1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 *******************************************************************************
4 **
5 ** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
6 ** Copyright (C) 2004-2009 Red Hat, Inc. All rights reserved.
7 **
8 **
9 *******************************************************************************
10 ******************************************************************************/
11
12 /*
13 * lowcomms.c
14 *
15 * This is the "low-level" comms layer.
16 *
17 * It is responsible for sending/receiving messages
18 * from other nodes in the cluster.
19 *
20 * Cluster nodes are referred to by their nodeids. nodeids are
21 * simply 32 bit numbers to the locking module - if they need to
22 * be expanded for the cluster infrastructure then that is its
23 * responsibility. It is this layer's
24 * responsibility to resolve these into IP address or
25 * whatever it needs for inter-node communication.
26 *
27 * The comms level is two kernel threads that deal mainly with
28 * the receiving of messages from other nodes and passing them
29 * up to the mid-level comms layer (which understands the
30 * message format) for execution by the locking core, and
31 * a send thread which does all the setting up of connections
32 * to remote nodes and the sending of data. Threads are not allowed
33 * to send their own data because it may cause them to wait in times
34 * of high load. Also, this way, the sending thread can collect together
35 * messages bound for one node and send them in one block.
36 *
37 * lowcomms will choose to use either TCP or SCTP as its transport layer
38 * depending on the configuration variable 'protocol'. This should be set
39 * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
40 * cluster-wide mechanism as it must be the same on all nodes of the cluster
41 * for the DLM to function.
42 *
43 */
44
45 #include <asm/ioctls.h>
46 #include <net/sock.h>
47 #include <net/tcp.h>
48 #include <linux/pagemap.h>
49 #include <linux/file.h>
50 #include <linux/mutex.h>
51 #include <linux/sctp.h>
52 #include <linux/slab.h>
53 #include <net/sctp/sctp.h>
54 #include <net/ipv6.h>
55
56 #include <trace/events/dlm.h>
57 #include <trace/events/sock.h>
58
59 #include "dlm_internal.h"
60 #include "lowcomms.h"
61 #include "midcomms.h"
62 #include "memory.h"
63 #include "config.h"
64
65 #define DLM_SHUTDOWN_WAIT_TIMEOUT msecs_to_jiffies(5000)
66 #define NEEDED_RMEM (4*1024*1024)
67
68 struct connection {
69 struct socket *sock; /* NULL if not connected */
70 uint32_t nodeid; /* So we know who we are in the list */
71 /* this semaphore is used to allow parallel recv/send in read
72 * lock mode. When we release a sock we need to held the write lock.
73 *
74 * However this is locking code and not nice. When we remove the
75 * othercon handling we can look into other mechanism to synchronize
76 * io handling to call sock_release() at the right time.
77 */
78 struct rw_semaphore sock_lock;
79 unsigned long flags;
80 #define CF_APP_LIMITED 0
81 #define CF_RECV_PENDING 1
82 #define CF_SEND_PENDING 2
83 #define CF_RECV_INTR 3
84 #define CF_IO_STOP 4
85 #define CF_IS_OTHERCON 5
86 struct list_head writequeue; /* List of outgoing writequeue_entries */
87 spinlock_t writequeue_lock;
88 int retries;
89 struct hlist_node list;
90 /* due some connect()/accept() races we currently have this cross over
91 * connection attempt second connection for one node.
92 *
93 * There is a solution to avoid the race by introducing a connect
94 * rule as e.g. our_nodeid > nodeid_to_connect who is allowed to
95 * connect. Otherside can connect but will only be considered that
96 * the other side wants to have a reconnect.
97 *
98 * However changing to this behaviour will break backwards compatible.
99 * In a DLM protocol major version upgrade we should remove this!
100 */
101 struct connection *othercon;
102 struct work_struct rwork; /* receive worker */
103 struct work_struct swork; /* send worker */
104 wait_queue_head_t shutdown_wait;
105 unsigned char rx_leftover_buf[DLM_MAX_SOCKET_BUFSIZE];
106 int rx_leftover;
107 int mark;
108 int addr_count;
109 int curr_addr_index;
110 struct sockaddr_storage addr[DLM_MAX_ADDR_COUNT];
111 spinlock_t addrs_lock;
112 struct rcu_head rcu;
113 };
114 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
115
116 struct listen_connection {
117 struct socket *sock;
118 struct work_struct rwork;
119 };
120
121 #define DLM_WQ_REMAIN_BYTES(e) (PAGE_SIZE - e->end)
122 #define DLM_WQ_LENGTH_BYTES(e) (e->end - e->offset)
123
124 /* An entry waiting to be sent */
125 struct writequeue_entry {
126 struct list_head list;
127 struct page *page;
128 int offset;
129 int len;
130 int end;
131 int users;
132 bool dirty;
133 struct connection *con;
134 struct list_head msgs;
135 struct kref ref;
136 };
137
138 struct dlm_msg {
139 struct writequeue_entry *entry;
140 struct dlm_msg *orig_msg;
141 bool retransmit;
142 void *ppc;
143 int len;
144 int idx; /* new()/commit() idx exchange */
145
146 struct list_head list;
147 struct kref ref;
148 };
149
150 struct processqueue_entry {
151 unsigned char *buf;
152 int nodeid;
153 int buflen;
154
155 struct list_head list;
156 };
157
158 struct dlm_proto_ops {
159 bool try_new_addr;
160 const char *name;
161 int proto;
162
163 int (*connect)(struct connection *con, struct socket *sock,
164 struct sockaddr *addr, int addr_len);
165 void (*sockopts)(struct socket *sock);
166 int (*bind)(struct socket *sock);
167 int (*listen_validate)(void);
168 void (*listen_sockopts)(struct socket *sock);
169 int (*listen_bind)(struct socket *sock);
170 };
171
172 static struct listen_sock_callbacks {
173 void (*sk_error_report)(struct sock *);
174 void (*sk_data_ready)(struct sock *);
175 void (*sk_state_change)(struct sock *);
176 void (*sk_write_space)(struct sock *);
177 } listen_sock;
178
179 static struct listen_connection listen_con;
180 static struct sockaddr_storage dlm_local_addr[DLM_MAX_ADDR_COUNT];
181 static int dlm_local_count;
182
183 /* Work queues */
184 static struct workqueue_struct *io_workqueue;
185 static struct workqueue_struct *process_workqueue;
186
187 static struct hlist_head connection_hash[CONN_HASH_SIZE];
188 static DEFINE_SPINLOCK(connections_lock);
189 DEFINE_STATIC_SRCU(connections_srcu);
190
191 static const struct dlm_proto_ops *dlm_proto_ops;
192
193 #define DLM_IO_SUCCESS 0
194 #define DLM_IO_END 1
195 #define DLM_IO_EOF 2
196 #define DLM_IO_RESCHED 3
197
198 static void process_recv_sockets(struct work_struct *work);
199 static void process_send_sockets(struct work_struct *work);
200 static void process_dlm_messages(struct work_struct *work);
201
202 static DECLARE_WORK(process_work, process_dlm_messages);
203 static DEFINE_SPINLOCK(processqueue_lock);
204 static bool process_dlm_messages_pending;
205 static LIST_HEAD(processqueue);
206
dlm_lowcomms_is_running(void)207 bool dlm_lowcomms_is_running(void)
208 {
209 return !!listen_con.sock;
210 }
211
lowcomms_queue_swork(struct connection * con)212 static void lowcomms_queue_swork(struct connection *con)
213 {
214 assert_spin_locked(&con->writequeue_lock);
215
216 if (!test_bit(CF_IO_STOP, &con->flags) &&
217 !test_bit(CF_APP_LIMITED, &con->flags) &&
218 !test_and_set_bit(CF_SEND_PENDING, &con->flags))
219 queue_work(io_workqueue, &con->swork);
220 }
221
lowcomms_queue_rwork(struct connection * con)222 static void lowcomms_queue_rwork(struct connection *con)
223 {
224 #ifdef CONFIG_LOCKDEP
225 WARN_ON_ONCE(!lockdep_sock_is_held(con->sock->sk));
226 #endif
227
228 if (!test_bit(CF_IO_STOP, &con->flags) &&
229 !test_and_set_bit(CF_RECV_PENDING, &con->flags))
230 queue_work(io_workqueue, &con->rwork);
231 }
232
writequeue_entry_ctor(void * data)233 static void writequeue_entry_ctor(void *data)
234 {
235 struct writequeue_entry *entry = data;
236
237 INIT_LIST_HEAD(&entry->msgs);
238 }
239
dlm_lowcomms_writequeue_cache_create(void)240 struct kmem_cache *dlm_lowcomms_writequeue_cache_create(void)
241 {
242 return kmem_cache_create("dlm_writequeue", sizeof(struct writequeue_entry),
243 0, 0, writequeue_entry_ctor);
244 }
245
dlm_lowcomms_msg_cache_create(void)246 struct kmem_cache *dlm_lowcomms_msg_cache_create(void)
247 {
248 return kmem_cache_create("dlm_msg", sizeof(struct dlm_msg), 0, 0, NULL);
249 }
250
251 /* need to held writequeue_lock */
con_next_wq(struct connection * con)252 static struct writequeue_entry *con_next_wq(struct connection *con)
253 {
254 struct writequeue_entry *e;
255
256 e = list_first_entry_or_null(&con->writequeue, struct writequeue_entry,
257 list);
258 /* if len is zero nothing is to send, if there are users filling
259 * buffers we wait until the users are done so we can send more.
