xref: /openbmc/linux/fs/dlm/lowcomms.c (revision 1e1129b65ef3f72dbccf24de56b700a181b45227)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 *******************************************************************************
4 **
5 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
6 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
7 **
8 **
9 *******************************************************************************
10 ******************************************************************************/
11 
12 /*
13  * lowcomms.c
14  *
15  * This is the "low-level" comms layer.
16  *
17  * It is responsible for sending/receiving messages
18  * from other nodes in the cluster.
19  *
20  * Cluster nodes are referred to by their nodeids. nodeids are
21  * simply 32 bit numbers to the locking module - if they need to
22  * be expanded for the cluster infrastructure then that is its
23  * responsibility. It is this layer's
24  * responsibility to resolve these into IP address or
25  * whatever it needs for inter-node communication.
26  *
27  * The comms level is two kernel threads that deal mainly with
28  * the receiving of messages from other nodes and passing them
29  * up to the mid-level comms layer (which understands the
30  * message format) for execution by the locking core, and
31  * a send thread which does all the setting up of connections
32  * to remote nodes and the sending of data. Threads are not allowed
33  * to send their own data because it may cause them to wait in times
34  * of high load. Also, this way, the sending thread can collect together
35  * messages bound for one node and send them in one block.
36  *
37  * lowcomms will choose to use either TCP or SCTP as its transport layer
38  * depending on the configuration variable 'protocol'. This should be set
39  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
40  * cluster-wide mechanism as it must be the same on all nodes of the cluster
41  * for the DLM to function.
42  *
43  */
44 
45 #include <asm/ioctls.h>
46 #include <net/sock.h>
47 #include <net/tcp.h>
48 #include <linux/pagemap.h>
49 #include <linux/file.h>
50 #include <linux/mutex.h>
51 #include <linux/sctp.h>
52 #include <linux/slab.h>
53 #include <net/sctp/sctp.h>
54 #include <net/ipv6.h>
55 
56 #include "dlm_internal.h"
57 #include "lowcomms.h"
58 #include "midcomms.h"
59 #include "config.h"
60 
61 #define NEEDED_RMEM (4*1024*1024)
62 #define CONN_HASH_SIZE 32
63 
64 /* Number of messages to send before rescheduling */
65 #define MAX_SEND_MSG_COUNT 25
66 #define DLM_SHUTDOWN_WAIT_TIMEOUT msecs_to_jiffies(10000)
67 
68 struct cbuf {
69 	unsigned int base;
70 	unsigned int len;
71 	unsigned int mask;
72 };
73 
74 static void cbuf_add(struct cbuf *cb, int n)
75 {
76 	cb->len += n;
77 }
78 
79 static int cbuf_data(struct cbuf *cb)
80 {
81 	return ((cb->base + cb->len) & cb->mask);
82 }
83 
84 static void cbuf_init(struct cbuf *cb, int size)
85 {
86 	cb->base = cb->len = 0;
87 	cb->mask = size-1;
88 }
89 
90 static void cbuf_eat(struct cbuf *cb, int n)
91 {
92 	cb->len  -= n;
93 	cb->base += n;
94 	cb->base &= cb->mask;
95 }
96 
97 static bool cbuf_empty(struct cbuf *cb)
98 {
99 	return cb->len == 0;
100 }
101 
102 struct connection {
103 	struct socket *sock;	/* NULL if not connected */
104 	uint32_t nodeid;	/* So we know who we are in the list */
105 	struct mutex sock_mutex;
106 	unsigned long flags;
107 #define CF_READ_PENDING 1
108 #define CF_WRITE_PENDING 2
109 #define CF_INIT_PENDING 4
110 #define CF_IS_OTHERCON 5
111 #define CF_CLOSE 6
112 #define CF_APP_LIMITED 7
113 #define CF_CLOSING 8
114 #define CF_SHUTDOWN 9
115 	struct list_head writequeue;  /* List of outgoing writequeue_entries */
116 	spinlock_t writequeue_lock;
117 	int (*rx_action) (struct connection *);	/* What to do when active */
118 	void (*connect_action) (struct connection *);	/* What to do to connect */
119 	void (*shutdown_action)(struct connection *con); /* What to do to shutdown */
120 	struct page *rx_page;
121 	struct cbuf cb;
122 	int retries;
123 #define MAX_CONNECT_RETRIES 3
124 	struct hlist_node list;
125 	struct connection *othercon;
126 	struct work_struct rwork; /* Receive workqueue */
127 	struct work_struct swork; /* Send workqueue */
128 	wait_queue_head_t shutdown_wait; /* wait for graceful shutdown */
129 };
130 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
131 
132 /* An entry waiting to be sent */
133 struct writequeue_entry {
134 	struct list_head list;
135 	struct page *page;
136 	int offset;
137 	int len;
138 	int end;
139 	int users;
140 	struct connection *con;
141 };
142 
143 struct dlm_node_addr {
144 	struct list_head list;
145 	int nodeid;
146 	int addr_count;
147 	int curr_addr_index;
148 	struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT];
149 };
150 
151 static struct listen_sock_callbacks {
152 	void (*sk_error_report)(struct sock *);
153 	void (*sk_data_ready)(struct sock *);
154 	void (*sk_state_change)(struct sock *);
155 	void (*sk_write_space)(struct sock *);
156 } listen_sock;
157 
158 static LIST_HEAD(dlm_node_addrs);
159 static DEFINE_SPINLOCK(dlm_node_addrs_spin);
160 
161 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
162 static int dlm_local_count;
163 static int dlm_allow_conn;
164 
165 /* Work queues */
166 static struct workqueue_struct *recv_workqueue;
167 static struct workqueue_struct *send_workqueue;
168 
169 static struct hlist_head connection_hash[CONN_HASH_SIZE];
170 static DEFINE_MUTEX(connections_lock);
171 static struct kmem_cache *con_cache;
172 
173 static void process_recv_sockets(struct work_struct *work);
174 static void process_send_sockets(struct work_struct *work);
175 
176 
177 /* This is deliberately very simple because most clusters have simple
178    sequential nodeids, so we should be able to go straight to a connection
179    struct in the array */
180 static inline int nodeid_hash(int nodeid)
181 {
182 	return nodeid & (CONN_HASH_SIZE-1);
183 }
184 
185 static struct connection *__find_con(int nodeid)
186 {
187 	int r;
188 	struct connection *con;
189 
190 	r = nodeid_hash(nodeid);
191 
192 	hlist_for_each_entry(con, &connection_hash[r], list) {
193 		if (con->nodeid == nodeid)
194 			return con;
195 	}
196 	return NULL;
197 }
198 
199 /*
200  * If 'allocation' is zero then we don't attempt to create a new
201  * connection structure for this node.
