xref: /openbmc/linux/fs/dlm/lowcomms.c (revision 1521848c)
1 /******************************************************************************
2 *******************************************************************************
3 **
4 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
5 **  Copyright (C) 2004-2007 Red Hat, Inc.  All rights reserved.
6 **
7 **  This copyrighted material is made available to anyone wishing to use,
8 **  modify, copy, or redistribute it subject to the terms and conditions
9 **  of the GNU General Public License v.2.
10 **
11 *******************************************************************************
12 ******************************************************************************/
13 
14 /*
15  * lowcomms.c
16  *
17  * This is the "low-level" comms layer.
18  *
19  * It is responsible for sending/receiving messages
20  * from other nodes in the cluster.
21  *
22  * Cluster nodes are referred to by their nodeids. nodeids are
23  * simply 32 bit numbers to the locking module - if they need to
24  * be expanded for the cluster infrastructure then that is it's
25  * responsibility. It is this layer's
26  * responsibility to resolve these into IP address or
27  * whatever it needs for inter-node communication.
28  *
29  * The comms level is two kernel threads that deal mainly with
30  * the receiving of messages from other nodes and passing them
31  * up to the mid-level comms layer (which understands the
32  * message format) for execution by the locking core, and
33  * a send thread which does all the setting up of connections
34  * to remote nodes and the sending of data. Threads are not allowed
35  * to send their own data because it may cause them to wait in times
36  * of high load. Also, this way, the sending thread can collect together
37  * messages bound for one node and send them in one block.
38  *
39  * lowcomms will choose to use wither TCP or SCTP as its transport layer
40  * depending on the configuration variable 'protocol'. This should be set
41  * to 0 (default) for TCP or 1 for SCTP. It shouldbe configured using a
42  * cluster-wide mechanism as it must be the same on all nodes of the cluster
43  * for the DLM to function.
44  *
45  */
46 
47 #include <asm/ioctls.h>
48 #include <net/sock.h>
49 #include <net/tcp.h>
50 #include <linux/pagemap.h>
51 #include <linux/idr.h>
52 #include <linux/file.h>
53 #include <linux/mutex.h>
54 #include <linux/sctp.h>
55 #include <net/sctp/user.h>
56 
57 #include "dlm_internal.h"
58 #include "lowcomms.h"
59 #include "midcomms.h"
60 #include "config.h"
61 
62 #define NEEDED_RMEM (4*1024*1024)
63 
64 struct cbuf {
65 	unsigned int base;
66 	unsigned int len;
67 	unsigned int mask;
68 };
69 
70 static void cbuf_add(struct cbuf *cb, int n)
71 {
72 	cb->len += n;
73 }
74 
75 static int cbuf_data(struct cbuf *cb)
76 {
77 	return ((cb->base + cb->len) & cb->mask);
78 }
79 
80 static void cbuf_init(struct cbuf *cb, int size)
81 {
82 	cb->base = cb->len = 0;
83 	cb->mask = size-1;
84 }
85 
86 static void cbuf_eat(struct cbuf *cb, int n)
87 {
88 	cb->len  -= n;
89 	cb->base += n;
90 	cb->base &= cb->mask;
91 }
92 
93 static bool cbuf_empty(struct cbuf *cb)
94 {
95 	return cb->len == 0;
96 }
97 
98 struct connection {
99 	struct socket *sock;	/* NULL if not connected */
100 	uint32_t nodeid;	/* So we know who we are in the list */
101 	struct mutex sock_mutex;
102 	unsigned long flags;
103 #define CF_READ_PENDING 1
104 #define CF_WRITE_PENDING 2
105 #define CF_CONNECT_PENDING 3
106 #define CF_INIT_PENDING 4
107 #define CF_IS_OTHERCON 5
108 	struct list_head writequeue;  /* List of outgoing writequeue_entries */
109 	spinlock_t writequeue_lock;
110 	int (*rx_action) (struct connection *);	/* What to do when active */
111 	void (*connect_action) (struct connection *);	/* What to do to connect */
112 	struct page *rx_page;
113 	struct cbuf cb;
114 	int retries;
115 #define MAX_CONNECT_RETRIES 3
116 	int sctp_assoc;
117 	struct connection *othercon;
118 	struct work_struct rwork; /* Receive workqueue */
119 	struct work_struct swork; /* Send workqueue */
120 };
121 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
122 
123 /* An entry waiting to be sent */
124 struct writequeue_entry {
125 	struct list_head list;
126 	struct page *page;
127 	int offset;
128 	int len;
129 	int end;
130 	int users;
131 	struct connection *con;
132 };
133 
134 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
135 static int dlm_local_count;
136 
137 /* Work queues */
138 static struct workqueue_struct *recv_workqueue;
139 static struct workqueue_struct *send_workqueue;
140 
141 static DEFINE_IDR(connections_idr);
142 static DEFINE_MUTEX(connections_lock);
143 static int max_nodeid;
144 static struct kmem_cache *con_cache;
145 
146 static void process_recv_sockets(struct work_struct *work);
147 static void process_send_sockets(struct work_struct *work);
148 
149 /*
150  * If 'allocation' is zero then we don't attempt to create a new
151  * connection structure for this node.