260 */
261 if (!e || e->users || e->len == 0)
262 return NULL;
263
264 return e;
265 }
266
__find_con(int nodeid,int r)267 static struct connection *__find_con(int nodeid, int r)
268 {
269 struct connection *con;
270
271 hlist_for_each_entry_rcu(con, &connection_hash[r], list) {
272 if (con->nodeid == nodeid)
273 return con;
274 }
275
276 return NULL;
277 }
278
dlm_con_init(struct connection * con,int nodeid)279 static void dlm_con_init(struct connection *con, int nodeid)
280 {
281 con->nodeid = nodeid;
282 init_rwsem(&con->sock_lock);
283 INIT_LIST_HEAD(&con->writequeue);
284 spin_lock_init(&con->writequeue_lock);
285 INIT_WORK(&con->swork, process_send_sockets);
286 INIT_WORK(&con->rwork, process_recv_sockets);
287 spin_lock_init(&con->addrs_lock);
288 init_waitqueue_head(&con->shutdown_wait);
289 }
290
291 /*
292 * If 'allocation' is zero then we don't attempt to create a new
293 * connection structure for this node.
294 */
nodeid2con(int nodeid,gfp_t alloc)295 static struct connection *nodeid2con(int nodeid, gfp_t alloc)
296 {
297 struct connection *con, *tmp;
298 int r;
299
300 r = nodeid_hash(nodeid);
301 con = __find_con(nodeid, r);
302 if (con || !alloc)
303 return con;
304
305 con = kzalloc(sizeof(*con), alloc);
306 if (!con)
307 return NULL;
308
309 dlm_con_init(con, nodeid);
310
311 spin_lock(&connections_lock);
312 /* Because multiple workqueues/threads calls this function it can
313 * race on multiple cpu's. Instead of locking hot path __find_con()
314 * we just check in rare cases of recently added nodes again
315 * under protection of connections_lock. If this is the case we
316 * abort our connection creation and return the existing connection.
317 */
318 tmp = __find_con(nodeid, r);
319 if (tmp) {
320 spin_unlock(&connections_lock);
321 kfree(con);
322 return tmp;
323 }
324
325 hlist_add_head_rcu(&con->list, &connection_hash[r]);
326 spin_unlock(&connections_lock);
327
328 return con;
329 }
330
addr_compare(const struct sockaddr_storage * x,const struct sockaddr_storage * y)331 static int addr_compare(const struct sockaddr_storage *x,
332 const struct sockaddr_storage *y)
333 {
334 switch (x->ss_family) {
335 case AF_INET: {
336 struct sockaddr_in *sinx = (struct sockaddr_in *)x;
337 struct sockaddr_in *siny = (struct sockaddr_in *)y;
338 if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
339 return 0;
340 if (sinx->sin_port != siny->sin_port)
341 return 0;
342 break;
343 }
344 case AF_INET6: {
345 struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
346 struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
347 if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
348 return 0;
349 if (sinx->sin6_port != siny->sin6_port)
350 return 0;
351 break;
352 }
353 default:
354 return 0;
355 }
356 return 1;
357 }
358
nodeid_to_addr(int nodeid,struct sockaddr_storage * sas_out,struct sockaddr * sa_out,bool try_new_addr,unsigned int * mark)359 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
360 struct sockaddr *sa_out, bool try_new_addr,
361 unsigned int *mark)
362 {
363 struct sockaddr_storage sas;
364 struct connection *con;
365 int idx;
366
367 if (!dlm_local_count)
368 return -1;
369
370 idx = srcu_read_lock(&connections_srcu);
371 con = nodeid2con(nodeid, 0);
372 if (!con) {
373 srcu_read_unlock(&connections_srcu, idx);
374 return -ENOENT;
375 }
376
377 spin_lock(&con->addrs_lock);
378 if (!con->addr_count) {
379 spin_unlock(&con->addrs_lock);
380 srcu_read_unlock(&connections_srcu, idx);
381 return -ENOENT;
382 }
383
384 memcpy(&sas, &con->addr[con->curr_addr_index],
385 sizeof(struct sockaddr_storage));
386
387 if (try_new_addr) {
388 con->curr_addr_index++;
389 if (con->curr_addr_index == con->addr_count)
390 con->curr_addr_index = 0;
391 }
392
393 *mark = con->mark;
394 spin_unlock(&con->addrs_lock);
395
396 if (sas_out)
397 memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
398
399 if (!sa_out) {
400 srcu_read_unlock(&connections_srcu, idx);
401 return 0;
402 }
403
404 if (dlm_local_addr[0].ss_family == AF_INET) {
405 struct sockaddr_in *in4 = (struct sockaddr_in *) &sas;
406 struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
407 ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
408 } else {
409 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) &sas;
410 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
411 ret6->sin6_addr = in6->sin6_addr;
412 }
413
414 srcu_read_unlock(&connections_srcu, idx);
415 return 0;
416 }
417
addr_to_nodeid(struct sockaddr_storage * addr,int * nodeid,unsigned int * mark)418 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid,
419 unsigned int *mark)
420 {
421 struct connection *con;
422 int i, idx, addr_i;
423
424 idx = srcu_read_lock(&connections_srcu);
425 for (i = 0; i < CONN_HASH_SIZE; i++) {
426 hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
427 WARN_ON_ONCE(!con->addr_count);
428
429 spin_lock(&con->addrs_lock);
430 for (addr_i = 0; addr_i < con->addr_count; addr_i++) {
431 if (addr_compare(&con->addr[addr_i], addr)) {
432 *nodeid = con->nodeid;
433 *mark = con->mark;
434 spin_unlock(&con->addrs_lock);
435 srcu_read_unlock(&connections_srcu, idx);
436 return 0;
437 }
438 }
439 spin_unlock(&con->addrs_lock);
440 }
441 }
442 srcu_read_unlock(&connections_srcu, idx);
443
444 return -ENOENT;
445 }
446
dlm_lowcomms_con_has_addr(const struct connection * con,const struct sockaddr_storage * addr)447 static bool dlm_lowcomms_con_has_addr(const struct connection *con,
448 const struct sockaddr_storage *addr)
449 {
450 int i;
451
452 for (i = 0; i < con->addr_count; i++) {
453 if (addr_compare(&con->addr[i], addr))
454 return true;
455 }
456
457 return false;
458 }
459
dlm_lowcomms_addr(int nodeid,struct sockaddr_storage * addr,int len)460 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
461 {
462 struct connection *con;
463 bool ret, idx;
464
465 idx = srcu_read_lock(&connections_srcu);
466 con = nodeid2con(nodeid, GFP_NOFS);
467 if (!con) {
468 srcu_read_unlock(&connections_srcu, idx);
469 return -ENOMEM;
470 }
471
472 spin_lock(&con->addrs_lock);
473 if (!con->addr_count) {
474 memcpy(&con->addr[0], addr, sizeof(*addr));
475 con->addr_count = 1;
476 con->mark = dlm_config.ci_mark;
477 spin_unlock(&con->addrs_lock);
478 srcu_read_unlock(&connections_srcu, idx);
479 return 0;
480 }
481
482 ret = dlm_lowcomms_con_has_addr(con, addr);
483 if (ret) {
484 spin_unlock(&con->addrs_lock);
485 srcu_read_unlock(&connections_srcu, idx);
486 return -EEXIST;
487 }
488
489 if (con->addr_count >= DLM_MAX_ADDR_COUNT) {
490 spin_unlock(&con->addrs_lock);
491 srcu_read_unlock(&connections_srcu, idx);
492 return -ENOSPC;
493 }
494
495 memcpy(&con->addr[con->addr_count++], addr, sizeof(*addr));
496 srcu_read_unlock(&connections_srcu, idx);
497 spin_unlock(&con->addrs_lock);
498 return 0;
499 }
500
501 /* Data available on socket or listen socket received a connect */
lowcomms_data_ready(struct sock * sk)502 static void lowcomms_data_ready(struct sock *sk)
503 {
504 struct connection *con = sock2con(sk);
505
506 trace_sk_data_ready(sk);
507
508 set_bit(CF_RECV_INTR, &con->flags);
509 lowcomms_queue_rwork(con);
510 }
511
lowcomms_write_space(struct sock * sk)512 static void lowcomms_write_space(struct sock *sk)
513 {
514 struct connection *con = sock2con(sk);
515
516 clear_bit(SOCK_NOSPACE, &con->sock->flags);
517
518 spin_lock_bh(&con->writequeue_lock);
519 if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
520 con->sock->sk->sk_write_pending--;
521 clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
522 }
523
524 lowcomms_queue_swork(con);
525 spin_unlock_bh(&con->writequeue_lock);
526 }
527
lowcomms_state_change(struct sock * sk)528 static void lowcomms_state_change(struct sock *sk)
529 {
530 /* SCTP layer is not calling sk_data_ready when the connection
531 * is done, so we catch the signal through here.
