xref: /openbmc/linux/fs/dlm/lowcomms.c (revision 048ed4b6)
1 /******************************************************************************
2 *******************************************************************************
3 **
4 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
5 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
6 **
7 **  This copyrighted material is made available to anyone wishing to use,
8 **  modify, copy, or redistribute it subject to the terms and conditions
9 **  of the GNU General Public License v.2.
10 **
11 *******************************************************************************
12 ******************************************************************************/
13 
14 /*
15  * lowcomms.c
16  *
17  * This is the "low-level" comms layer.
18  *
19  * It is responsible for sending/receiving messages
20  * from other nodes in the cluster.
21  *
22  * Cluster nodes are referred to by their nodeids. nodeids are
23  * simply 32 bit numbers to the locking module - if they need to
24  * be expanded for the cluster infrastructure then that is its
25  * responsibility. It is this layer's
26  * responsibility to resolve these into IP address or
27  * whatever it needs for inter-node communication.
28  *
29  * The comms level is two kernel threads that deal mainly with
30  * the receiving of messages from other nodes and passing them
31  * up to the mid-level comms layer (which understands the
32  * message format) for execution by the locking core, and
33  * a send thread which does all the setting up of connections
34  * to remote nodes and the sending of data. Threads are not allowed
35  * to send their own data because it may cause them to wait in times
36  * of high load. Also, this way, the sending thread can collect together
37  * messages bound for one node and send them in one block.
38  *
39  * lowcomms will choose to use either TCP or SCTP as its transport layer
40  * depending on the configuration variable 'protocol'. This should be set
41  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
42  * cluster-wide mechanism as it must be the same on all nodes of the cluster
43  * for the DLM to function.
44  *
45  */
46 
47 #include <asm/ioctls.h>
48 #include <net/sock.h>
49 #include <net/tcp.h>
50 #include <linux/pagemap.h>
51 #include <linux/file.h>
52 #include <linux/mutex.h>
53 #include <linux/sctp.h>
54 #include <linux/slab.h>
55 #include <net/sctp/sctp.h>
56 #include <net/ipv6.h>
57 
58 #include "dlm_internal.h"
59 #include "lowcomms.h"
60 #include "midcomms.h"
61 #include "config.h"
62 
63 #define NEEDED_RMEM (4*1024*1024)
64 #define CONN_HASH_SIZE 32
65 
66 /* Number of messages to send before rescheduling */
67 #define MAX_SEND_MSG_COUNT 25
68 
69 struct cbuf {
70 	unsigned int base;
71 	unsigned int len;
72 	unsigned int mask;
73 };
74 
75 static void cbuf_add(struct cbuf *cb, int n)
76 {
77 	cb->len += n;
78 }
79 
80 static int cbuf_data(struct cbuf *cb)
81 {
82 	return ((cb->base + cb->len) & cb->mask);
83 }
84 
85 static void cbuf_init(struct cbuf *cb, int size)
86 {
87 	cb->base = cb->len = 0;
88 	cb->mask = size-1;
89 }
90 
91 static void cbuf_eat(struct cbuf *cb, int n)
92 {
93 	cb->len  -= n;
94 	cb->base += n;
95 	cb->base &= cb->mask;
96 }
97 
98 static bool cbuf_empty(struct cbuf *cb)
99 {
100 	return cb->len == 0;
101 }
102 
103 struct connection {
104 	struct socket *sock;	/* NULL if not connected */
105 	uint32_t nodeid;	/* So we know who we are in the list */
106 	struct mutex sock_mutex;
107 	unsigned long flags;
108 #define CF_READ_PENDING 1
109 #define CF_WRITE_PENDING 2
110 #define CF_CONNECT_PENDING 3
111 #define CF_INIT_PENDING 4
112 #define CF_IS_OTHERCON 5
113 #define CF_CLOSE 6
114 #define CF_APP_LIMITED 7
115 	struct list_head writequeue;  /* List of outgoing writequeue_entries */
116 	spinlock_t writequeue_lock;
117 	int (*rx_action) (struct connection *);	/* What to do when active */
118 	void (*connect_action) (struct connection *);	/* What to do to connect */
119 	struct page *rx_page;
120 	struct cbuf cb;
121 	int retries;
122 #define MAX_CONNECT_RETRIES 3
123 	int sctp_assoc;
124 	struct hlist_node list;
125 	struct connection *othercon;
126 	struct work_struct rwork; /* Receive workqueue */
127 	struct work_struct swork; /* Send workqueue */
128 	bool try_new_addr;
129 };
130 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
131 
132 /* An entry waiting to be sent */
133 struct writequeue_entry {
134 	struct list_head list;
135 	struct page *page;
136 	int offset;
137 	int len;
138 	int end;
139 	int users;
140 	struct connection *con;
141 };
142 
143 struct dlm_node_addr {
144 	struct list_head list;
145 	int nodeid;
146 	int addr_count;
147 	int curr_addr_index;
148 	struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT];
149 };
150 
151 static LIST_HEAD(dlm_node_addrs);
152 static DEFINE_SPINLOCK(dlm_node_addrs_spin);
153 
154 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
155 static int dlm_local_count;
156 static int dlm_allow_conn;
157 
158 /* Work queues */
159 static struct workqueue_struct *recv_workqueue;
160 static struct workqueue_struct *send_workqueue;
161 
162 static struct hlist_head connection_hash[CONN_HASH_SIZE];
163 static DEFINE_MUTEX(connections_lock);
164 static struct kmem_cache *con_cache;
165 
166 static void process_recv_sockets(struct work_struct *work);
167 static void process_send_sockets(struct work_struct *work);
168 
169 
170 /* This is deliberately very simple because most clusters have simple
171    sequential nodeids, so we should be able to go straight to a connection
172    struct in the array */
173 static inline int nodeid_hash(int nodeid)
174 {
175 	return nodeid & (CONN_HASH_SIZE-1);
176 }
177 
178 static struct connection *__find_con(int nodeid)
179 {
180 	int r;
181 	struct connection *con;
182 
183 	r = nodeid_hash(nodeid);
184 
185 	hlist_for_each_entry(con, &connection_hash[r], list) {
186 		if (con->nodeid == nodeid)
187 			return con;
188 	}
189 	return NULL;
190 }
191 
192 /*
193  * If 'allocation' is zero then we don't attempt to create a new
194  * connection structure for this node.
