1 /* 2 * fs/direct-io.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * O_DIRECT 7 * 8 * 04Jul2002 akpm@zip.com.au 9 * Initial version 10 * 11Sep2002 janetinc@us.ibm.com 11 * added readv/writev support. 12 * 29Oct2002 akpm@zip.com.au 13 * rewrote bio_add_page() support. 14 * 30Oct2002 pbadari@us.ibm.com 15 * added support for non-aligned IO. 16 * 06Nov2002 pbadari@us.ibm.com 17 * added asynchronous IO support. 18 * 21Jul2003 nathans@sgi.com 19 * added IO completion notifier. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/types.h> 25 #include <linux/fs.h> 26 #include <linux/mm.h> 27 #include <linux/slab.h> 28 #include <linux/highmem.h> 29 #include <linux/pagemap.h> 30 #include <linux/task_io_accounting_ops.h> 31 #include <linux/bio.h> 32 #include <linux/wait.h> 33 #include <linux/err.h> 34 #include <linux/blkdev.h> 35 #include <linux/buffer_head.h> 36 #include <linux/rwsem.h> 37 #include <linux/uio.h> 38 #include <asm/atomic.h> 39 40 /* 41 * How many user pages to map in one call to get_user_pages(). This determines 42 * the size of a structure on the stack. 43 */ 44 #define DIO_PAGES 64 45 46 /* 47 * This code generally works in units of "dio_blocks". A dio_block is 48 * somewhere between the hard sector size and the filesystem block size. it 49 * is determined on a per-invocation basis. When talking to the filesystem 50 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity 51 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted 52 * to bio_block quantities by shifting left by blkfactor. 53 * 54 * If blkfactor is zero then the user's request was aligned to the filesystem's 55 * blocksize. 56 * 57 * lock_type is DIO_LOCKING for regular files on direct-IO-naive filesystems. 58 * This determines whether we need to do the fancy locking which prevents 59 * direct-IO from being able to read uninitialised disk blocks. If its zero 60 * (blockdev) this locking is not done, and if it is DIO_OWN_LOCKING i_mutex is 61 * not held for the entire direct write (taken briefly, initially, during a 62 * direct read though, but its never held for the duration of a direct-IO). 63 */ 64 65 struct dio { 66 /* BIO submission state */ 67 struct bio *bio; /* bio under assembly */ 68 struct inode *inode; 69 int rw; 70 loff_t i_size; /* i_size when submitted */ 71 int lock_type; /* doesn't change */ 72 unsigned blkbits; /* doesn't change */ 73 unsigned blkfactor; /* When we're using an alignment which 74 is finer than the filesystem's soft 75 blocksize, this specifies how much 76 finer. blkfactor=2 means 1/4-block 77 alignment. Does not change */ 78 unsigned start_zero_done; /* flag: sub-blocksize zeroing has 79 been performed at the start of a 80 write */ 81 int pages_in_io; /* approximate total IO pages */ 82 size_t size; /* total request size (doesn't change)*/ 83 sector_t block_in_file; /* Current offset into the underlying 84 file in dio_block units. */ 85 unsigned blocks_available; /* At block_in_file. changes */ 86 sector_t final_block_in_request;/* doesn't change */ 87 unsigned first_block_in_page; /* doesn't change, Used only once */ 88 int boundary; /* prev block is at a boundary */ 89 int reap_counter; /* rate limit reaping */ 90 get_block_t *get_block; /* block mapping function */ 91 dio_iodone_t *end_io; /* IO completion function */ 92 sector_t final_block_in_bio; /* current final block in bio + 1 */ 93 sector_t next_block_for_io; /* next block to be put under IO, 94 in dio_blocks units */ 95 struct buffer_head map_bh; /* last get_block() result */ 96 97 /* 98 * Deferred addition of a page to the dio. These variables are 99 * private to dio_send_cur_page(), submit_page_section() and 100 * dio_bio_add_page(). 