532 */
533 if (sk->sk_shutdown == RCV_SHUTDOWN)
534 lowcomms_data_ready(sk);
535 }
536
lowcomms_listen_data_ready(struct sock * sk)537 static void lowcomms_listen_data_ready(struct sock *sk)
538 {
539 trace_sk_data_ready(sk);
540
541 queue_work(io_workqueue, &listen_con.rwork);
542 }
543
dlm_lowcomms_connect_node(int nodeid)544 int dlm_lowcomms_connect_node(int nodeid)
545 {
546 struct connection *con;
547 int idx;
548
549 idx = srcu_read_lock(&connections_srcu);
550 con = nodeid2con(nodeid, 0);
551 if (WARN_ON_ONCE(!con)) {
552 srcu_read_unlock(&connections_srcu, idx);
553 return -ENOENT;
554 }
555
556 down_read(&con->sock_lock);
557 if (!con->sock) {
558 spin_lock_bh(&con->writequeue_lock);
559 lowcomms_queue_swork(con);
560 spin_unlock_bh(&con->writequeue_lock);
561 }
562 up_read(&con->sock_lock);
563 srcu_read_unlock(&connections_srcu, idx);
564
565 cond_resched();
566 return 0;
567 }
568
dlm_lowcomms_nodes_set_mark(int nodeid,unsigned int mark)569 int dlm_lowcomms_nodes_set_mark(int nodeid, unsigned int mark)
570 {
571 struct connection *con;
572 int idx;
573
574 idx = srcu_read_lock(&connections_srcu);
575 con = nodeid2con(nodeid, 0);
576 if (!con) {
577 srcu_read_unlock(&connections_srcu, idx);
578 return -ENOENT;
579 }
580
581 spin_lock(&con->addrs_lock);
582 con->mark = mark;
583 spin_unlock(&con->addrs_lock);
584 srcu_read_unlock(&connections_srcu, idx);
585 return 0;
586 }
587
lowcomms_error_report(struct sock * sk)588 static void lowcomms_error_report(struct sock *sk)
589 {
590 struct connection *con = sock2con(sk);
591 struct inet_sock *inet;
592
593 inet = inet_sk(sk);
594 switch (sk->sk_family) {
595 case AF_INET:
596 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
597 "sending to node %d at %pI4, dport %d, "
598 "sk_err=%d/%d\n", dlm_our_nodeid(),
599 con->nodeid, &inet->inet_daddr,
600 ntohs(inet->inet_dport), sk->sk_err,
601 READ_ONCE(sk->sk_err_soft));
602 break;
603 #if IS_ENABLED(CONFIG_IPV6)
604 case AF_INET6:
605 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
606 "sending to node %d at %pI6c, "
607 "dport %d, sk_err=%d/%d\n", dlm_our_nodeid(),
608 con->nodeid, &sk->sk_v6_daddr,
609 ntohs(inet->inet_dport), sk->sk_err,
610 READ_ONCE(sk->sk_err_soft));
611 break;
612 #endif
613 default:
614 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
615 "invalid socket family %d set, "
616 "sk_err=%d/%d\n", dlm_our_nodeid(),
617 sk->sk_family, sk->sk_err,
618 READ_ONCE(sk->sk_err_soft));
619 break;
620 }
621
622 dlm_midcomms_unack_msg_resend(con->nodeid);
623
624 listen_sock.sk_error_report(sk);
625 }
626
restore_callbacks(struct sock * sk)627 static void restore_callbacks(struct sock *sk)
628 {
629 #ifdef CONFIG_LOCKDEP
630 WARN_ON_ONCE(!lockdep_sock_is_held(sk));
631 #endif
632
633 sk->sk_user_data = NULL;
634 sk->sk_data_ready = listen_sock.sk_data_ready;
635 sk->sk_state_change = listen_sock.sk_state_change;
636 sk->sk_write_space = listen_sock.sk_write_space;
637 sk->sk_error_report = listen_sock.sk_error_report;
638 }
639
640 /* Make a socket active */
add_sock(struct socket * sock,struct connection * con)641 static void add_sock(struct socket *sock, struct connection *con)
642 {
643 struct sock *sk = sock->sk;
644
645 lock_sock(sk);
646 con->sock = sock;
647
648 sk->sk_user_data = con;
649 sk->sk_data_ready = lowcomms_data_ready;
650 sk->sk_write_space = lowcomms_write_space;
651 if (dlm_config.ci_protocol == DLM_PROTO_SCTP)
652 sk->sk_state_change = lowcomms_state_change;
653 sk->sk_allocation = GFP_NOFS;
654 sk->sk_use_task_frag = false;
655 sk->sk_error_report = lowcomms_error_report;
656 release_sock(sk);
657 }
658
659 /* Add the port number to an IPv6 or 4 sockaddr and return the address
660 length */
make_sockaddr(struct sockaddr_storage * saddr,uint16_t port,int * addr_len)661 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
662 int *addr_len)
663 {
664 saddr->ss_family = dlm_local_addr[0].ss_family;
665 if (saddr->ss_family == AF_INET) {
666 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
667 in4_addr->sin_port = cpu_to_be16(port);
668 *addr_len = sizeof(struct sockaddr_in);
669 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
670 } else {
671 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
672 in6_addr->sin6_port = cpu_to_be16(port);
673 *addr_len = sizeof(struct sockaddr_in6);
674 }
675 memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
676 }
677
dlm_page_release(struct kref * kref)678 static void dlm_page_release(struct kref *kref)
679 {
680 struct writequeue_entry *e = container_of(kref, struct writequeue_entry,
681 ref);
682
683 __free_page(e->page);
684 dlm_free_writequeue(e);
685 }
686
dlm_msg_release(struct kref * kref)687 static void dlm_msg_release(struct kref *kref)
688 {
689 struct dlm_msg *msg = container_of(kref, struct dlm_msg, ref);
690
691 kref_put(&msg->entry->ref, dlm_page_release);
692 dlm_free_msg(msg);
693 }
694
free_entry(struct writequeue_entry * e)695 static void free_entry(struct writequeue_entry *e)
696 {
697 struct dlm_msg *msg, *tmp;
698
699 list_for_each_entry_safe(msg, tmp, &e->msgs, list) {
700 if (msg->orig_msg) {
701 msg->orig_msg->retransmit = false;
702 kref_put(&msg->orig_msg->ref, dlm_msg_release);
703 }
704
705 list_del(&msg->list);
706 kref_put(&msg->ref, dlm_msg_release);
707 }
708
709 list_del(&e->list);
710 kref_put(&e->ref, dlm_page_release);
711 }
712
dlm_close_sock(struct socket ** sock)713 static void dlm_close_sock(struct socket **sock)
714 {
715 lock_sock((*sock)->sk);
716 restore_callbacks((*sock)->sk);
717 release_sock((*sock)->sk);
718
719 sock_release(*sock);
720 *sock = NULL;
721 }
722
allow_connection_io(struct connection * con)723 static void allow_connection_io(struct connection *con)
724 {
725 if (con->othercon)
726 clear_bit(CF_IO_STOP, &con->othercon->flags);
727 clear_bit(CF_IO_STOP, &con->flags);
728 }
729
stop_connection_io(struct connection * con)730 static void stop_connection_io(struct connection *con)
731 {
732 if (con->othercon)
733 stop_connection_io(con->othercon);
734
735 spin_lock_bh(&con->writequeue_lock);
736 set_bit(CF_IO_STOP, &con->flags);
737 spin_unlock_bh(&con->writequeue_lock);
738
739 down_write(&con->sock_lock);
740 if (con->sock) {
741 lock_sock(con->sock->sk);
742 restore_callbacks(con->sock->sk);
743 release_sock(con->sock->sk);
744 }
745 up_write(&con->sock_lock);
746
747 cancel_work_sync(&con->swork);
748 cancel_work_sync(&con->rwork);
749 }
750
751 /* Close a remote connection and tidy up */
close_connection(struct connection * con,bool and_other)752 static void close_connection(struct connection *con, bool and_other)
753 {
754 struct writequeue_entry *e;
755
756 if (con->othercon && and_other)
757 close_connection(con->othercon, false);
758
759 down_write(&con->sock_lock);
760 if (!con->sock) {
761 up_write(&con->sock_lock);
762 return;
763 }
764
765 dlm_close_sock(&con->sock);
766
767 /* if we send a writequeue entry only a half way, we drop the
768 * whole entry because reconnection and that we not start of the
769 * middle of a msg which will confuse the other end.
