xref: /openbmc/linux/fs/direct-io.c (revision f8f0d06438e5c810d1e13b5f8c2fed501fe36e9c)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * fs/direct-io.c
4   *
5   * Copyright (C) 2002, Linus Torvalds.
6   *
7   * O_DIRECT
8   *
9   * 04Jul2002	Andrew Morton
10   *		Initial version
11   * 11Sep2002	janetinc@us.ibm.com
12   * 		added readv/writev support.
13   * 29Oct2002	Andrew Morton
14   *		rewrote bio_add_page() support.
15   * 30Oct2002	pbadari@us.ibm.com
16   *		added support for non-aligned IO.
17   * 06Nov2002	pbadari@us.ibm.com
18   *		added asynchronous IO support.
19   * 21Jul2003	nathans@sgi.com
20   *		added IO completion notifier.
21   */
22  
23  #include <linux/kernel.h>
24  #include <linux/module.h>
25  #include <linux/types.h>
26  #include <linux/fs.h>
27  #include <linux/mm.h>
28  #include <linux/slab.h>
29  #include <linux/highmem.h>
30  #include <linux/pagemap.h>
31  #include <linux/task_io_accounting_ops.h>
32  #include <linux/bio.h>
33  #include <linux/wait.h>
34  #include <linux/err.h>
35  #include <linux/blkdev.h>
36  #include <linux/buffer_head.h>
37  #include <linux/rwsem.h>
38  #include <linux/uio.h>
39  #include <linux/atomic.h>
40  #include <linux/prefetch.h>
41  
42  #include "internal.h"
43  
44  /*
45   * How many user pages to map in one call to get_user_pages().  This determines
46   * the size of a structure in the slab cache
47   */
48  #define DIO_PAGES	64
49  
50  /*
51   * Flags for dio_complete()
52   */
53  #define DIO_COMPLETE_ASYNC		0x01	/* This is async IO */
54  #define DIO_COMPLETE_INVALIDATE		0x02	/* Can invalidate pages */
55  
56  /*
57   * This code generally works in units of "dio_blocks".  A dio_block is
58   * somewhere between the hard sector size and the filesystem block size.  it
59   * is determined on a per-invocation basis.   When talking to the filesystem
60   * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
61   * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
62   * to bio_block quantities by shifting left by blkfactor.
63   *
64   * If blkfactor is zero then the user's request was aligned to the filesystem's
65   * blocksize.
66   */
67  
68  /* dio_state only used in the submission path */
69  
70  struct dio_submit {
71  	struct bio *bio;		/* bio under assembly */
72  	unsigned blkbits;		/* doesn't change */
73  	unsigned blkfactor;		/* When we're using an alignment which
74  					   is finer than the filesystem's soft
75  					   blocksize, this specifies how much
76  					   finer.  blkfactor=2 means 1/4-block
77  					   alignment.  Does not change */
78  	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
79  					   been performed at the start of a
80  					   write */
81  	int pages_in_io;		/* approximate total IO pages */
82  	sector_t block_in_file;		/* Current offset into the underlying
83  					   file in dio_block units. */
84  	unsigned blocks_available;	/* At block_in_file.  changes */
85  	int reap_counter;		/* rate limit reaping */
86  	sector_t final_block_in_request;/* doesn't change */
87  	int boundary;			/* prev block is at a boundary */
88  	get_block_t *get_block;		/* block mapping function */
89  	dio_submit_t *submit_io;	/* IO submition function */
90  
91  	loff_t logical_offset_in_bio;	/* current first logical block in bio */
92  	sector_t final_block_in_bio;	/* current final block in bio + 1 */
93  	sector_t next_block_for_io;	/* next block to be put under IO,
94  					   in dio_blocks units */
95  
96  	/*
97  	 * Deferred addition of a page to the dio.  These variables are
98  	 * private to dio_send_cur_page(), submit_page_section() and
99  	 * dio_bio_add_page().
100  	 */
101  	struct page *cur_page;		/* The page */
102  	unsigned cur_page_offset;	/* Offset into it, in bytes */
103  	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
104  	sector_t cur_page_block;	/* Where it starts */
105  	loff_t cur_page_fs_offset;	/* Offset in file */
106  
107  	struct iov_iter *iter;
108  	/*
109  	 * Page queue.  These variables belong to dio_refill_pages() and
110  	 * dio_get_page().
111  	 */
112  	unsigned head;			/* next page to process */
113  	unsigned tail;			/* last valid page + 1 */
114  	size_t from, to;
115  };
116  
117  /* dio_state communicated between submission path and end_io */
118  struct dio {
119  	int flags;			/* doesn't change */
120  	int op;
121  	int op_flags;
122  	blk_qc_t bio_cookie;
123  	struct gendisk *bio_disk;
124  	struct inode *inode;
125  	loff_t i_size;			/* i_size when submitted */
126  	dio_iodone_t *end_io;		/* IO completion function */
127  
128  	void *private;			/* copy from map_bh.b_private */
129  
130  	/* BIO completion state */
131  	spinlock_t bio_lock;		/* protects BIO fields below */
132  	int page_errors;		/* errno from get_user_pages() */
133  	int is_async;			/* is IO async ? */
134  	bool defer_completion;		/* defer AIO completion to workqueue? */
135  	bool should_dirty;		/* if pages should be dirtied */
136  	int io_error;			/* IO error in completion path */
137  	unsigned long refcount;		/* direct_io_worker() and bios */
138  	struct bio *bio_list;		/* singly linked via bi_private */
139  	struct task_struct *waiter;	/* waiting task (NULL if none) */
140  
141  	/* AIO related stuff */
142  	struct kiocb *iocb;		/* kiocb */
143  	ssize_t result;                 /* IO result */
144  
145  	/*
146  	 * pages[] (and any fields placed after it) are not zeroed out at
147  	 * allocation time.  Don't add new fields after pages[] unless you
148  	 * wish that they not be zeroed.
149  	 */
150  	union {
151  		struct page *pages[DIO_PAGES];	/* page buffer */
152  		struct work_struct complete_work;/* deferred AIO completion */
153  	};
154  } ____cacheline_aligned_in_smp;
155  
156  static struct kmem_cache *dio_cache __read_mostly;
157  
158  /*
159   * How many pages are in the queue?