195  */
196 static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
197 {
198 	struct connection *con = NULL;
199 	int r;
200 
201 	con = __find_con(nodeid);
202 	if (con || !alloc)
203 		return con;
204 
205 	con = kmem_cache_zalloc(con_cache, alloc);
206 	if (!con)
207 		return NULL;
208 
209 	r = nodeid_hash(nodeid);
210 	hlist_add_head(&con->list, &connection_hash[r]);
211 
212 	con->nodeid = nodeid;
213 	mutex_init(&con->sock_mutex);
214 	INIT_LIST_HEAD(&con->writequeue);
215 	spin_lock_init(&con->writequeue_lock);
216 	INIT_WORK(&con->swork, process_send_sockets);
217 	INIT_WORK(&con->rwork, process_recv_sockets);
218 
219 	/* Setup action pointers for child sockets */
220 	if (con->nodeid) {
221 		struct connection *zerocon = __find_con(0);
222 
223 		con->connect_action = zerocon->connect_action;
224 		if (!con->rx_action)
225 			con->rx_action = zerocon->rx_action;
226 	}
227 
228 	return con;
229 }
230 
231 /* Loop round all connections */
232 static void foreach_conn(void (*conn_func)(struct connection *c))
233 {
234 	int i;
235 	struct hlist_node *n;
236 	struct connection *con;
237 
238 	for (i = 0; i < CONN_HASH_SIZE; i++) {
239 		hlist_for_each_entry_safe(con, n, &connection_hash[i], list)
240 			conn_func(con);
241 	}
242 }
243 
244 static struct connection *nodeid2con(int nodeid, gfp_t allocation)
245 {
246 	struct connection *con;
247 
248 	mutex_lock(&connections_lock);
249 	con = __nodeid2con(nodeid, allocation);
250 	mutex_unlock(&connections_lock);
251 
252 	return con;
253 }
254 
255 /* This is a bit drastic, but only called when things go wrong */
256 static struct connection *assoc2con(int assoc_id)
257 {
258 	int i;
259 	struct connection *con;
260 
261 	mutex_lock(&connections_lock);
262 
263 	for (i = 0 ; i < CONN_HASH_SIZE; i++) {
264 		hlist_for_each_entry(con, &connection_hash[i], list) {
265 			if (con->sctp_assoc == assoc_id) {
266 				mutex_unlock(&connections_lock);
267 				return con;
268 			}
269 		}
270 	}
271 	mutex_unlock(&connections_lock);
272 	return NULL;
273 }
274 
275 static struct dlm_node_addr *find_node_addr(int nodeid)
276 {
277 	struct dlm_node_addr *na;
278 
279 	list_for_each_entry(na, &dlm_node_addrs, list) {
280 		if (na->nodeid == nodeid)
281 			return na;
282 	}
283 	return NULL;
284 }
285 
286 static int addr_compare(struct sockaddr_storage *x, struct sockaddr_storage *y)
287 {
288 	switch (x->ss_family) {
289 	case AF_INET: {
290 		struct sockaddr_in *sinx = (struct sockaddr_in *)x;
291 		struct sockaddr_in *siny = (struct sockaddr_in *)y;
292 		if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
293 			return 0;
294 		if (sinx->sin_port != siny->sin_port)
295 			return 0;
296 		break;
297 	}
298 	case AF_INET6: {
299 		struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
300 		struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
301 		if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
302 			return 0;
303 		if (sinx->sin6_port != siny->sin6_port)
304 			return 0;
305 		break;
306 	}
307 	default:
308 		return 0;
309 	}
310 	return 1;
311 }
312 
313 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
314 			  struct sockaddr *sa_out, bool try_new_addr)
315 {
316 	struct sockaddr_storage sas;
317 	struct dlm_node_addr *na;
318 
319 	if (!dlm_local_count)
320 		return -1;
321 
322 	spin_lock(&dlm_node_addrs_spin);
323 	na = find_node_addr(nodeid);
324 	if (na && na->addr_count) {
325 		if (try_new_addr) {
326 			na->curr_addr_index++;
327 			if (na->curr_addr_index == na->addr_count)
328 				na->curr_addr_index = 0;
329 		}
330 
331 		memcpy(&sas, na->addr[na->curr_addr_index ],
332 			sizeof(struct sockaddr_storage));
333 	}
334 	spin_unlock(&dlm_node_addrs_spin);
335 
336 	if (!na)
337 		return -EEXIST;
338 
339 	if (!na->addr_count)
340 		return -ENOENT;
341 
342 	if (sas_out)
343 		memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
344 
345 	if (!sa_out)
346 		return 0;
347 
348 	if (dlm_local_addr[0]->ss_family == AF_INET) {
349 		struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
350 		struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
351 		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
352 	} else {
353 		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
354 		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
355 		ret6->sin6_addr = in6->sin6_addr;
356 	}
357 
358 	return 0;
359 }
360 
361 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid)
362 {
363 	struct dlm_node_addr *na;
364 	int rv = -EEXIST;
365 	int addr_i;
366 
367 	spin_lock(&dlm_node_addrs_spin);
368 	list_for_each_entry(na, &dlm_node_addrs, list) {
369 		if (!na->addr_count)
370 			continue;
371 
372 		for (addr_i = 0; addr_i < na->addr_count; addr_i++) {
373 			if (addr_compare(na->addr[addr_i], addr)) {
374 				*nodeid = na->nodeid;
375 				rv = 0;
376 				goto unlock;
377 			}
378 		}
379 	}
380 unlock:
381 	spin_unlock(&dlm_node_addrs_spin);
382 	return rv;
383 }
384 
385 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
386 {
387 	struct sockaddr_storage *new_addr;
388 	struct dlm_node_addr *new_node, *na;
389 
390 	new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS);
391 	if (!new_node)
392 		return -ENOMEM;
393 
394 	new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS);
395 	if (!new_addr) {
396 		kfree(new_node);
397 		return -ENOMEM;
398 	}
399 
400 	memcpy(new_addr, addr, len);
401 
402 	spin_lock(&dlm_node_addrs_spin);
403 	na = find_node_addr(nodeid);
404 	if (!na) {
405 		new_node->nodeid = nodeid;
406 		new_node->addr[0] = new_addr;
407 		new_node->addr_count = 1;
408 		list_add(&new_node->list, &dlm_node_addrs);
409 		spin_unlock(&dlm_node_addrs_spin);
410 		return 0;
411 	}
412 
413 	if (na->addr_count >= DLM_MAX_ADDR_COUNT) {
414 		spin_unlock(&dlm_node_addrs_spin);
415 		kfree(new_addr);
416 		kfree(new_node);
417 		return -ENOSPC;
418 	}
419 
420 	na->addr[na->addr_count++] = new_addr;
421 	spin_unlock(&dlm_node_addrs_spin);
422 	kfree(new_node);
423 	return 0;
424 }
425 
426 /* Data available on socket or listen socket received a connect */
427 static void lowcomms_data_ready(struct sock *sk, int count_unused)
428 {
429 	struct connection *con = sock2con(sk);
430 	if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
431 		queue_work(recv_workqueue, &con->rwork);
432 }
433 
434 static void lowcomms_write_space(struct sock *sk)
435 {
436 	struct connection *con = sock2con(sk);
437 
438 	if (!con)
439 		return;
440 
441 	clear_bit(SOCK_NOSPACE, &con->sock->flags);
442 
443 	if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
444 		con->sock->sk->sk_write_pending--;
445 		clear_bit(SOCK_ASYNC_NOSPACE, &con->sock->flags);
446 	}
447 
448 	if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
449 		queue_work(send_workqueue, &con->swork);
450 }
451 
452 static inline void lowcomms_connect_sock(struct connection *con)