101 */ 102 struct page *cur_page; /* The page */ 103 unsigned cur_page_offset; /* Offset into it, in bytes */ 104 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ 105 sector_t cur_page_block; /* Where it starts */ 106 107 /* 108 * Page fetching state. These variables belong to dio_refill_pages(). 109 */ 110 int curr_page; /* changes */ 111 int total_pages; /* doesn't change */ 112 unsigned long curr_user_address;/* changes */ 113 114 /* 115 * Page queue. These variables belong to dio_refill_pages() and 116 * dio_get_page(). 117 */ 118 struct page *pages[DIO_PAGES]; /* page buffer */ 119 unsigned head; /* next page to process */ 120 unsigned tail; /* last valid page + 1 */ 121 int page_errors; /* errno from get_user_pages() */ 122 123 /* BIO completion state */ 124 spinlock_t bio_lock; /* protects BIO fields below */ 125 unsigned long refcount; /* direct_io_worker() and bios */ 126 struct bio *bio_list; /* singly linked via bi_private */ 127 struct task_struct *waiter; /* waiting task (NULL if none) */ 128 129 /* AIO related stuff */ 130 struct kiocb *iocb; /* kiocb */ 131 int is_async; /* is IO async ? */ 132 int io_error; /* IO error in completion path */ 133 ssize_t result; /* IO result */ 134 }; 135 136 /* 137 * How many pages are in the queue? 138 */ 139 static inline unsigned dio_pages_present(struct dio *dio) 140 { 141 return dio->tail - dio->head; 142 } 143 144 /* 145 * Go grab and pin some userspace pages. Typically we'll get 64 at a time. 146 */ 147 static int dio_refill_pages(struct dio *dio) 148 { 149 int ret; 150 int nr_pages; 151 152 nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES); 153 down_read(¤t->mm->mmap_sem); 154 ret = get_user_pages( 155 current, /* Task for fault acounting */ 156 current->mm, /* whose pages? */ 157 dio->curr_user_address, /* Where from? */ 158 nr_pages, /* How many pages? */ 159 dio->rw == READ, /* Write to memory? */ 160 0, /* force (?) */ 161 &dio->pages[0], 162 NULL); /* vmas */ 163 up_read(¤t->mm->mmap_sem); 164 165 if (ret < 0 && dio->blocks_available && (dio->rw & WRITE)) { 166 struct page *page = ZERO_PAGE(0); 167 /* 168 * A memory fault, but the filesystem has some outstanding 169 * mapped blocks. We need to use those blocks up to avoid 170 * leaking stale data in the file. 171 */ 172 if (dio->page_errors == 0) 173 dio->page_errors = ret; 174 page_cache_get(page); 175 dio->pages[0] = page; 176 dio->head = 0; 177 dio->tail = 1; 178 ret = 0; 179 goto out; 180 } 181 182 if (ret >= 0) { 183 dio->curr_user_address += ret * PAGE_SIZE; 184 dio->curr_page += ret; 185 dio->head = 0; 186 dio->tail = ret; 187 ret = 0; 188 } 189 out: 190 return ret; 191 } 192 193 /* 194 * Get another userspace page. Returns an ERR_PTR on error. Pages are 195 * buffered inside the dio so that we can call get_user_pages() against a 196 * decent number of pages, less frequently. To provide nicer use of the 197 * L1 cache. 198 */ 199 static struct page *dio_get_page(struct dio *dio) 200 { 201 if (dio_pages_present(dio) == 0) { 202 int ret; 203 204 ret = dio_refill_pages(dio); 205 if (ret) 206 return ERR_PTR(ret); 207 BUG_ON(dio_pages_present(dio) == 0); 208 } 209 return dio->pages[dio->head++]; 210 } 211 212 /** 213 * dio_complete() - called when all DIO BIO I/O has been completed 214 * @offset: the byte offset in the file of the completed operation 215 * 216 * This releases locks as dictated by the locking type, lets interested parties 217 * know that a DIO operation has completed, and calculates the resulting return 218 * code for the operation. 219 * 220 * It lets the filesystem know if it registered an interest earlier via 221 * get_block. Pass the private field of the map buffer_head so that 222 * filesystems can use it to hold additional state between get_block calls and 223 * dio_complete. 224 */ 225 static int dio_complete(struct dio *dio, loff_t offset, int ret) 226 { 227 ssize_t transferred = 0; 228 229 /* 230 * AIO submission can race with bio completion to get here while 231 * expecting to have the last io completed by bio completion. 