160   */
161  static inline unsigned dio_pages_present(struct dio_submit *sdio)
162  {
163  	return sdio->tail - sdio->head;
164  }
165  
166  /*
167   * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
168   */
169  static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
170  {
171  	ssize_t ret;
172  
173  	ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
174  				&sdio->from);
175  
176  	if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) {
177  		struct page *page = ZERO_PAGE(0);
178  		/*
179  		 * A memory fault, but the filesystem has some outstanding
180  		 * mapped blocks.  We need to use those blocks up to avoid
181  		 * leaking stale data in the file.
182  		 */
183  		if (dio->page_errors == 0)
184  			dio->page_errors = ret;
185  		get_page(page);
186  		dio->pages[0] = page;
187  		sdio->head = 0;
188  		sdio->tail = 1;
189  		sdio->from = 0;
190  		sdio->to = PAGE_SIZE;
191  		return 0;
192  	}
193  
194  	if (ret >= 0) {
195  		iov_iter_advance(sdio->iter, ret);
196  		ret += sdio->from;
197  		sdio->head = 0;
198  		sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
199  		sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
200  		return 0;
201  	}
202  	return ret;
203  }
204  
205  /*
206   * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
207   * buffered inside the dio so that we can call get_user_pages() against a
208   * decent number of pages, less frequently.  To provide nicer use of the
209   * L1 cache.
210   */
211  static inline struct page *dio_get_page(struct dio *dio,
212  					struct dio_submit *sdio)
213  {
214  	if (dio_pages_present(sdio) == 0) {
215  		int ret;
216  
217  		ret = dio_refill_pages(dio, sdio);
218  		if (ret)
219  			return ERR_PTR(ret);
220  		BUG_ON(dio_pages_present(sdio) == 0);
221  	}
222  	return dio->pages[sdio->head];
223  }
224  
225  /*
226   * dio_complete() - called when all DIO BIO I/O has been completed
227   *
228   * This drops i_dio_count, lets interested parties know that a DIO operation
229   * has completed, and calculates the resulting return code for the operation.
230   *
231   * It lets the filesystem know if it registered an interest earlier via
232   * get_block.  Pass the private field of the map buffer_head so that
233   * filesystems can use it to hold additional state between get_block calls and
234   * dio_complete.
235   */
236  static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
237  {
238  	loff_t offset = dio->iocb->ki_pos;
239  	ssize_t transferred = 0;
240  	int err;
241  
242  	/*
243  	 * AIO submission can race with bio completion to get here while
244  	 * expecting to have the last io completed by bio completion.
245  	 * In that case -EIOCBQUEUED is in fact not an error we want
246  	 * to preserve through this call.
247  	 */
248  	if (ret == -EIOCBQUEUED)
249  		ret = 0;
250  
251  	if (dio->result) {
252  		transferred = dio->result;
253  
254  		/* Check for short read case */
255  		if ((dio->op == REQ_OP_READ) &&
256  		    ((offset + transferred) > dio->i_size))
257  			transferred = dio->i_size - offset;
258  		/* ignore EFAULT if some IO has been done */
259  		if (unlikely(ret == -EFAULT) && transferred)
260  			ret = 0;
261  	}
262  
263  	if (ret == 0)
264  		ret = dio->page_errors;
265  	if (ret == 0)
266  		ret = dio->io_error;
267  	if (ret == 0)
268  		ret = transferred;
269  
270  	if (dio->end_io) {
271  		// XXX: ki_pos??
272  		err = dio->end_io(dio->iocb, offset, ret, dio->private);
273  		if (err)
274  			ret = err;
275  	}
276  
277  	/*
278  	 * Try again to invalidate clean pages which might have been cached by
279  	 * non-direct readahead, or faulted in by get_user_pages() if the source
280  	 * of the write was an mmap'ed region of the file we're writing.  Either
281  	 * one is a pretty crazy thing to do, so we don't support it 100%.  If
282  	 * this invalidation fails, tough, the write still worked...
283  	 *
284  	 * And this page cache invalidation has to be after dio->end_io(), as
285  	 * some filesystems convert unwritten extents to real allocations in
286  	 * end_io() when necessary, otherwise a racing buffer read would cache
287  	 * zeros from unwritten extents.
288  	 */
289  	if (flags & DIO_COMPLETE_INVALIDATE &&
290  	    ret > 0 && dio->op == REQ_OP_WRITE &&
291  	    dio->inode->i_mapping->nrpages) {
292  		err = invalidate_inode_pages2_range(dio->inode->i_mapping,
293  					offset >> PAGE_SHIFT,
294  					(offset + ret - 1) >> PAGE_SHIFT);
295  		if (err)
296  			dio_warn_stale_pagecache(dio->iocb->ki_filp);
297  	}
298  
299  	inode_dio_end(dio->inode);
300  
301  	if (flags & DIO_COMPLETE_ASYNC) {
302  		/*
303  		 * generic_write_sync expects ki_pos to have been updated
304  		 * already, but the submission path only does this for
305  		 * synchronous I/O.
306  		 */
307  		dio->iocb->ki_pos += transferred;
308  
309  		if (ret > 0 && dio->op == REQ_OP_WRITE)
310  			ret = generic_write_sync(dio->iocb, ret);
311  		dio->iocb->ki_complete(dio->iocb, ret, 0);
312  	}
313  
314  	kmem_cache_free(dio_cache, dio);
315  	return ret;
316  }
317  
318  static void dio_aio_complete_work(struct work_struct *work)
319  {
320  	struct dio *dio = container_of(work, struct dio, complete_work);
321  
322  	dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
323  }
324  
325  static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
326  
327  /*
328   * Asynchronous IO callback.
329   */
330  static void dio_bio_end_aio(struct bio *bio)
331  {
332  	struct dio *dio = bio->bi_private;
333  	unsigned long remaining;
334  	unsigned long flags;
335  	bool defer_completion = false;
336  
337  	/* cleanup the bio */
338  	dio_bio_complete(dio, bio);
339  
340  	spin_lock_irqsave(&dio->bio_lock, flags);
341  	remaining = --dio->refcount;
342  	if (remaining == 1 && dio->waiter)
343  		wake_up_process(dio->waiter);
344  	spin_unlock_irqrestore(&dio->bio_lock, flags);
345  
346  	if (remaining == 0) {
347  		/*
348  		 * Defer completion when defer_completion is set or
349  		 * when the inode has pages mapped and this is AIO write.