453 {
454 	if (test_bit(CF_CLOSE, &con->flags))
455 		return;
456 	if (!test_and_set_bit(CF_CONNECT_PENDING, &con->flags))
457 		queue_work(send_workqueue, &con->swork);
458 }
459 
460 static void lowcomms_state_change(struct sock *sk)
461 {
462 	if (sk->sk_state == TCP_ESTABLISHED)
463 		lowcomms_write_space(sk);
464 }
465 
466 int dlm_lowcomms_connect_node(int nodeid)
467 {
468 	struct connection *con;
469 
470 	/* with sctp there's no connecting without sending */
471 	if (dlm_config.ci_protocol != 0)
472 		return 0;
473 
474 	if (nodeid == dlm_our_nodeid())
475 		return 0;
476 
477 	con = nodeid2con(nodeid, GFP_NOFS);
478 	if (!con)
479 		return -ENOMEM;
480 	lowcomms_connect_sock(con);
481 	return 0;
482 }
483 
484 /* Make a socket active */
485 static void add_sock(struct socket *sock, struct connection *con)
486 {
487 	con->sock = sock;
488 
489 	/* Install a data_ready callback */
490 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
491 	con->sock->sk->sk_write_space = lowcomms_write_space;
492 	con->sock->sk->sk_state_change = lowcomms_state_change;
493 	con->sock->sk->sk_user_data = con;
494 	con->sock->sk->sk_allocation = GFP_NOFS;
495 }
496 
497 /* Add the port number to an IPv6 or 4 sockaddr and return the address
498    length */
499 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
500 			  int *addr_len)
501 {
502 	saddr->ss_family =  dlm_local_addr[0]->ss_family;
503 	if (saddr->ss_family == AF_INET) {
504 		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
505 		in4_addr->sin_port = cpu_to_be16(port);
506 		*addr_len = sizeof(struct sockaddr_in);
507 		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
508 	} else {
509 		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
510 		in6_addr->sin6_port = cpu_to_be16(port);
511 		*addr_len = sizeof(struct sockaddr_in6);
512 	}
513 	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
514 }
515 
516 /* Close a remote connection and tidy up */
517 static void close_connection(struct connection *con, bool and_other)
518 {
519 	mutex_lock(&con->sock_mutex);
520 
521 	if (con->sock) {
522 		sock_release(con->sock);
523 		con->sock = NULL;
524 	}
525 	if (con->othercon && and_other) {
526 		/* Will only re-enter once. */
527 		close_connection(con->othercon, false);
528 	}
529 	if (con->rx_page) {
530 		__free_page(con->rx_page);
531 		con->rx_page = NULL;
532 	}
533 
534 	con->retries = 0;
535 	mutex_unlock(&con->sock_mutex);
536 }
537 
538 /* We only send shutdown messages to nodes that are not part of the cluster */
539 static void sctp_send_shutdown(sctp_assoc_t associd)
540 {
541 	static char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
542 	struct msghdr outmessage;
543 	struct cmsghdr *cmsg;
544 	struct sctp_sndrcvinfo *sinfo;
545 	int ret;
546 	struct connection *con;
547 
548 	con = nodeid2con(0,0);
549 	BUG_ON(con == NULL);
550 
551 	outmessage.msg_name = NULL;
552 	outmessage.msg_namelen = 0;
553 	outmessage.msg_control = outcmsg;
554 	outmessage.msg_controllen = sizeof(outcmsg);
555 	outmessage.msg_flags = MSG_EOR;
556 
557 	cmsg = CMSG_FIRSTHDR(&outmessage);
558 	cmsg->cmsg_level = IPPROTO_SCTP;
559 	cmsg->cmsg_type = SCTP_SNDRCV;
560 	cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
561 	outmessage.msg_controllen = cmsg->cmsg_len;
562 	sinfo = CMSG_DATA(cmsg);
563 	memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
564 
565 	sinfo->sinfo_flags |= MSG_EOF;
566 	sinfo->sinfo_assoc_id = associd;
567 
568 	ret = kernel_sendmsg(con->sock, &outmessage, NULL, 0, 0);
569 
570 	if (ret != 0)
571 		log_print("send EOF to node failed: %d", ret);
572 }
573 
574 static void sctp_init_failed_foreach(struct connection *con)
575 {
576 
577 	/*
578 	 * Don't try to recover base con and handle race where the
579 	 * other node's assoc init creates a assoc and we get that
580 	 * notification, then we get a notification that our attempt
581 	 * failed due. This happens when we are still trying the primary
582 	 * address, but the other node has already tried secondary addrs
583 	 * and found one that worked.
584 	 */
585 	if (!con->nodeid || con->sctp_assoc)
586 		return;
587 
588 	log_print("Retrying SCTP association init for node %d\n", con->nodeid);
589 
590 	con->try_new_addr = true;
591 	con->sctp_assoc = 0;
592 	if (test_and_clear_bit(CF_INIT_PENDING, &con->flags)) {
593 		if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
594 			queue_work(send_workqueue, &con->swork);
595 	}
596 }
597 
598 /* INIT failed but we don't know which node...
599    restart INIT on all pending nodes */
600 static void sctp_init_failed(void)
601 {
602 	mutex_lock(&connections_lock);
603 
604 	foreach_conn(sctp_init_failed_foreach);
605 
606 	mutex_unlock(&connections_lock);
607 }
608 
609 static void retry_failed_sctp_send(struct connection *recv_con,
610 				   struct sctp_send_failed *sn_send_failed,
611 				   char *buf)
612 {
613 	int len = sn_send_failed->ssf_length - sizeof(struct sctp_send_failed);
614 	struct dlm_mhandle *mh;
615 	struct connection *con;
616 	char *retry_buf;
617 	int nodeid = sn_send_failed->ssf_info.sinfo_ppid;
618 
619 	log_print("Retry sending %d bytes to node id %d", len, nodeid);
620 
621 	con = nodeid2con(nodeid, 0);
622 	if (!con) {
623 		log_print("Could not look up con for nodeid %d\n",
624 			  nodeid);
625 		return;
626 	}
627 
628 	mh = dlm_lowcomms_get_buffer(nodeid, len, GFP_NOFS, &retry_buf);
629 	if (!mh) {
630 		log_print("Could not allocate buf for retry.");
631 		return;
632 	}
633 	memcpy(retry_buf, buf + sizeof(struct sctp_send_failed), len);
634 	dlm_lowcomms_commit_buffer(mh);
635 
636 	/*
637 	 * If we got a assoc changed event before the send failed event then
638 	 * we only need to retry the send.
639 	 */
640 	if (con->sctp_assoc) {
641 		if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
642 			queue_work(send_workqueue, &con->swork);
643 	} else
644 		sctp_init_failed_foreach(con);
645 }
646 
647 /* Something happened to an association */
648 static void process_sctp_notification(struct connection *con,
649 				      struct msghdr *msg, char *buf)
650 {
651 	union sctp_notification *sn = (union sctp_notification *)buf;
652 
653 	switch (sn->sn_header.sn_type) {
654 	case SCTP_SEND_FAILED:
655 		retry_failed_sctp_send(con, &sn->sn_send_failed, buf);
656 		break;
657 	case SCTP_ASSOC_CHANGE:
658 		switch (sn->sn_assoc_change.sac_state) {
659 		case SCTP_COMM_UP:
660 		case SCTP_RESTART:
661 		{
662 			/* Check that the new node is in the lockspace */
663 			struct sctp_prim prim;
664 			int nodeid;
665 			int prim_len, ret;
666 			int addr_len;
667 			struct connection *new_con;
668 
669 			/*
670 			 * We get this before any data for an association.
671 			 * We verify that the node is in the cluster and
672 			 * then peel off a socket for it.