152  */
153 static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
154 {
155 	struct connection *con = NULL;
156 	int r;
157 	int n;
158 
159 	con = idr_find(&connections_idr, nodeid);
160 	if (con || !alloc)
161 		return con;
162 
163 	r = idr_pre_get(&connections_idr, alloc);
164 	if (!r)
165 		return NULL;
166 
167 	con = kmem_cache_zalloc(con_cache, alloc);
168 	if (!con)
169 		return NULL;
170 
171 	r = idr_get_new_above(&connections_idr, con, nodeid, &n);
172 	if (r) {
173 		kmem_cache_free(con_cache, con);
174 		return NULL;
175 	}
176 
177 	if (n != nodeid) {
178 		idr_remove(&connections_idr, n);
179 		kmem_cache_free(con_cache, con);
180 		return NULL;
181 	}
182 
183 	con->nodeid = nodeid;
184 	mutex_init(&con->sock_mutex);
185 	INIT_LIST_HEAD(&con->writequeue);
186 	spin_lock_init(&con->writequeue_lock);
187 	INIT_WORK(&con->swork, process_send_sockets);
188 	INIT_WORK(&con->rwork, process_recv_sockets);
189 
190 	/* Setup action pointers for child sockets */
191 	if (con->nodeid) {
192 		struct connection *zerocon = idr_find(&connections_idr, 0);
193 
194 		con->connect_action = zerocon->connect_action;
195 		if (!con->rx_action)
196 			con->rx_action = zerocon->rx_action;
197 	}
198 
199 	if (nodeid > max_nodeid)
200 		max_nodeid = nodeid;
201 
202 	return con;
203 }
204 
205 static struct connection *nodeid2con(int nodeid, gfp_t allocation)
206 {
207 	struct connection *con;
208 
209 	mutex_lock(&connections_lock);
210 	con = __nodeid2con(nodeid, allocation);
211 	mutex_unlock(&connections_lock);
212 
213 	return con;
214 }
215 
216 /* This is a bit drastic, but only called when things go wrong */
217 static struct connection *assoc2con(int assoc_id)
218 {
219 	int i;
220 	struct connection *con;
221 
222 	mutex_lock(&connections_lock);
223 	for (i=0; i<=max_nodeid; i++) {
224 		con = __nodeid2con(i, 0);
225 		if (con && con->sctp_assoc == assoc_id) {
226 			mutex_unlock(&connections_lock);
227 			return con;
228 		}
229 	}
230 	mutex_unlock(&connections_lock);
231 	return NULL;
232 }
233 
234 static int nodeid_to_addr(int nodeid, struct sockaddr *retaddr)
235 {
236 	struct sockaddr_storage addr;
237 	int error;
238 
239 	if (!dlm_local_count)
240 		return -1;
241 
242 	error = dlm_nodeid_to_addr(nodeid, &addr);
243 	if (error)
244 		return error;
245 
246 	if (dlm_local_addr[0]->ss_family == AF_INET) {
247 		struct sockaddr_in *in4  = (struct sockaddr_in *) &addr;
248 		struct sockaddr_in *ret4 = (struct sockaddr_in *) retaddr;
249 		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
250 	} else {
251 		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &addr;
252 		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) retaddr;
253 		memcpy(&ret6->sin6_addr, &in6->sin6_addr,
254 		       sizeof(in6->sin6_addr));
255 	}
256 
257 	return 0;
258 }
259 
260 /* Data available on socket or listen socket received a connect */
261 static void lowcomms_data_ready(struct sock *sk, int count_unused)
262 {
263 	struct connection *con = sock2con(sk);
264 	if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
265 		queue_work(recv_workqueue, &con->rwork);
266 }
267 
268 static void lowcomms_write_space(struct sock *sk)
269 {
270 	struct connection *con = sock2con(sk);
271 
272 	if (con && !test_and_set_bit(CF_WRITE_PENDING, &con->flags))
273 		queue_work(send_workqueue, &con->swork);
274 }
275 
276 static inline void lowcomms_connect_sock(struct connection *con)
277 {
278 	if (!test_and_set_bit(CF_CONNECT_PENDING, &con->flags))
279 		queue_work(send_workqueue, &con->swork);
280 }
281 
282 static void lowcomms_state_change(struct sock *sk)
283 {
284 	if (sk->sk_state == TCP_ESTABLISHED)
285 		lowcomms_write_space(sk);
286 }
287 
288 /* Make a socket active */
289 static int add_sock(struct socket *sock, struct connection *con)
290 {
291 	con->sock = sock;
292 
293 	/* Install a data_ready callback */
294 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
295 	con->sock->sk->sk_write_space = lowcomms_write_space;
296 	con->sock->sk->sk_state_change = lowcomms_state_change;
297 	con->sock->sk->sk_user_data = con;
298 	con->sock->sk->sk_allocation = GFP_NOFS;
299 	return 0;
300 }
301 
302 /* Add the port number to an IPv6 or 4 sockaddr and return the address
303    length */
304 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
305 			  int *addr_len)
306 {
307 	saddr->ss_family =  dlm_local_addr[0]->ss_family;
308 	if (saddr->ss_family == AF_INET) {
309 		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
310 		in4_addr->sin_port = cpu_to_be16(port);
311 		*addr_len = sizeof(struct sockaddr_in);
312 		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
313 	} else {
314 		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
315 		in6_addr->sin6_port = cpu_to_be16(port);
316 		*addr_len = sizeof(struct sockaddr_in6);
317 	}
318 	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
319 }
320 
321 /* Close a remote connection and tidy up */
322 static void close_connection(struct connection *con, bool and_other)
323 {
324 	mutex_lock(&con->sock_mutex);
325 
326 	if (con->sock) {
327 		sock_release(con->sock);
328 		con->sock = NULL;
329 	}
330 	if (con->othercon && and_other) {
331 		/* Will only re-enter once. */
332 		close_connection(con->othercon, false);
333 	}
334 	if (con->rx_page) {
335 		__free_page(con->rx_page);
336 		con->rx_page = NULL;
337 	}
338 
339 	con->retries = 0;
340 	mutex_unlock(&con->sock_mutex);
341 }
342 
343 /* We only send shutdown messages to nodes that are not part of the cluster */
344 static void sctp_send_shutdown(sctp_assoc_t associd)
345 {
346 	static char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
347 	struct msghdr outmessage;
348 	struct cmsghdr *cmsg;
349 	struct sctp_sndrcvinfo *sinfo;
350 	int ret;
351 	struct connection *con;
352 
353 	con = nodeid2con(0,0);
354 	BUG_ON(con == NULL);
355 
356 	outmessage.msg_name = NULL;
357 	outmessage.msg_namelen = 0;
358 	outmessage.msg_control = outcmsg;
359 	outmessage.msg_controllen = sizeof(outcmsg);
360 	outmessage.msg_flags = MSG_EOR;
361 
362 	cmsg = CMSG_FIRSTHDR(&outmessage);
363 	cmsg->cmsg_level = IPPROTO_SCTP;
364 	cmsg->cmsg_type = SCTP_SNDRCV;
365 	cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
366 	outmessage.msg_controllen = cmsg->cmsg_len;
367 	sinfo = CMSG_DATA(cmsg);
368 	memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
369 
370 	sinfo->sinfo_flags |= MSG_EOF;
371 	sinfo->sinfo_assoc_id = associd;
372 
373 	ret = kernel_sendmsg(con->sock, &outmessage, NULL, 0, 0);
374 
375 	if (ret != 0)
376 		log_print("send EOF to node failed: %d", ret);
377 }
378 
379 /* INIT failed but we don't know which node...