350  		 * We need to invalidate those pages because there is a
351  		 * chance they contain stale data in the case buffered IO
352  		 * went in between AIO submission and completion into the
353  		 * same region.
354  		 */
355  		if (dio->result)
356  			defer_completion = dio->defer_completion ||
357  					   (dio->op == REQ_OP_WRITE &&
358  					    dio->inode->i_mapping->nrpages);
359  		if (defer_completion) {
360  			INIT_WORK(&dio->complete_work, dio_aio_complete_work);
361  			queue_work(dio->inode->i_sb->s_dio_done_wq,
362  				   &dio->complete_work);
363  		} else {
364  			dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
365  		}
366  	}
367  }
368  
369  /*
370   * The BIO completion handler simply queues the BIO up for the process-context
371   * handler.
372   *
373   * During I/O bi_private points at the dio.  After I/O, bi_private is used to
374   * implement a singly-linked list of completed BIOs, at dio->bio_list.
375   */
376  static void dio_bio_end_io(struct bio *bio)
377  {
378  	struct dio *dio = bio->bi_private;
379  	unsigned long flags;
380  
381  	spin_lock_irqsave(&dio->bio_lock, flags);
382  	bio->bi_private = dio->bio_list;
383  	dio->bio_list = bio;
384  	if (--dio->refcount == 1 && dio->waiter)
385  		wake_up_process(dio->waiter);
386  	spin_unlock_irqrestore(&dio->bio_lock, flags);
387  }
388  
389  static inline void
390  dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
391  	      struct block_device *bdev,
392  	      sector_t first_sector, int nr_vecs)
393  {
394  	struct bio *bio;
395  
396  	/*
397  	 * bio_alloc() is guaranteed to return a bio when allowed to sleep and
398  	 * we request a valid number of vectors.
399  	 */
400  	bio = bio_alloc(GFP_KERNEL, nr_vecs);
401  
402  	bio_set_dev(bio, bdev);
403  	bio->bi_iter.bi_sector = first_sector;
404  	bio_set_op_attrs(bio, dio->op, dio->op_flags);
405  	if (dio->is_async)
406  		bio->bi_end_io = dio_bio_end_aio;
407  	else
408  		bio->bi_end_io = dio_bio_end_io;
409  
410  	bio->bi_write_hint = dio->iocb->ki_hint;
411  
412  	sdio->bio = bio;
413  	sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
414  }
415  
416  /*
417   * In the AIO read case we speculatively dirty the pages before starting IO.
418   * During IO completion, any of these pages which happen to have been written
419   * back will be redirtied by bio_check_pages_dirty().
420   *
421   * bios hold a dio reference between submit_bio and ->end_io.
422   */
423  static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
424  {
425  	struct bio *bio = sdio->bio;
426  	unsigned long flags;
427  
428  	bio->bi_private = dio;
429  	/* don't account direct I/O as memory stall */
430  	bio_clear_flag(bio, BIO_WORKINGSET);
431  
432  	spin_lock_irqsave(&dio->bio_lock, flags);
433  	dio->refcount++;
434  	spin_unlock_irqrestore(&dio->bio_lock, flags);
435  
436  	if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty)
437  		bio_set_pages_dirty(bio);
438  
439  	dio->bio_disk = bio->bi_bdev->bd_disk;
440  
441  	if (sdio->submit_io) {
442  		sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
443  		dio->bio_cookie = BLK_QC_T_NONE;
444  	} else
445  		dio->bio_cookie = submit_bio(bio);
446  
447  	sdio->bio = NULL;
448  	sdio->boundary = 0;
449  	sdio->logical_offset_in_bio = 0;
450  }
451  
452  /*
453   * Release any resources in case of a failure
454   */
455  static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
456  {
457  	while (sdio->head < sdio->tail)
458  		put_page(dio->pages[sdio->head++]);
459  }
460  
461  /*
462   * Wait for the next BIO to complete.  Remove it and return it.  NULL is
463   * returned once all BIOs have been completed.  This must only be called once
464   * all bios have been issued so that dio->refcount can only decrease.  This
465   * requires that the caller hold a reference on the dio.
466   */
467  static struct bio *dio_await_one(struct dio *dio)
468  {
469  	unsigned long flags;
470  	struct bio *bio = NULL;
471  
472  	spin_lock_irqsave(&dio->bio_lock, flags);
473  
474  	/*
475  	 * Wait as long as the list is empty and there are bios in flight.  bio
476  	 * completion drops the count, maybe adds to the list, and wakes while
477  	 * holding the bio_lock so we don't need set_current_state()'s barrier
478  	 * and can call it after testing our condition.
479  	 */
480  	while (dio->refcount > 1 && dio->bio_list == NULL) {
481  		__set_current_state(TASK_UNINTERRUPTIBLE);
482  		dio->waiter = current;
483  		spin_unlock_irqrestore(&dio->bio_lock, flags);
484  		if (!(dio->iocb->ki_flags & IOCB_HIPRI) ||
485  		    !blk_poll(dio->bio_disk->queue, dio->bio_cookie, true))
486  			blk_io_schedule();
487  		/* wake up sets us TASK_RUNNING */
488  		spin_lock_irqsave(&dio->bio_lock, flags);
489  		dio->waiter = NULL;
490  	}
491  	if (dio->bio_list) {
492  		bio = dio->bio_list;
493  		dio->bio_list = bio->bi_private;
494  	}
495  	spin_unlock_irqrestore(&dio->bio_lock, flags);
496  	return bio;
497  }
498  
499  /*
500   * Process one completed BIO.  No locks are held.