232 * In that case -EIOCBQUEUED is in fact not an error we want 233 * to preserve through this call. 234 */ 235 if (ret == -EIOCBQUEUED) 236 ret = 0; 237 238 if (dio->result) { 239 transferred = dio->result; 240 241 /* Check for short read case */ 242 if ((dio->rw == READ) && ((offset + transferred) > dio->i_size)) 243 transferred = dio->i_size - offset; 244 } 245 246 if (dio->end_io && dio->result) 247 dio->end_io(dio->iocb, offset, transferred, 248 dio->map_bh.b_private); 249 if (dio->lock_type == DIO_LOCKING) 250 /* lockdep: non-owner release */ 251 up_read_non_owner(&dio->inode->i_alloc_sem); 252 253 if (ret == 0) 254 ret = dio->page_errors; 255 if (ret == 0) 256 ret = dio->io_error; 257 if (ret == 0) 258 ret = transferred; 259 260 return ret; 261 } 262 263 static int dio_bio_complete(struct dio *dio, struct bio *bio); 264 /* 265 * Asynchronous IO callback. 266 */ 267 static void dio_bio_end_aio(struct bio *bio, int error) 268 { 269 struct dio *dio = bio->bi_private; 270 unsigned long remaining; 271 unsigned long flags; 272 273 /* cleanup the bio */ 274 dio_bio_complete(dio, bio); 275 276 spin_lock_irqsave(&dio->bio_lock, flags); 277 remaining = --dio->refcount; 278 if (remaining == 1 && dio->waiter) 279 wake_up_process(dio->waiter); 280 spin_unlock_irqrestore(&dio->bio_lock, flags); 281 282 if (remaining == 0) { 283 int ret = dio_complete(dio, dio->iocb->ki_pos, 0); 284 aio_complete(dio->iocb, ret, 0); 285 kfree(dio); 286 } 287 } 288 289 /* 290 * The BIO completion handler simply queues the BIO up for the process-context 291 * handler. 292 * 293 * During I/O bi_private points at the dio. After I/O, bi_private is used to 294 * implement a singly-linked list of completed BIOs, at dio->bio_list. 295 */ 296 static void dio_bio_end_io(struct bio *bio, int error) 297 { 298 struct dio *dio = bio->bi_private; 299 unsigned long flags; 300 301 spin_lock_irqsave(&dio->bio_lock, flags); 302 bio->bi_private = dio->bio_list; 303 dio->bio_list = bio; 304 if (--dio->refcount == 1 && dio->waiter) 305 wake_up_process(dio->waiter); 306 spin_unlock_irqrestore(&dio->bio_lock, flags); 307 } 308 309 static int 310 dio_bio_alloc(struct dio *dio, struct block_device *bdev, 311 sector_t first_sector, int nr_vecs) 312 { 313 struct bio *bio; 314 315 bio = bio_alloc(GFP_KERNEL, nr_vecs); 316 if (bio == NULL) 317 return -ENOMEM; 318 319 bio->bi_bdev = bdev; 320 bio->bi_sector = first_sector; 321 if (dio->is_async) 322 bio->bi_end_io = dio_bio_end_aio; 323 else 324 bio->bi_end_io = dio_bio_end_io; 325 326 dio->bio = bio; 327 return 0; 328 } 329 330 /* 331 * In the AIO read case we speculatively dirty the pages before starting IO. 332 * During IO completion, any of these pages which happen to have been written 333 * back will be redirtied by bio_check_pages_dirty(). 334 * 335 * bios hold a dio reference between submit_bio and ->end_io. 336 */ 337 static void dio_bio_submit(struct dio *dio) 338 { 339 struct bio *bio = dio->bio; 340 unsigned long flags; 341 342 bio->bi_private = dio; 343 344 spin_lock_irqsave(&dio->bio_lock, flags); 345 dio->refcount++; 346 spin_unlock_irqrestore(&dio->bio_lock, flags); 347 348 if (dio->is_async && dio->rw == READ) 349 bio_set_pages_dirty(bio); 350 351 submit_bio(dio->rw, bio); 352 353 dio->bio = NULL; 354 dio->boundary = 0; 355 } 356 357 /* 358 * Release any resources in case of a failure 359 */ 360 static void dio_cleanup(struct dio *dio) 361 { 362 while (dio_pages_present(dio)) 363 page_cache_release(dio_get_page(dio)); 364 } 365 366 /* 367 * Wait for the next BIO to complete. Remove it and return it. NULL is 368 * returned once all BIOs have been completed. This must only be called once 369 * all bios have been issued so that dio->refcount can only decrease. This 370 * requires that that the caller hold a reference on the dio. 371 */ 372 static struct bio *dio_await_one(struct dio *dio) 373 { 374 unsigned long flags; 375 struct bio *bio = NULL; 376 377 spin_lock_irqsave(&dio->bio_lock, flags); 378 379 /* 380 * Wait as long as the list is empty and there are bios in flight. bio 381 * completion drops the count, maybe adds to the list, and wakes while 382 * holding the bio_lock so we don't need set_current_state()'s barrier 383 * and can call it after testing our condition. 