202  */
203 static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
204 {
205 	struct connection *con = NULL;
206 	int r;
207 
208 	con = __find_con(nodeid);
209 	if (con || !alloc)
210 		return con;
211 
212 	con = kmem_cache_zalloc(con_cache, alloc);
213 	if (!con)
214 		return NULL;
215 
216 	r = nodeid_hash(nodeid);
217 	hlist_add_head(&con->list, &connection_hash[r]);
218 
219 	con->nodeid = nodeid;
220 	mutex_init(&con->sock_mutex);
221 	INIT_LIST_HEAD(&con->writequeue);
222 	spin_lock_init(&con->writequeue_lock);
223 	INIT_WORK(&con->swork, process_send_sockets);
224 	INIT_WORK(&con->rwork, process_recv_sockets);
225 	init_waitqueue_head(&con->shutdown_wait);
226 
227 	/* Setup action pointers for child sockets */
228 	if (con->nodeid) {
229 		struct connection *zerocon = __find_con(0);
230 
231 		con->connect_action = zerocon->connect_action;
232 		if (!con->rx_action)
233 			con->rx_action = zerocon->rx_action;
234 	}
235 
236 	return con;
237 }
238 
239 /* Loop round all connections */
240 static void foreach_conn(void (*conn_func)(struct connection *c))
241 {
242 	int i;
243 	struct hlist_node *n;
244 	struct connection *con;
245 
246 	for (i = 0; i < CONN_HASH_SIZE; i++) {
247 		hlist_for_each_entry_safe(con, n, &connection_hash[i], list)
248 			conn_func(con);
249 	}
250 }
251 
252 static struct connection *nodeid2con(int nodeid, gfp_t allocation)
253 {
254 	struct connection *con;
255 
256 	mutex_lock(&connections_lock);
257 	con = __nodeid2con(nodeid, allocation);
258 	mutex_unlock(&connections_lock);
259 
260 	return con;
261 }
262 
263 static struct dlm_node_addr *find_node_addr(int nodeid)
264 {
265 	struct dlm_node_addr *na;
266 
267 	list_for_each_entry(na, &dlm_node_addrs, list) {
268 		if (na->nodeid == nodeid)
269 			return na;
270 	}
271 	return NULL;
272 }
273 
274 static int addr_compare(struct sockaddr_storage *x, struct sockaddr_storage *y)
275 {
276 	switch (x->ss_family) {
277 	case AF_INET: {
278 		struct sockaddr_in *sinx = (struct sockaddr_in *)x;
279 		struct sockaddr_in *siny = (struct sockaddr_in *)y;
280 		if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
281 			return 0;
282 		if (sinx->sin_port != siny->sin_port)
283 			return 0;
284 		break;
285 	}
286 	case AF_INET6: {
287 		struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
288 		struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
289 		if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
290 			return 0;
291 		if (sinx->sin6_port != siny->sin6_port)
292 			return 0;
293 		break;
294 	}
295 	default:
296 		return 0;
297 	}
298 	return 1;
299 }
300 
301 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
302 			  struct sockaddr *sa_out, bool try_new_addr)
303 {
304 	struct sockaddr_storage sas;
305 	struct dlm_node_addr *na;
306 
307 	if (!dlm_local_count)
308 		return -1;
309 
310 	spin_lock(&dlm_node_addrs_spin);
311 	na = find_node_addr(nodeid);
312 	if (na && na->addr_count) {
313 		memcpy(&sas, na->addr[na->curr_addr_index],
314 		       sizeof(struct sockaddr_storage));
315 
316 		if (try_new_addr) {
317 			na->curr_addr_index++;
318 			if (na->curr_addr_index == na->addr_count)
319 				na->curr_addr_index = 0;
320 		}
321 	}
322 	spin_unlock(&dlm_node_addrs_spin);
323 
324 	if (!na)
325 		return -EEXIST;
326 
327 	if (!na->addr_count)
328 		return -ENOENT;
329 
330 	if (sas_out)
331 		memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
332 
333 	if (!sa_out)
334 		return 0;
335 
336 	if (dlm_local_addr[0]->ss_family == AF_INET) {
337 		struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
338 		struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
339 		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
340 	} else {
341 		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
342 		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
343 		ret6->sin6_addr = in6->sin6_addr;
344 	}
345 
346 	return 0;
347 }
348 
349 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid)
350 {
351 	struct dlm_node_addr *na;
352 	int rv = -EEXIST;
353 	int addr_i;
354 
355 	spin_lock(&dlm_node_addrs_spin);
356 	list_for_each_entry(na, &dlm_node_addrs, list) {
357 		if (!na->addr_count)
358 			continue;
359 
360 		for (addr_i = 0; addr_i < na->addr_count; addr_i++) {
361 			if (addr_compare(na->addr[addr_i], addr)) {
362 				*nodeid = na->nodeid;
363 				rv = 0;
364 				goto unlock;
365 			}
366 		}
367 	}
368 unlock:
369 	spin_unlock(&dlm_node_addrs_spin);
370 	return rv;
371 }
372 
373 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
374 {
375 	struct sockaddr_storage *new_addr;
376 	struct dlm_node_addr *new_node, *na;
377 
378 	new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS);
379 	if (!new_node)
380 		return -ENOMEM;
381 
382 	new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS);
383 	if (!new_addr) {
384 		kfree(new_node);
385 		return -ENOMEM;
386 	}
387 
388 	memcpy(new_addr, addr, len);
389 
390 	spin_lock(&dlm_node_addrs_spin);
391 	na = find_node_addr(nodeid);
392 	if (!na) {
393 		new_node->nodeid = nodeid;
394 		new_node->addr[0] = new_addr;
395 		new_node->addr_count = 1;
396 		list_add(&new_node->list, &dlm_node_addrs);
397 		spin_unlock(&dlm_node_addrs_spin);
398 		return 0;
399 	}
400 
401 	if (na->addr_count >= DLM_MAX_ADDR_COUNT) {
402 		spin_unlock(&dlm_node_addrs_spin);
403 		kfree(new_addr);
404 		kfree(new_node);
405 		return -ENOSPC;
406 	}
407 
408 	na->addr[na->addr_count++] = new_addr;
409 	spin_unlock(&dlm_node_addrs_spin);
410 	kfree(new_node);
411 	return 0;
412 }
413 
414 /* Data available on socket or listen socket received a connect */
415 static void lowcomms_data_ready(struct sock *sk)
416 {
417 	struct connection *con;
418 
419 	read_lock_bh(&sk->sk_callback_lock);
420 	con = sock2con(sk);
421 	if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
422 		queue_work(recv_workqueue, &con->rwork);
423 	read_unlock_bh(&sk->sk_callback_lock);
424 }
425 
426 static void lowcomms_write_space(struct sock *sk)
427 {
428 	struct connection *con;
429 
430 	read_lock_bh(&sk->sk_callback_lock);
431 	con = sock2con(sk);
432 	if (!con)
433 		goto out;
434 
435 	clear_bit(SOCK_NOSPACE, &con->sock->flags);
436 
437 	if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
438 		con->sock->sk->sk_write_pending--;
439 		clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
440 	}
441 
442 	queue_work(send_workqueue, &con->swork);
443 out:
444 	read_unlock_bh(&sk->sk_callback_lock);
445 }
446 
447 static inline void lowcomms_connect_sock(struct connection *con)
448 {
449 	if (test_bit(CF_CLOSE, &con->flags))
450 		return;
451 	queue_work(send_workqueue, &con->swork);
452 	cond_resched();
453 }
454 
455 static void lowcomms_state_change(struct sock *sk)
456 {
457 	/* SCTP layer is not calling sk_data_ready when the connection
458 	 * is done, so we catch the signal through here. Also, it
459 	 * doesn't switch socket state when entering shutdown, so we
460 	 * skip the write in that case.