380    restart INIT on all pending nodes */
381 static void sctp_init_failed(void)
382 {
383 	int i;
384 	struct connection *con;
385 
386 	mutex_lock(&connections_lock);
387 	for (i=1; i<=max_nodeid; i++) {
388 		con = __nodeid2con(i, 0);
389 		if (!con)
390 			continue;
391 		con->sctp_assoc = 0;
392 		if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
393 			if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
394 				queue_work(send_workqueue, &con->swork);
395 			}
396 		}
397 	}
398 	mutex_unlock(&connections_lock);
399 }
400 
401 /* Something happened to an association */
402 static void process_sctp_notification(struct connection *con,
403 				      struct msghdr *msg, char *buf)
404 {
405 	union sctp_notification *sn = (union sctp_notification *)buf;
406 
407 	if (sn->sn_header.sn_type == SCTP_ASSOC_CHANGE) {
408 		switch (sn->sn_assoc_change.sac_state) {
409 
410 		case SCTP_COMM_UP:
411 		case SCTP_RESTART:
412 		{
413 			/* Check that the new node is in the lockspace */
414 			struct sctp_prim prim;
415 			int nodeid;
416 			int prim_len, ret;
417 			int addr_len;
418 			struct connection *new_con;
419 			struct file *file;
420 			sctp_peeloff_arg_t parg;
421 			int parglen = sizeof(parg);
422 
423 			/*
424 			 * We get this before any data for an association.
425 			 * We verify that the node is in the cluster and
426 			 * then peel off a socket for it.
427 			 */
428 			if ((int)sn->sn_assoc_change.sac_assoc_id <= 0) {
429 				log_print("COMM_UP for invalid assoc ID %d",
430 					 (int)sn->sn_assoc_change.sac_assoc_id);
431 				sctp_init_failed();
432 				return;
433 			}
434 			memset(&prim, 0, sizeof(struct sctp_prim));
435 			prim_len = sizeof(struct sctp_prim);
436 			prim.ssp_assoc_id = sn->sn_assoc_change.sac_assoc_id;
437 
438 			ret = kernel_getsockopt(con->sock,
439 						IPPROTO_SCTP,
440 						SCTP_PRIMARY_ADDR,
441 						(char*)&prim,
442 						&prim_len);
443 			if (ret < 0) {
444 				log_print("getsockopt/sctp_primary_addr on "
445 					  "new assoc %d failed : %d",
446 					  (int)sn->sn_assoc_change.sac_assoc_id,
447 					  ret);
448 
449 				/* Retry INIT later */
450 				new_con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
451 				if (new_con)
452 					clear_bit(CF_CONNECT_PENDING, &con->flags);
453 				return;
454 			}
455 			make_sockaddr(&prim.ssp_addr, 0, &addr_len);
456 			if (dlm_addr_to_nodeid(&prim.ssp_addr, &nodeid)) {
457 				int i;
458 				unsigned char *b=(unsigned char *)&prim.ssp_addr;
459 				log_print("reject connect from unknown addr");
460 				for (i=0; i<sizeof(struct sockaddr_storage);i++)
461 					printk("%02x ", b[i]);
462 				printk("\n");
463 				sctp_send_shutdown(prim.ssp_assoc_id);
464 				return;
465 			}
466 
467 			new_con = nodeid2con(nodeid, GFP_KERNEL);
468 			if (!new_con)
469 				return;
470 
471 			/* Peel off a new sock */
472 			parg.associd = sn->sn_assoc_change.sac_assoc_id;
473 			ret = kernel_getsockopt(con->sock, IPPROTO_SCTP,
474 						SCTP_SOCKOPT_PEELOFF,
475 						(void *)&parg, &parglen);
476 			if (ret) {
477 				log_print("Can't peel off a socket for "
478 					  "connection %d to node %d: err=%d\n",
479 					  parg.associd, nodeid, ret);
480 			}
481 			file = fget(parg.sd);
482 			new_con->sock = SOCKET_I(file->f_dentry->d_inode);
483 			add_sock(new_con->sock, new_con);
484 			fput(file);
485 			put_unused_fd(parg.sd);
486 
487 			log_print("got new/restarted association %d nodeid %d",
488 				 (int)sn->sn_assoc_change.sac_assoc_id, nodeid);
489 
490 			/* Send any pending writes */
491 			clear_bit(CF_CONNECT_PENDING, &new_con->flags);
492 			clear_bit(CF_INIT_PENDING, &con->flags);
493 			if (!test_and_set_bit(CF_WRITE_PENDING, &new_con->flags)) {
494 				queue_work(send_workqueue, &new_con->swork);
495 			}
496 			if (!test_and_set_bit(CF_READ_PENDING, &new_con->flags))
497 				queue_work(recv_workqueue, &new_con->rwork);
498 		}
499 		break;
500 
501 		case SCTP_COMM_LOST:
502 		case SCTP_SHUTDOWN_COMP:
503 		{
504 			con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
505 			if (con) {
506 				con->sctp_assoc = 0;
507 			}
508 		}
509 		break;
510 
511 		/* We don't know which INIT failed, so clear the PENDING flags
512 		 * on them all.  if assoc_id is zero then it will then try
513 		 * again */
514 
515 		case SCTP_CANT_STR_ASSOC:
516 		{
517 			log_print("Can't start SCTP association - retrying");
518 			sctp_init_failed();
519 		}
520 		break;
521 
522 		default:
523 			log_print("unexpected SCTP assoc change id=%d state=%d",
524 				  (int)sn->sn_assoc_change.sac_assoc_id,
525 				  sn->sn_assoc_change.sac_state);
526 		}
527 	}
528 }
529 
530 /* Data received from remote end */
531 static int receive_from_sock(struct connection *con)
532 {
533 	int ret = 0;
534 	struct msghdr msg = {};
535 	struct kvec iov[2];
536 	unsigned len;
537 	int r;
538 	int call_again_soon = 0;
539 	int nvec;
540 	char incmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
541 
542 	mutex_lock(&con->sock_mutex);
543 
544 	if (con->sock == NULL) {
545 		ret = -EAGAIN;
546 		goto out_close;
547 	}
548 
549 	if (con->rx_page == NULL) {
550 		/*
551 		 * This doesn't need to be atomic, but I think it should
552 		 * improve performance if it is.