770 *
771 * we can always drop messages because retransmits, but what we
772 * cannot allow is to transmit half messages which may be processed
773 * at the other side.
774 *
775 * our policy is to start on a clean state when disconnects, we don't
776 * know what's send/received on transport layer in this case.
777 */
778 spin_lock_bh(&con->writequeue_lock);
779 if (!list_empty(&con->writequeue)) {
780 e = list_first_entry(&con->writequeue, struct writequeue_entry,
781 list);
782 if (e->dirty)
783 free_entry(e);
784 }
785 spin_unlock_bh(&con->writequeue_lock);
786
787 con->rx_leftover = 0;
788 con->retries = 0;
789 clear_bit(CF_APP_LIMITED, &con->flags);
790 clear_bit(CF_RECV_PENDING, &con->flags);
791 clear_bit(CF_SEND_PENDING, &con->flags);
792 up_write(&con->sock_lock);
793 }
794
shutdown_connection(struct connection * con,bool and_other)795 static void shutdown_connection(struct connection *con, bool and_other)
796 {
797 int ret;
798
799 if (con->othercon && and_other)
800 shutdown_connection(con->othercon, false);
801
802 flush_workqueue(io_workqueue);
803 down_read(&con->sock_lock);
804 /* nothing to shutdown */
805 if (!con->sock) {
806 up_read(&con->sock_lock);
807 return;
808 }
809
810 ret = kernel_sock_shutdown(con->sock, SHUT_WR);
811 up_read(&con->sock_lock);
812 if (ret) {
813 log_print("Connection %p failed to shutdown: %d will force close",
814 con, ret);
815 goto force_close;
816 } else {
817 ret = wait_event_timeout(con->shutdown_wait, !con->sock,
818 DLM_SHUTDOWN_WAIT_TIMEOUT);
819 if (ret == 0) {
820 log_print("Connection %p shutdown timed out, will force close",
821 con);
822 goto force_close;
823 }
824 }
825
826 return;
827
828 force_close:
829 close_connection(con, false);
830 }
831
new_processqueue_entry(int nodeid,int buflen)832 static struct processqueue_entry *new_processqueue_entry(int nodeid,
833 int buflen)
834 {
835 struct processqueue_entry *pentry;
836
837 pentry = kmalloc(sizeof(*pentry), GFP_NOFS);
838 if (!pentry)
839 return NULL;
840
841 pentry->buf = kmalloc(buflen, GFP_NOFS);
842 if (!pentry->buf) {
843 kfree(pentry);
844 return NULL;
845 }
846
847 pentry->nodeid = nodeid;
848 return pentry;
849 }
850
free_processqueue_entry(struct processqueue_entry * pentry)851 static void free_processqueue_entry(struct processqueue_entry *pentry)
852 {
853 kfree(pentry->buf);
854 kfree(pentry);
855 }
856
857 struct dlm_processed_nodes {
858 int nodeid;
859
860 struct list_head list;
861 };
862
process_dlm_messages(struct work_struct * work)863 static void process_dlm_messages(struct work_struct *work)
864 {
865 struct processqueue_entry *pentry;
866
867 spin_lock(&processqueue_lock);
868 pentry = list_first_entry_or_null(&processqueue,
869 struct processqueue_entry, list);
870 if (WARN_ON_ONCE(!pentry)) {
871 process_dlm_messages_pending = false;
872 spin_unlock(&processqueue_lock);
873 return;
874 }
875
876 list_del(&pentry->list);
877 spin_unlock(&processqueue_lock);
878
879 for (;;) {
880 dlm_process_incoming_buffer(pentry->nodeid, pentry->buf,
881 pentry->buflen);
882 free_processqueue_entry(pentry);
883
884 spin_lock(&processqueue_lock);
885 pentry = list_first_entry_or_null(&processqueue,
886 struct processqueue_entry, list);
887 if (!pentry) {
888 process_dlm_messages_pending = false;
889 spin_unlock(&processqueue_lock);
890 break;
891 }
892
893 list_del(&pentry->list);
894 spin_unlock(&processqueue_lock);
895 }
896 }
897
898 /* Data received from remote end */
receive_from_sock(struct connection * con,int buflen)899 static int receive_from_sock(struct connection *con, int buflen)
900 {
901 struct processqueue_entry *pentry;
902 int ret, buflen_real;
903 struct msghdr msg;
904 struct kvec iov;
905
906 pentry = new_processqueue_entry(con->nodeid, buflen);
907 if (!pentry)
908 return DLM_IO_RESCHED;
909
910 memcpy(pentry->buf, con->rx_leftover_buf, con->rx_leftover);
911
912 /* calculate new buffer parameter regarding last receive and
913 * possible leftover bytes
914 */
915 iov.iov_base = pentry->buf + con->rx_leftover;
916 iov.iov_len = buflen - con->rx_leftover;
917
918 memset(&msg, 0, sizeof(msg));
919 msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
920 clear_bit(CF_RECV_INTR, &con->flags);
921 again:
922 ret = kernel_recvmsg(con->sock, &msg, &iov, 1, iov.iov_len,
923 msg.msg_flags);
924 trace_dlm_recv(con->nodeid, ret);
925 if (ret == -EAGAIN) {
926 lock_sock(con->sock->sk);
927 if (test_and_clear_bit(CF_RECV_INTR, &con->flags)) {
928 release_sock(con->sock->sk);
929 goto again;
930 }
931
932 clear_bit(CF_RECV_PENDING, &con->flags);
933 release_sock(con->sock->sk);
934 free_processqueue_entry(pentry);
935 return DLM_IO_END;
936 } else if (ret == 0) {
937 /* close will clear CF_RECV_PENDING */
938 free_processqueue_entry(pentry);
939 return DLM_IO_EOF;
940 } else if (ret < 0) {
941 free_processqueue_entry(pentry);
942 return ret;
943 }
944
945 /* new buflen according readed bytes and leftover from last receive */
946 buflen_real = ret + con->rx_leftover;
947 ret = dlm_validate_incoming_buffer(con->nodeid, pentry->buf,
948 buflen_real);
949 if (ret < 0) {
950 free_processqueue_entry(pentry);
951 return ret;
952 }
953
954 pentry->buflen = ret;
955
956 /* calculate leftover bytes from process and put it into begin of
957 * the receive buffer, so next receive we have the full message
958 * at the start address of the receive buffer.
959 */
960 con->rx_leftover = buflen_real - ret;
961 memmove(con->rx_leftover_buf, pentry->buf + ret,
962 con->rx_leftover);
963
964 spin_lock(&processqueue_lock);
965 list_add_tail(&pentry->list, &processqueue);
966 if (!process_dlm_messages_pending) {
967 process_dlm_messages_pending = true;
968 queue_work(process_workqueue, &process_work);
969 }
970 spin_unlock(&processqueue_lock);
971
972 return DLM_IO_SUCCESS;
973 }
974
975 /* Listening socket is busy, accept a connection */
accept_from_sock(void)976 static int accept_from_sock(void)
977 {
978 struct sockaddr_storage peeraddr;
979 int len, idx, result, nodeid;
980 struct connection *newcon;
981 struct socket *newsock;
982 unsigned int mark;
983
984 result = kernel_accept(listen_con.sock, &newsock, O_NONBLOCK);
985 if (result == -EAGAIN)
986 return DLM_IO_END;
987 else if (result < 0)
988 goto accept_err;
989
990 /* Get the connected socket's peer */
991 memset(&peeraddr, 0, sizeof(peeraddr));
992 len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
993 if (len < 0) {
994 result = -ECONNABORTED;
995 goto accept_err;
996 }
997
998 /* Get the new node's NODEID */
999 make_sockaddr(&peeraddr, 0, &len);
1000 if (addr_to_nodeid(&peeraddr, &nodeid, &mark)) {
1001 switch (peeraddr.ss_family) {
1002 case AF_INET: {
1003 struct sockaddr_in *sin = (struct sockaddr_in *)&peeraddr;
1004
1005 log_print("connect from non cluster IPv4 node %pI4",
1006 &sin->sin_addr);
1007 break;
1008 }
1009 #if IS_ENABLED(CONFIG_IPV6)
1010 case AF_INET6: {
1011 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&peeraddr;
1012
1013 log_print("connect from non cluster IPv6 node %pI6c",
1014 &sin6->sin6_addr);
1015 break;
1016 }
1017 #endif
1018 default:
1019 log_print("invalid family from non cluster node");
1020 break;
1021 }
1022
1023 sock_release(newsock);
1024 return -1;
1025 }
1026
1027 log_print("got connection from %d", nodeid);
1028
1029 /* Check to see if we already have a connection to this node. This
1030 * could happen if the two nodes initiate a connection at roughly
1031 * the same time and the connections cross on the wire.
