg->retransmit) 1376 return 1; 1377 1378 msg_resend = dlm_lowcomms_new_msg_con(msg->entry->con, msg->len, 1379 GFP_ATOMIC, &ppc, NULL, NULL); 1380 if (!msg_resend) 1381 return -ENOMEM; 1382 1383 msg->retransmit = true; 1384 kref_get(&msg->ref); 1385 msg_resend->orig_msg = msg; 1386 1387 memcpy(ppc, msg->ppc, msg->len); 1388 _dlm_lowcomms_commit_msg(msg_resend); 1389 dlm_lowcomms_put_msg(msg_resend); 1390 1391 return 0; 1392 } 1393 1394 /* Send a message */ 1395 static int send_to_sock(struct connection *con) 1396 { 1397 const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL; 1398 struct writequeue_entry *e; 1399 int len, offset, ret; 1400 1401 spin_lock_bh(&con->writequeue_lock); 1402 e = con_next_wq(con); 1403 if (!e) { 1404 clear_bit(CF_SEND_PENDING, &con->flags); 1405 spin_unlock_bh(&con->writequeue_lock); 1406 return DLM_IO_END; 1407 } 1408 1409 len = e->len; 1410 offset = e->offset; 1411 WARN_ON_ONCE(len == 0 && e->users == 0); 1412 spin_unlock_bh(&con->writequeue_lock); 1413 1414 ret = kernel_sendpage(con->sock, e->page, offset, len, 1415 msg_flags); 1416 trace_dlm_send(con->nodeid, ret); 1417 if (ret == -EAGAIN || ret == 0) { 1418 lock_sock(con->sock->sk); 1419 spin_lock_bh(&con->writequeue_lock); 1420 if (test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) && 1421 !test_and_set_bit(CF_APP_LIMITED, &con->flags)) { 1422 /* Notify TCP that we're limited by the 1423 * application window size. 1424 */ 1425 set_bit(SOCK_NOSPACE, &con->sock->sk->sk_socket->flags); 1426 con->sock->sk->sk_write_pending++; 1427 1428 clear_bit(CF_SEND_PENDING, &con->flags); 1429 spin_unlock_bh(&con->writequeue_lock); 1430 release_sock(con->sock->sk); 1431 1432 /* wait for write_space() event */ 1433 return DLM_IO_END; 1434 } 1435 spin_unlock_bh(&con->writequeue_lock); 1436 release_sock(con->sock->sk); 1437 1438 return DLM_IO_RESCHED; 1439 } else if (ret < 0) { 1440 return ret; 1441 } 1442 1443 spin_lock_bh(&con->writequeue_lock); 1444 writequeue_entry_complete(e, ret); 1445 spin_unlock_bh(&con->writequeue_lock); 1446 1447 return DLM_IO_SUCCESS; 1448 } 1449 1450 static void clean_one_writequeue(struct connection *con) 1451 { 1452 struct writequeue_entry *e, *safe; 1453 1454 spin_lock_bh(&con->writequeue_lock); 1455 list_for_each_entry_safe(e, safe, &con->writequeue, list) { 1456 free_entry(e); 1457 } 1458 spin_unlock_bh(&con->writequeue_lock); 1459 } 1460 1461 static void connection_release(struct rcu_head *rcu) 1462 { 1463 struct connection *con = container_of(rcu, struct connection, rcu); 1464 1465 WARN_ON_ONCE(!list_empty(&con->writequeue)); 1466 WARN_ON_ONCE(con->sock); 1467 kfree(con); 1468 } 1469 1470 /* Called from recovery when it knows that a node has 1471 left the cluster */ 1472 int dlm_lowcomms_close(int nodeid) 1473 { 1474 struct connection *con; 1475 int idx; 1476 1477 log_print("closing connection to node %d", nodeid); 1478 1479 idx = srcu_read_lock(&connections_srcu); 1480 con = nodeid2con(nodeid, 0); 1481 if (WARN_ON_ONCE(!con)) { 1482 srcu_read_unlock(&connections_srcu, idx); 1483 return -ENOENT; 1484 } 1485 1486 stop_connection_io(con); 1487 log_print("io handling for node: %d stopped", nodeid); 1488 close_connection(con, true); 1489 1490 spin_lock(&connections_lock); 1491 hlist_del_rcu(&con->list); 1492 spin_unlock(&connections_lock); 1493 1494 clean_one_writequeue(con); 1495 call_srcu(&connections_srcu, &con->rcu, connection_release); 1496 if (con->othercon) { 1497 