461 	 */
462 	if (sk->sk_shutdown) {
463 		if (sk->sk_shutdown == RCV_SHUTDOWN)
464 			lowcomms_data_ready(sk);
465 	} else if (sk->sk_state == TCP_ESTABLISHED) {
466 		lowcomms_write_space(sk);
467 	}
468 }
469 
470 int dlm_lowcomms_connect_node(int nodeid)
471 {
472 	struct connection *con;
473 
474 	if (nodeid == dlm_our_nodeid())
475 		return 0;
476 
477 	con = nodeid2con(nodeid, GFP_NOFS);
478 	if (!con)
479 		return -ENOMEM;
480 	lowcomms_connect_sock(con);
481 	return 0;
482 }
483 
484 static void lowcomms_error_report(struct sock *sk)
485 {
486 	struct connection *con;
487 	struct sockaddr_storage saddr;
488 	void (*orig_report)(struct sock *) = NULL;
489 
490 	read_lock_bh(&sk->sk_callback_lock);
491 	con = sock2con(sk);
492 	if (con == NULL)
493 		goto out;
494 
495 	orig_report = listen_sock.sk_error_report;
496 	if (con->sock == NULL ||
497 	    kernel_getpeername(con->sock, (struct sockaddr *)&saddr) < 0) {
498 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
499 				   "sending to node %d, port %d, "
500 				   "sk_err=%d/%d\n", dlm_our_nodeid(),
501 				   con->nodeid, dlm_config.ci_tcp_port,
502 				   sk->sk_err, sk->sk_err_soft);
503 	} else if (saddr.ss_family == AF_INET) {
504 		struct sockaddr_in *sin4 = (struct sockaddr_in *)&saddr;
505 
506 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
507 				   "sending to node %d at %pI4, port %d, "
508 				   "sk_err=%d/%d\n", dlm_our_nodeid(),
509 				   con->nodeid, &sin4->sin_addr.s_addr,
510 				   dlm_config.ci_tcp_port, sk->sk_err,
511 				   sk->sk_err_soft);
512 	} else {
513 		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&saddr;
514 
515 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
516 				   "sending to node %d at %u.%u.%u.%u, "
517 				   "port %d, sk_err=%d/%d\n", dlm_our_nodeid(),
518 				   con->nodeid, sin6->sin6_addr.s6_addr32[0],
519 				   sin6->sin6_addr.s6_addr32[1],
520 				   sin6->sin6_addr.s6_addr32[2],
521 				   sin6->sin6_addr.s6_addr32[3],
522 				   dlm_config.ci_tcp_port, sk->sk_err,
523 				   sk->sk_err_soft);
524 	}
525 out:
526 	read_unlock_bh(&sk->sk_callback_lock);
527 	if (orig_report)
528 		orig_report(sk);
529 }
530 
531 /* Note: sk_callback_lock must be locked before calling this function. */
532 static void save_listen_callbacks(struct socket *sock)
533 {
534 	struct sock *sk = sock->sk;
535 
536 	listen_sock.sk_data_ready = sk->sk_data_ready;
537 	listen_sock.sk_state_change = sk->sk_state_change;
538 	listen_sock.sk_write_space = sk->sk_write_space;
539 	listen_sock.sk_error_report = sk->sk_error_report;
540 }
541 
542 static void restore_callbacks(struct socket *sock)
543 {
544 	struct sock *sk = sock->sk;
545 
546 	write_lock_bh(&sk->sk_callback_lock);
547 	sk->sk_user_data = NULL;
548 	sk->sk_data_ready = listen_sock.sk_data_ready;
549 	sk->sk_state_change = listen_sock.sk_state_change;
550 	sk->sk_write_space = listen_sock.sk_write_space;
551 	sk->sk_error_report = listen_sock.sk_error_report;
552 	write_unlock_bh(&sk->sk_callback_lock);
553 }
554 
555 /* Make a socket active */
556 static void add_sock(struct socket *sock, struct connection *con)
557 {
558 	struct sock *sk = sock->sk;
559 
560 	write_lock_bh(&sk->sk_callback_lock);
561 	con->sock = sock;
562 
563 	sk->sk_user_data = con;
564 	/* Install a data_ready callback */
565 	sk->sk_data_ready = lowcomms_data_ready;
566 	sk->sk_write_space = lowcomms_write_space;
567 	sk->sk_state_change = lowcomms_state_change;
568 	sk->sk_allocation = GFP_NOFS;
569 	sk->sk_error_report = lowcomms_error_report;
570 	write_unlock_bh(&sk->sk_callback_lock);
571 }
572 
573 /* Add the port number to an IPv6 or 4 sockaddr and return the address
574    length */
575 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
576 			  int *addr_len)
577 {
578 	saddr->ss_family =  dlm_local_addr[0]->ss_family;
579 	if (saddr->ss_family == AF_INET) {
580 		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
581 		in4_addr->sin_port = cpu_to_be16(port);
582 		*addr_len = sizeof(struct sockaddr_in);
583 		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
584 	} else {
585 		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
586 		in6_addr->sin6_port = cpu_to_be16(port);
587 		*addr_len = sizeof(struct sockaddr_in6);
588 	}
589 	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
590 }
591 
592 /* Close a remote connection and tidy up */
593 static void close_connection(struct connection *con, bool and_other,
594 			     bool tx, bool rx)
595 {
596 	bool closing = test_and_set_bit(CF_CLOSING, &con->flags);
597 
598 	if (tx && !closing && cancel_work_sync(&con->swork)) {
599 		log_print("canceled swork for node %d", con->nodeid);
600 		clear_bit(CF_WRITE_PENDING, &con->flags);
601 	}
602 	if (rx && !closing && cancel_work_sync(&con->rwork)) {
603 		log_print("canceled rwork for node %d", con->nodeid);
604 		clear_bit(CF_READ_PENDING, &con->flags);
605 	}
606 
607 	mutex_lock(&con->sock_mutex);
608 	if (con->sock) {
609 		restore_callbacks(con->sock);
610 		sock_release(con->sock);
611 		con->sock = NULL;
612 	}
613 	if (con->othercon && and_other) {
614 		/* Will only re-enter once. */
615 		close_connection(con->othercon, false, true, true);
616 	}
617 	if (con->rx_page) {
618 		__free_page(con->rx_page);
619 		con->rx_page = NULL;
620 	}
621 
622 	con->retries = 0;
623 	mutex_unlock(&con->sock_mutex);
624 	clear_bit(CF_CLOSING, &con->flags);
625 }
626 
627 static void shutdown_connection(struct connection *con)
628 {
629 	int ret;
630 
631 	if (cancel_work_sync(&con->swork)) {
632 		log_print("canceled swork for node %d", con->nodeid);
633 		clear_bit(CF_WRITE_PENDING, &con->flags);
634 	}
635 
636 	mutex_lock(&con->sock_mutex);
637 	/* nothing to shutdown */
638 	if (!con->sock) {
639 		mutex_unlock(&con->sock_mutex);
640 		return;
641 	}
642 
643 	set_bit(CF_SHUTDOWN, &con->flags);
644 	ret = kernel_sock_shutdown(con->sock, SHUT_WR);
645 	mutex_unlock(&con->sock_mutex);
646 	if (ret) {
647 		log_print("Connection %p failed to shutdown: %d will force close",
648 			  con, ret);
649 		goto force_close;
650 	} else {
651 		ret = wait_event_timeout(con->shutdown_wait,
652 					 !test_bit(CF_SHUTDOWN, &con->flags),
653 					 DLM_SHUTDOWN_WAIT_TIMEOUT);
654 		if (ret == 0) {
655 			log_print("Connection %p shutdown timed out, will force close",
656 				  con);
657 			goto force_close;
658 		}
659 	}
660 
661 	return;
662 
663 force_close:
664 	clear_bit(CF_SHUTDOWN, &con->flags);
665 	close_connection(con, false, true, true);
666 }
667 
668 static void dlm_tcp_shutdown(struct connection *con)
669 {
670 	if (con->othercon)
671 		shutdown_connection(con->othercon);
672 	shutdown_connection(con);
673 }
674 
675 /* Data received from remote end */
676 static int receive_from_sock(struct connection *con)
677 {
678 	int ret = 0;
679 	struct msghdr msg = {};
680 	struct kvec iov[2];
681 	unsigned len;
682 	int r;
683 	int call_again_soon = 0;
684 	int nvec;
685 
686 	mutex_lock(&con->sock_mutex);
687 
688 	if (con->sock == NULL) {
689 		ret = -EAGAIN;
690 		goto out_close;
691 	}
692 	if (con->nodeid == 0) {
693 		ret = -EINVAL;
694 		goto out_close;
695 	}
696 
697 	if (con->rx_page == NULL) {
698 		/*
699 		 * This doesn't need to be atomic, but I think it should
700 		 * improve performance if it is.