1032 * In this case we store the incoming one in "othercon"
1033 */
1034 idx = srcu_read_lock(&connections_srcu);
1035 newcon = nodeid2con(nodeid, 0);
1036 if (WARN_ON_ONCE(!newcon)) {
1037 srcu_read_unlock(&connections_srcu, idx);
1038 result = -ENOENT;
1039 goto accept_err;
1040 }
1041
1042 sock_set_mark(newsock->sk, mark);
1043
1044 down_write(&newcon->sock_lock);
1045 if (newcon->sock) {
1046 struct connection *othercon = newcon->othercon;
1047
1048 if (!othercon) {
1049 othercon = kzalloc(sizeof(*othercon), GFP_NOFS);
1050 if (!othercon) {
1051 log_print("failed to allocate incoming socket");
1052 up_write(&newcon->sock_lock);
1053 srcu_read_unlock(&connections_srcu, idx);
1054 result = -ENOMEM;
1055 goto accept_err;
1056 }
1057
1058 dlm_con_init(othercon, nodeid);
1059 lockdep_set_subclass(&othercon->sock_lock, 1);
1060 newcon->othercon = othercon;
1061 set_bit(CF_IS_OTHERCON, &othercon->flags);
1062 } else {
1063 /* close other sock con if we have something new */
1064 close_connection(othercon, false);
1065 }
1066
1067 down_write(&othercon->sock_lock);
1068 add_sock(newsock, othercon);
1069
1070 /* check if we receved something while adding */
1071 lock_sock(othercon->sock->sk);
1072 lowcomms_queue_rwork(othercon);
1073 release_sock(othercon->sock->sk);
1074 up_write(&othercon->sock_lock);
1075 }
1076 else {
1077 /* accept copies the sk after we've saved the callbacks, so we
1078 don't want to save them a second time or comm errors will
1079 result in calling sk_error_report recursively. */
1080 add_sock(newsock, newcon);
1081
1082 /* check if we receved something while adding */
1083 lock_sock(newcon->sock->sk);
1084 lowcomms_queue_rwork(newcon);
1085 release_sock(newcon->sock->sk);
1086 }
1087 up_write(&newcon->sock_lock);
1088 srcu_read_unlock(&connections_srcu, idx);
1089
1090 return DLM_IO_SUCCESS;
1091
1092 accept_err:
1093 if (newsock)
1094 sock_release(newsock);
1095
1096 return result;
1097 }
1098
1099 /*
1100 * writequeue_entry_complete - try to delete and free write queue entry
1101 * @e: write queue entry to try to delete
1102 * @completed: bytes completed
1103 *
1104 * writequeue_lock must be held.
1105 */
writequeue_entry_complete(struct writequeue_entry * e,int completed)1106 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
1107 {
1108 e->offset += completed;
1109 e->len -= completed;
1110 /* signal that page was half way transmitted */
1111 e->dirty = true;
1112
1113 if (e->len == 0 && e->users == 0)
1114 free_entry(e);
1115 }
1116
1117 /*
1118 * sctp_bind_addrs - bind a SCTP socket to all our addresses
1119 */
sctp_bind_addrs(struct socket * sock,uint16_t port)1120 static int sctp_bind_addrs(struct socket *sock, uint16_t port)
1121 {
1122 struct sockaddr_storage localaddr;
1123 struct sockaddr *addr = (struct sockaddr *)&localaddr;
1124 int i, addr_len, result = 0;
1125
1126 for (i = 0; i < dlm_local_count; i++) {
1127 memcpy(&localaddr, &dlm_local_addr[i], sizeof(localaddr));
1128 make_sockaddr(&localaddr, port, &addr_len);
1129
1130 if (!i)
1131 result = kernel_bind(sock, addr, addr_len);
1132 else
1133 result = sock_bind_add(sock->sk, addr, addr_len);
1134
1135 if (result < 0) {
1136 log_print("Can't bind to %d addr number %d, %d.\n",
1137 port, i + 1, result);
1138 break;
1139 }
1140 }
1141 return result;
1142 }
1143
1144 /* Get local addresses */
init_local(void)1145 static void init_local(void)
1146 {
1147 struct sockaddr_storage sas;
1148 int i;
1149
1150 dlm_local_count = 0;
1151 for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1152 if (dlm_our_addr(&sas, i))
1153 break;
1154
1155 memcpy(&dlm_local_addr[dlm_local_count++], &sas, sizeof(sas));
1156 }
1157 }
1158
new_writequeue_entry(struct connection * con)1159 static struct writequeue_entry *new_writequeue_entry(struct connection *con)
1160 {
1161 struct writequeue_entry *entry;
1162
1163 entry = dlm_allocate_writequeue();
1164 if (!entry)
1165 return NULL;
1166
1167 entry->page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
1168 if (!entry->page) {
1169 dlm_free_writequeue(entry);
1170 return NULL;
1171 }
1172
1173 entry->offset = 0;
1174 entry->len = 0;
1175 entry->end = 0;
1176 entry->dirty = false;
1177 entry->con = con;
1178 entry->users = 1;
1179 kref_init(&entry->ref);
1180 return entry;
1181 }
1182
new_wq_entry(struct connection * con,int len,char ** ppc,void (* cb)(void * data),void * data)1183 static struct writequeue_entry *new_wq_entry(struct connection *con, int len,
1184 char **ppc, void (*cb)(void *data),
1185 void *data)
1186 {
1187 struct writequeue_entry *e;
1188
1189 spin_lock_bh(&con->writequeue_lock);
1190 if (!list_empty(&con->writequeue)) {
1191 e = list_last_entry(&con->writequeue, struct writequeue_entry, list);
1192 if (DLM_WQ_REMAIN_BYTES(e) >= len) {
1193 kref_get(&e->ref);
1194
1195 *ppc = page_address(e->page) + e->end;
1196 if (cb)
1197 cb(data);
1198
1199 e->end += len;
1200 e->users++;
1201 goto out;
1202 }
1203 }
1204
1205 e = new_writequeue_entry(con);
1206 if (!e)
1207 goto out;
1208
1209 kref_get(&e->ref);
1210 *ppc = page_address(e->page);
1211 e->end += len;
1212 if (cb)
1213 cb(data);
1214
1215 list_add_tail(&e->list, &con->writequeue);
1216
1217 out:
1218 spin_unlock_bh(&con->writequeue_lock);
1219 return e;
1220 };
1221
dlm_lowcomms_new_msg_con(struct connection * con,int len,gfp_t allocation,char ** ppc,void (* cb)(void * data),void * data)1222 static struct dlm_msg *dlm_lowcomms_new_msg_con(struct connection *con, int len,
1223 gfp_t allocation, char **ppc,
1224 void (*cb)(void *data),
1225 void *data)
1226 {
1227 struct writequeue_entry *e;
1228 struct dlm_msg *msg;
1229
1230 msg = dlm_allocate_msg(allocation);
1231 if (!msg)
1232 return NULL;
1233
1234 kref_init(&msg->ref);
1235
1236 e = new_wq_entry(con, len, ppc, cb, data);
1237 if (!e) {
1238 dlm_free_msg(msg);
1239 return NULL;
1240 }
1241
1242 msg->retransmit = false;
1243 msg->orig_msg = NULL;
1244 msg->ppc = *ppc;
1245 msg->len = len;
1246 msg->entry = e;
1247
1248 return msg;
1249 }
1250
1251 /* avoid false positive for nodes_srcu, unlock happens in
1252 * dlm_lowcomms_commit_msg which is a must call if success
1253 */
1254 #ifndef __CHECKER__
dlm_lowcomms_new_msg(int nodeid,int len,gfp_t allocation,char ** ppc,void (* cb)(void * data),void * data)1255 struct dlm_msg *dlm_lowcomms_new_msg(int nodeid, int len, gfp_t allocation,
1256 char **ppc, void (*cb)(void *data),
1257 void *data)
1258 {
1259 struct connection *con;
1260 struct dlm_msg *msg;
1261 int idx;
1262
1263 if (len > DLM_MAX_SOCKET_BUFSIZE ||
1264 len < sizeof(struct dlm_header)) {
1265 BUILD_BUG_ON(PAGE_SIZE < DLM_MAX_SOCKET_BUFSIZE);
1266 log_print("failed to allocate a buffer of size %d", len);
1267 WARN_ON_ONCE(1);
1268 return NULL;
1269 }
1270
1271 idx = srcu_read_lock(&connections_srcu);
1272 con = nodeid2con(nodeid, 0);
1273 if (WARN_ON_ONCE(!con)) {
1274 srcu_read_unlock(&connections_srcu, idx);
1275 return NULL;
1276 }
1277
1278 msg = dlm_lowcomms_new_msg_con(con, len, allocation, ppc, cb, data);
1279 if (!msg) {
1280 srcu_read_unlock(&connections_srcu, idx);
1281 return NULL;
1282 }
1283
1284 /* for dlm_lowcomms_commit_msg() */
1285 kref_get(&msg->ref);