501   */
502  static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
503  {
504  	blk_status_t err = bio->bi_status;
505  	bool should_dirty = dio->op == REQ_OP_READ && dio->should_dirty;
506  
507  	if (err) {
508  		if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
509  			dio->io_error = -EAGAIN;
510  		else
511  			dio->io_error = -EIO;
512  	}
513  
514  	if (dio->is_async && should_dirty) {
515  		bio_check_pages_dirty(bio);	/* transfers ownership */
516  	} else {
517  		bio_release_pages(bio, should_dirty);
518  		bio_put(bio);
519  	}
520  	return err;
521  }
522  
523  /*
524   * Wait on and process all in-flight BIOs.  This must only be called once
525   * all bios have been issued so that the refcount can only decrease.
526   * This just waits for all bios to make it through dio_bio_complete.  IO
527   * errors are propagated through dio->io_error and should be propagated via
528   * dio_complete().
529   */
530  static void dio_await_completion(struct dio *dio)
531  {
532  	struct bio *bio;
533  	do {
534  		bio = dio_await_one(dio);
535  		if (bio)
536  			dio_bio_complete(dio, bio);
537  	} while (bio);
538  }
539  
540  /*
541   * A really large O_DIRECT read or write can generate a lot of BIOs.  So
542   * to keep the memory consumption sane we periodically reap any completed BIOs
543   * during the BIO generation phase.
544   *
545   * This also helps to limit the peak amount of pinned userspace memory.
546   */
547  static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
548  {
549  	int ret = 0;
550  
551  	if (sdio->reap_counter++ >= 64) {
552  		while (dio->bio_list) {
553  			unsigned long flags;
554  			struct bio *bio;
555  			int ret2;
556  
557  			spin_lock_irqsave(&dio->bio_lock, flags);
558  			bio = dio->bio_list;
559  			dio->bio_list = bio->bi_private;
560  			spin_unlock_irqrestore(&dio->bio_lock, flags);
561  			ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
562  			if (ret == 0)
563  				ret = ret2;
564  		}
565  		sdio->reap_counter = 0;
566  	}
567  	return ret;
568  }
569  
570  /*
571   * Create workqueue for deferred direct IO completions. We allocate the
572   * workqueue when it's first needed. This avoids creating workqueue for
573   * filesystems that don't need it and also allows us to create the workqueue
574   * late enough so the we can include s_id in the name of the workqueue.
575   */
576  int sb_init_dio_done_wq(struct super_block *sb)
577  {
578  	struct workqueue_struct *old;
579  	struct workqueue_struct *wq = alloc_workqueue("dio/%s",
580  						      WQ_MEM_RECLAIM, 0,
581  						      sb->s_id);
582  	if (!wq)
583  		return -ENOMEM;
584  	/*
585  	 * This has to be atomic as more DIOs can race to create the workqueue
586  	 */
587  	old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
588  	/* Someone created workqueue before us? Free ours... */
589  	if (old)
590  		destroy_workqueue(wq);
591  	return 0;
592  }
593  
594  static int dio_set_defer_completion(struct dio *dio)
595  {
596  	struct super_block *sb = dio->inode->i_sb;
597  
598  	if (dio->defer_completion)
599  		return 0;
600  	dio->defer_completion = true;
601  	if (!sb->s_dio_done_wq)
602  		return sb_init_dio_done_wq(sb);
603  	return 0;
604  }
605  
606  /*
607   * Call into the fs to map some more disk blocks.  We record the current number
608   * of available blocks at sdio->blocks_available.  These are in units of the
609   * fs blocksize, i_blocksize(inode).
610   *
611   * The fs is allowed to map lots of blocks at once.  If it wants to do that,
612   * it uses the passed inode-relative block number as the file offset, as usual.
613   *
614   * get_block() is passed the number of i_blkbits-sized blocks which direct_io
615   * has remaining to do.  The fs should not map more than this number of blocks.
616   *
617   * If the fs has mapped a lot of blocks, it should populate bh->b_size to
618   * indicate how much contiguous disk space has been made available at
619   * bh->b_blocknr.
620   *
621   * If *any* of the mapped blocks are new, then the fs must set buffer_new().
622   * This isn't very efficient...
623   *
624   * In the case of filesystem holes: the fs may return an arbitrarily-large
625   * hole by returning an appropriate value in b_size and by clearing
626   * buffer_mapped().  However the direct-io code will only process holes one
627   * block at a time - it will repeatedly call get_block() as it walks the hole.
628   */
629  static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
630  			   struct buffer_head *map_bh)
631  {
632  	int ret;
633  	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
634  	sector_t fs_endblk;	/* Into file, in filesystem-sized blocks */
635  	unsigned long fs_count;	/* Number of filesystem-sized blocks */
636  	int create;
637  	unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
638  	loff_t i_size;
639  
640  	/*
641  	 * If there was a memory error and we've overwritten all the
642  	 * mapped blocks then we can now return that memory error
643  	 */
644  	ret = dio->page_errors;
645  	if (ret == 0) {
646  		BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
647  		fs_startblk = sdio->block_in_file >> sdio->blkfactor;
648  		fs_endblk = (sdio->final_block_in_request - 1) >>
649  					sdio->blkfactor;
650  		fs_count = fs_endblk - fs_startblk + 1;
651  
652  		map_bh->b_state = 0;
653  		map_bh->b_size = fs_count << i_blkbits;
654  
655  		/*
656  		 * For writes that could fill holes inside i_size on a
657  		 * DIO_SKIP_HOLES filesystem we forbid block creations: only
658  		 * overwrites are permitted. We will return early to the caller
659  		 * once we see an unmapped buffer head returned, and the caller
660  		 * will fall back to buffered I/O.
661  		 *
662  		 * Otherwise the decision is left to the get_blocks method,
663  		 * which may decide to handle it or also return an unmapped
664  		 * buffer head.
665  		 */
666  		create = dio->op == REQ_OP_WRITE;
667  		if (dio->flags & DIO_SKIP_HOLES) {
668  			i_size = i_size_read(dio->inode);
669  			if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits)
670  				create = 0;
671  		}
672  
673  		ret = (*sdio->get_block)(dio->inode, fs_startblk,
674  						map_bh, create);
675  
676  		/* Store for completion */
677  		dio->private = map_bh->b_private;
678  
679  		if (ret == 0 && buffer_defer_completion(map_bh))
680  			ret = dio_set_defer_completion(dio);
681  	}
682  	return ret;
683  }
684  
685  /*
686   * There is no bio.  Make one now.