673 			 */
674 			if ((int)sn->sn_assoc_change.sac_assoc_id <= 0) {
675 				log_print("COMM_UP for invalid assoc ID %d",
676 					 (int)sn->sn_assoc_change.sac_assoc_id);
677 				sctp_init_failed();
678 				return;
679 			}
680 			memset(&prim, 0, sizeof(struct sctp_prim));
681 			prim_len = sizeof(struct sctp_prim);
682 			prim.ssp_assoc_id = sn->sn_assoc_change.sac_assoc_id;
683 
684 			ret = kernel_getsockopt(con->sock,
685 						IPPROTO_SCTP,
686 						SCTP_PRIMARY_ADDR,
687 						(char*)&prim,
688 						&prim_len);
689 			if (ret < 0) {
690 				log_print("getsockopt/sctp_primary_addr on "
691 					  "new assoc %d failed : %d",
692 					  (int)sn->sn_assoc_change.sac_assoc_id,
693 					  ret);
694 
695 				/* Retry INIT later */
696 				new_con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
697 				if (new_con)
698 					clear_bit(CF_CONNECT_PENDING, &con->flags);
699 				return;
700 			}
701 			make_sockaddr(&prim.ssp_addr, 0, &addr_len);
702 			if (addr_to_nodeid(&prim.ssp_addr, &nodeid)) {
703 				unsigned char *b=(unsigned char *)&prim.ssp_addr;
704 				log_print("reject connect from unknown addr");
705 				print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
706 						     b, sizeof(struct sockaddr_storage));
707 				sctp_send_shutdown(prim.ssp_assoc_id);
708 				return;
709 			}
710 
711 			new_con = nodeid2con(nodeid, GFP_NOFS);
712 			if (!new_con)
713 				return;
714 
715 			/* Peel off a new sock */
716 			lock_sock(con->sock->sk);
717 			ret = sctp_do_peeloff(con->sock->sk,
718 				sn->sn_assoc_change.sac_assoc_id,
719 				&new_con->sock);
720 			release_sock(con->sock->sk);
721 			if (ret < 0) {
722 				log_print("Can't peel off a socket for "
723 					  "connection %d to node %d: err=%d",
724 					  (int)sn->sn_assoc_change.sac_assoc_id,
725 					  nodeid, ret);
726 				return;
727 			}
728 			add_sock(new_con->sock, new_con);
729 
730 			log_print("connecting to %d sctp association %d",
731 				 nodeid, (int)sn->sn_assoc_change.sac_assoc_id);
732 
733 			new_con->sctp_assoc = sn->sn_assoc_change.sac_assoc_id;
734 			new_con->try_new_addr = false;
735 			/* Send any pending writes */
736 			clear_bit(CF_CONNECT_PENDING, &new_con->flags);
737 			clear_bit(CF_INIT_PENDING, &new_con->flags);
738 			if (!test_and_set_bit(CF_WRITE_PENDING, &new_con->flags)) {
739 				queue_work(send_workqueue, &new_con->swork);
740 			}
741 			if (!test_and_set_bit(CF_READ_PENDING, &new_con->flags))
742 				queue_work(recv_workqueue, &new_con->rwork);
743 		}
744 		break;
745 
746 		case SCTP_COMM_LOST:
747 		case SCTP_SHUTDOWN_COMP:
748 		{
749 			con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
750 			if (con) {
751 				con->sctp_assoc = 0;
752 			}
753 		}
754 		break;
755 
756 		case SCTP_CANT_STR_ASSOC:
757 		{
758 			/* Will retry init when we get the send failed notification */
759 			log_print("Can't start SCTP association - retrying");
760 		}
761 		break;
762 
763 		default:
764 			log_print("unexpected SCTP assoc change id=%d state=%d",
765 				  (int)sn->sn_assoc_change.sac_assoc_id,
766 				  sn->sn_assoc_change.sac_state);
767 		}
768 	default:
769 		; /* fall through */
770 	}
771 }
772 
773 /* Data received from remote end */
774 static int receive_from_sock(struct connection *con)
775 {
776 	int ret = 0;
777 	struct msghdr msg = {};
778 	struct kvec iov[2];
779 	unsigned len;
780 	int r;
781 	int call_again_soon = 0;
782 	int nvec;
783 	char incmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
784 
785 	mutex_lock(&con->sock_mutex);
786 
787 	if (con->sock == NULL) {
788 		ret = -EAGAIN;
789 		goto out_close;
790 	}
791 
792 	if (con->rx_page == NULL) {
793 		/*
794 		 * This doesn't need to be atomic, but I think it should
795 		 * improve performance if it is.
796 		 */
797 		con->rx_page = alloc_page(GFP_ATOMIC);
798 		if (con->rx_page == NULL)
799 			goto out_resched;
800 		cbuf_init(&con->cb, PAGE_CACHE_SIZE);
801 	}
802 
803 	/* Only SCTP needs these really */
804 	memset(&incmsg, 0, sizeof(incmsg));
805 	msg.msg_control = incmsg;
806 	msg.msg_controllen = sizeof(incmsg);
807 
808 	/*
809 	 * iov[0] is the bit of the circular buffer between the current end
810 	 * point (cb.base + cb.len) and the end of the buffer.
811 	 */
812 	iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
813 	iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
814 	iov[1].iov_len = 0;
815 	nvec = 1;
816 
817 	/*
818 	 * iov[1] is the bit of the circular buffer between the start of the
819 	 * buffer and the start of the currently used section (cb.base)
820 	 */
821 	if (cbuf_data(&con->cb) >= con->cb.base) {
822 		iov[0].iov_len = PAGE_CACHE_SIZE - cbuf_data(&con->cb);
823 		iov[1].iov_len = con->cb.base;
824 		iov[1].iov_base = page_address(con->rx_page);
825 		nvec = 2;
826 	}
827 	len = iov[0].iov_len + iov[1].iov_len;
828 
829 	r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len,
830 			       MSG_DONTWAIT | MSG_NOSIGNAL);
831 	if (ret <= 0)
832 		goto out_close;
833 
834 	/* Process SCTP notifications */
835 	if (msg.msg_flags & MSG_NOTIFICATION) {
836 		msg.msg_control = incmsg;
837 		msg.msg_controllen = sizeof(incmsg);
838 
839 		process_sctp_notification(con, &msg,
840 				page_address(con->rx_page) + con->cb.base);
841 		mutex_unlock(&con->sock_mutex);
842 		return 0;
843 	}
844 	BUG_ON(con->nodeid == 0);
845 
846 	if (ret == len)
847 		call_again_soon = 1;
848 	cbuf_add(&con->cb, ret);
849 	ret = dlm_process_incoming_buffer(con->nodeid,
850 					  page_address(con->rx_page),
851 					  con->cb.base, con->cb.len,
852 					  PAGE_CACHE_SIZE);
853 	if (ret == -EBADMSG) {
854 		log_print("lowcomms: addr=%p, base=%u, len=%u, "
855 			  "iov_len=%u, iov_base[0]=%p, read=%d",
856 			  page_address(con->rx_page), con->cb.base, con->cb.len,
857 			  len, iov[0].iov_base, r);
858 	}
859 	if (ret < 0)
860 		goto out_close;
861 	cbuf_eat(&con->cb, ret);
862 
863 	if (cbuf_empty(&con->cb) && !call_again_soon) {
864 		__free_page(con->rx_page);
865 		con->rx_page = NULL;
866 	}
867 
868 	if (call_again_soon)
869 		goto out_resched;
870 	mutex_unlock(&con->sock_mutex);
871 	return 0;
872 
873 out_resched:
874 	if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
875 		queue_work(recv_workqueue, &con->rwork);
876 	mutex_unlock(&con->sock_mutex);
877 	return -EAGAIN;
878 
879 out_close:
880 	mutex_unlock(&con->sock_mutex);
881 	if (ret != -EAGAIN) {
882 		close_connection(con, false);
883 		/* Reconnect when there is something to send */
884 	}
885 	/* Don't return success if we really got EOF */
886 	if (ret == 0)
887 		ret = -EAGAIN;
888 
889 	return ret;
890 }
891 
892 /* Listening socket is busy, accept a connection */
893 static int tcp_accept_from_sock(struct connection *con)
894 {
895 	int result;
896 	struct sockaddr_storage peeraddr;
897 	struct socket *newsock;
898 	int len;
899 	int nodeid;
900 	struct connection *newcon;
901 	struct connection *addcon;
902 
903 	mutex_lock(&connections_lock);
904 	if (!dlm_allow_conn) {
905 		mutex_unlock(&connections_lock);
906 		return -1;
907 	}
908 	mutex_unlock(&connections_lock);
909 
910 	memset(&peeraddr, 0, sizeof(peeraddr));
911 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
912 				  IPPROTO_TCP, &newsock);
913 	if (result < 0)
914 		return -ENOMEM;
915 
916 	mutex_lock_nested(&con->sock_mutex, 0);
917 
918 	result = -ENOTCONN;
919 	if (con->sock == NULL)
920 		goto accept_err;
921 
922 	newsock->type = con->sock->type;
923 	newsock->ops = con->sock->ops;
924 
925 	result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK);
926 	if (result < 0)
927 		goto accept_err;
928 
929 	/* Get the connected socket's peer */
930 	memset(&peeraddr, 0, sizeof(peeraddr));
931 	if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
932 				  &len, 2)) {
933 		result = -ECONNABORTED;
934 		goto accept_err;
935 	}
936 
937 	/* Get the new node's NODEID */
938 	make_sockaddr(&peeraddr, 0, &len);
939 	if (addr_to_nodeid(&peeraddr, &nodeid)) {
940 		unsigned char *b=(unsigned char *)&peeraddr;
941 		log_print("connect from non cluster node");
942 		print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
943 				     b, sizeof(struct sockaddr_storage));
944 		sock_release(newsock);
945 		mutex_unlock(&con->sock_mutex);
946 		return -1;
947 	}
948 
949 	log_print("got connection from %d", nodeid);
950 
951 	/*  Check to see if we already have a connection to this node. This
952 	 *  could happen if the two nodes initiate a connection at roughly
953 	 *  the same time and the connections cross on the wire.