1286 /* we assume if successful commit must called */
1287 msg->idx = idx;
1288 return msg;
1289 }
1290 #endif
1291
_dlm_lowcomms_commit_msg(struct dlm_msg * msg)1292 static void _dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1293 {
1294 struct writequeue_entry *e = msg->entry;
1295 struct connection *con = e->con;
1296 int users;
1297
1298 spin_lock_bh(&con->writequeue_lock);
1299 kref_get(&msg->ref);
1300 list_add(&msg->list, &e->msgs);
1301
1302 users = --e->users;
1303 if (users)
1304 goto out;
1305
1306 e->len = DLM_WQ_LENGTH_BYTES(e);
1307
1308 lowcomms_queue_swork(con);
1309
1310 out:
1311 spin_unlock_bh(&con->writequeue_lock);
1312 return;
1313 }
1314
1315 /* avoid false positive for nodes_srcu, lock was happen in
1316 * dlm_lowcomms_new_msg
1317 */
1318 #ifndef __CHECKER__
dlm_lowcomms_commit_msg(struct dlm_msg * msg)1319 void dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1320 {
1321 _dlm_lowcomms_commit_msg(msg);
1322 srcu_read_unlock(&connections_srcu, msg->idx);
1323 /* because dlm_lowcomms_new_msg() */
1324 kref_put(&msg->ref, dlm_msg_release);
1325 }
1326 #endif
1327
dlm_lowcomms_put_msg(struct dlm_msg * msg)1328 void dlm_lowcomms_put_msg(struct dlm_msg *msg)
1329 {
1330 kref_put(&msg->ref, dlm_msg_release);
1331 }
1332
1333 /* does not held connections_srcu, usage lowcomms_error_report only */
dlm_lowcomms_resend_msg(struct dlm_msg * msg)1334 int dlm_lowcomms_resend_msg(struct dlm_msg *msg)
1335 {
1336 struct dlm_msg *msg_resend;
1337 char *ppc;
1338
1339 if (msg->retransmit)
1340 return 1;
1341
1342 msg_resend = dlm_lowcomms_new_msg_con(msg->entry->con, msg->len,
1343 GFP_ATOMIC, &ppc, NULL, NULL);
1344 if (!msg_resend)
1345 return -ENOMEM;
1346
1347 msg->retransmit = true;
1348 kref_get(&msg->ref);
1349 msg_resend->orig_msg = msg;
1350
1351 memcpy(ppc, msg->ppc, msg->len);
1352 _dlm_lowcomms_commit_msg(msg_resend);
1353 dlm_lowcomms_put_msg(msg_resend);
1354
1355 return 0;
1356 }
1357
1358 /* Send a message */
send_to_sock(struct connection * con)1359 static int send_to_sock(struct connection *con)
1360 {
1361 struct writequeue_entry *e;
1362 struct bio_vec bvec;
1363 struct msghdr msg = {
1364 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT | MSG_NOSIGNAL,
1365 };
1366 int len, offset, ret;
1367
1368 spin_lock_bh(&con->writequeue_lock);
1369 e = con_next_wq(con);
1370 if (!e) {
1371 clear_bit(CF_SEND_PENDING, &con->flags);
1372 spin_unlock_bh(&con->writequeue_lock);
1373 return DLM_IO_END;
1374 }
1375
1376 len = e->len;
1377 offset = e->offset;
1378 WARN_ON_ONCE(len == 0 && e->users == 0);
1379 spin_unlock_bh(&con->writequeue_lock);
1380
1381 bvec_set_page(&bvec, e->page, len, offset);
1382 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1383 ret = sock_sendmsg(con->sock, &msg);
1384 trace_dlm_send(con->nodeid, ret);
1385 if (ret == -EAGAIN || ret == 0) {
1386 lock_sock(con->sock->sk);
1387 spin_lock_bh(&con->writequeue_lock);
1388 if (test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1389 !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1390 /* Notify TCP that we're limited by the
1391 * application window size.
1392 */
1393 set_bit(SOCK_NOSPACE, &con->sock->sk->sk_socket->flags);
1394 con->sock->sk->sk_write_pending++;
1395
1396 clear_bit(CF_SEND_PENDING, &con->flags);
1397 spin_unlock_bh(&con->writequeue_lock);
1398 release_sock(con->sock->sk);
1399
1400 /* wait for write_space() event */
1401 return DLM_IO_END;
1402 }
1403 spin_unlock_bh(&con->writequeue_lock);
1404 release_sock(con->sock->sk);
1405
1406 return DLM_IO_RESCHED;
1407 } else if (ret < 0) {
1408 return ret;
1409 }
1410
1411 spin_lock_bh(&con->writequeue_lock);
1412 writequeue_entry_complete(e, ret);
1413 spin_unlock_bh(&con->writequeue_lock);
1414
1415 return DLM_IO_SUCCESS;
1416 }
1417
clean_one_writequeue(struct connection * con)1418 static void clean_one_writequeue(struct connection *con)
1419 {
1420 struct writequeue_entry *e, *safe;
1421
1422 spin_lock_bh(&con->writequeue_lock);
1423 list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1424 free_entry(e);
1425 }
1426 spin_unlock_bh(&con->writequeue_lock);
1427 }
1428
connection_release(struct rcu_head * rcu)1429 static void connection_release(struct rcu_head *rcu)
1430 {
1431 struct connection *con = container_of(rcu, struct connection, rcu);
1432
1433 WARN_ON_ONCE(!list_empty(&con->writequeue));
1434 WARN_ON_ONCE(con->sock);
1435 kfree(con);
1436 }
1437
1438 /* Called from recovery when it knows that a node has
1439 left the cluster */
dlm_lowcomms_close(int nodeid)1440 int dlm_lowcomms_close(int nodeid)
1441 {
1442 struct connection *con;
1443 int idx;
1444
1445 log_print("closing connection to node %d", nodeid);
1446
1447 idx = srcu_read_lock(&connections_srcu);
1448 con = nodeid2con(nodeid, 0);
1449 if (WARN_ON_ONCE(!con)) {
1450 srcu_read_unlock(&connections_srcu, idx);
1451 return -ENOENT;
1452 }
1453
1454 stop_connection_io(con);
1455 log_print("io handling for node: %d stopped", nodeid);
1456 close_connection(con, true);
1457
1458 spin_lock(&connections_lock);
1459 hlist_del_rcu(&con->list);
1460 spin_unlock(&connections_lock);
1461
1462 clean_one_writequeue(con);
1463 call_srcu(&connections_srcu, &con->rcu, connection_release);
1464 if (con->othercon) {
1465 clean_one_writequeue(con->othercon);
1466 call_srcu(&connections_srcu, &con->othercon->rcu, connection_release);
1467 }
1468 srcu_read_unlock(&connections_srcu, idx);
1469
1470 /* for debugging we print when we are done to compare with other
1471 * messages in between. This function need to be correctly synchronized
1472 * with io handling
1473 */
1474 log_print("closing connection to node %d done", nodeid);
1475
1476 return 0;
1477 }
1478
1479 /* Receive worker function */
process_recv_sockets(struct work_struct * work)1480 static void process_recv_sockets(struct work_struct *work)
1481 {
1482 struct connection *con = container_of(work, struct connection, rwork);
1483 int ret, buflen;
1484
1485 down_read(&con->sock_lock);
1486 if (!con->sock) {
1487 up_read(&con->sock_lock);
1488 return;
1489 }
1490
1491 buflen = READ_ONCE(dlm_config.ci_buffer_size);
1492 do {
1493 ret = receive_from_sock(con, buflen);
1494 } while (ret == DLM_IO_SUCCESS);
1495 up_read(&con->sock_lock);
1496
1497 switch (ret) {
1498 case DLM_IO_END:
1499 /* CF_RECV_PENDING cleared */
1500 break;
1501 case DLM_IO_EOF:
1502 close_connection(con, false);
1503 wake_up(&con->shutdown_wait);
1504 /* CF_RECV_PENDING cleared */
1505 break;
1506 case DLM_IO_RESCHED:
1507 cond_resched();
1508 queue_work(io_workqueue, &con->rwork);
1509 /* CF_RECV_PENDING not cleared */
1510 break;
1511 default:
1512 if (ret < 0) {
1513 if (test_bit(CF_IS_OTHERCON, &con->flags)) {
1514 close_connection(con, false);
1515 } else {
1516 spin_lock_bh(&con->writequeue_lock);
1517 lowcomms_queue_swork(con);
1518 spin_unlock_bh(&con->writequeue_lock);
1519 }
1520
1521 /* CF_RECV_PENDING cleared for othercon
1522 * we trigger send queue if not already done
1523 * and process_send_sockets will handle it
1524 */
1525 break;
1526 }
1527
1528 WARN_ON_ONCE(1);
1529 break;
1530 }
1531 }
1532