687   */
688  static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
689  		sector_t start_sector, struct buffer_head *map_bh)
690  {
691  	sector_t sector;
692  	int ret, nr_pages;
693  
694  	ret = dio_bio_reap(dio, sdio);
695  	if (ret)
696  		goto out;
697  	sector = start_sector << (sdio->blkbits - 9);
698  	nr_pages = bio_max_segs(sdio->pages_in_io);
699  	BUG_ON(nr_pages <= 0);
700  	dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
701  	sdio->boundary = 0;
702  out:
703  	return ret;
704  }
705  
706  /*
707   * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
708   * that was successful then update final_block_in_bio and take a ref against
709   * the just-added page.
710   *
711   * Return zero on success.  Non-zero means the caller needs to start a new BIO.
712   */
713  static inline int dio_bio_add_page(struct dio_submit *sdio)
714  {
715  	int ret;
716  
717  	ret = bio_add_page(sdio->bio, sdio->cur_page,
718  			sdio->cur_page_len, sdio->cur_page_offset);
719  	if (ret == sdio->cur_page_len) {
720  		/*
721  		 * Decrement count only, if we are done with this page
722  		 */
723  		if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
724  			sdio->pages_in_io--;
725  		get_page(sdio->cur_page);
726  		sdio->final_block_in_bio = sdio->cur_page_block +
727  			(sdio->cur_page_len >> sdio->blkbits);
728  		ret = 0;
729  	} else {
730  		ret = 1;
731  	}
732  	return ret;
733  }
734  
735  /*
736   * Put cur_page under IO.  The section of cur_page which is described by
737   * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
738   * starts on-disk at cur_page_block.
739   *
740   * We take a ref against the page here (on behalf of its presence in the bio).
741   *
742   * The caller of this function is responsible for removing cur_page from the
743   * dio, and for dropping the refcount which came from that presence.
744   */
745  static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
746  		struct buffer_head *map_bh)
747  {
748  	int ret = 0;
749  
750  	if (sdio->bio) {
751  		loff_t cur_offset = sdio->cur_page_fs_offset;
752  		loff_t bio_next_offset = sdio->logical_offset_in_bio +
753  			sdio->bio->bi_iter.bi_size;
754  
755  		/*
756  		 * See whether this new request is contiguous with the old.
757  		 *
758  		 * Btrfs cannot handle having logically non-contiguous requests
759  		 * submitted.  For example if you have
760  		 *
761  		 * Logical:  [0-4095][HOLE][8192-12287]
762  		 * Physical: [0-4095]      [4096-8191]
763  		 *
764  		 * We cannot submit those pages together as one BIO.  So if our
765  		 * current logical offset in the file does not equal what would
766  		 * be the next logical offset in the bio, submit the bio we
767  		 * have.
768  		 */
769  		if (sdio->final_block_in_bio != sdio->cur_page_block ||
770  		    cur_offset != bio_next_offset)
771  			dio_bio_submit(dio, sdio);
772  	}
773  
774  	if (sdio->bio == NULL) {
775  		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
776  		if (ret)
777  			goto out;
778  	}
779  
780  	if (dio_bio_add_page(sdio) != 0) {
781  		dio_bio_submit(dio, sdio);
782  		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
783  		if (ret == 0) {
784  			ret = dio_bio_add_page(sdio);
785  			BUG_ON(ret != 0);
786  		}
787  	}
788  out:
789  	return ret;
790  }
791  
792  /*
793   * An autonomous function to put a chunk of a page under deferred IO.
794   *
795   * The caller doesn't actually know (or care) whether this piece of page is in
796   * a BIO, or is under IO or whatever.  We just take care of all possible
797   * situations here.  The separation between the logic of do_direct_IO() and
798   * that of submit_page_section() is important for clarity.  Please don't break.
799   *
800   * The chunk of page starts on-disk at blocknr.
801   *
802   * We perform deferred IO, by recording the last-submitted page inside our
803   * private part of the dio structure.  If possible, we just expand the IO
804   * across that page here.
805   *
806   * If that doesn't work out then we put the old page into the bio and add this
807   * page to the dio instead.
808   */
809  static inline int
810  submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
811  		    unsigned offset, unsigned len, sector_t blocknr,
812  		    struct buffer_head *map_bh)
813  {
814  	int ret = 0;
815  
816  	if (dio->op == REQ_OP_WRITE) {
817  		/*
818  		 * Read accounting is performed in submit_bio()
819  		 */
820  		task_io_account_write(len);
821  	}
822  
823  	/*
824  	 * Can we just grow the current page's presence in the dio?
825  	 */
826  	if (sdio->cur_page == page &&
827  	    sdio->cur_page_offset + sdio->cur_page_len == offset &&
828  	    sdio->cur_page_block +
829  	    (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
830  		sdio->cur_page_len += len;
831  		goto out;
832  	}
833  
834  	/*
835  	 * If there's a deferred page already there then send it.
836  	 */
837  	if (sdio->cur_page) {
838  		ret = dio_send_cur_page(dio, sdio, map_bh);
839  		put_page(sdio->cur_page);
840  		sdio->cur_page = NULL;
841  		if (ret)
842  			return ret;
843  	}
844  
845  	get_page(page);		/* It is in dio */
846  	sdio->cur_page = page;
847  	sdio->cur_page_offset = offset;
848  	sdio->cur_page_len = len;
849  	sdio->cur_page_block = blocknr;
850  	sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
851  out:
852  	/*
853  	 * If sdio->boundary then we want to schedule the IO now to
854  	 * avoid metadata seeks.
855  	 */
856  	if (sdio->boundary) {
857  		ret = dio_send_cur_page(dio, sdio, map_bh);
858  		if (sdio->bio)
859  			dio_bio_submit(dio, sdio);
860  		put_page(sdio->cur_page);
861  		sdio->cur_page = NULL;
862  	}
863  	return ret;
864  }
865  
866  /*
867   * If we are not writing the entire block and get_block() allocated
868   * the block for us, we need to fill-in the unused portion of the
869   * block with zeros. This happens only if user-buffer, fileoffset or
870   * io length is not filesystem block-size multiple.
871   *
872   * `end' is zero if we're doing the start of the IO, 1 at the end of the
873   * IO.