553 		 */
554 		con->rx_page = alloc_page(GFP_ATOMIC);
555 		if (con->rx_page == NULL)
556 			goto out_resched;
557 		cbuf_init(&con->cb, PAGE_CACHE_SIZE);
558 	}
559 
560 	/* Only SCTP needs these really */
561 	memset(&incmsg, 0, sizeof(incmsg));
562 	msg.msg_control = incmsg;
563 	msg.msg_controllen = sizeof(incmsg);
564 
565 	/*
566 	 * iov[0] is the bit of the circular buffer between the current end
567 	 * point (cb.base + cb.len) and the end of the buffer.
568 	 */
569 	iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
570 	iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
571 	iov[1].iov_len = 0;
572 	nvec = 1;
573 
574 	/*
575 	 * iov[1] is the bit of the circular buffer between the start of the
576 	 * buffer and the start of the currently used section (cb.base)
577 	 */
578 	if (cbuf_data(&con->cb) >= con->cb.base) {
579 		iov[0].iov_len = PAGE_CACHE_SIZE - cbuf_data(&con->cb);
580 		iov[1].iov_len = con->cb.base;
581 		iov[1].iov_base = page_address(con->rx_page);
582 		nvec = 2;
583 	}
584 	len = iov[0].iov_len + iov[1].iov_len;
585 
586 	r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len,
587 			       MSG_DONTWAIT | MSG_NOSIGNAL);
588 	if (ret <= 0)
589 		goto out_close;
590 
591 	/* Process SCTP notifications */
592 	if (msg.msg_flags & MSG_NOTIFICATION) {
593 		msg.msg_control = incmsg;
594 		msg.msg_controllen = sizeof(incmsg);
595 
596 		process_sctp_notification(con, &msg,
597 				page_address(con->rx_page) + con->cb.base);
598 		mutex_unlock(&con->sock_mutex);
599 		return 0;
600 	}
601 	BUG_ON(con->nodeid == 0);
602 
603 	if (ret == len)
604 		call_again_soon = 1;
605 	cbuf_add(&con->cb, ret);
606 	ret = dlm_process_incoming_buffer(con->nodeid,
607 					  page_address(con->rx_page),
608 					  con->cb.base, con->cb.len,
609 					  PAGE_CACHE_SIZE);
610 	if (ret == -EBADMSG) {
611 		log_print("lowcomms: addr=%p, base=%u, len=%u, "
612 			  "iov_len=%u, iov_base[0]=%p, read=%d",
613 			  page_address(con->rx_page), con->cb.base, con->cb.len,
614 			  len, iov[0].iov_base, r);
615 	}
616 	if (ret < 0)
617 		goto out_close;
618 	cbuf_eat(&con->cb, ret);
619 
620 	if (cbuf_empty(&con->cb) && !call_again_soon) {
621 		__free_page(con->rx_page);
622 		con->rx_page = NULL;
623 	}
624 
625 	if (call_again_soon)
626 		goto out_resched;
627 	mutex_unlock(&con->sock_mutex);
628 	return 0;
629 
630 out_resched:
631 	if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
632 		queue_work(recv_workqueue, &con->rwork);
633 	mutex_unlock(&con->sock_mutex);
634 	return -EAGAIN;
635 
636 out_close:
637 	mutex_unlock(&con->sock_mutex);
638 	if (ret != -EAGAIN) {
639 		close_connection(con, false);
640 		/* Reconnect when there is something to send */
641 	}
642 	/* Don't return success if we really got EOF */
643 	if (ret == 0)
644 		ret = -EAGAIN;
645 
646 	return ret;
647 }
648 
649 /* Listening socket is busy, accept a connection */
650 static int tcp_accept_from_sock(struct connection *con)
651 {
652 	int result;
653 	struct sockaddr_storage peeraddr;
654 	struct socket *newsock;
655 	int len;
656 	int nodeid;
657 	struct connection *newcon;
658 	struct connection *addcon;
659 
660 	memset(&peeraddr, 0, sizeof(peeraddr));
661 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
662 				  IPPROTO_TCP, &newsock);
663 	if (result < 0)
664 		return -ENOMEM;
665 
666 	mutex_lock_nested(&con->sock_mutex, 0);
667 
668 	result = -ENOTCONN;
669 	if (con->sock == NULL)
670 		goto accept_err;
671 
672 	newsock->type = con->sock->type;
673 	newsock->ops = con->sock->ops;
674 
675 	result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK);
676 	if (result < 0)
677 		goto accept_err;
678 
679 	/* Get the connected socket's peer */
680 	memset(&peeraddr, 0, sizeof(peeraddr));
681 	if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
682 				  &len, 2)) {
683 		result = -ECONNABORTED;
684 		goto accept_err;
685 	}
686 
687 	/* Get the new node's NODEID */
688 	make_sockaddr(&peeraddr, 0, &len);
689 	if (dlm_addr_to_nodeid(&peeraddr, &nodeid)) {
690 		log_print("connect from non cluster node");
691 		sock_release(newsock);
692 		mutex_unlock(&con->sock_mutex);
693 		return -1;
694 	}
695 
696 	log_print("got connection from %d", nodeid);
697 
698 	/*  Check to see if we already have a connection to this node. This
699 	 *  could happen if the two nodes initiate a connection at roughly
700 	 *  the same time and the connections cross on the wire.