384 */ 385 while (dio->refcount > 1 && dio->bio_list == NULL) { 386 __set_current_state(TASK_UNINTERRUPTIBLE); 387 dio->waiter = current; 388 spin_unlock_irqrestore(&dio->bio_lock, flags); 389 io_schedule(); 390 /* wake up sets us TASK_RUNNING */ 391 spin_lock_irqsave(&dio->bio_lock, flags); 392 dio->waiter = NULL; 393 } 394 if (dio->bio_list) { 395 bio = dio->bio_list; 396 dio->bio_list = bio->bi_private; 397 } 398 spin_unlock_irqrestore(&dio->bio_lock, flags); 399 return bio; 400 } 401 402 /* 403 * Process one completed BIO. No locks are held. 404 */ 405 static int dio_bio_complete(struct dio *dio, struct bio *bio) 406 { 407 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 408 struct bio_vec *bvec = bio->bi_io_vec; 409 int page_no; 410 411 if (!uptodate) 412 dio->io_error = -EIO; 413 414 if (dio->is_async && dio->rw == READ) { 415 bio_check_pages_dirty(bio); /* transfers ownership */ 416 } else { 417 for (page_no = 0; page_no < bio->bi_vcnt; page_no++) { 418 struct page *page = bvec[page_no].bv_page; 419 420 if (dio->rw == READ && !PageCompound(page)) 421 set_page_dirty_lock(page); 422 page_cache_release(page); 423 } 424 bio_put(bio); 425 } 426 return uptodate ? 0 : -EIO; 427 } 428 429 /* 430 * Wait on and process all in-flight BIOs. This must only be called once 431 * all bios have been issued so that the refcount can only decrease. 432 * This just waits for all bios to make it through dio_bio_complete. IO 433 * errors are propagated through dio->io_error and should be propagated via 434 * dio_complete(). 435 */ 436 static void dio_await_completion(struct dio *dio) 437 { 438 struct bio *bio; 439 do { 440 bio = dio_await_one(dio); 441 if (bio) 442 dio_bio_complete(dio, bio); 443 } while (bio); 444 } 445 446 /* 447 * A really large O_DIRECT read or write can generate a lot of BIOs. So 448 * to keep the memory consumption sane we periodically reap any completed BIOs 449 * during the BIO generation phase. 450 * 451 * This also helps to limit the peak amount of pinned userspace memory. 452 */ 453 static int dio_bio_reap(struct dio *dio) 454 { 455 int ret = 0; 456 457 if (dio->reap_counter++ >= 64) { 458 while (dio->bio_list) { 459 unsigned long flags; 460 struct bio *bio; 461 int ret2; 462 463 spin_lock_irqsave(&dio->bio_lock, flags); 464 bio = dio->bio_list; 465 dio->bio_list = bio->bi_private; 466 spin_unlock_irqrestore(&dio->bio_lock, flags); 467 ret2 = dio_bio_complete(dio, bio); 468 if (ret == 0) 469 ret = ret2; 470 } 471 dio->reap_counter = 0; 472 } 473 return ret; 474 } 475 476 /* 477 * Call into the fs to map some more disk blocks. We record the current number 478 * of available blocks at dio->blocks_available. These are in units of the 479 * fs blocksize, (1 << inode->i_blkbits). 480 * 481 * The fs is allowed to map lots of blocks at once. If it wants to do that, 482 * it uses the passed inode-relative block number as the file offset, as usual. 483 * 484 * get_block() is passed the number of i_blkbits-sized blocks which direct_io 485 * has remaining to do. The fs should not map more than this number of blocks. 486 * 487 * If the fs has mapped a lot of blocks, it should populate bh->b_size to 488 * indicate how much contiguous disk space has been made available at 489 * bh->b_blocknr. 490 * 491 * If *any* of the mapped blocks are new, then the fs must set buffer_new(). 