clean_one_writequeue(con->othercon); 1498 if (con->othercon) 1499 call_srcu(&connections_srcu, &con->othercon->rcu, connection_release); 1500 } 1501 srcu_read_unlock(&connections_srcu, idx); 1502 1503 /* for debugging we print when we are done to compare with other 1504 * messages in between. This function need to be correctly synchronized 1505 * with io handling 1506 */ 1507 log_print("closing connection to node %d done", nodeid); 1508 1509 return 0; 1510 } 1511 1512 /* Receive worker function */ 1513 static void process_recv_sockets(struct work_struct *work) 1514 { 1515 struct connection *con = container_of(work, struct connection, rwork); 1516 int ret, buflen; 1517 1518 down_read(&con->sock_lock); 1519 if (!con->sock) { 1520 up_read(&con->sock_lock); 1521 return; 1522 } 1523 1524 buflen = READ_ONCE(dlm_config.ci_buffer_size); 1525 do { 1526 ret = receive_from_sock(con, buflen); 1527 } while (ret == DLM_IO_SUCCESS); 1528 up_read(&con->sock_lock); 1529 1530 switch (ret) { 1531 case DLM_IO_END: 1532 /* CF_RECV_PENDING cleared */ 1533 break; 1534 case DLM_IO_EOF: 1535 close_connection(con, false); 1536 wake_up(&con->shutdown_wait); 1537 /* CF_RECV_PENDING cleared */ 1538 break; 1539 case DLM_IO_RESCHED: 1540 cond_resched(); 1541 queue_work(io_workqueue, &con->rwork); 1542 /* CF_RECV_PENDING not cleared */ 1543 break; 1544 default: 1545 if (ret < 0) { 1546 if (test_bit(CF_IS_OTHERCON, &con->flags)) { 1547 close_connection(con, false); 1548 } else { 1549 spin_lock_bh(&con->writequeue_lock); 1550 lowcomms_queue_swork(con); 1551 spin_unlock_bh(&con->writequeue_lock); 1552 } 1553 1554 /* CF_RECV_PENDING cleared for othercon 1555 * we trigger send queue if not already done 1556 * and process_send_sockets will handle it 1557 */ 1558 break; 1559 } 1560 1561 WARN_ON_ONCE(1); 1562 break; 1563 } 1564 } 1565 1566 static void process_listen_recv_socket(struct work_struct *work) 1567 { 1568 int ret; 1569 1570 if (WARN_ON_ONCE(!listen_con.sock)) 1571 return; 1572 1573 do { 1574 ret = accept_from_sock(); 1575 } while (ret == DLM_IO_SUCCESS); 1576 1577 if (ret < 0) 1578 log_print("critical error accepting connection: %d", ret); 1579 } 1580 1581 static int dlm_connect(struct connection *con) 1582 { 1583 struct sockaddr_storage addr; 1584 int result, addr_len; 1585 struct socket *sock; 1586 unsigned int mark; 1587 1588 memset(&addr, 0, sizeof(addr)); 1589 result = nodeid_to_addr(con->nodeid, &addr, NULL, 1590 dlm_proto_ops->try_new_addr, &mark); 1591 if (result < 0) { 1592 log_print("no address for nodeid %d", con->nodeid); 1593 return result; 1594 } 1595 1596 /* Create a socket to communicate with */ 1597 result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family, 1598 SOCK_STREAM, dlm_proto_ops->proto, &sock); 1599 if (result < 0) 1600 return result; 1601 1602 sock_set_mark(sock->sk, mark); 1603 dlm_proto_ops->sockopts(sock); 1604 1605 result = dlm_proto_ops->bind(sock); 1606 if (result < 0) { 1607 sock_release(sock); 1608 return result; 1609 } 1610 1611 add_sock(sock, con); 1612 1613 log_print_ratelimited("connecting to %d", con->nodeid); 1614 make_sockaddr(&addr, dlm_config.ci_tcp_port, &addr_len); 1615 result = dlm_proto_ops->connect(con, sock, (struct sockaddr *)&addr, 1616 addr_len); 1617 switch (result) { 1618 case -EINPROGRESS: 1619 /* not an error */ 1620 fallthrough; 1621 case 0: 1622 break; 1623 default: 1624 if (result < 0) 1625 dlm_close_sock(&con->sock); 1626 1627 break; 1628 } 1629 1630 return result; 