954 	 *  In this case we store the incoming one in "othercon"
955 	 */
956 	newcon = nodeid2con(nodeid, GFP_NOFS);
957 	if (!newcon) {
958 		result = -ENOMEM;
959 		goto accept_err;
960 	}
961 	mutex_lock_nested(&newcon->sock_mutex, 1);
962 	if (newcon->sock) {
963 		struct connection *othercon = newcon->othercon;
964 
965 		if (!othercon) {
966 			othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
967 			if (!othercon) {
968 				log_print("failed to allocate incoming socket");
969 				mutex_unlock(&newcon->sock_mutex);
970 				result = -ENOMEM;
971 				goto accept_err;
972 			}
973 			othercon->nodeid = nodeid;
974 			othercon->rx_action = receive_from_sock;
975 			mutex_init(&othercon->sock_mutex);
976 			INIT_WORK(&othercon->swork, process_send_sockets);
977 			INIT_WORK(&othercon->rwork, process_recv_sockets);
978 			set_bit(CF_IS_OTHERCON, &othercon->flags);
979 		}
980 		if (!othercon->sock) {
981 			newcon->othercon = othercon;
982 			othercon->sock = newsock;
983 			newsock->sk->sk_user_data = othercon;
984 			add_sock(newsock, othercon);
985 			addcon = othercon;
986 		}
987 		else {
988 			printk("Extra connection from node %d attempted\n", nodeid);
989 			result = -EAGAIN;
990 			mutex_unlock(&newcon->sock_mutex);
991 			goto accept_err;
992 		}
993 	}
994 	else {
995 		newsock->sk->sk_user_data = newcon;
996 		newcon->rx_action = receive_from_sock;
997 		add_sock(newsock, newcon);
998 		addcon = newcon;
999 	}
1000 
1001 	mutex_unlock(&newcon->sock_mutex);
1002 
1003 	/*
1004 	 * Add it to the active queue in case we got data
1005 	 * between processing the accept adding the socket
1006 	 * to the read_sockets list
1007 	 */
1008 	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
1009 		queue_work(recv_workqueue, &addcon->rwork);
1010 	mutex_unlock(&con->sock_mutex);
1011 
1012 	return 0;
1013 
1014 accept_err:
1015 	mutex_unlock(&con->sock_mutex);
1016 	sock_release(newsock);
1017 
1018 	if (result != -EAGAIN)
1019 		log_print("error accepting connection from node: %d", result);
1020 	return result;
1021 }
1022 
1023 static void free_entry(struct writequeue_entry *e)
1024 {
1025 	__free_page(e->page);
1026 	kfree(e);
1027 }
1028 
1029 /*
1030  * writequeue_entry_complete - try to delete and free write queue entry
1031  * @e: write queue entry to try to delete
1032  * @completed: bytes completed
1033  *
1034  * writequeue_lock must be held.
1035  */
1036 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
1037 {
1038 	e->offset += completed;
1039 	e->len -= completed;
1040 
1041 	if (e->len == 0 && e->users == 0) {
1042 		list_del(&e->list);
1043 		free_entry(e);
1044 	}
1045 }
1046 
1047 /* Initiate an SCTP association.
1048    This is a special case of send_to_sock() in that we don't yet have a
1049    peeled-off socket for this association, so we use the listening socket
1050    and add the primary IP address of the remote node.
1051  */
1052 static void sctp_init_assoc(struct connection *con)
1053 {
1054 	struct sockaddr_storage rem_addr;
1055 	char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
1056 	struct msghdr outmessage;
1057 	struct cmsghdr *cmsg;
1058 	struct sctp_sndrcvinfo *sinfo;
1059 	struct connection *base_con;
1060 	struct writequeue_entry *e;
1061 	int len, offset;
1062 	int ret;
1063 	int addrlen;
1064 	struct kvec iov[1];
1065 
1066 	mutex_lock(&con->sock_mutex);
1067 	if (test_and_set_bit(CF_INIT_PENDING, &con->flags))
1068 		goto unlock;
1069 
1070 	if (nodeid_to_addr(con->nodeid, NULL, (struct sockaddr *)&rem_addr,
1071 			   con->try_new_addr)) {
1072 		log_print("no address for nodeid %d", con->nodeid);
1073 		goto unlock;
1074 	}
1075 	base_con = nodeid2con(0, 0);
1076 	BUG_ON(base_con == NULL);
1077 
1078 	make_sockaddr(&rem_addr, dlm_config.ci_tcp_port, &addrlen);
1079 
1080 	outmessage.msg_name = &rem_addr;
1081 	outmessage.msg_namelen = addrlen;
1082 	outmessage.msg_control = outcmsg;
1083 	outmessage.msg_controllen = sizeof(outcmsg);
1084 	outmessage.msg_flags = MSG_EOR;
1085 
1086 	spin_lock(&con->writequeue_lock);
1087 
1088 	if (list_empty(&con->writequeue)) {
1089 		spin_unlock(&con->writequeue_lock);
1090 		log_print("writequeue empty for nodeid %d", con->nodeid);
1091 		goto unlock;
1092 	}
1093 
1094 	e = list_first_entry(&con->writequeue, struct writequeue_entry, list);
1095 	len = e->len;
1096 	offset = e->offset;
1097 
1098 	/* Send the first block off the write queue */
1099 	iov[0].iov_base = page_address(e->page)+offset;
1100 	iov[0].iov_len = len;
1101 	spin_unlock(&con->writequeue_lock);
1102 
1103 	if (rem_addr.ss_family == AF_INET) {
1104 		struct sockaddr_in *sin = (struct sockaddr_in *)&rem_addr;
1105 		log_print("Trying to connect to %pI4", &sin->sin_addr.s_addr);
1106 	} else {
1107 		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&rem_addr;
1108 		log_print("Trying to connect to %pI6", &sin6->sin6_addr);
1109 	}
1110 
1111 	cmsg = CMSG_FIRSTHDR(&outmessage);
1112 	cmsg->cmsg_level = IPPROTO_SCTP;
1113 	cmsg->cmsg_type = SCTP_SNDRCV;
1114 	cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
1115 	sinfo = CMSG_DATA(cmsg);
1116 	memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
1117 	sinfo->sinfo_ppid = cpu_to_le32(con->nodeid);
1118 	outmessage.msg_controllen = cmsg->cmsg_len;
1119 	sinfo->sinfo_flags |= SCTP_ADDR_OVER;
1120 
1121 	ret = kernel_sendmsg(base_con->sock, &outmessage, iov, 1, len);
1122 	if (ret < 0) {
1123 		log_print("Send first packet to node %d failed: %d",
1124 			  con->nodeid, ret);
1125 
1126 		/* Try again later */
1127 		clear_bit(CF_CONNECT_PENDING, &con->flags);
1128 		clear_bit(CF_INIT_PENDING, &con->flags);
1129 	}
1130 	else {
1131 		spin_lock(&con->writequeue_lock);
1132 		writequeue_entry_complete(e, ret);
1133 		spin_unlock(&con->writequeue_lock);
1134 	}
1135 
1136 unlock:
1137 	mutex_unlock(&con->sock_mutex);
1138 }
1139 
1140 /* Connect a new socket to its peer */
1141 static void tcp_connect_to_sock(struct connection *con)
1142 {
1143 	struct sockaddr_storage saddr, src_addr;
1144 	int addr_len;
1145 	struct socket *sock = NULL;
1146 	int one = 1;
1147 	int result;