701 	 *  In this case we store the incoming one in "othercon"
702 	 */
703 	newcon = nodeid2con(nodeid, GFP_KERNEL);
704 	if (!newcon) {
705 		result = -ENOMEM;
706 		goto accept_err;
707 	}
708 	mutex_lock_nested(&newcon->sock_mutex, 1);
709 	if (newcon->sock) {
710 		struct connection *othercon = newcon->othercon;
711 
712 		if (!othercon) {
713 			othercon = kmem_cache_zalloc(con_cache, GFP_KERNEL);
714 			if (!othercon) {
715 				log_print("failed to allocate incoming socket");
716 				mutex_unlock(&newcon->sock_mutex);
717 				result = -ENOMEM;
718 				goto accept_err;
719 			}
720 			othercon->nodeid = nodeid;
721 			othercon->rx_action = receive_from_sock;
722 			mutex_init(&othercon->sock_mutex);
723 			INIT_WORK(&othercon->swork, process_send_sockets);
724 			INIT_WORK(&othercon->rwork, process_recv_sockets);
725 			set_bit(CF_IS_OTHERCON, &othercon->flags);
726 		}
727 		if (!othercon->sock) {
728 			newcon->othercon = othercon;
729 			othercon->sock = newsock;
730 			newsock->sk->sk_user_data = othercon;
731 			add_sock(newsock, othercon);
732 			addcon = othercon;
733 		}
734 		else {
735 			printk("Extra connection from node %d attempted\n", nodeid);
736 			result = -EAGAIN;
737 			mutex_unlock(&newcon->sock_mutex);
738 			goto accept_err;
739 		}
740 	}
741 	else {
742 		newsock->sk->sk_user_data = newcon;
743 		newcon->rx_action = receive_from_sock;
744 		add_sock(newsock, newcon);
745 		addcon = newcon;
746 	}
747 
748 	mutex_unlock(&newcon->sock_mutex);
749 
750 	/*
751 	 * Add it to the active queue in case we got data
752 	 * beween processing the accept adding the socket
753 	 * to the read_sockets list
754 	 */
755 	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
756 		queue_work(recv_workqueue, &addcon->rwork);
757 	mutex_unlock(&con->sock_mutex);
758 
759 	return 0;
760 
761 accept_err:
762 	mutex_unlock(&con->sock_mutex);
763 	sock_release(newsock);
764 
765 	if (result != -EAGAIN)
766 		log_print("error accepting connection from node: %d", result);
767 	return result;
768 }
769 
770 static void free_entry(struct writequeue_entry *e)
771 {
772 	__free_page(e->page);
773 	kfree(e);
774 }
775 
776 /* Initiate an SCTP association.
777    This is a special case of send_to_sock() in that we don't yet have a
778    peeled-off socket for this association, so we use the listening socket
779    and add the primary IP address of the remote node.
780  */
781 static void sctp_init_assoc(struct connection *con)
782 {
783 	struct sockaddr_storage rem_addr;
784 	char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
785 	struct msghdr outmessage;
786 	struct cmsghdr *cmsg;
787 	struct sctp_sndrcvinfo *sinfo;
788 	struct connection *base_con;
789 	struct writequeue_entry *e;
790 	int len, offset;
791 	int ret;
792 	int addrlen;
793 	struct kvec iov[1];
794 
795 	if (test_and_set_bit(CF_INIT_PENDING, &con->flags))
796 		return;
797 
798 	if (con->retries++ > MAX_CONNECT_RETRIES)
799 		return;
800 
801 	log_print("Initiating association with node %d", con->nodeid);
802 
803 	if (nodeid_to_addr(con->nodeid, (struct sockaddr *)&rem_addr)) {
804 		log_print("no address for nodeid %d", con->nodeid);
805 		return;
806 	}
807 	base_con = nodeid2con(0, 0);
808 	BUG_ON(base_con == NULL);
809 
810 	make_sockaddr(&rem_addr, dlm_config.ci_tcp_port, &addrlen);
811 
812 	outmessage.msg_name = &rem_addr;
813 	outmessage.msg_namelen = addrlen;
814 	outmessage.msg_control = outcmsg;
815 	outmessage.msg_controllen = sizeof(outcmsg);
816 	outmessage.msg_flags = MSG_EOR;
817 
818 	spin_lock(&con->writequeue_lock);
819 	e = list_entry(con->writequeue.next, struct writequeue_entry,
820 		       list);
821 
822 	BUG_ON((struct list_head *) e == &con->writequeue);
823 
824 	len = e->len;
825 	offset = e->offset;
826 	spin_unlock(&con->writequeue_lock);
827 
828 	/* Send the first block off the write queue */
829 	iov[0].iov_base = page_address(e->page)+offset;
830 	iov[0].iov_len = len;
831 
832 	cmsg = CMSG_FIRSTHDR(&outmessage);
833 	cmsg->cmsg_level = IPPROTO_SCTP;
834 	cmsg->cmsg_type = SCTP_SNDRCV;
835 	cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
836 	sinfo = CMSG_DATA(cmsg);
837 	memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
838 	sinfo->sinfo_ppid = cpu_to_le32(dlm_our_nodeid());
839 	outmessage.msg_controllen = cmsg->cmsg_len;
840 
841 	ret = kernel_sendmsg(base_con->sock, &outmessage, iov, 1, len);
842 	if (ret < 0) {
843 		log_print("Send first packet to node %d failed: %d",
844 			  con->nodeid, ret);
845 
846 		/* Try again later */
847 		clear_bit(CF_CONNECT_PENDING, &con->flags);
848 		clear_bit(CF_INIT_PENDING, &con->flags);
849 	}
850 	else {
851 		spin_lock(&con->writequeue_lock);
852 		e->offset += ret;
853 		e->len -= ret;
854 
855 		if (e->len == 0 && e->users == 0) {
856 			list_del(&e->list);
857 			free_entry(e);
858 		}
859 		spin_unlock(&con->writequeue_lock);
860 	}
861 }
862 
863 /* Connect a new socket to its peer */
864 static void tcp_connect_to_sock(struct connection *con)
865 {
866 	int result = -EHOSTUNREACH;
867 	struct sockaddr_storage saddr, src_addr;
868 	int addr_len;
869 	struct socket *sock;
870 
871 	if (con->nodeid == 0) {
872 		log_print("attempt to connect sock 0 foiled");
873 		return;
874 	}
875 
876 	mutex_lock(&con->sock_mutex);
877 	if (con->retries++ > MAX_CONNECT_RETRIES)
878 		goto out;
879 
880 	/* Some odd races can cause double-connects, ignore them */
881 	if (con->sock) {
882 		result = 0;
883 		goto out;
884 	}
885 
886 	/* Create a socket to communicate with */
887 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
888 				  IPPROTO_TCP, &sock);
889 	if (result < 0)
890 		goto out_err;
891 
892 	memset(&saddr, 0, sizeof(saddr));
893 	if (dlm_nodeid_to_addr(con->nodeid, &saddr)) {
894 		sock_release(sock);
895 		goto out_err;
896 	}
897 
898 	sock->sk->sk_user_data = con;
899 	con->rx_action = receive_from_sock;
900 	con->connect_action = tcp_connect_to_sock;
901 	add_sock(sock, con);
902 
903 	/* Bind to our cluster-known address connecting to avoid
904 	   routing problems */
905 	memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
906 	make_sockaddr(&src_addr, 0, &addr_len);
907 	result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
908 				 addr_len);
909 	if (result < 0) {
910 		log_print("could not bind for connect: %d", result);
911 		/* This *may* not indicate a critical error */
912 	}
913 
914 	make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
915 
916 	log_print("connecting to %d", con->nodeid);
917 	result =
918 		sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
919 				   O_NONBLOCK);
920 	if (result == -EINPROGRESS)
921 		result = 0;
922 	if (result == 0)
923 		goto out;
924 
925 out_err:
926 	if (con->sock) {
927 		sock_release(con->sock);
928 		con->sock = NULL;
929 	}
930 	/*
931 	 * Some errors are fatal and this list might need adjusting. For other
932 	 * errors we try again until the max number of retries is reached.