1631 } 1632 1633 /* Send worker function */ 1634 static void process_send_sockets(struct work_struct *work) 1635 { 1636 struct connection *con = container_of(work, struct connection, swork); 1637 int ret; 1638 1639 WARN_ON_ONCE(test_bit(CF_IS_OTHERCON, &con->flags)); 1640 1641 down_read(&con->sock_lock); 1642 if (!con->sock) { 1643 up_read(&con->sock_lock); 1644 down_write(&con->sock_lock); 1645 if (!con->sock) { 1646 ret = dlm_connect(con); 1647 switch (ret) { 1648 case 0: 1649 break; 1650 case -EINPROGRESS: 1651 /* avoid spamming resched on connection 1652 * we might can switch to a state_change 1653 * event based mechanism if established 1654 */ 1655 msleep(100); 1656 break; 1657 default: 1658 /* CF_SEND_PENDING not cleared */ 1659 up_write(&con->sock_lock); 1660 log_print("connect to node %d try %d error %d", 1661 con->nodeid, con->retries++, ret); 1662 msleep(1000); 1663 /* For now we try forever to reconnect. In 1664 * future we should send a event to cluster 1665 * manager to fence itself after certain amount 1666 * of retries. 1667 */ 1668 queue_work(io_workqueue, &con->swork); 1669 return; 1670 } 1671 } 1672 downgrade_write(&con->sock_lock); 1673 } 1674 1675 do { 1676 ret = send_to_sock(con); 1677 } while (ret == DLM_IO_SUCCESS); 1678 up_read(&con->sock_lock); 1679 1680 switch (ret) { 1681 case DLM_IO_END: 1682 /* CF_SEND_PENDING cleared */ 1683 break; 1684 case DLM_IO_RESCHED: 1685 /* CF_SEND_PENDING not cleared */ 1686 cond_resched(); 1687 queue_work(io_workqueue, &con->swork); 1688 break; 1689 default: 1690 if (ret < 0) { 1691 close_connection(con, false); 1692 1693 /* CF_SEND_PENDING cleared */ 1694 spin_lock_bh(&con->writequeue_lock); 1695 lowcomms_queue_swork(con); 1696 spin_unlock_bh(&con->writequeue_lock); 1697 break; 1698 } 1699 1700 WARN_ON_ONCE(1); 1701 break; 1702 } 1703 } 1704 1705 static void work_stop(void) 1706 { 1707 if (io_workqueue) { 1708 destroy_workqueue(io_workqueue); 1709 io_workqueue = NULL; 1710 } 1711 1712 if (process_workqueue) { 1713 destroy_workqueue(process_workqueue); 1714 process_workqueue = NULL; 1715 } 1716 } 1717 1718 static int work_start(void) 1719 { 1720 io_workqueue = alloc_workqueue("dlm_io", WQ_HIGHPRI | WQ_MEM_RECLAIM, 1721 0); 1722 if (!io_workqueue) { 1723 log_print("can't start dlm_io"); 1724 return -ENOMEM; 1725 } 1726 1727 /* ordered dlm message process queue, 1728 * should be converted to a tasklet 1729 */ 1730 process_workqueue = alloc_ordered_workqueue("dlm_process", 1731 WQ_HIGHPRI | WQ_MEM_RECLAIM); 1732 if (!process_workqueue) { 1733 log_print("can't start dlm_process"); 1734 destroy_workqueue(io_workqueue); 1735 io_workqueue = NULL; 1736 return -ENOMEM; 1737 } 1738 1739 return 0; 1740 } 1741 1742 void dlm_lowcomms_shutdown(void) 1743 { 1744 struct connection *con; 1745 int i, idx; 1746 1747 /* stop lowcomms_listen_data_ready calls */ 1748 lock_sock(listen_con.sock->sk); 1749 listen_con.sock->sk->sk_data_ready = listen_sock.sk_data_ready; 1750 release_sock(listen_con.sock->sk); 1751 1752 cancel_work_sync(&listen_con.rwork); 1753 dlm_close_sock(&listen_con.sock); 1754 1755 idx = srcu_read_lock(&connections_srcu); 1756 for (i = 0; i < CONN_HASH_SIZE; i++) { 1757 hlist_for_each_entry_rcu(con, &connection_hash[i], list) { 1758 shutdown_connection(con, true); 1759 stop_connection_io(con); 1760 flush_workqueue(process_workqueue); 1761 close_connection(con, true); 1762 1763 clean_one_writequeue(con); 1764 if (con->othercon) 1765 