1148 
1149 	if (con->nodeid == 0) {
1150 		log_print("attempt to connect sock 0 foiled");
1151 		return;
1152 	}
1153 
1154 	mutex_lock(&con->sock_mutex);
1155 	if (con->retries++ > MAX_CONNECT_RETRIES)
1156 		goto out;
1157 
1158 	/* Some odd races can cause double-connects, ignore them */
1159 	if (con->sock)
1160 		goto out;
1161 
1162 	/* Create a socket to communicate with */
1163 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
1164 				  IPPROTO_TCP, &sock);
1165 	if (result < 0)
1166 		goto out_err;
1167 
1168 	memset(&saddr, 0, sizeof(saddr));
1169 	result = nodeid_to_addr(con->nodeid, &saddr, NULL, false);
1170 	if (result < 0) {
1171 		log_print("no address for nodeid %d", con->nodeid);
1172 		goto out_err;
1173 	}
1174 
1175 	sock->sk->sk_user_data = con;
1176 	con->rx_action = receive_from_sock;
1177 	con->connect_action = tcp_connect_to_sock;
1178 	add_sock(sock, con);
1179 
1180 	/* Bind to our cluster-known address connecting to avoid
1181 	   routing problems */
1182 	memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
1183 	make_sockaddr(&src_addr, 0, &addr_len);
1184 	result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
1185 				 addr_len);
1186 	if (result < 0) {
1187 		log_print("could not bind for connect: %d", result);
1188 		/* This *may* not indicate a critical error */
1189 	}
1190 
1191 	make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
1192 
1193 	log_print("connecting to %d", con->nodeid);
1194 
1195 	/* Turn off Nagle's algorithm */
1196 	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1197 			  sizeof(one));
1198 
1199 	result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
1200 				   O_NONBLOCK);
1201 	if (result == -EINPROGRESS)
1202 		result = 0;
1203 	if (result == 0)
1204 		goto out;
1205 
1206 out_err:
1207 	if (con->sock) {
1208 		sock_release(con->sock);
1209 		con->sock = NULL;
1210 	} else if (sock) {
1211 		sock_release(sock);
1212 	}
1213 	/*
1214 	 * Some errors are fatal and this list might need adjusting. For other
1215 	 * errors we try again until the max number of retries is reached.
1216 	 */
1217 	if (result != -EHOSTUNREACH &&
1218 	    result != -ENETUNREACH &&
1219 	    result != -ENETDOWN &&
1220 	    result != -EINVAL &&
1221 	    result != -EPROTONOSUPPORT) {
1222 		log_print("connect %d try %d error %d", con->nodeid,
1223 			  con->retries, result);
1224 		mutex_unlock(&con->sock_mutex);
1225 		msleep(1000);
1226 		lowcomms_connect_sock(con);
1227 		return;
1228 	}
1229 out:
1230 	mutex_unlock(&con->sock_mutex);
1231 	return;
1232 }
1233 
1234 static struct socket *tcp_create_listen_sock(struct connection *con,
1235 					     struct sockaddr_storage *saddr)
1236 {
1237 	struct socket *sock = NULL;
1238 	int result = 0;
1239 	int one = 1;
1240 	int addr_len;
1241 
1242 	if (dlm_local_addr[0]->ss_family == AF_INET)
1243 		addr_len = sizeof(struct sockaddr_in);
1244 	else
1245 		addr_len = sizeof(struct sockaddr_in6);
1246 
1247 	/* Create a socket to communicate with */
1248 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
1249 				  IPPROTO_TCP, &sock);
1250 	if (result < 0) {
1251 		log_print("Can't create listening comms socket");
1252 		goto create_out;
1253 	}
1254 
1255 	/* Turn off Nagle's algorithm */
1256 	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1257 			  sizeof(one));
1258 
1259 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
1260 				   (char *)&one, sizeof(one));
1261 
1262 	if (result < 0) {
1263 		log_print("Failed to set SO_REUSEADDR on socket: %d", result);
1264 	}
1265 	con->rx_action = tcp_accept_from_sock;
1266 	con->connect_action = tcp_connect_to_sock;
1267 
1268 	/* Bind to our port */
1269 	make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1270 	result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1271 	if (result < 0) {
1272 		log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1273 		sock_release(sock);
1274 		sock = NULL;
1275 		con->sock = NULL;
1276 		goto create_out;
1277 	}
1278 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
1279 				 (char *)&one, sizeof(one));
1280 	if (result < 0) {
1281 		log_print("Set keepalive failed: %d", result);
1282 	}
1283 
1284 	result = sock->ops->listen(sock, 5);
1285 	if (result < 0) {
1286 		log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1287 		sock_release(sock);
1288 		sock = NULL;
1289 		goto create_out;
1290 	}
1291 
1292 create_out:
1293 	return sock;
1294 }
1295 
1296 /* Get local addresses */
1297 static void init_local(void)
1298 {
1299 	struct sockaddr_storage sas, *addr;
1300 	int i;
1301 
1302 	dlm_local_count = 0;
1303 	for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1304 		if (dlm_our_addr(&sas, i))
1305 			break;
1306 
1307 		addr = kmalloc(sizeof(*addr), GFP_NOFS);
1308 		if (!addr)
1309 			break;
1310 		memcpy(addr, &sas, sizeof(*addr));
1311 		dlm_local_addr[dlm_local_count++] = addr;
1312 	}
1313 }
1314 
1315 /* Bind to an IP address. SCTP allows multiple address so it can do
1316    multi-homing */
1317 static int add_sctp_bind_addr(struct connection *sctp_con,
1318 			      struct sockaddr_storage *addr,
1319 			      int addr_len, int num)
1320 {
1321 	int result = 0;
1322 
1323 	if (num == 1)
1324 		result = kernel_bind(sctp_con->sock,
1325 				     (struct sockaddr *) addr,
1326 				     addr_len);
1327 	else
1328 		result = kernel_setsockopt(sctp_con->sock, SOL_SCTP,
1329 					   SCTP_SOCKOPT_BINDX_ADD,
1330 					   (char *)addr, addr_len);
1331 
1332 	if (result < 0)
1333 		log_print("Can't bind to port %d addr number %d",
1334 			  dlm_config.ci_tcp_port, num);
1335 
1336 	return result;
1337 }
1338 
1339 /* Initialise SCTP socket and bind to all interfaces */
1340 static int sctp_listen_for_all(void)
1341 {
1342 	struct socket *sock = NULL;
1343 	struct sockaddr_storage localaddr;
1344 	struct sctp_event_subscribe subscribe;
1345 	int result = -EINVAL, num = 1, i, addr_len;
1346 	struct connection *con = nodeid2con(0, GFP_NOFS);
1347 	int bufsize = NEEDED_RMEM;
1348 	int one = 1;
1349 
1350 	if (!con)
1351 		return -ENOMEM;
1352 