492 * This isn't very efficient... 493 * 494 * In the case of filesystem holes: the fs may return an arbitrarily-large 495 * hole by returning an appropriate value in b_size and by clearing 496 * buffer_mapped(). However the direct-io code will only process holes one 497 * block at a time - it will repeatedly call get_block() as it walks the hole. 498 */ 499 static int get_more_blocks(struct dio *dio) 500 { 501 int ret; 502 struct buffer_head *map_bh = &dio->map_bh; 503 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ 504 unsigned long fs_count; /* Number of filesystem-sized blocks */ 505 unsigned long dio_count;/* Number of dio_block-sized blocks */ 506 unsigned long blkmask; 507 int create; 508 509 /* 510 * If there was a memory error and we've overwritten all the 511 * mapped blocks then we can now return that memory error 512 */ 513 ret = dio->page_errors; 514 if (ret == 0) { 515 BUG_ON(dio->block_in_file >= dio->final_block_in_request); 516 fs_startblk = dio->block_in_file >> dio->blkfactor; 517 dio_count = dio->final_block_in_request - dio->block_in_file; 518 fs_count = dio_count >> dio->blkfactor; 519 blkmask = (1 << dio->blkfactor) - 1; 520 if (dio_count & blkmask) 521 fs_count++; 522 523 map_bh->b_state = 0; 524 map_bh->b_size = fs_count << dio->inode->i_blkbits; 525 526 create = dio->rw & WRITE; 527 if (dio->lock_type == DIO_LOCKING) { 528 if (dio->block_in_file < (i_size_read(dio->inode) >> 529 dio->blkbits)) 530 create = 0; 531 } else if (dio->lock_type == DIO_NO_LOCKING) { 532 create = 0; 533 } 534 535 /* 536 * For writes inside i_size we forbid block creations: only 537 * overwrites are permitted. We fall back to buffered writes 538 * at a higher level for inside-i_size block-instantiating 539 * writes. 540 */ 541 ret = (*dio->get_block)(dio->inode, fs_startblk, 542 map_bh, create); 543 } 544 return ret; 545 } 546 547 /* 548 * There is no bio. Make one now. 549 */ 550 static int dio_new_bio(struct dio *dio, sector_t start_sector) 551 { 552 sector_t sector; 553 int ret, nr_pages; 554 555 ret = dio_bio_reap(dio); 556 if (ret) 557 goto out; 558 sector = start_sector << (dio->blkbits - 9); 559 nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev)); 560 BUG_ON(nr_pages <= 0); 561 ret = dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages); 562 dio->boundary = 0; 563 out: 564 return ret; 565 } 566 567 /* 568 * Attempt to put the current chunk of 'cur_page' into the current BIO. If 569 * that was successful then update final_block_in_bio and take a ref against 570 * the just-added page. 571 * 572 * Return zero on success. Non-zero means the caller needs to start a new BIO. 573 */ 574 static int dio_bio_add_page(struct dio *dio) 575 { 576 int ret; 577 578 ret = bio_add_page(dio->bio, dio->cur_page, 579 dio->cur_page_len, dio->cur_page_offset); 580 if (ret == dio->cur_page_len) { 581 /* 582 * Decrement count only, if we are done with this page 583 */ 584 if ((dio->cur_page_len + dio->cur_page_offset) == PAGE_SIZE) 585 dio->pages_in_io--; 586 page_cache_get(dio->cur_page); 587 dio->final_block_in_bio = dio->cur_page_block + 588 (dio->cur_page_len >> dio->blkbits); 589 ret = 0; 590 } else { 591 ret = 1; 592 } 593 return ret; 594 } 595 596 /* 597 * Put cur_page under IO. The section of cur_page which is described by 598 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page 599 * starts on-disk at cur_page_block. 600 * 601 * We take a ref against the page here (on behalf of its presence in the bio). 602 * 603 * The caller of this function is responsible for removing cur_page from the 604 * dio, and for dropping the refcount which came from that presence. 