874   */
875  static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
876  		int end, struct buffer_head *map_bh)
877  {
878  	unsigned dio_blocks_per_fs_block;
879  	unsigned this_chunk_blocks;	/* In dio_blocks */
880  	unsigned this_chunk_bytes;
881  	struct page *page;
882  
883  	sdio->start_zero_done = 1;
884  	if (!sdio->blkfactor || !buffer_new(map_bh))
885  		return;
886  
887  	dio_blocks_per_fs_block = 1 << sdio->blkfactor;
888  	this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
889  
890  	if (!this_chunk_blocks)
891  		return;
892  
893  	/*
894  	 * We need to zero out part of an fs block.  It is either at the
895  	 * beginning or the end of the fs block.
896  	 */
897  	if (end)
898  		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
899  
900  	this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
901  
902  	page = ZERO_PAGE(0);
903  	if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
904  				sdio->next_block_for_io, map_bh))
905  		return;
906  
907  	sdio->next_block_for_io += this_chunk_blocks;
908  }
909  
910  /*
911   * Walk the user pages, and the file, mapping blocks to disk and generating
912   * a sequence of (page,offset,len,block) mappings.  These mappings are injected
913   * into submit_page_section(), which takes care of the next stage of submission
914   *
915   * Direct IO against a blockdev is different from a file.  Because we can
916   * happily perform page-sized but 512-byte aligned IOs.  It is important that
917   * blockdev IO be able to have fine alignment and large sizes.
918   *
919   * So what we do is to permit the ->get_block function to populate bh.b_size
920   * with the size of IO which is permitted at this offset and this i_blkbits.
921   *
922   * For best results, the blockdev should be set up with 512-byte i_blkbits and
923   * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
924   * fine alignment but still allows this function to work in PAGE_SIZE units.
925   */
926  static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
927  			struct buffer_head *map_bh)
928  {
929  	const unsigned blkbits = sdio->blkbits;
930  	const unsigned i_blkbits = blkbits + sdio->blkfactor;
931  	int ret = 0;
932  
933  	while (sdio->block_in_file < sdio->final_block_in_request) {
934  		struct page *page;
935  		size_t from, to;
936  
937  		page = dio_get_page(dio, sdio);
938  		if (IS_ERR(page)) {
939  			ret = PTR_ERR(page);
940  			goto out;
941  		}
942  		from = sdio->head ? 0 : sdio->from;
943  		to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
944  		sdio->head++;
945  
946  		while (from < to) {
947  			unsigned this_chunk_bytes;	/* # of bytes mapped */
948  			unsigned this_chunk_blocks;	/* # of blocks */
949  			unsigned u;
950  
951  			if (sdio->blocks_available == 0) {
952  				/*
953  				 * Need to go and map some more disk
954  				 */
955  				unsigned long blkmask;
956  				unsigned long dio_remainder;
957  
958  				ret = get_more_blocks(dio, sdio, map_bh);
959  				if (ret) {
960  					put_page(page);
961  					goto out;
962  				}
963  				if (!buffer_mapped(map_bh))
964  					goto do_holes;
965  
966  				sdio->blocks_available =
967  						map_bh->b_size >> blkbits;
968  				sdio->next_block_for_io =
969  					map_bh->b_blocknr << sdio->blkfactor;
970  				if (buffer_new(map_bh)) {
971  					clean_bdev_aliases(
972  						map_bh->b_bdev,
973  						map_bh->b_blocknr,
974  						map_bh->b_size >> i_blkbits);
975  				}
976  
977  				if (!sdio->blkfactor)
978  					goto do_holes;
979  
980  				blkmask = (1 << sdio->blkfactor) - 1;
981  				dio_remainder = (sdio->block_in_file & blkmask);
982  
983  				/*
984  				 * If we are at the start of IO and that IO
985  				 * starts partway into a fs-block,
986  				 * dio_remainder will be non-zero.  If the IO
987  				 * is a read then we can simply advance the IO
988  				 * cursor to the first block which is to be
989  				 * read.  But if the IO is a write and the
990  				 * block was newly allocated we cannot do that;
991  				 * the start of the fs block must be zeroed out
992  				 * on-disk
993  				 */
994  				if (!buffer_new(map_bh))
995  					sdio->next_block_for_io += dio_remainder;
996  				sdio->blocks_available -= dio_remainder;
997  			}
998  do_holes:
999  			/* Handle holes */
1000  			if (!buffer_mapped(map_bh)) {
1001  				loff_t i_size_aligned;
1002  
1003  				/* AKPM: eargh, -ENOTBLK is a hack */
1004  				if (dio->op == REQ_OP_WRITE) {
1005  					put_page(page);
1006  					return -ENOTBLK;
1007  				}
1008  
1009  				/*
1010  				 * Be sure to account for a partial block as the
1011  				 * last block in the file
1012  				 */
1013  				i_size_aligned = ALIGN(i_size_read(dio->inode),
1014  							1 << blkbits);
1015  				if (sdio->block_in_file >=
1016  						i_size_aligned >> blkbits) {
1017  					/* We hit eof */
1018  					put_page(page);
1019  					goto out;
1020  				}
1021  				zero_user(page, from, 1 << blkbits);
1022  				sdio->block_in_file++;
1023  				from += 1 << blkbits;
1024  				dio->result += 1 << blkbits;
1025  				goto next_block;
1026  			}
1027  
1028  			/*
1029  			 * If we're performing IO which has an alignment which
1030  			 * is finer than the underlying fs, go check to see if
1031  			 * we must zero out the start of this block.