933 	 */
934 	if (result != -EHOSTUNREACH && result != -ENETUNREACH &&
935 	    result != -ENETDOWN && result != -EINVAL
936 	    && result != -EPROTONOSUPPORT) {
937 		lowcomms_connect_sock(con);
938 		result = 0;
939 	}
940 out:
941 	mutex_unlock(&con->sock_mutex);
942 	return;
943 }
944 
945 static struct socket *tcp_create_listen_sock(struct connection *con,
946 					     struct sockaddr_storage *saddr)
947 {
948 	struct socket *sock = NULL;
949 	int result = 0;
950 	int one = 1;
951 	int addr_len;
952 
953 	if (dlm_local_addr[0]->ss_family == AF_INET)
954 		addr_len = sizeof(struct sockaddr_in);
955 	else
956 		addr_len = sizeof(struct sockaddr_in6);
957 
958 	/* Create a socket to communicate with */
959 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
960 				  IPPROTO_TCP, &sock);
961 	if (result < 0) {
962 		log_print("Can't create listening comms socket");
963 		goto create_out;
964 	}
965 
966 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
967 				   (char *)&one, sizeof(one));
968 
969 	if (result < 0) {
970 		log_print("Failed to set SO_REUSEADDR on socket: %d", result);
971 	}
972 	sock->sk->sk_user_data = con;
973 	con->rx_action = tcp_accept_from_sock;
974 	con->connect_action = tcp_connect_to_sock;
975 	con->sock = sock;
976 
977 	/* Bind to our port */
978 	make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
979 	result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
980 	if (result < 0) {
981 		log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
982 		sock_release(sock);
983 		sock = NULL;
984 		con->sock = NULL;
985 		goto create_out;
986 	}
987 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
988 				 (char *)&one, sizeof(one));
989 	if (result < 0) {
990 		log_print("Set keepalive failed: %d", result);
991 	}
992 
993 	result = sock->ops->listen(sock, 5);
994 	if (result < 0) {
995 		log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
996 		sock_release(sock);
997 		sock = NULL;
998 		goto create_out;
999 	}
1000 
1001 create_out:
1002 	return sock;
1003 }
1004 
1005 /* Get local addresses */
1006 static void init_local(void)
1007 {
1008 	struct sockaddr_storage sas, *addr;
1009 	int i;
1010 
1011 	dlm_local_count = 0;
1012 	for (i = 0; i < DLM_MAX_ADDR_COUNT - 1; i++) {
1013 		if (dlm_our_addr(&sas, i))
1014 			break;
1015 
1016 		addr = kmalloc(sizeof(*addr), GFP_KERNEL);
1017 		if (!addr)
1018 			break;
1019 		memcpy(addr, &sas, sizeof(*addr));
1020 		dlm_local_addr[dlm_local_count++] = addr;
1021 	}
1022 }
1023 
1024 /* Bind to an IP address. SCTP allows multiple address so it can do
1025    multi-homing */
1026 static int add_sctp_bind_addr(struct connection *sctp_con,
1027 			      struct sockaddr_storage *addr,
1028 			      int addr_len, int num)
1029 {
1030 	int result = 0;
1031 
1032 	if (num == 1)
1033 		result = kernel_bind(sctp_con->sock,
1034 				     (struct sockaddr *) addr,
1035 				     addr_len);
1036 	else
1037 		result = kernel_setsockopt(sctp_con->sock, SOL_SCTP,
1038 					   SCTP_SOCKOPT_BINDX_ADD,
1039 					   (char *)addr, addr_len);
1040 
1041 	if (result < 0)
1042 		log_print("Can't bind to port %d addr number %d",
1043 			  dlm_config.ci_tcp_port, num);
1044 
1045 	return result;
1046 }
1047 
1048 /* Initialise SCTP socket and bind to all interfaces */
1049 static int sctp_listen_for_all(void)
1050 {
1051 	struct socket *sock = NULL;
1052 	struct sockaddr_storage localaddr;
1053 	struct sctp_event_subscribe subscribe;
1054 	int result = -EINVAL, num = 1, i, addr_len;
1055 	struct connection *con = nodeid2con(0, GFP_KERNEL);
1056 	int bufsize = NEEDED_RMEM;
1057 
1058 	if (!con)
1059 		return -ENOMEM;
1060 
1061 	log_print("Using SCTP for communications");
1062 
1063 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_SEQPACKET,
1064 				  IPPROTO_SCTP, &sock);
1065 	if (result < 0) {
1066 		log_print("Can't create comms socket, check SCTP is loaded");
1067 		goto out;
1068 	}
1069 
1070 	/* Listen for events */
1071 	memset(&subscribe, 0, sizeof(subscribe));
1072 	subscribe.sctp_data_io_event = 1;
1073 	subscribe.sctp_association_event = 1;
1074 	subscribe.sctp_send_failure_event = 1;
1075 	subscribe.sctp_shutdown_event = 1;
1076 	subscribe.sctp_partial_delivery_event = 1;
1077 
1078 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
1079 				 (char *)&bufsize, sizeof(bufsize));
1080 	if (result)
1081 		log_print("Error increasing buffer space on socket %d", result);
1082 
1083 	result = kernel_setsockopt(sock, SOL_SCTP, SCTP_EVENTS,
1084 				   (char *)&subscribe, sizeof(subscribe));
1085 	if (result < 0) {
1086 		log_print("Failed to set SCTP_EVENTS on socket: result=%d",
1087 			  result);
1088 		goto create_delsock;
1089 	}
1090 
1091 	/* Init con struct */
1092 	sock->sk->sk_user_data = con;
1093 	con->sock = sock;
1094 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
1095 	con->rx_action = receive_from_sock;
1096 	con->connect_action = sctp_init_assoc;