605 */ 606 static int dio_send_cur_page(struct dio *dio) 607 { 608 int ret = 0; 609 610 if (dio->bio) { 611 /* 612 * See whether this new request is contiguous with the old 613 */ 614 if (dio->final_block_in_bio != dio->cur_page_block) 615 dio_bio_submit(dio); 616 /* 617 * Submit now if the underlying fs is about to perform a 618 * metadata read 619 */ 620 if (dio->boundary) 621 dio_bio_submit(dio); 622 } 623 624 if (dio->bio == NULL) { 625 ret = dio_new_bio(dio, dio->cur_page_block); 626 if (ret) 627 goto out; 628 } 629 630 if (dio_bio_add_page(dio) != 0) { 631 dio_bio_submit(dio); 632 ret = dio_new_bio(dio, dio->cur_page_block); 633 if (ret == 0) { 634 ret = dio_bio_add_page(dio); 635 BUG_ON(ret != 0); 636 } 637 } 638 out: 639 return ret; 640 } 641 642 /* 643 * An autonomous function to put a chunk of a page under deferred IO. 644 * 645 * The caller doesn't actually know (or care) whether this piece of page is in 646 * a BIO, or is under IO or whatever. We just take care of all possible 647 * situations here. The separation between the logic of do_direct_IO() and 648 * that of submit_page_section() is important for clarity. Please don't break. 649 * 650 * The chunk of page starts on-disk at blocknr. 651 * 652 * We perform deferred IO, by recording the last-submitted page inside our 653 * private part of the dio structure. If possible, we just expand the IO 654 * across that page here. 655 * 656 * If that doesn't work out then we put the old page into the bio and add this 657 * page to the dio instead. 658 */ 659 static int 660 submit_page_section(struct dio *dio, struct page *page, 661 unsigned offset, unsigned len, sector_t blocknr) 662 { 663 int ret = 0; 664 665 if (dio->rw & WRITE) { 666 /* 667 * Read accounting is performed in submit_bio() 668 */ 669 task_io_account_write(len); 670 } 671 672 /* 673 * Can we just grow the current page's presence in the dio? 674 */ 675 if ( (dio->cur_page == page) && 676 (dio->cur_page_offset + dio->cur_page_len == offset) && 677 (dio->cur_page_block + 678 (dio->cur_page_len >> dio->blkbits) == blocknr)) { 679 dio->cur_page_len += len; 680 681 /* 682 * If dio->boundary then we want to schedule the IO now to 683 * avoid metadata seeks. 684 */ 685 if (dio->boundary) { 686 ret = dio_send_cur_page(dio); 687 page_cache_release(dio->cur_page); 688 dio->cur_page = NULL; 689 } 690 goto out; 691 } 692 693 /* 694 * If there's a deferred page already there then send it. 695 */ 696 if (dio->cur_page) { 697 ret = dio_send_cur_page(dio); 698 page_cache_release(dio->cur_page); 699 dio->cur_page = NULL; 700 if (ret) 701 goto out; 702 } 703 704 page_cache_get(page); /* It is in dio */ 705 dio->cur_page = page; 706 dio->cur_page_offset = offset; 707 dio->cur_page_len = len; 708 dio->cur_page_block = blocknr; 709 out: 710 return ret; 711 } 712 713 /* 714 * Clean any dirty buffers in the blockdev mapping which alias newly-created 715 * file blocks. Only called for S_ISREG files - blockdevs do not set 716 * buffer_new 717 */ 718 static void clean_blockdev_aliases(struct dio *dio) 719 { 720 unsigned i; 721 unsigned nblocks; 722 723 nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits; 724 725 for (i = 0; i < nblocks; i++) { 726 unmap_underlying_metadata(dio->map_bh.b_bdev, 727 dio->map_bh.b_blocknr + i); 728 } 729 } 730 731 /* 732 * If we are not writing the entire block and get_block() allocated 733 * the block for us, we need to fill-in the unused portion of the 734 * block with zeros. This happens only if user-buffer, fileoffset or 735 * io length is not filesystem block-size multiple. 736 * 737 * `end' is zero if we're doing the start of the IO, 1 at the end of the 738 * IO. 739 */ 740 static void dio_zero_block(struct dio *dio, int end) 741 { 742 unsigned dio_blocks_per_fs_block; 743 unsigned this_chunk_blocks; /* In dio_blocks */ 744 unsigned this_chunk_bytes; 745 struct page *page; 746 747 dio->start_zero_done = 1; 748 if (!dio->blkfactor || !buffer_new(&dio->map_bh)) 749 return; 750 751 dio_blocks_per_fs_block = 1 << dio->blkfactor; 752 this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1); 753 754 if (!this_chunk_blocks) 755 return; 756 757 /* 758 * We need to zero out part of an fs block. It is either at the 759 * beginning or the end of the fs block. 