701 		 */
702 		con->rx_page = alloc_page(GFP_ATOMIC);
703 		if (con->rx_page == NULL)
704 			goto out_resched;
705 		cbuf_init(&con->cb, PAGE_SIZE);
706 	}
707 
708 	/*
709 	 * iov[0] is the bit of the circular buffer between the current end
710 	 * point (cb.base + cb.len) and the end of the buffer.
711 	 */
712 	iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
713 	iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
714 	iov[1].iov_len = 0;
715 	nvec = 1;
716 
717 	/*
718 	 * iov[1] is the bit of the circular buffer between the start of the
719 	 * buffer and the start of the currently used section (cb.base)
720 	 */
721 	if (cbuf_data(&con->cb) >= con->cb.base) {
722 		iov[0].iov_len = PAGE_SIZE - cbuf_data(&con->cb);
723 		iov[1].iov_len = con->cb.base;
724 		iov[1].iov_base = page_address(con->rx_page);
725 		nvec = 2;
726 	}
727 	len = iov[0].iov_len + iov[1].iov_len;
728 	iov_iter_kvec(&msg.msg_iter, READ, iov, nvec, len);
729 
730 	r = ret = sock_recvmsg(con->sock, &msg, MSG_DONTWAIT | MSG_NOSIGNAL);
731 	if (ret <= 0)
732 		goto out_close;
733 	else if (ret == len)
734 		call_again_soon = 1;
735 
736 	cbuf_add(&con->cb, ret);
737 	ret = dlm_process_incoming_buffer(con->nodeid,
738 					  page_address(con->rx_page),
739 					  con->cb.base, con->cb.len,
740 					  PAGE_SIZE);
741 	if (ret < 0) {
742 		log_print("lowcomms err %d: addr=%p, base=%u, len=%u, read=%d",
743 			  ret, page_address(con->rx_page), con->cb.base,
744 			  con->cb.len, r);
745 		cbuf_eat(&con->cb, r);
746 	} else {
747 		cbuf_eat(&con->cb, ret);
748 	}
749 
750 	if (cbuf_empty(&con->cb) && !call_again_soon) {
751 		__free_page(con->rx_page);
752 		con->rx_page = NULL;
753 	}
754 
755 	if (call_again_soon)
756 		goto out_resched;
757 	mutex_unlock(&con->sock_mutex);
758 	return 0;
759 
760 out_resched:
761 	if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
762 		queue_work(recv_workqueue, &con->rwork);
763 	mutex_unlock(&con->sock_mutex);
764 	return -EAGAIN;
765 
766 out_close:
767 	mutex_unlock(&con->sock_mutex);
768 	if (ret != -EAGAIN) {
769 		/* Reconnect when there is something to send */
770 		close_connection(con, false, true, false);
771 		if (ret == 0) {
772 			log_print("connection %p got EOF from %d",
773 				  con, con->nodeid);
774 			/* handling for tcp shutdown */
775 			clear_bit(CF_SHUTDOWN, &con->flags);
776 			wake_up(&con->shutdown_wait);
777 			/* signal to breaking receive worker */
778 			ret = -1;
779 		}
780 	}
781 	return ret;
782 }
783 
784 /* Listening socket is busy, accept a connection */
785 static int accept_from_sock(struct connection *con)
786 {
787 	int result;
788 	struct sockaddr_storage peeraddr;
789 	struct socket *newsock;
790 	int len;
791 	int nodeid;
792 	struct connection *newcon;
793 	struct connection *addcon;
794 
795 	mutex_lock(&connections_lock);
796 	if (!dlm_allow_conn) {
797 		mutex_unlock(&connections_lock);
798 		return -1;
799 	}
800 	mutex_unlock(&connections_lock);
801 
802 	mutex_lock_nested(&con->sock_mutex, 0);
803 
804 	if (!con->sock) {
805 		mutex_unlock(&con->sock_mutex);
806 		return -ENOTCONN;
807 	}
808 
809 	result = kernel_accept(con->sock, &newsock, O_NONBLOCK);
810 	if (result < 0)
811 		goto accept_err;
812 
813 	/* Get the connected socket's peer */
814 	memset(&peeraddr, 0, sizeof(peeraddr));
815 	len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
816 	if (len < 0) {
817 		result = -ECONNABORTED;
818 		goto accept_err;
819 	}
820 
821 	/* Get the new node's NODEID */
822 	make_sockaddr(&peeraddr, 0, &len);
823 	if (addr_to_nodeid(&peeraddr, &nodeid)) {
824 		unsigned char *b=(unsigned char *)&peeraddr;
825 		log_print("connect from non cluster node");
826 		print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
827 				     b, sizeof(struct sockaddr_storage));
828 		sock_release(newsock);
829 		mutex_unlock(&con->sock_mutex);
830 		return -1;
831 	}
832 
833 	log_print("got connection from %d", nodeid);
834 
835 	/*  Check to see if we already have a connection to this node. This
836 	 *  could happen if the two nodes initiate a connection at roughly
837 	 *  the same time and the connections cross on the wire.