1097 
1098 	/* Bind to all interfaces. */
1099 	for (i = 0; i < dlm_local_count; i++) {
1100 		memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
1101 		make_sockaddr(&localaddr, dlm_config.ci_tcp_port, &addr_len);
1102 
1103 		result = add_sctp_bind_addr(con, &localaddr, addr_len, num);
1104 		if (result)
1105 			goto create_delsock;
1106 		++num;
1107 	}
1108 
1109 	result = sock->ops->listen(sock, 5);
1110 	if (result < 0) {
1111 		log_print("Can't set socket listening");
1112 		goto create_delsock;
1113 	}
1114 
1115 	return 0;
1116 
1117 create_delsock:
1118 	sock_release(sock);
1119 	con->sock = NULL;
1120 out:
1121 	return result;
1122 }
1123 
1124 static int tcp_listen_for_all(void)
1125 {
1126 	struct socket *sock = NULL;
1127 	struct connection *con = nodeid2con(0, GFP_KERNEL);
1128 	int result = -EINVAL;
1129 
1130 	if (!con)
1131 		return -ENOMEM;
1132 
1133 	/* We don't support multi-homed hosts */
1134 	if (dlm_local_addr[1] != NULL) {
1135 		log_print("TCP protocol can't handle multi-homed hosts, "
1136 			  "try SCTP");
1137 		return -EINVAL;
1138 	}
1139 
1140 	log_print("Using TCP for communications");
1141 
1142 	sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1143 	if (sock) {
1144 		add_sock(sock, con);
1145 		result = 0;
1146 	}
1147 	else {
1148 		result = -EADDRINUSE;
1149 	}
1150 
1151 	return result;
1152 }
1153 
1154 
1155 
1156 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1157 						     gfp_t allocation)
1158 {
1159 	struct writequeue_entry *entry;
1160 
1161 	entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1162 	if (!entry)
1163 		return NULL;
1164 
1165 	entry->page = alloc_page(allocation);
1166 	if (!entry->page) {
1167 		kfree(entry);
1168 		return NULL;
1169 	}
1170 
1171 	entry->offset = 0;
1172 	entry->len = 0;
1173 	entry->end = 0;
1174 	entry->users = 0;
1175 	entry->con = con;
1176 
1177 	return entry;
1178 }
1179 
1180 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1181 {
1182 	struct connection *con;
1183 	struct writequeue_entry *e;
1184 	int offset = 0;
1185 	int users = 0;
1186 
1187 	con = nodeid2con(nodeid, allocation);
1188 	if (!con)
1189 		return NULL;
1190 
1191 	spin_lock(&con->writequeue_lock);
1192 	e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1193 	if ((&e->list == &con->writequeue) ||
1194 	    (PAGE_CACHE_SIZE - e->end < len)) {
1195 		e = NULL;
1196 	} else {
1197 		offset = e->end;
1198 		e->end += len;
1199 		users = e->users++;
1200 	}
1201 	spin_unlock(&con->writequeue_lock);
1202 
1203 	if (e) {
1204 	got_one:
1205 		*ppc = page_address(e->page) + offset;
1206 		return e;
1207 	}
1208 
1209 	e = new_writequeue_entry(con, allocation);
1210 	if (e) {
1211 		spin_lock(&con->writequeue_lock);
1212 		offset = e->end;
1213 		e->end += len;
1214 		users = e->users++;
1215 		list_add_tail(&e->list, &con->writequeue);
1216 		spin_unlock(&con->writequeue_lock);
1217 		goto got_one;
1218 	}
1219 	return NULL;
1220 }
1221 
1222 void dlm_lowcomms_commit_buffer(void *mh)
1223 {
1224 	struct writequeue_entry *e = (struct writequeue_entry *)mh;
1225 	struct connection *con = e->con;
1226 	int users;
1227 
1228 	spin_lock(&con->writequeue_lock);
1229 	users = --e->users;
1230 	if (users)
1231 		goto out;
1232 	e->len = e->end - e->offset;
1233 	spin_unlock(&con->writequeue_lock);
1234 
1235 	if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
1236 		queue_work(send_workqueue, &con->swork);
1237 	}
1238 	return;
1239 
1240 out:
1241 	spin_unlock(&con->writequeue_lock);
1242 	return;
1243 }
1244 
1245 /* Send a message */
1246 static void send_to_sock(struct connection *con)
1247 {
1248 	int ret = 0;
1249 	ssize_t(*sendpage) (struct socket *, struct page *, int, size_t, int);
1250 	const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1251 	struct writequeue_entry *e;
1252 	int len, offset;
1253 
1254 	mutex_lock(&con->sock_mutex);
1255 	if (con->sock == NULL)
1256 		goto out_connect;
1257 
1258 	sendpage = con->sock->ops->sendpage;
1259 
1260 	spin_lock(&con->writequeue_lock);
1261 	for (;;) {
1262 		e = list_entry(con->writequeue.next, struct writequeue_entry,
1263 			       list);
1264 		if ((struct list_head *) e == &con->writequeue)
1265 			break;
1266 
1267 		len = e->len;
1268 		offset = e->offset;
1269 		BUG_ON(len == 0 && e->users == 0);
1270 		spin_unlock(&con->writequeue_lock);
1271 
1272 		ret = 0;
1273 		if (len) {
1274 			ret = sendpage(con->sock, e->page, offset, len,
1275 				       msg_flags);
1276 			if (ret == -EAGAIN || ret == 0) {
1277 				cond_resched();
1278 				goto out;
1279 			}
1280 			if (ret <= 0)
1281 				goto send_error;
1282 		}
1283 			/* Don't starve people filling buffers */
1284 			cond_resched();
1285 
1286 		spin_lock(&con->writequeue_lock);
1287 		e->offset += ret;
1288 		e->len -= ret;
1289 
1290 		if (e->len == 0 && e->users == 0) {
1291 			list_del(&e->list);
1292 			free_entry(e);
1293 			continue;