1032  			 */
1033  			if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1034  				dio_zero_block(dio, sdio, 0, map_bh);
1035  
1036  			/*
1037  			 * Work out, in this_chunk_blocks, how much disk we
1038  			 * can add to this page
1039  			 */
1040  			this_chunk_blocks = sdio->blocks_available;
1041  			u = (to - from) >> blkbits;
1042  			if (this_chunk_blocks > u)
1043  				this_chunk_blocks = u;
1044  			u = sdio->final_block_in_request - sdio->block_in_file;
1045  			if (this_chunk_blocks > u)
1046  				this_chunk_blocks = u;
1047  			this_chunk_bytes = this_chunk_blocks << blkbits;
1048  			BUG_ON(this_chunk_bytes == 0);
1049  
1050  			if (this_chunk_blocks == sdio->blocks_available)
1051  				sdio->boundary = buffer_boundary(map_bh);
1052  			ret = submit_page_section(dio, sdio, page,
1053  						  from,
1054  						  this_chunk_bytes,
1055  						  sdio->next_block_for_io,
1056  						  map_bh);
1057  			if (ret) {
1058  				put_page(page);
1059  				goto out;
1060  			}
1061  			sdio->next_block_for_io += this_chunk_blocks;
1062  
1063  			sdio->block_in_file += this_chunk_blocks;
1064  			from += this_chunk_bytes;
1065  			dio->result += this_chunk_bytes;
1066  			sdio->blocks_available -= this_chunk_blocks;
1067  next_block:
1068  			BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1069  			if (sdio->block_in_file == sdio->final_block_in_request)
1070  				break;
1071  		}
1072  
1073  		/* Drop the ref which was taken in get_user_pages() */
1074  		put_page(page);
1075  	}
1076  out:
1077  	return ret;
1078  }
1079  
1080  static inline int drop_refcount(struct dio *dio)
1081  {
1082  	int ret2;
1083  	unsigned long flags;
1084  
1085  	/*
1086  	 * Sync will always be dropping the final ref and completing the
1087  	 * operation.  AIO can if it was a broken operation described above or
1088  	 * in fact if all the bios race to complete before we get here.  In
1089  	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1090  	 * return code that the caller will hand to ->complete().
1091  	 *
1092  	 * This is managed by the bio_lock instead of being an atomic_t so that
1093  	 * completion paths can drop their ref and use the remaining count to
1094  	 * decide to wake the submission path atomically.
1095  	 */
1096  	spin_lock_irqsave(&dio->bio_lock, flags);
1097  	ret2 = --dio->refcount;
1098  	spin_unlock_irqrestore(&dio->bio_lock, flags);
1099  	return ret2;
1100  }
1101  
1102  /*
1103   * This is a library function for use by filesystem drivers.
1104   *
1105   * The locking rules are governed by the flags parameter:
1106   *  - if the flags value contains DIO_LOCKING we use a fancy locking
1107   *    scheme for dumb filesystems.
1108   *    For writes this function is called under i_mutex and returns with
1109   *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1110   *    taken and dropped again before returning.
1111   *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1112   *    internal locking but rather rely on the filesystem to synchronize
1113   *    direct I/O reads/writes versus each other and truncate.
1114   *
1115   * To help with locking against truncate we incremented the i_dio_count
1116   * counter before starting direct I/O, and decrement it once we are done.
1117   * Truncate can wait for it to reach zero to provide exclusion.  It is
1118   * expected that filesystem provide exclusion between new direct I/O
1119   * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1120   * but other filesystems need to take care of this on their own.
1121   *
1122   * NOTE: if you pass "sdio" to anything by pointer make sure that function
1123   * is always inlined. Otherwise gcc is unable to split the structure into
1124   * individual fields and will generate much worse code. This is important
1125   * for the whole file.
1126   */
1127  static inline ssize_t
1128  do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1129  		      struct block_device *bdev, struct iov_iter *iter,
1130  		      get_block_t get_block, dio_iodone_t end_io,
1131  		      dio_submit_t submit_io, int flags)
1132  {
1133  	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
1134  	unsigned blkbits = i_blkbits;
1135  	unsigned blocksize_mask = (1 << blkbits) - 1;
1136  	ssize_t retval = -EINVAL;
1137  	const size_t count = iov_iter_count(iter);
1138  	loff_t offset = iocb->ki_pos;
1139  	const loff_t end = offset + count;
1140  	struct dio *dio;
1141  	struct dio_submit sdio = { 0, };
1142  	struct buffer_head map_bh = { 0, };
1143  	struct blk_plug plug;
1144  	unsigned long align = offset | iov_iter_alignment(iter);
1145  
1146  	/*
1147  	 * Avoid references to bdev if not absolutely needed to give
1148  	 * the early prefetch in the caller enough time.
1149  	 */
1150  
1151  	/* watch out for a 0 len io from a tricksy fs */
1152  	if (iov_iter_rw(iter) == READ && !count)
1153  		return 0;
1154  
1155  	dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1156  	if (!dio)
1157  		return -ENOMEM;
1158  	/*
1159  	 * Believe it or not, zeroing out the page array caused a .5%
1160  	 * performance regression in a database benchmark.  So, we take
1161  	 * care to only zero out what's needed.
1162  	 */
1163  	memset(dio, 0, offsetof(struct dio, pages));
1164  
1165  	dio->flags = flags;
1166  	if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
1167  		/* will be released by direct_io_worker */
1168  		inode_lock(inode);
1169  	}
1170  
1171  	/* Once we sampled i_size check for reads beyond EOF */
1172  	dio->i_size = i_size_read(inode);
1173  	if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1174  		retval = 0;
1175  		goto fail_dio;
1176  	}
1177  
1178  	if (align & blocksize_mask) {
1179  		if (bdev)
1180  			blkbits = blksize_bits(bdev_logical_block_size(bdev));
1181  		blocksize_mask = (1 << blkbits) - 1;
1182  		if (align & blocksize_mask)
1183  			goto fail_dio;
1184  	}
1185  
1186  	if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
1187  		struct address_space *mapping = iocb->ki_filp->f_mapping;
1188  
1189  		retval = filemap_write_and_wait_range(mapping, offset, end - 1);
1190  		if (retval)
1191  			goto fail_dio;
1192  	}
1193  
1194  	/*
1195  	 * For file extending writes updating i_size before data writeouts
1196  	 * complete can expose uninitialized blocks in dumb filesystems.
1197  	 * In that case we need to wait for I/O completion even if asked
1198  	 * for an asynchronous write.