838 	 *  In this case we store the incoming one in "othercon"
839 	 */
840 	newcon = nodeid2con(nodeid, GFP_NOFS);
841 	if (!newcon) {
842 		result = -ENOMEM;
843 		goto accept_err;
844 	}
845 	mutex_lock_nested(&newcon->sock_mutex, 1);
846 	if (newcon->sock) {
847 		struct connection *othercon = newcon->othercon;
848 
849 		if (!othercon) {
850 			othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
851 			if (!othercon) {
852 				log_print("failed to allocate incoming socket");
853 				mutex_unlock(&newcon->sock_mutex);
854 				result = -ENOMEM;
855 				goto accept_err;
856 			}
857 			othercon->nodeid = nodeid;
858 			othercon->rx_action = receive_from_sock;
859 			mutex_init(&othercon->sock_mutex);
860 			INIT_LIST_HEAD(&othercon->writequeue);
861 			spin_lock_init(&othercon->writequeue_lock);
862 			INIT_WORK(&othercon->swork, process_send_sockets);
863 			INIT_WORK(&othercon->rwork, process_recv_sockets);
864 			init_waitqueue_head(&othercon->shutdown_wait);
865 			set_bit(CF_IS_OTHERCON, &othercon->flags);
866 		} else {
867 			/* close other sock con if we have something new */
868 			close_connection(othercon, false, true, false);
869 		}
870 
871 		mutex_lock_nested(&othercon->sock_mutex, 2);
872 		newcon->othercon = othercon;
873 		add_sock(newsock, othercon);
874 		addcon = othercon;
875 		mutex_unlock(&othercon->sock_mutex);
876 	}
877 	else {
878 		newcon->rx_action = receive_from_sock;
879 		/* accept copies the sk after we've saved the callbacks, so we
880 		   don't want to save them a second time or comm errors will
881 		   result in calling sk_error_report recursively. */
882 		add_sock(newsock, newcon);
883 		addcon = newcon;
884 	}
885 
886 	mutex_unlock(&newcon->sock_mutex);
887 
888 	/*
889 	 * Add it to the active queue in case we got data
890 	 * between processing the accept adding the socket
891 	 * to the read_sockets list
892 	 */
893 	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
894 		queue_work(recv_workqueue, &addcon->rwork);
895 	mutex_unlock(&con->sock_mutex);
896 
897 	return 0;
898 
899 accept_err:
900 	mutex_unlock(&con->sock_mutex);
901 	if (newsock)
902 		sock_release(newsock);
903 
904 	if (result != -EAGAIN)
905 		log_print("error accepting connection from node: %d", result);
906 	return result;
907 }
908 
909 static void free_entry(struct writequeue_entry *e)
910 {
911 	__free_page(e->page);
912 	kfree(e);
913 }
914 
915 /*
916  * writequeue_entry_complete - try to delete and free write queue entry
917  * @e: write queue entry to try to delete
918  * @completed: bytes completed
919  *
920  * writequeue_lock must be held.
921  */
922 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
923 {
924 	e->offset += completed;
925 	e->len -= completed;
926 
927 	if (e->len == 0 && e->users == 0) {
928 		list_del(&e->list);
929 		free_entry(e);
930 	}
931 }
932 
933 /*
934  * sctp_bind_addrs - bind a SCTP socket to all our addresses
935  */
936 static int sctp_bind_addrs(struct connection *con, uint16_t port)
937 {
938 	struct sockaddr_storage localaddr;
939 	struct sockaddr *addr = (struct sockaddr *)&localaddr;
940 	int i, addr_len, result = 0;
941 
942 	for (i = 0; i < dlm_local_count; i++) {
943 		memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
944 		make_sockaddr(&localaddr, port, &addr_len);
945 
946 		if (!i)
947 			result = kernel_bind(con->sock, addr, addr_len);
948 		else
949 			result = sock_bind_add(con->sock->sk, addr, addr_len);
950 
951 		if (result < 0) {
952 			log_print("Can't bind to %d addr number %d, %d.\n",
953 				  port, i + 1, result);
954 			break;
955 		}
956 	}
957 	return result;
958 }
959 
960 /* Initiate an SCTP association.
961    This is a special case of send_to_sock() in that we don't yet have a
962    peeled-off socket for this association, so we use the listening socket
963    and add the primary IP address of the remote node.
964  */
965 static void sctp_connect_to_sock(struct connection *con)
966 {
967 	struct sockaddr_storage daddr;
968 	int result;
969 	int addr_len;
970 	struct socket *sock;
971 	unsigned int mark;
972 
973 	if (con->nodeid == 0) {
974 		log_print("attempt to connect sock 0 foiled");
975 		return;
976 	}
977 
978 	mutex_lock(&con->sock_mutex);
979 
980 	/* Some odd races can cause double-connects, ignore them */
981 	if (con->retries++ > MAX_CONNECT_RETRIES)
982 		goto out;
983 
984 	if (con->sock) {
985 		log_print("node %d already connected.", con->nodeid);
986 		goto out;
987 	}
988 
989 	memset(&daddr, 0, sizeof(daddr));
990 	result = nodeid_to_addr(con->nodeid, &daddr, NULL, true);
991 	if (result < 0) {
992 		log_print("no address for nodeid %d", con->nodeid);
993 		goto out;
994 	}
995 
996 	/* Create a socket to communicate with */
997 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
998 				  SOCK_STREAM, IPPROTO_SCTP, &sock);
999 	if (result < 0)
1000 		goto socket_err;
1001 
1002 	/* set skb mark */
1003 	result = dlm_comm_mark(con->nodeid, &mark);
1004 	if (result < 0)
1005 		goto bind_err;
1006 
1007 	sock_set_mark(sock->sk, mark);
1008 
1009 	con->rx_action = receive_from_sock;
1010 	con->connect_action = sctp_connect_to_sock;
1011 	add_sock(sock, con);
1012 
1013 	/* Bind to all addresses. */
1014 	if (sctp_bind_addrs(con, 0))
1015 		goto bind_err;
1016 
1017 	make_sockaddr(&daddr, dlm_config.ci_tcp_port, &addr_len);
1018 
1019 	log_print("connecting to %d", con->nodeid);
1020 
1021 	/* Turn off Nagle's algorithm */
1022 	sctp_sock_set_nodelay(sock->sk);
1023 
1024 	/*
1025 	 * Make sock->ops->connect() function return in specified time,
1026 	 * since O_NONBLOCK argument in connect() function does not work here,
1027 	 * then, we should restore the default value of this attribute.
1028 	 */
1029 	sock_set_sndtimeo(sock->sk, 5);
1030 	result = sock->ops->connect(sock, (struct sockaddr *)&daddr, addr_len,
1031 				   0);
1032 	sock_set_sndtimeo(sock->sk, 0);
1033 
1034 	if (result == -EINPROGRESS)
1035 		result = 0;
1036 	if (result == 0)
1037 		goto out;
1038 
1039 bind_err:
1040 	con->sock = NULL;
1041 	sock_release(sock);
1042 
1043 socket_err:
1044 	/*
1045 	 * Some errors are fatal and this list might need adjusting. For other
1046 	 * errors we try again until the max number of retries is reached.