process_listen_recv_socket(struct work_struct * work)1533 static void process_listen_recv_socket(struct work_struct *work)
1534 {
1535 int ret;
1536
1537 if (WARN_ON_ONCE(!listen_con.sock))
1538 return;
1539
1540 do {
1541 ret = accept_from_sock();
1542 } while (ret == DLM_IO_SUCCESS);
1543
1544 if (ret < 0)
1545 log_print("critical error accepting connection: %d", ret);
1546 }
1547
dlm_connect(struct connection * con)1548 static int dlm_connect(struct connection *con)
1549 {
1550 struct sockaddr_storage addr;
1551 int result, addr_len;
1552 struct socket *sock;
1553 unsigned int mark;
1554
1555 memset(&addr, 0, sizeof(addr));
1556 result = nodeid_to_addr(con->nodeid, &addr, NULL,
1557 dlm_proto_ops->try_new_addr, &mark);
1558 if (result < 0) {
1559 log_print("no address for nodeid %d", con->nodeid);
1560 return result;
1561 }
1562
1563 /* Create a socket to communicate with */
1564 result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1565 SOCK_STREAM, dlm_proto_ops->proto, &sock);
1566 if (result < 0)
1567 return result;
1568
1569 sock_set_mark(sock->sk, mark);
1570 dlm_proto_ops->sockopts(sock);
1571
1572 result = dlm_proto_ops->bind(sock);
1573 if (result < 0) {
1574 sock_release(sock);
1575 return result;
1576 }
1577
1578 add_sock(sock, con);
1579
1580 log_print_ratelimited("connecting to %d", con->nodeid);
1581 make_sockaddr(&addr, dlm_config.ci_tcp_port, &addr_len);
1582 result = dlm_proto_ops->connect(con, sock, (struct sockaddr *)&addr,
1583 addr_len);
1584 switch (result) {
1585 case -EINPROGRESS:
1586 /* not an error */
1587 fallthrough;
1588 case 0:
1589 break;
1590 default:
1591 if (result < 0)
1592 dlm_close_sock(&con->sock);
1593
1594 break;
1595 }
1596
1597 return result;
1598 }
1599
1600 /* Send worker function */
process_send_sockets(struct work_struct * work)1601 static void process_send_sockets(struct work_struct *work)
1602 {
1603 struct connection *con = container_of(work, struct connection, swork);
1604 int ret;
1605
1606 WARN_ON_ONCE(test_bit(CF_IS_OTHERCON, &con->flags));
1607
1608 down_read(&con->sock_lock);
1609 if (!con->sock) {
1610 up_read(&con->sock_lock);
1611 down_write(&con->sock_lock);
1612 if (!con->sock) {
1613 ret = dlm_connect(con);
1614 switch (ret) {
1615 case 0:
1616 break;
1617 case -EINPROGRESS:
1618 /* avoid spamming resched on connection
1619 * we might can switch to a state_change
1620 * event based mechanism if established
1621 */
1622 msleep(100);
1623 break;
1624 default:
1625 /* CF_SEND_PENDING not cleared */
1626 up_write(&con->sock_lock);
1627 log_print("connect to node %d try %d error %d",
1628 con->nodeid, con->retries++, ret);
1629 msleep(1000);
1630 /* For now we try forever to reconnect. In
1631 * future we should send a event to cluster
1632 * manager to fence itself after certain amount
1633 * of retries.
1634 */
1635 queue_work(io_workqueue, &con->swork);
1636 return;
1637 }
1638 }
1639 downgrade_write(&con->sock_lock);
1640 }
1641
1642 do {
1643 ret = send_to_sock(con);
1644 } while (ret == DLM_IO_SUCCESS);
1645 up_read(&con->sock_lock);
1646
1647 switch (ret) {
1648 case DLM_IO_END:
1649 /* CF_SEND_PENDING cleared */
1650 break;
1651 case DLM_IO_RESCHED:
1652 /* CF_SEND_PENDING not cleared */
1653 cond_resched();
1654 queue_work(io_workqueue, &con->swork);
1655 break;
1656 default:
1657 if (ret < 0) {
1658 close_connection(con, false);
1659
1660 /* CF_SEND_PENDING cleared */
1661 spin_lock_bh(&con->writequeue_lock);
1662 lowcomms_queue_swork(con);
1663 spin_unlock_bh(&con->writequeue_lock);
1664 break;
1665 }
1666
1667 WARN_ON_ONCE(1);
1668 break;
1669 }
1670 }
1671
work_stop(void)1672 static void work_stop(void)
1673 {
1674 if (io_workqueue) {
1675 destroy_workqueue(io_workqueue);
1676 io_workqueue = NULL;
1677 }
1678
1679 if (process_workqueue) {
1680 destroy_workqueue(process_workqueue);
1681 process_workqueue = NULL;
1682 }
1683 }
1684
work_start(void)1685 static int work_start(void)
1686 {
1687 io_workqueue = alloc_workqueue("dlm_io", WQ_HIGHPRI | WQ_MEM_RECLAIM |
1688 WQ_UNBOUND, 0);
1689 if (!io_workqueue) {
1690 log_print("can't start dlm_io");
1691 return -ENOMEM;
1692 }
1693
1694 /* ordered dlm message process queue,
1695 * should be converted to a tasklet
1696 */
1697 process_workqueue = alloc_ordered_workqueue("dlm_process",
1698 WQ_HIGHPRI | WQ_MEM_RECLAIM);
1699 if (!process_workqueue) {
1700 log_print("can't start dlm_process");
1701 destroy_workqueue(io_workqueue);
1702 io_workqueue = NULL;
1703 return -ENOMEM;
1704 }
1705
1706 return 0;
1707 }
1708
dlm_lowcomms_shutdown(void)1709 void dlm_lowcomms_shutdown(void)
1710 {
1711 struct connection *con;
1712 int i, idx;
1713
1714 /* stop lowcomms_listen_data_ready calls */
1715 lock_sock(listen_con.sock->sk);
1716 listen_con.sock->sk->sk_data_ready = listen_sock.sk_data_ready;
1717 release_sock(listen_con.sock->sk);
1718
1719 cancel_work_sync(&listen_con.rwork);
1720 dlm_close_sock(&listen_con.sock);
1721
1722 idx = srcu_read_lock(&connections_srcu);
1723 for (i = 0; i < CONN_HASH_SIZE; i++) {
1724 hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
1725 shutdown_connection(con, true);
1726 stop_connection_io(con);
1727 flush_workqueue(process_workqueue);
1728 close_connection(con, true);
1729
1730 clean_one_writequeue(con);
1731 if (con->othercon)
1732 clean_one_writequeue(con->othercon);
1733 allow_connection_io(con);
1734 }
1735 }
1736 srcu_read_unlock(&connections_srcu, idx);
1737 }
1738
dlm_lowcomms_stop(void)1739 void dlm_lowcomms_stop(void)
1740 {
1741 work_stop();
1742 dlm_proto_ops = NULL;
1743 }
1744
dlm_listen_for_all(void)1745 static int dlm_listen_for_all(void)
1746 {
1747 struct socket *sock;
1748 int result;
1749
1750 log_print("Using %s for communications",
1751 dlm_proto_ops->name);
1752
1753 result = dlm_proto_ops->listen_validate();
1754 if (result < 0)
1755 return result;
1756
1757 result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1758 SOCK_STREAM, dlm_proto_ops->proto, &sock);
1759 if (result < 0) {
1760 log_print("Can't create comms socket: %d", result);
1761 return result;
1762 }
1763
1764 sock_set_mark(sock->sk, dlm_config.ci_mark);
1765 dlm_proto_ops->listen_sockopts(sock);
1766
1767 result = dlm_proto_ops->listen_bind(sock);
1768 if (result < 0)
1769 goto out;
1770
1771 lock_sock(sock->sk);
1772 listen_sock.sk_data_ready = sock->sk->sk_data_ready;
1773 listen_sock.sk_write_space = sock->sk->sk_write_space;
1774 listen_sock.sk_error_report = sock->sk->sk_error_report;
1775 listen_sock.sk_state_change = sock->sk->sk_state_change;
1776
1777 listen_con.sock = sock;
1778
1779 sock->sk->sk_allocation = GFP_NOFS;
1780 sock->sk->sk_use_task_frag = false;
1781 sock->sk->sk_data_ready = lowcomms_listen_data_ready;
1782 release_sock(sock->sk);
1783
1784 result = sock->ops->listen(sock, 128);
1785 if (result < 0) {
1786 dlm_close_sock(&listen_con.sock);
1787 return result;
1788 }
1789
1790 return 0;
1791
1792 out:
1793 sock_release(sock);
1794 return result;
1795 }
1796
dlm_tcp_bind(struct socket * sock)1797 static int dlm_tcp_bind(struct socket *sock)
1798 {
1799 struct sockaddr_storage src_addr;
1800 int result, addr_len;
1801
1802 /* Bind to our cluster-known address connecting to avoid
1803 * routing problems.