1294 		}
1295 	}
1296 	spin_unlock(&con->writequeue_lock);
1297 out:
1298 	mutex_unlock(&con->sock_mutex);
1299 	return;
1300 
1301 send_error:
1302 	mutex_unlock(&con->sock_mutex);
1303 	close_connection(con, false);
1304 	lowcomms_connect_sock(con);
1305 	return;
1306 
1307 out_connect:
1308 	mutex_unlock(&con->sock_mutex);
1309 	if (!test_bit(CF_INIT_PENDING, &con->flags))
1310 		lowcomms_connect_sock(con);
1311 	return;
1312 }
1313 
1314 static void clean_one_writequeue(struct connection *con)
1315 {
1316 	struct list_head *list;
1317 	struct list_head *temp;
1318 
1319 	spin_lock(&con->writequeue_lock);
1320 	list_for_each_safe(list, temp, &con->writequeue) {
1321 		struct writequeue_entry *e =
1322 			list_entry(list, struct writequeue_entry, list);
1323 		list_del(&e->list);
1324 		free_entry(e);
1325 	}
1326 	spin_unlock(&con->writequeue_lock);
1327 }
1328 
1329 /* Called from recovery when it knows that a node has
1330    left the cluster */
1331 int dlm_lowcomms_close(int nodeid)
1332 {
1333 	struct connection *con;
1334 
1335 	log_print("closing connection to node %d", nodeid);
1336 	con = nodeid2con(nodeid, 0);
1337 	if (con) {
1338 		clean_one_writequeue(con);
1339 		close_connection(con, true);
1340 	}
1341 	return 0;
1342 }
1343 
1344 /* Receive workqueue function */
1345 static void process_recv_sockets(struct work_struct *work)
1346 {
1347 	struct connection *con = container_of(work, struct connection, rwork);
1348 	int err;
1349 
1350 	clear_bit(CF_READ_PENDING, &con->flags);
1351 	do {
1352 		err = con->rx_action(con);
1353 	} while (!err);
1354 }
1355 
1356 /* Send workqueue function */
1357 static void process_send_sockets(struct work_struct *work)
1358 {
1359 	struct connection *con = container_of(work, struct connection, swork);
1360 
1361 	if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
1362 		con->connect_action(con);
1363 	}
1364 	clear_bit(CF_WRITE_PENDING, &con->flags);
1365 	send_to_sock(con);
1366 }
1367 
1368 
1369 /* Discard all entries on the write queues */
1370 static void clean_writequeues(void)
1371 {
1372 	int nodeid;
1373 
1374 	for (nodeid = 1; nodeid <= max_nodeid; nodeid++) {
1375 		struct connection *con = __nodeid2con(nodeid, 0);
1376 
1377 		if (con)
1378 			clean_one_writequeue(con);
1379 	}
1380 }
1381 
1382 static void work_stop(void)
1383 {
1384 	destroy_workqueue(recv_workqueue);
1385 	destroy_workqueue(send_workqueue);
1386 }
1387 
1388 static int work_start(void)
1389 {
1390 	int error;
1391 	recv_workqueue = create_workqueue("dlm_recv");
1392 	error = IS_ERR(recv_workqueue);
1393 	if (error) {
1394 		log_print("can't start dlm_recv %d", error);
1395 		return error;
1396 	}
1397 
1398 	send_workqueue = create_singlethread_workqueue("dlm_send");
1399 	error = IS_ERR(send_workqueue);
1400 	if (error) {
1401 		log_print("can't start dlm_send %d", error);
1402 		destroy_workqueue(recv_workqueue);
1403 		return error;
1404 	}
1405 
1406 	return 0;
1407 }
1408 
1409 void dlm_lowcomms_stop(void)
1410 {
1411 	int i;
1412 	struct connection *con;
1413 
1414 	/* Set all the flags to prevent any
1415 	   socket activity.
1416 	*/
1417 	mutex_lock(&connections_lock);
1418 	for (i = 0; i <= max_nodeid; i++) {
1419 		con = __nodeid2con(i, 0);
1420 		if (con) {
1421 			con->flags |= 0x0F;
1422 			if (con->sock)
1423 				con->sock->sk->sk_user_data = NULL;
1424 		}
1425 	}
1426 	mutex_unlock(&connections_lock);
1427 
1428 	work_stop();
1429 
1430 	mutex_lock(&connections_lock);
1431 	clean_writequeues();
1432 
1433 	for (i = 0; i <= max_nodeid; i++) {
1434 		con = __nodeid2con(i, 0);
1435 		if (con) {
1436 			close_connection(con, true);
1437 			if (con->othercon)
1438 				kmem_cache_free(con_cache, con->othercon);
1439 			kmem_cache_free(con_cache, con);
1440 		}
1441 	}
1442 	max_nodeid = 0;
1443 	mutex_unlock(&connections_lock);
1444 	kmem_cache_destroy(con_cache);
1445 	idr_init(&connections_idr);
1446 }
1447 
1448 int dlm_lowcomms_start(void)
1449 {
1450 	int error = -EINVAL;
1451 	struct connection *con;
1452 
1453 	init_local();
1454 	if (!dlm_local_count) {
1455 		error = -ENOTCONN;
1456 		log_print("no local IP address has been set");
1457 		goto out;
1458 	}
1459 
1460 	error = -ENOMEM;
1461 	con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1462 				      __alignof__(struct connection), 0,
1463 				      NULL);
1464 	if (!con_cache)
1465 		goto out;
1466 
1467 	/* Start listening */
1468 	if (dlm_config.ci_protocol == 0)
1469 		error = tcp_listen_for_all();
1470 	else
1471 		error = sctp_listen_for_all();
1472 	if (error)
1473 		goto fail_unlisten;
1474 
1475 	error = work_start();
1476 	if (error)
1477 		goto fail_unlisten;
1478 
1479 	return 0;
1480 
1481 fail_unlisten:
1482 	con = nodeid2con(0,0);
1483 	if (con) {
1484 		close_connection(con, false);
1485 		kmem_cache_free(con_cache, con);
1486 	}
1487 	kmem_cache_destroy(con_cache);
1488 
1489 out:
1490 	return error;
1491 }
1492