1047 	 */
1048 	if (result != -EHOSTUNREACH &&
1049 	    result != -ENETUNREACH &&
1050 	    result != -ENETDOWN &&
1051 	    result != -EINVAL &&
1052 	    result != -EPROTONOSUPPORT) {
1053 		log_print("connect %d try %d error %d", con->nodeid,
1054 			  con->retries, result);
1055 		mutex_unlock(&con->sock_mutex);
1056 		msleep(1000);
1057 		lowcomms_connect_sock(con);
1058 		return;
1059 	}
1060 
1061 out:
1062 	mutex_unlock(&con->sock_mutex);
1063 }
1064 
1065 /* Connect a new socket to its peer */
1066 static void tcp_connect_to_sock(struct connection *con)
1067 {
1068 	struct sockaddr_storage saddr, src_addr;
1069 	int addr_len;
1070 	struct socket *sock = NULL;
1071 	unsigned int mark;
1072 	int result;
1073 
1074 	if (con->nodeid == 0) {
1075 		log_print("attempt to connect sock 0 foiled");
1076 		return;
1077 	}
1078 
1079 	mutex_lock(&con->sock_mutex);
1080 	if (con->retries++ > MAX_CONNECT_RETRIES)
1081 		goto out;
1082 
1083 	/* Some odd races can cause double-connects, ignore them */
1084 	if (con->sock)
1085 		goto out;
1086 
1087 	/* Create a socket to communicate with */
1088 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1089 				  SOCK_STREAM, IPPROTO_TCP, &sock);
1090 	if (result < 0)
1091 		goto out_err;
1092 
1093 	/* set skb mark */
1094 	result = dlm_comm_mark(con->nodeid, &mark);
1095 	if (result < 0)
1096 		goto out_err;
1097 
1098 	sock_set_mark(sock->sk, mark);
1099 
1100 	memset(&saddr, 0, sizeof(saddr));
1101 	result = nodeid_to_addr(con->nodeid, &saddr, NULL, false);
1102 	if (result < 0) {
1103 		log_print("no address for nodeid %d", con->nodeid);
1104 		goto out_err;
1105 	}
1106 
1107 	con->rx_action = receive_from_sock;
1108 	con->connect_action = tcp_connect_to_sock;
1109 	con->shutdown_action = dlm_tcp_shutdown;
1110 	add_sock(sock, con);
1111 
1112 	/* Bind to our cluster-known address connecting to avoid
1113 	   routing problems */
1114 	memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
1115 	make_sockaddr(&src_addr, 0, &addr_len);
1116 	result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
1117 				 addr_len);
1118 	if (result < 0) {
1119 		log_print("could not bind for connect: %d", result);
1120 		/* This *may* not indicate a critical error */
1121 	}
1122 
1123 	make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
1124 
1125 	log_print("connecting to %d", con->nodeid);
1126 
1127 	/* Turn off Nagle's algorithm */
1128 	tcp_sock_set_nodelay(sock->sk);
1129 
1130 	result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
1131 				   O_NONBLOCK);
1132 	if (result == -EINPROGRESS)
1133 		result = 0;
1134 	if (result == 0)
1135 		goto out;
1136 
1137 out_err:
1138 	if (con->sock) {
1139 		sock_release(con->sock);
1140 		con->sock = NULL;
1141 	} else if (sock) {
1142 		sock_release(sock);
1143 	}
1144 	/*
1145 	 * Some errors are fatal and this list might need adjusting. For other
1146 	 * errors we try again until the max number of retries is reached.
1147 	 */
1148 	if (result != -EHOSTUNREACH &&
1149 	    result != -ENETUNREACH &&
1150 	    result != -ENETDOWN &&
1151 	    result != -EINVAL &&
1152 	    result != -EPROTONOSUPPORT) {
1153 		log_print("connect %d try %d error %d", con->nodeid,
1154 			  con->retries, result);
1155 		mutex_unlock(&con->sock_mutex);
1156 		msleep(1000);
1157 		lowcomms_connect_sock(con);
1158 		return;
1159 	}
1160 out:
1161 	mutex_unlock(&con->sock_mutex);
1162 	return;
1163 }
1164 
1165 static struct socket *tcp_create_listen_sock(struct connection *con,
1166 					     struct sockaddr_storage *saddr)
1167 {
1168 	struct socket *sock = NULL;
1169 	int result = 0;
1170 	int addr_len;
1171 
1172 	if (dlm_local_addr[0]->ss_family == AF_INET)
1173 		addr_len = sizeof(struct sockaddr_in);
1174 	else
1175 		addr_len = sizeof(struct sockaddr_in6);
1176 
1177 	/* Create a socket to communicate with */
1178 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1179 				  SOCK_STREAM, IPPROTO_TCP, &sock);
1180 	if (result < 0) {
1181 		log_print("Can't create listening comms socket");
1182 		goto create_out;
1183 	}
1184 
1185 	sock_set_mark(sock->sk, dlm_config.ci_mark);
1186 
1187 	/* Turn off Nagle's algorithm */
1188 	tcp_sock_set_nodelay(sock->sk);
1189 
1190 	sock_set_reuseaddr(sock->sk);
1191 
1192 	write_lock_bh(&sock->sk->sk_callback_lock);
1193 	sock->sk->sk_user_data = con;
1194 	save_listen_callbacks(sock);
1195 	con->rx_action = accept_from_sock;
1196 	con->connect_action = tcp_connect_to_sock;
1197 	write_unlock_bh(&sock->sk->sk_callback_lock);
1198 
1199 	/* Bind to our port */
1200 	make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1201 	result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1202 	if (result < 0) {
1203 		log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1204 		sock_release(sock);
1205 		sock = NULL;
1206 		con->sock = NULL;
1207 		goto create_out;
1208 	}
1209 	sock_set_keepalive(sock->sk);
1210 
1211 	result = sock->ops->listen(sock, 5);
1212 	if (result < 0) {
1213 		log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1214 		sock_release(sock);
1215 		sock = NULL;
1216 		goto create_out;
1217 	}
1218 
1219 create_out:
1220 	return sock;
1221 }
1222 
1223 /* Get local addresses */
1224 static void init_local(void)
1225 {
1226 	struct sockaddr_storage sas, *addr;
1227 	int i;
1228 
1229 	dlm_local_count = 0;
1230 	for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1231 		if (dlm_our_addr(&sas, i))
1232 			break;
1233 
1234 		addr = kmemdup(&sas, sizeof(*addr), GFP_NOFS);
1235 		if (!addr)
1236 			break;
1237 		dlm_local_addr[dlm_local_count++] = addr;
1238 	}
1239 }
1240 
1241 /* Initialise SCTP socket and bind to all interfaces */
1242 static int sctp_listen_for_all(void)
1243 {
1244 	struct socket *sock = NULL;
1245 	int result = -EINVAL;
1246 	struct connection *con = nodeid2con(0, GFP_NOFS);
1247 
1248 	if (!con)
1249 		return -ENOMEM;
1250 
1251 	log_print("Using SCTP for communications");
1252 
1253 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1254 				  SOCK_STREAM, IPPROTO_SCTP, &sock);
1255 	if (result < 0) {
1256 		log_print("Can't create comms socket, check SCTP is loaded");
1257 		goto out;
1258 	}
1259 
1260 	sock_set_rcvbuf(sock->sk, NEEDED_RMEM);
1261 	sock_set_mark(sock->sk, dlm_config.ci_mark);