1804 */
1805 memcpy(&src_addr, &dlm_local_addr[0], sizeof(src_addr));
1806 make_sockaddr(&src_addr, 0, &addr_len);
1807
1808 result = kernel_bind(sock, (struct sockaddr *)&src_addr,
1809 addr_len);
1810 if (result < 0) {
1811 /* This *may* not indicate a critical error */
1812 log_print("could not bind for connect: %d", result);
1813 }
1814
1815 return 0;
1816 }
1817
dlm_tcp_connect(struct connection * con,struct socket * sock,struct sockaddr * addr,int addr_len)1818 static int dlm_tcp_connect(struct connection *con, struct socket *sock,
1819 struct sockaddr *addr, int addr_len)
1820 {
1821 return kernel_connect(sock, addr, addr_len, O_NONBLOCK);
1822 }
1823
dlm_tcp_listen_validate(void)1824 static int dlm_tcp_listen_validate(void)
1825 {
1826 /* We don't support multi-homed hosts */
1827 if (dlm_local_count > 1) {
1828 log_print("TCP protocol can't handle multi-homed hosts, try SCTP");
1829 return -EINVAL;
1830 }
1831
1832 return 0;
1833 }
1834
dlm_tcp_sockopts(struct socket * sock)1835 static void dlm_tcp_sockopts(struct socket *sock)
1836 {
1837 /* Turn off Nagle's algorithm */
1838 tcp_sock_set_nodelay(sock->sk);
1839 }
1840
dlm_tcp_listen_sockopts(struct socket * sock)1841 static void dlm_tcp_listen_sockopts(struct socket *sock)
1842 {
1843 dlm_tcp_sockopts(sock);
1844 sock_set_reuseaddr(sock->sk);
1845 }
1846
dlm_tcp_listen_bind(struct socket * sock)1847 static int dlm_tcp_listen_bind(struct socket *sock)
1848 {
1849 int addr_len;
1850
1851 /* Bind to our port */
1852 make_sockaddr(&dlm_local_addr[0], dlm_config.ci_tcp_port, &addr_len);
1853 return kernel_bind(sock, (struct sockaddr *)&dlm_local_addr[0],
1854 addr_len);
1855 }
1856
1857 static const struct dlm_proto_ops dlm_tcp_ops = {
1858 .name = "TCP",
1859 .proto = IPPROTO_TCP,
1860 .connect = dlm_tcp_connect,
1861 .sockopts = dlm_tcp_sockopts,
1862 .bind = dlm_tcp_bind,
1863 .listen_validate = dlm_tcp_listen_validate,
1864 .listen_sockopts = dlm_tcp_listen_sockopts,
1865 .listen_bind = dlm_tcp_listen_bind,
1866 };
1867
dlm_sctp_bind(struct socket * sock)1868 static int dlm_sctp_bind(struct socket *sock)
1869 {
1870 return sctp_bind_addrs(sock, 0);
1871 }
1872
dlm_sctp_connect(struct connection * con,struct socket * sock,struct sockaddr * addr,int addr_len)1873 static int dlm_sctp_connect(struct connection *con, struct socket *sock,
1874 struct sockaddr *addr, int addr_len)
1875 {
1876 int ret;
1877
1878 /*
1879 * Make kernel_connect() function return in specified time,
1880 * since O_NONBLOCK argument in connect() function does not work here,
1881 * then, we should restore the default value of this attribute.
1882 */
1883 sock_set_sndtimeo(sock->sk, 5);
1884 ret = kernel_connect(sock, addr, addr_len, 0);
1885 sock_set_sndtimeo(sock->sk, 0);
1886 return ret;
1887 }
1888
dlm_sctp_listen_validate(void)1889 static int dlm_sctp_listen_validate(void)
1890 {
1891 if (!IS_ENABLED(CONFIG_IP_SCTP)) {
1892 log_print("SCTP is not enabled by this kernel");
1893 return -EOPNOTSUPP;
1894 }
1895
1896 request_module("sctp");
1897 return 0;
1898 }
1899
dlm_sctp_bind_listen(struct socket * sock)1900 static int dlm_sctp_bind_listen(struct socket *sock)
1901 {
1902 return sctp_bind_addrs(sock, dlm_config.ci_tcp_port);
1903 }
1904
dlm_sctp_sockopts(struct socket * sock)1905 static void dlm_sctp_sockopts(struct socket *sock)
1906 {
1907 /* Turn off Nagle's algorithm */
1908 sctp_sock_set_nodelay(sock->sk);
1909 sock_set_rcvbuf(sock->sk, NEEDED_RMEM);
1910 }
1911
1912 static const struct dlm_proto_ops dlm_sctp_ops = {
1913 .name = "SCTP",
1914 .proto = IPPROTO_SCTP,
1915 .try_new_addr = true,
1916 .connect = dlm_sctp_connect,
1917 .sockopts = dlm_sctp_sockopts,
1918 .bind = dlm_sctp_bind,
1919 .listen_validate = dlm_sctp_listen_validate,
1920 .listen_sockopts = dlm_sctp_sockopts,
1921 .listen_bind = dlm_sctp_bind_listen,
1922 };
1923
dlm_lowcomms_start(void)1924 int dlm_lowcomms_start(void)
1925 {
1926 int error;
1927
1928 init_local();
1929 if (!dlm_local_count) {
1930 error = -ENOTCONN;
1931 log_print("no local IP address has been set");
1932 goto fail;
1933 }
1934
1935 error = work_start();
1936 if (error)
1937 goto fail;
1938
1939 /* Start listening */
1940 switch (dlm_config.ci_protocol) {
1941 case DLM_PROTO_TCP:
1942 dlm_proto_ops = &dlm_tcp_ops;
1943 break;
1944 case DLM_PROTO_SCTP:
1945 dlm_proto_ops = &dlm_sctp_ops;
1946 break;
1947 default:
1948 log_print("Invalid protocol identifier %d set",
1949 dlm_config.ci_protocol);
1950 error = -EINVAL;
1951 goto fail_proto_ops;
1952 }
1953
1954 error = dlm_listen_for_all();
1955 if (error)
1956 goto fail_listen;
1957
1958 return 0;
1959
1960 fail_listen:
1961 dlm_proto_ops = NULL;
1962 fail_proto_ops:
1963 work_stop();
1964 fail:
1965 return error;
1966 }
1967
dlm_lowcomms_init(void)1968 void dlm_lowcomms_init(void)
1969 {
1970 int i;
1971
1972 for (i = 0; i < CONN_HASH_SIZE; i++)
1973 INIT_HLIST_HEAD(&connection_hash[i]);
1974
1975 INIT_WORK(&listen_con.rwork, process_listen_recv_socket);
1976 }
1977
dlm_lowcomms_exit(void)1978 void dlm_lowcomms_exit(void)
1979 {
1980 struct connection *con;
1981 int i, idx;
1982
1983 idx = srcu_read_lock(&connections_srcu);
1984 for (i = 0; i < CONN_HASH_SIZE; i++) {
1985 hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
1986 spin_lock(&connections_lock);
1987 hlist_del_rcu(&con->list);
1988 spin_unlock(&connections_lock);
1989
1990 if (con->othercon)
1991 call_srcu(&connections_srcu, &con->othercon->rcu,
1992 connection_release);
1993 call_srcu(&connections_srcu, &con->rcu, connection_release);
1994 }
1995 }
1996 srcu_read_unlock(&connections_srcu, idx);
1997 }
1998