1353 	log_print("Using SCTP for communications");
1354 
1355 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_SEQPACKET,
1356 				  IPPROTO_SCTP, &sock);
1357 	if (result < 0) {
1358 		log_print("Can't create comms socket, check SCTP is loaded");
1359 		goto out;
1360 	}
1361 
1362 	/* Listen for events */
1363 	memset(&subscribe, 0, sizeof(subscribe));
1364 	subscribe.sctp_data_io_event = 1;
1365 	subscribe.sctp_association_event = 1;
1366 	subscribe.sctp_send_failure_event = 1;
1367 	subscribe.sctp_shutdown_event = 1;
1368 	subscribe.sctp_partial_delivery_event = 1;
1369 
1370 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
1371 				 (char *)&bufsize, sizeof(bufsize));
1372 	if (result)
1373 		log_print("Error increasing buffer space on socket %d", result);
1374 
1375 	result = kernel_setsockopt(sock, SOL_SCTP, SCTP_EVENTS,
1376 				   (char *)&subscribe, sizeof(subscribe));
1377 	if (result < 0) {
1378 		log_print("Failed to set SCTP_EVENTS on socket: result=%d",
1379 			  result);
1380 		goto create_delsock;
1381 	}
1382 
1383 	result = kernel_setsockopt(sock, SOL_SCTP, SCTP_NODELAY, (char *)&one,
1384 				   sizeof(one));
1385 	if (result < 0)
1386 		log_print("Could not set SCTP NODELAY error %d\n", result);
1387 
1388 	/* Init con struct */
1389 	sock->sk->sk_user_data = con;
1390 	con->sock = sock;
1391 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
1392 	con->rx_action = receive_from_sock;
1393 	con->connect_action = sctp_init_assoc;
1394 
1395 	/* Bind to all interfaces. */
1396 	for (i = 0; i < dlm_local_count; i++) {
1397 		memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
1398 		make_sockaddr(&localaddr, dlm_config.ci_tcp_port, &addr_len);
1399 
1400 		result = add_sctp_bind_addr(con, &localaddr, addr_len, num);
1401 		if (result)
1402 			goto create_delsock;
1403 		++num;
1404 	}
1405 
1406 	result = sock->ops->listen(sock, 5);
1407 	if (result < 0) {
1408 		log_print("Can't set socket listening");
1409 		goto create_delsock;
1410 	}
1411 
1412 	return 0;
1413 
1414 create_delsock:
1415 	sock_release(sock);
1416 	con->sock = NULL;
1417 out:
1418 	return result;
1419 }
1420 
1421 static int tcp_listen_for_all(void)
1422 {
1423 	struct socket *sock = NULL;
1424 	struct connection *con = nodeid2con(0, GFP_NOFS);
1425 	int result = -EINVAL;
1426 
1427 	if (!con)
1428 		return -ENOMEM;
1429 
1430 	/* We don't support multi-homed hosts */
1431 	if (dlm_local_addr[1] != NULL) {
1432 		log_print("TCP protocol can't handle multi-homed hosts, "
1433 			  "try SCTP");
1434 		return -EINVAL;
1435 	}
1436 
1437 	log_print("Using TCP for communications");
1438 
1439 	sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1440 	if (sock) {
1441 		add_sock(sock, con);
1442 		result = 0;
1443 	}
1444 	else {
1445 		result = -EADDRINUSE;
1446 	}
1447 
1448 	return result;
1449 }
1450 
1451 
1452 
1453 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1454 						     gfp_t allocation)
1455 {
1456 	struct writequeue_entry *entry;
1457 
1458 	entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1459 	if (!entry)
1460 		return NULL;
1461 
1462 	entry->page = alloc_page(allocation);
1463 	if (!entry->page) {
1464 		kfree(entry);
1465 		return NULL;
1466 	}
1467 
1468 	entry->offset = 0;
1469 	entry->len = 0;
1470 	entry->end = 0;
1471 	entry->users = 0;
1472 	entry->con = con;
1473 
1474 	return entry;
1475 }
1476 
1477 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1478 {
1479 	struct connection *con;
1480 	struct writequeue_entry *e;
1481 	int offset = 0;
1482 
1483 	con = nodeid2con(nodeid, allocation);
1484 	if (!con)
1485 		return NULL;
1486 
1487 	spin_lock(&con->writequeue_lock);
1488 	e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1489 	if ((&e->list == &con->writequeue) ||
1490 	    (PAGE_CACHE_SIZE - e->end < len)) {
1491 		e = NULL;
1492 	} else {
1493 		offset = e->end;
1494 		e->end += len;
1495 		e->users++;
1496 	}
1497 	spin_unlock(&con->writequeue_lock);
1498 
1499 	if (e) {
1500 	got_one:
1501 		*ppc = page_address(e->page) + offset;
1502 		return e;
1503 	}
1504 
1505 	e = new_writequeue_entry(con, allocation);
1506 	if (e) {
1507 		spin_lock(&con->writequeue_lock);
1508 		offset = e->end;
1509 		e->end += len;
1510 		e->users++;
1511 		list_add_tail(&e->list, &con->writequeue);
1512 		spin_unlock(&con->writequeue_lock);
1513 		goto got_one;
1514 	}
1515 	return NULL;
1516 }
1517 
1518 void dlm_lowcomms_commit_buffer(void *mh)
1519 {
1520 	struct writequeue_entry *e = (struct writequeue_entry *)mh;
1521 	struct connection *con = e->con;
1522 	int users;
1523 
1524 	spin_lock(&con->writequeue_lock);
1525 	users = --e->users;
1526 	if (users)
1527 		goto out;
1528 	e->len = e->end - e->offset;
1529 	spin_unlock(&con->writequeue_lock);
1530 
1531 	if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
1532 		queue_work(send_workqueue, &con->swork);
1533 	}
1534 	return;
1535 
1536 out:
1537 	spin_unlock(&con->writequeue_lock);
1538 	return;
1539 }
1540 
1541 /* Send a message */
1542 static void send_to_sock(struct connection *con)
1543 {
1544 	int ret = 0;
1545 	const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1546 	struct writequeue_entry *e;
1547 	int len, offset;
1548 	int count = 0;
1549 
1550 	mutex_lock(&con->sock_mutex);
1551 	if (con->sock == NULL)
1552 		goto out_connect;
1553 
1554 	spin_lock(&con->writequeue_lock);
1555 	for (;;) {
1556 		e = list_entry(con->writequeue.next, struct writequeue_entry,
1557 			       list);
1558 		if ((struct list_head *) e == &con->writequeue)
1559 			break;
1560 
1561 		len = e->len;
1562 		offset = e->offset;
1563 		BUG_ON(len == 0 && e->users == 0);
1564 		spin_unlock(&con->writequeue_lock);
1565 
1566 		ret = 0;
1567 		if (len) {
1568 			ret = kernel_sendpage(con->sock, e->page, offset, len,
1569 					      msg_flags);
1570 			if (ret == -EAGAIN || ret == 0) {
1571 				if (ret == -EAGAIN &&
1572 				    test_bit(SOCK_ASYNC_NOSPACE, &con->sock->flags) &&
1573 				    !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1574 					/* Notify TCP that we're limited by the
1575 					 * application window size.