1262 	sctp_sock_set_nodelay(sock->sk);
1263 
1264 	write_lock_bh(&sock->sk->sk_callback_lock);
1265 	/* Init con struct */
1266 	sock->sk->sk_user_data = con;
1267 	save_listen_callbacks(sock);
1268 	con->sock = sock;
1269 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
1270 	con->rx_action = accept_from_sock;
1271 	con->connect_action = sctp_connect_to_sock;
1272 
1273 	write_unlock_bh(&sock->sk->sk_callback_lock);
1274 
1275 	/* Bind to all addresses. */
1276 	if (sctp_bind_addrs(con, dlm_config.ci_tcp_port))
1277 		goto create_delsock;
1278 
1279 	result = sock->ops->listen(sock, 5);
1280 	if (result < 0) {
1281 		log_print("Can't set socket listening");
1282 		goto create_delsock;
1283 	}
1284 
1285 	return 0;
1286 
1287 create_delsock:
1288 	sock_release(sock);
1289 	con->sock = NULL;
1290 out:
1291 	return result;
1292 }
1293 
1294 static int tcp_listen_for_all(void)
1295 {
1296 	struct socket *sock = NULL;
1297 	struct connection *con = nodeid2con(0, GFP_NOFS);
1298 	int result = -EINVAL;
1299 
1300 	if (!con)
1301 		return -ENOMEM;
1302 
1303 	/* We don't support multi-homed hosts */
1304 	if (dlm_local_addr[1] != NULL) {
1305 		log_print("TCP protocol can't handle multi-homed hosts, "
1306 			  "try SCTP");
1307 		return -EINVAL;
1308 	}
1309 
1310 	log_print("Using TCP for communications");
1311 
1312 	sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1313 	if (sock) {
1314 		add_sock(sock, con);
1315 		result = 0;
1316 	}
1317 	else {
1318 		result = -EADDRINUSE;
1319 	}
1320 
1321 	return result;
1322 }
1323 
1324 
1325 
1326 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1327 						     gfp_t allocation)
1328 {
1329 	struct writequeue_entry *entry;
1330 
1331 	entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1332 	if (!entry)
1333 		return NULL;
1334 
1335 	entry->page = alloc_page(allocation);
1336 	if (!entry->page) {
1337 		kfree(entry);
1338 		return NULL;
1339 	}
1340 
1341 	entry->offset = 0;
1342 	entry->len = 0;
1343 	entry->end = 0;
1344 	entry->users = 0;
1345 	entry->con = con;
1346 
1347 	return entry;
1348 }
1349 
1350 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1351 {
1352 	struct connection *con;
1353 	struct writequeue_entry *e;
1354 	int offset = 0;
1355 
1356 	con = nodeid2con(nodeid, allocation);
1357 	if (!con)
1358 		return NULL;
1359 
1360 	spin_lock(&con->writequeue_lock);
1361 	e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1362 	if ((&e->list == &con->writequeue) ||
1363 	    (PAGE_SIZE - e->end < len)) {
1364 		e = NULL;
1365 	} else {
1366 		offset = e->end;
1367 		e->end += len;
1368 		e->users++;
1369 	}
1370 	spin_unlock(&con->writequeue_lock);
1371 
1372 	if (e) {
1373 	got_one:
1374 		*ppc = page_address(e->page) + offset;
1375 		return e;
1376 	}
1377 
1378 	e = new_writequeue_entry(con, allocation);
1379 	if (e) {
1380 		spin_lock(&con->writequeue_lock);
1381 		offset = e->end;
1382 		e->end += len;
1383 		e->users++;
1384 		list_add_tail(&e->list, &con->writequeue);
1385 		spin_unlock(&con->writequeue_lock);
1386 		goto got_one;
1387 	}
1388 	return NULL;
1389 }
1390 
1391 void dlm_lowcomms_commit_buffer(void *mh)
1392 {
1393 	struct writequeue_entry *e = (struct writequeue_entry *)mh;
1394 	struct connection *con = e->con;
1395 	int users;
1396 
1397 	spin_lock(&con->writequeue_lock);
1398 	users = --e->users;
1399 	if (users)
1400 		goto out;
1401 	e->len = e->end - e->offset;
1402 	spin_unlock(&con->writequeue_lock);
1403 
1404 	queue_work(send_workqueue, &con->swork);
1405 	return;
1406 
1407 out:
1408 	spin_unlock(&con->writequeue_lock);
1409 	return;
1410 }
1411 
1412 /* Send a message */
1413 static void send_to_sock(struct connection *con)
1414 {
1415 	int ret = 0;
1416 	const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1417 	struct writequeue_entry *e;
1418 	int len, offset;
1419 	int count = 0;
1420 
1421 	mutex_lock(&con->sock_mutex);
1422 	if (con->sock == NULL)
1423 		goto out_connect;
1424 
1425 	spin_lock(&con->writequeue_lock);
1426 	for (;;) {
1427 		e = list_entry(con->writequeue.next, struct writequeue_entry,
1428 			       list);
1429 		if ((struct list_head *) e == &con->writequeue)
1430 			break;
1431 
1432 		len = e->len;
1433 		offset = e->offset;
1434 		BUG_ON(len == 0 && e->users == 0);
1435 		spin_unlock(&con->writequeue_lock);
1436 
1437 		ret = 0;
1438 		if (len) {
1439 			ret = kernel_sendpage(con->sock, e->page, offset, len,
1440 					      msg_flags);
1441 			if (ret == -EAGAIN || ret == 0) {
1442 				if (ret == -EAGAIN &&
1443 				    test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1444 				    !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1445 					/* Notify TCP that we're limited by the
1446 					 * application window size.
1447 					 */
1448 					set_bit(SOCK_NOSPACE, &con->sock->flags);
1449 					con->sock->sk->sk_write_pending++;
1450 				}
1451 				cond_resched();
1452 				goto out;
1453 			} else if (ret < 0)
1454 				goto send_error;
1455 		}
1456 
1457 		/* Don't starve people filling buffers */
1458 		if (++count >= MAX_SEND_MSG_COUNT) {
1459 			cond_resched();
1460 			count = 0;
1461 		}
1462 
1463 		spin_lock(&con->writequeue_lock);
1464 		writequeue_entry_complete(e, ret);
1465 	}
1466 	spin_unlock(&con->writequeue_lock);
1467 out:
1468 	mutex_unlock(&con->sock_mutex);
1469 	return;
1470 
1471 send_error:
1472 	mutex_unlock(&con->sock_mutex);
1473 	close_connection(con, false, false, true);
1474 	/* Requeue the send work. When the work daemon runs again, it will try
1475 	   a new connection, then call this function again. */
1476 	queue_work(send_workqueue, &con->swork);
1477 	return;
1478 
1479 out_connect:
1480 	mutex_unlock(&con->sock_mutex);
1481 	queue_work(send_workqueue, &con->swork);
1482 	cond_resched();
1483 }
1484 
1485 static void clean_one_writequeue(struct connection *con)
1486 {
1487 	struct writequeue_entry *e, *safe;
1488 
1489 	spin_lock(&con->writequeue_lock);
1490 	list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1491 		list_del(&e->list);
1492 		free_entry(e);
1493 	}
1494 	spin_unlock(&con->writequeue_lock);
1495 }
1496 
1497 /* Called from recovery when it knows that a node has
1498    left the cluster */
1499 int dlm_lowcomms_close(int nodeid)
1500 {
1501 	struct connection *con;