1199  	 */
1200  	if (is_sync_kiocb(iocb))
1201  		dio->is_async = false;
1202  	else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1203  		dio->is_async = false;
1204  	else
1205  		dio->is_async = true;
1206  
1207  	dio->inode = inode;
1208  	if (iov_iter_rw(iter) == WRITE) {
1209  		dio->op = REQ_OP_WRITE;
1210  		dio->op_flags = REQ_SYNC | REQ_IDLE;
1211  		if (iocb->ki_flags & IOCB_NOWAIT)
1212  			dio->op_flags |= REQ_NOWAIT;
1213  	} else {
1214  		dio->op = REQ_OP_READ;
1215  	}
1216  	if (iocb->ki_flags & IOCB_HIPRI)
1217  		dio->op_flags |= REQ_HIPRI;
1218  
1219  	/*
1220  	 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1221  	 * so that we can call ->fsync.
1222  	 */
1223  	if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1224  		retval = 0;
1225  		if (iocb->ki_flags & IOCB_DSYNC)
1226  			retval = dio_set_defer_completion(dio);
1227  		else if (!dio->inode->i_sb->s_dio_done_wq) {
1228  			/*
1229  			 * In case of AIO write racing with buffered read we
1230  			 * need to defer completion. We can't decide this now,
1231  			 * however the workqueue needs to be initialized here.
1232  			 */
1233  			retval = sb_init_dio_done_wq(dio->inode->i_sb);
1234  		}
1235  		if (retval)
1236  			goto fail_dio;
1237  	}
1238  
1239  	/*
1240  	 * Will be decremented at I/O completion time.
1241  	 */
1242  	inode_dio_begin(inode);
1243  
1244  	retval = 0;
1245  	sdio.blkbits = blkbits;
1246  	sdio.blkfactor = i_blkbits - blkbits;
1247  	sdio.block_in_file = offset >> blkbits;
1248  
1249  	sdio.get_block = get_block;
1250  	dio->end_io = end_io;
1251  	sdio.submit_io = submit_io;
1252  	sdio.final_block_in_bio = -1;
1253  	sdio.next_block_for_io = -1;
1254  
1255  	dio->iocb = iocb;
1256  
1257  	spin_lock_init(&dio->bio_lock);
1258  	dio->refcount = 1;
1259  
1260  	dio->should_dirty = iter_is_iovec(iter) && iov_iter_rw(iter) == READ;
1261  	sdio.iter = iter;
1262  	sdio.final_block_in_request = end >> blkbits;
1263  
1264  	/*
1265  	 * In case of non-aligned buffers, we may need 2 more
1266  	 * pages since we need to zero out first and last block.
1267  	 */
1268  	if (unlikely(sdio.blkfactor))
1269  		sdio.pages_in_io = 2;
1270  
1271  	sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1272  
1273  	blk_start_plug(&plug);
1274  
1275  	retval = do_direct_IO(dio, &sdio, &map_bh);
1276  	if (retval)
1277  		dio_cleanup(dio, &sdio);
1278  
1279  	if (retval == -ENOTBLK) {
1280  		/*
1281  		 * The remaining part of the request will be
1282  		 * handled by buffered I/O when we return
1283  		 */
1284  		retval = 0;
1285  	}
1286  	/*
1287  	 * There may be some unwritten disk at the end of a part-written
1288  	 * fs-block-sized block.  Go zero that now.
1289  	 */
1290  	dio_zero_block(dio, &sdio, 1, &map_bh);
1291  
1292  	if (sdio.cur_page) {
1293  		ssize_t ret2;
1294  
1295  		ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1296  		if (retval == 0)
1297  			retval = ret2;
1298  		put_page(sdio.cur_page);
1299  		sdio.cur_page = NULL;
1300  	}
1301  	if (sdio.bio)
1302  		dio_bio_submit(dio, &sdio);
1303  
1304  	blk_finish_plug(&plug);
1305  
1306  	/*
1307  	 * It is possible that, we return short IO due to end of file.
1308  	 * In that case, we need to release all the pages we got hold on.
1309  	 */
1310  	dio_cleanup(dio, &sdio);
1311  
1312  	/*
1313  	 * All block lookups have been performed. For READ requests
1314  	 * we can let i_mutex go now that its achieved its purpose
1315  	 * of protecting us from looking up uninitialized blocks.
1316  	 */
1317  	if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1318  		inode_unlock(dio->inode);
1319  
1320  	/*
1321  	 * The only time we want to leave bios in flight is when a successful
1322  	 * partial aio read or full aio write have been setup.  In that case
1323  	 * bio completion will call aio_complete.  The only time it's safe to
1324  	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1325  	 * This had *better* be the only place that raises -EIOCBQUEUED.
1326  	 */
1327  	BUG_ON(retval == -EIOCBQUEUED);
1328  	if (dio->is_async && retval == 0 && dio->result &&
1329  	    (iov_iter_rw(iter) == READ || dio->result == count))
1330  		retval = -EIOCBQUEUED;
1331  	else
1332  		dio_await_completion(dio);
1333  
1334  	if (drop_refcount(dio) == 0) {
1335  		retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
1336  	} else
1337  		BUG_ON(retval != -EIOCBQUEUED);
1338  
1339  	return retval;
1340  
1341  fail_dio:
1342  	if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ)
1343  		inode_unlock(inode);
1344  
1345  	kmem_cache_free(dio_cache, dio);
1346  	return retval;
1347  }
1348  
1349  ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1350  			     struct block_device *bdev, struct iov_iter *iter,
1351  			     get_block_t get_block,
1352  			     dio_iodone_t end_io, dio_submit_t submit_io,
1353  			     int flags)
1354  {
1355  	/*
1356  	 * The block device state is needed in the end to finally
1357  	 * submit everything.  Since it's likely to be cache cold
1358  	 * prefetch it here as first thing to hide some of the
1359  	 * latency.
1360  	 *
1361  	 * Attempt to prefetch the pieces we likely need later.
1362  	 */
1363  	prefetch(&bdev->bd_disk->part_tbl);
1364  	prefetch(bdev->bd_disk->queue);
1365  	prefetch((char *)bdev->bd_disk->queue + SMP_CACHE_BYTES);
1366  
1367  	return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block,
1368  				     end_io, submit_io, flags);
1369  }
1370  
1371  EXPORT_SYMBOL(__blockdev_direct_IO);
1372  
1373  static __init int dio_init(void)
1374  {
1375  	dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1376  	return 0;
1377  }
1378  module_init(dio_init)
1379