1576 					 */
1577 					set_bit(SOCK_NOSPACE, &con->sock->flags);
1578 					con->sock->sk->sk_write_pending++;
1579 				}
1580 				cond_resched();
1581 				goto out;
1582 			} else if (ret < 0)
1583 				goto send_error;
1584 		}
1585 
1586 		/* Don't starve people filling buffers */
1587 		if (++count >= MAX_SEND_MSG_COUNT) {
1588 			cond_resched();
1589 			count = 0;
1590 		}
1591 
1592 		spin_lock(&con->writequeue_lock);
1593 		writequeue_entry_complete(e, ret);
1594 	}
1595 	spin_unlock(&con->writequeue_lock);
1596 out:
1597 	mutex_unlock(&con->sock_mutex);
1598 	return;
1599 
1600 send_error:
1601 	mutex_unlock(&con->sock_mutex);
1602 	close_connection(con, false);
1603 	lowcomms_connect_sock(con);
1604 	return;
1605 
1606 out_connect:
1607 	mutex_unlock(&con->sock_mutex);
1608 	if (!test_bit(CF_INIT_PENDING, &con->flags))
1609 		lowcomms_connect_sock(con);
1610 }
1611 
1612 static void clean_one_writequeue(struct connection *con)
1613 {
1614 	struct writequeue_entry *e, *safe;
1615 
1616 	spin_lock(&con->writequeue_lock);
1617 	list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1618 		list_del(&e->list);
1619 		free_entry(e);
1620 	}
1621 	spin_unlock(&con->writequeue_lock);
1622 }
1623 
1624 /* Called from recovery when it knows that a node has
1625    left the cluster */
1626 int dlm_lowcomms_close(int nodeid)
1627 {
1628 	struct connection *con;
1629 	struct dlm_node_addr *na;
1630 
1631 	log_print("closing connection to node %d", nodeid);
1632 	con = nodeid2con(nodeid, 0);
1633 	if (con) {
1634 		clear_bit(CF_CONNECT_PENDING, &con->flags);
1635 		clear_bit(CF_WRITE_PENDING, &con->flags);
1636 		set_bit(CF_CLOSE, &con->flags);
1637 		if (cancel_work_sync(&con->swork))
1638 			log_print("canceled swork for node %d", nodeid);
1639 		if (cancel_work_sync(&con->rwork))
1640 			log_print("canceled rwork for node %d", nodeid);
1641 		clean_one_writequeue(con);
1642 		close_connection(con, true);
1643 	}
1644 
1645 	spin_lock(&dlm_node_addrs_spin);
1646 	na = find_node_addr(nodeid);
1647 	if (na) {
1648 		list_del(&na->list);
1649 		while (na->addr_count--)
1650 			kfree(na->addr[na->addr_count]);
1651 		kfree(na);
1652 	}
1653 	spin_unlock(&dlm_node_addrs_spin);
1654 
1655 	return 0;
1656 }
1657 
1658 /* Receive workqueue function */
1659 static void process_recv_sockets(struct work_struct *work)
1660 {
1661 	struct connection *con = container_of(work, struct connection, rwork);
1662 	int err;
1663 
1664 	clear_bit(CF_READ_PENDING, &con->flags);
1665 	do {
1666 		err = con->rx_action(con);
1667 	} while (!err);
1668 }
1669 
1670 /* Send workqueue function */
1671 static void process_send_sockets(struct work_struct *work)
1672 {
1673 	struct connection *con = container_of(work, struct connection, swork);
1674 
1675 	if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
1676 		con->connect_action(con);
1677 		set_bit(CF_WRITE_PENDING, &con->flags);
1678 	}
1679 	if (test_and_clear_bit(CF_WRITE_PENDING, &con->flags))
1680 		send_to_sock(con);
1681 }
1682 
1683 
1684 /* Discard all entries on the write queues */
1685 static void clean_writequeues(void)
1686 {
1687 	foreach_conn(clean_one_writequeue);
1688 }
1689 
1690 static void work_stop(void)
1691 {
1692 	destroy_workqueue(recv_workqueue);
1693 	destroy_workqueue(send_workqueue);
1694 }
1695 
1696 static int work_start(void)
1697 {
1698 	recv_workqueue = alloc_workqueue("dlm_recv",
1699 					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1700 	if (!recv_workqueue) {
1701 		log_print("can't start dlm_recv");
1702 		return -ENOMEM;
1703 	}
1704 
1705 	send_workqueue = alloc_workqueue("dlm_send",
1706 					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1707 	if (!send_workqueue) {
1708 		log_print("can't start dlm_send");
1709 		destroy_workqueue(recv_workqueue);
1710 		return -ENOMEM;
1711 	}
1712 
1713 	return 0;
1714 }
1715 
1716 static void stop_conn(struct connection *con)
1717 {
1718 	con->flags |= 0x0F;
1719 	if (con->sock && con->sock->sk)
1720 		con->sock->sk->sk_user_data = NULL;
1721 }
1722 
1723 static void free_conn(struct connection *con)
1724 {
1725 	close_connection(con, true);
1726 	if (con->othercon)
1727 		kmem_cache_free(con_cache, con->othercon);
1728 	hlist_del(&con->list);
1729 	kmem_cache_free(con_cache, con);
1730 }
1731 
1732 void dlm_lowcomms_stop(void)
1733 {
1734 	/* Set all the flags to prevent any
1735 	   socket activity.
1736 	*/
1737 	mutex_lock(&connections_lock);
1738 	dlm_allow_conn = 0;
1739 	foreach_conn(stop_conn);
1740 	mutex_unlock(&connections_lock);
1741 
1742 	work_stop();
1743 
1744 	mutex_lock(&connections_lock);
1745 	clean_writequeues();
1746 
1747 	foreach_conn(free_conn);
1748 
1749 	mutex_unlock(&connections_lock);
1750 	kmem_cache_destroy(con_cache);
1751 }
1752 
1753 int dlm_lowcomms_start(void)
1754 {
1755 	int error = -EINVAL;
1756 	struct connection *con;
1757 	int i;
1758 
1759 	for (i = 0; i < CONN_HASH_SIZE; i++)
1760 		INIT_HLIST_HEAD(&connection_hash[i]);
1761 
1762 	init_local();
1763 	if (!dlm_local_count) {
1764 		error = -ENOTCONN;
1765 		log_print("no local IP address has been set");
1766 		goto fail;
1767 	}
1768 
1769 	error = -ENOMEM;
1770 	con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1771 				      __alignof__(struct connection), 0,
1772 				      NULL);
1773 	if (!con_cache)
1774 		goto fail;
1775 
1776 	error = work_start();
1777 	if (error)
1778 		goto fail_destroy;
1779 
1780 	dlm_allow_conn = 1;
1781 
1782 	/* Start listening */
1783 	if (dlm_config.ci_protocol == 0)
1784 		error = tcp_listen_for_all();
1785 	else
1786 		error = sctp_listen_for_all();
1787 	if (error)
1788 		goto fail_unlisten;
1789 
1790 	return 0;
1791 
1792 fail_unlisten:
1793 	dlm_allow_conn = 0;
1794 	con = nodeid2con(0,0);
1795 	if (con) {
1796 		close_connection(con, false);
1797 		kmem_cache_free(con_cache, con);
1798 	}
1799 fail_destroy:
1800 	kmem_cache_destroy(con_cache);
1801 fail:
1802 	return error;
1803 }
1804 
1805 void dlm_lowcomms_exit(void)
1806 {
1807 	struct dlm_node_addr *na, *safe;
1808 
1809 	spin_lock(&dlm_node_addrs_spin);
1810 	list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) {
1811 		list_del(&na->list);
1812 		while (na->addr_count--)
1813 			kfree(na->addr[na->addr_count]);
1814 		kfree(na);
1815 	}
1816 	spin_unlock(&dlm_node_addrs_spin);
1817 }
1818