1502 	struct dlm_node_addr *na;
1503 
1504 	log_print("closing connection to node %d", nodeid);
1505 	con = nodeid2con(nodeid, 0);
1506 	if (con) {
1507 		set_bit(CF_CLOSE, &con->flags);
1508 		close_connection(con, true, true, true);
1509 		clean_one_writequeue(con);
1510 	}
1511 
1512 	spin_lock(&dlm_node_addrs_spin);
1513 	na = find_node_addr(nodeid);
1514 	if (na) {
1515 		list_del(&na->list);
1516 		while (na->addr_count--)
1517 			kfree(na->addr[na->addr_count]);
1518 		kfree(na);
1519 	}
1520 	spin_unlock(&dlm_node_addrs_spin);
1521 
1522 	return 0;
1523 }
1524 
1525 /* Receive workqueue function */
1526 static void process_recv_sockets(struct work_struct *work)
1527 {
1528 	struct connection *con = container_of(work, struct connection, rwork);
1529 	int err;
1530 
1531 	clear_bit(CF_READ_PENDING, &con->flags);
1532 	do {
1533 		err = con->rx_action(con);
1534 	} while (!err);
1535 }
1536 
1537 /* Send workqueue function */
1538 static void process_send_sockets(struct work_struct *work)
1539 {
1540 	struct connection *con = container_of(work, struct connection, swork);
1541 
1542 	clear_bit(CF_WRITE_PENDING, &con->flags);
1543 	if (con->sock == NULL) /* not mutex protected so check it inside too */
1544 		con->connect_action(con);
1545 	if (!list_empty(&con->writequeue))
1546 		send_to_sock(con);
1547 }
1548 
1549 
1550 /* Discard all entries on the write queues */
1551 static void clean_writequeues(void)
1552 {
1553 	foreach_conn(clean_one_writequeue);
1554 }
1555 
1556 static void work_stop(void)
1557 {
1558 	if (recv_workqueue)
1559 		destroy_workqueue(recv_workqueue);
1560 	if (send_workqueue)
1561 		destroy_workqueue(send_workqueue);
1562 }
1563 
1564 static int work_start(void)
1565 {
1566 	recv_workqueue = alloc_workqueue("dlm_recv",
1567 					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1568 	if (!recv_workqueue) {
1569 		log_print("can't start dlm_recv");
1570 		return -ENOMEM;
1571 	}
1572 
1573 	send_workqueue = alloc_workqueue("dlm_send",
1574 					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1575 	if (!send_workqueue) {
1576 		log_print("can't start dlm_send");
1577 		destroy_workqueue(recv_workqueue);
1578 		return -ENOMEM;
1579 	}
1580 
1581 	return 0;
1582 }
1583 
1584 static void _stop_conn(struct connection *con, bool and_other)
1585 {
1586 	mutex_lock(&con->sock_mutex);
1587 	set_bit(CF_CLOSE, &con->flags);
1588 	set_bit(CF_READ_PENDING, &con->flags);
1589 	set_bit(CF_WRITE_PENDING, &con->flags);
1590 	if (con->sock && con->sock->sk) {
1591 		write_lock_bh(&con->sock->sk->sk_callback_lock);
1592 		con->sock->sk->sk_user_data = NULL;
1593 		write_unlock_bh(&con->sock->sk->sk_callback_lock);
1594 	}
1595 	if (con->othercon && and_other)
1596 		_stop_conn(con->othercon, false);
1597 	mutex_unlock(&con->sock_mutex);
1598 }
1599 
1600 static void stop_conn(struct connection *con)
1601 {
1602 	_stop_conn(con, true);
1603 }
1604 
1605 static void shutdown_conn(struct connection *con)
1606 {
1607 	if (con->shutdown_action)
1608 		con->shutdown_action(con);
1609 }
1610 
1611 static void free_conn(struct connection *con)
1612 {
1613 	close_connection(con, true, true, true);
1614 	if (con->othercon)
1615 		kmem_cache_free(con_cache, con->othercon);
1616 	hlist_del(&con->list);
1617 	kmem_cache_free(con_cache, con);
1618 }
1619 
1620 static void work_flush(void)
1621 {
1622 	int ok;
1623 	int i;
1624 	struct hlist_node *n;
1625 	struct connection *con;
1626 
1627 	if (recv_workqueue)
1628 		flush_workqueue(recv_workqueue);
1629 	if (send_workqueue)
1630 		flush_workqueue(send_workqueue);
1631 	do {
1632 		ok = 1;
1633 		foreach_conn(stop_conn);
1634 		if (recv_workqueue)
1635 			flush_workqueue(recv_workqueue);
1636 		if (send_workqueue)
1637 			flush_workqueue(send_workqueue);
1638 		for (i = 0; i < CONN_HASH_SIZE && ok; i++) {
1639 			hlist_for_each_entry_safe(con, n,
1640 						  &connection_hash[i], list) {
1641 				ok &= test_bit(CF_READ_PENDING, &con->flags);
1642 				ok &= test_bit(CF_WRITE_PENDING, &con->flags);
1643 				if (con->othercon) {
1644 					ok &= test_bit(CF_READ_PENDING,
1645 						       &con->othercon->flags);
1646 					ok &= test_bit(CF_WRITE_PENDING,
1647 						       &con->othercon->flags);
1648 				}
1649 			}
1650 		}
1651 	} while (!ok);
1652 }
1653 
1654 void dlm_lowcomms_stop(void)
1655 {
1656 	/* Set all the flags to prevent any
1657 	   socket activity.
1658 	*/
1659 	mutex_lock(&connections_lock);
1660 	dlm_allow_conn = 0;
1661 	mutex_unlock(&connections_lock);
1662 	foreach_conn(shutdown_conn);
1663 	work_flush();
1664 	clean_writequeues();
1665 	foreach_conn(free_conn);
1666 	work_stop();
1667 
1668 	kmem_cache_destroy(con_cache);
1669 }
1670 
1671 int dlm_lowcomms_start(void)
1672 {
1673 	int error = -EINVAL;
1674 	struct connection *con;
1675 	int i;
1676 
1677 	for (i = 0; i < CONN_HASH_SIZE; i++)
1678 		INIT_HLIST_HEAD(&connection_hash[i]);
1679 
1680 	init_local();
1681 	if (!dlm_local_count) {
1682 		error = -ENOTCONN;
1683 		log_print("no local IP address has been set");
1684 		goto fail;
1685 	}
1686 
1687 	error = -ENOMEM;
1688 	con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1689 				      __alignof__(struct connection), 0,
1690 				      NULL);
1691 	if (!con_cache)
1692 		goto fail;
1693 
1694 	error = work_start();
1695 	if (error)
1696 		goto fail_destroy;
1697 
1698 	dlm_allow_conn = 1;
1699 
1700 	/* Start listening */
1701 	if (dlm_config.ci_protocol == 0)
1702 		error = tcp_listen_for_all();
1703 	else
1704 		error = sctp_listen_for_all();
1705 	if (error)
1706 		goto fail_unlisten;
1707 
1708 	return 0;
1709 
1710 fail_unlisten:
1711 	dlm_allow_conn = 0;
1712 	con = nodeid2con(0,0);
1713 	if (con) {
1714 		close_connection(con, false, true, true);
1715 		kmem_cache_free(con_cache, con);
1716 	}
1717 fail_destroy:
1718 	kmem_cache_destroy(con_cache);
1719 fail:
1720 	return error;
1721 }
1722 
1723 void dlm_lowcomms_exit(void)
1724 {
1725 	struct dlm_node_addr *na, *safe;
1726 
1727 	spin_lock(&dlm_node_addrs_spin);
1728 	list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) {
1729 		list_del(&na->list);
1730 		while (na->addr_count--)
1731 			kfree(na->addr[na->addr_count]);
1732 		kfree(na);
1733 	}
1734 	spin_unlock(&dlm_node_addrs_spin);
1735 }
1736