clean_one_writequeue(con->othercon); 1766 allow_connection_io(con); 1767 } 1768 } 1769 srcu_read_unlock(&connections_srcu, idx); 1770 } 1771 1772 void dlm_lowcomms_stop(void) 1773 { 1774 work_stop(); 1775 dlm_proto_ops = NULL; 1776 } 1777 1778 static int dlm_listen_for_all(void) 1779 { 1780 struct socket *sock; 1781 int result; 1782 1783 log_print("Using %s for communications", 1784 dlm_proto_ops->name); 1785 1786 result = dlm_proto_ops->listen_validate(); 1787 if (result < 0) 1788 return result; 1789 1790 result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family, 1791 SOCK_STREAM, dlm_proto_ops->proto, &sock); 1792 if (result < 0) { 1793 log_print("Can't create comms socket: %d", result); 1794 return result; 1795 } 1796 1797 sock_set_mark(sock->sk, dlm_config.ci_mark); 1798 dlm_proto_ops->listen_sockopts(sock); 1799 1800 result = dlm_proto_ops->listen_bind(sock); 1801 if (result < 0) 1802 goto out; 1803 1804 lock_sock(sock->sk); 1805 listen_sock.sk_data_ready = sock->sk->sk_data_ready; 1806 listen_sock.sk_write_space = sock->sk->sk_write_space; 1807 listen_sock.sk_error_report = sock->sk->sk_error_report; 1808 listen_sock.sk_state_change = sock->sk->sk_state_change; 1809 1810 listen_con.sock = sock; 1811 1812 sock->sk->sk_allocation = GFP_NOFS; 1813 sock->sk->sk_use_task_frag = false; 1814 sock->sk->sk_data_ready = lowcomms_listen_data_ready; 1815 release_sock(sock->sk); 1816 1817 result = sock->ops->listen(sock, 5); 1818 if (result < 0) { 1819 dlm_close_sock(&listen_con.sock); 1820 return result; 1821 } 1822 1823 return 0; 1824 1825 out: 1826 sock_release(sock); 1827 return result; 1828 } 1829 1830 static int dlm_tcp_bind(struct socket *sock) 1831 { 1832 struct sockaddr_storage src_addr; 1833 int result, addr_len; 1834 1835 /* Bind to our cluster-known address connecting to avoid 1836 * routing problems. 1837 */ 1838 memcpy(&src_addr, &dlm_local_addr[0], sizeof(src_addr)); 1839 make_sockaddr(&src_addr, 0, &addr_len); 1840 1841 result = sock->ops->bind(sock, (struct sockaddr *)&src_addr, 1842 addr_len); 1843 if (result < 0) { 1844 /* This *may* not indicate a critical error */ 1845 log_print("could not bind for connect: %d", result); 1846 } 1847 1848 return 0; 1849 } 1850 1851 static int dlm_tcp_connect(struct connection *con, struct socket *sock, 1852 struct sockaddr *addr, int addr_len) 1853 { 1854 return sock->ops->connect(sock, addr, addr_len, O_NONBLOCK); 1855 } 1856 1857 static int dlm_tcp_listen_validate(void) 1858 { 1859 /* We don't support multi-homed hosts */ 1860 if (dlm_local_count > 1) { 1861 log_print("TCP protocol can't handle multi-homed hosts, try SCTP"); 1862 return -EINVAL; 1863 } 1864 1865 return 0; 1866 } 1867 1868 static void dlm_tcp_sockopts(struct socket *sock) 1869 { 1870 /* Turn off Nagle's algorithm */ 1871 tcp_sock_set_nodelay(sock->sk); 1872 } 1873 1874 static void dlm_tcp_listen_sockopts(struct socket *sock) 1875 { 1876 dlm_tcp_sockopts(sock); 1877 sock_set_reuseaddr(sock->sk); 1878 } 1879 1880 static int dlm_tcp_listen_bind(struct socket *sock) 1881 { 1882 int addr_len; 1883 1884 /* Bind to our port */ 1885 make_sockaddr(&dlm_local_addr[0], dlm_config.ci_tcp_port, &addr_len); 1886 return sock->ops->bind(sock, (struct sockaddr *)&dlm_local_addr[0], 1887 addr_len); 1888 } 1889 1890 static const struct dlm_proto_ops dlm_tcp_ops = { 1891 .name = "TCP", 1892 .proto = IPPROTO_TCP, 1893 .connect = dlm_tcp_connect, 1894 .sockopts = dlm_tcp_sockopts, 1895 .bind = dlm_tcp_bind, 1896 .listen_validate = dlm_tcp_listen_validate, 1897 .listen_sockopts = dlm_tcp_listen_sockopts, 1898 .listen_bind = dlm_tcp_listen_bind, 1899 }; 1900 1901 static int dlm_sctp_bind(struct socket *sock) 1902 { 1903 return sctp_bind_addrs(sock, 0); 1904 } 1905 1906 static int dlm_sctp_connect(struct connection *con, struct socket *sock, 1907 struct sockaddr *addr, int addr_len) 1908 { 1909 int ret; 1910 1911 /* 1912 * Make sock->ops->connect() function return in specified time, 1913 * since O_NONBLOCK argument in connect() function does not work here, 1914 * then, we should restore the default value of this attribute. 1915 */ 1916 sock_set_sndtimeo(sock->sk, 5); 1917 ret = sock->ops->connect(sock, addr, addr_len, 0); 1918 sock_set_sndtimeo(sock->sk, 0); 1919 return ret; 1920 } 1921 1922 static int dlm_sctp_listen_validate(void) 1923 { 1924 if (!IS_ENABLED(CONFIG_IP_SCTP)) { 1925 log_print("SCTP is not enabled by this kernel"); 1926 return -EOPNOTSUPP; 1927 } 1928 1929 request_module("sctp"); 1930 return 0; 1931 } 1932 1933 static int dlm_sctp_bind_listen(struct socket *sock) 1934 { 1935 return sctp_bind_addrs(sock, dlm_config.ci_tcp_port); 1936 } 1937 1938 static void dlm_sctp_sockopts(struct socket *sock) 1939 { 1940 /* Turn off Nagle's algorithm */ 1941 sctp_sock_set_nodelay(sock->sk); 1942 sock_set_rcvbuf(sock->sk, NEEDED_RMEM); 1943 } 1944 1945 static const struct dlm_proto_ops dlm_sctp_ops = { 1946 .name = "SCTP", 1947 .proto = IPPROTO_SCTP, 1948 .try_new_addr = true, 1949 .connect = dlm_sctp_connect, 1950 .sockopts = dlm_sctp_sockopts, 1951 .bind = dlm_sctp_bind, 1952 .listen_validate = dlm_sctp_listen_validate, 1953 .listen_sockopts = dlm_sctp_sockopts, 1954 .listen_bind = dlm_sctp_bind_listen, 1955 }; 1956 1957 int dlm_lowcomms_start(void) 1958 { 1959 int error; 1960 1961 init_local(); 1962 if (!dlm_local_count) { 1963 error = -ENOTCONN; 1964 log_print("no local IP address has been set"); 1965 goto fail; 1966 } 1967 1968 error = work_start(); 1969 if (error) 1970 goto fail; 1971 1972 /* Start listening */ 1973 switch (dlm_config.ci_protocol) { 1974 case DLM_PROTO_TCP: 1975 dlm_proto_ops = &dlm_tcp_ops; 1976 break; 1977 case DLM_PROTO_SCTP: 1978 dlm_proto_ops = &dlm_sctp_ops; 1979 break; 1980 default: 1981 log_print("Invalid protocol identifier %d set", 1982 dlm_config.ci_protocol); 1983 error = -EINVAL; 1984 goto fail_proto_ops; 1985 } 1986 1987 error = dlm_listen_for_all(); 1988 if (error) 1989 goto fail_listen; 1990 1991 return 0; 1992 1993 fail_listen: 1994 dlm_proto_ops = NULL; 1995 fail_proto_ops: 1996 work_stop(); 1997 fail: 1998 return error; 1999 } 2000 2001 void dlm_lowcomms_init(void) 2002 { 2003 int i; 2004 2005 for (i = 0; i < CONN_HASH_SIZE; i++) 2006 INIT_HLIST_HEAD(&connection_hash[i]); 2007 2008 INIT_WORK(&listen_con.rwork, process_listen_recv_socket); 2009 } 2010 2011 void dlm_lowcomms_exit(void) 2012 { 2013 struct connection *con; 2014 int i, idx; 2015 2016 idx = srcu_read_lock(&connections_srcu); 2017 for (i = 0; i < CONN_HASH_SIZE; i++) { 2018 hlist_for_each_entry_rcu(con, &connection_hash[i], list) { 2019 spin_lock(&connections_lock); 2020 hlist_del_rcu(&con->list); 2021 spin_unlock(&connections_lock); 2022 2023 if (con->othercon) 2024 call_srcu(&connections_srcu, &con->othercon->rcu, 2025 connection_release); 2026 call_srcu(&connections_srcu, &con->rcu, connection_release); 2027 } 2028 } 2029 srcu_read_unlock(&connections_srcu, idx); 2030 } 2031