760 */ 761 if (end) 762 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; 763 764 this_chunk_bytes = this_chunk_blocks << dio->blkbits; 765 766 page = ZERO_PAGE(0); 767 if (submit_page_section(dio, page, 0, this_chunk_bytes, 768 dio->next_block_for_io)) 769 return; 770 771 dio->next_block_for_io += this_chunk_blocks; 772 } 773 774 /* 775 * Walk the user pages, and the file, mapping blocks to disk and generating 776 * a sequence of (page,offset,len,block) mappings. These mappings are injected 777 * into submit_page_section(), which takes care of the next stage of submission 778 * 779 * Direct IO against a blockdev is different from a file. Because we can 780 * happily perform page-sized but 512-byte aligned IOs. It is important that 781 * blockdev IO be able to have fine alignment and large sizes. 782 * 783 * So what we do is to permit the ->get_block function to populate bh.b_size 784 * with the size of IO which is permitted at this offset and this i_blkbits. 785 * 786 * For best results, the blockdev should be set up with 512-byte i_blkbits and 787 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives 788 * fine alignment but still allows this function to work in PAGE_SIZE units. 789 */ 790 static int do_direct_IO(struct dio *dio) 791 { 792 const unsigned blkbits = dio->blkbits; 793 const unsigned blocks_per_page = PAGE_SIZE >> blkbits; 794 struct page *page; 795 unsigned block_in_page; 796 struct buffer_head *map_bh = &dio->map_bh; 797 int ret = 0; 798 799 /* The I/O can start at any block offset within the first page */ 800 block_in_page = dio->first_block_in_page; 801 802 while (dio->block_in_file < dio->final_block_in_request) { 803 page = dio_get_page(dio); 804 if (IS_ERR(page)) { 805 ret = PTR_ERR(page); 806 goto out; 807 } 808 809 while (block_in_page < blocks_per_page) { 810 unsigned offset_in_page = block_in_page << blkbits; 811 unsigned this_chunk_bytes; /* # of bytes mapped */ 812 unsigned this_chunk_blocks; /* # of blocks */ 813 unsigned u; 814 815 if (dio->blocks_available == 0) { 816 /* 817 * Need to go and map some more disk 818 */ 819 unsigned long blkmask; 820 unsigned long dio_remainder; 821 822 ret = get_more_blocks(dio); 823 if (ret) { 824 page_cache_release(page); 825 goto out; 826 } 827 if (!buffer_mapped(map_bh)) 828 goto do_holes; 829 830 dio->blocks_available = 831 map_bh->b_size >> dio->blkbits; 832 dio->next_block_for_io = 833 map_bh->b_blocknr << dio->blkfactor; 834 if (buffer_new(map_bh)) 835 clean_blockdev_aliases(dio); 836 837 if (!dio->blkfactor) 838 goto do_holes; 839 840 blkmask = (1 << dio->blkfactor) - 1; 841 dio_remainder = (dio->block_in_file & blkmask); 842 843 /* 844 * If we are at the start of IO and that IO 845 * starts partway into a fs-block, 846 * dio_remainder will be non-zero. If the IO 847 * is a read then we can simply advance the IO 848 * cursor to the first block which is to be 849 * read. But if the IO is a write and the 850 * block was newly allocated we cannot do that; 851 * the start of the fs block must be zeroed out 852 * on-disk 853 */ 854 if (!buffer_new(map_bh)) 855 dio->next_block_for_io += dio_remainder; 856 dio->blocks_available -= dio_remainder; 857 } 858 do_holes: 859 /* Handle holes */ 860 if (!buffer_mapped(map_bh)) { 861 loff_t i_size_aligned; 862 863 /* AKPM: eargh, -ENOTBLK is a hack */ 864 if (dio->rw & WRITE) { 865 page_cache_release(page); 866 return -ENOTBLK; 867 } 868 869 /* 870 * Be sure to account for a partial block as the 871 * last block in the file 872 */ 873 i_size_aligned = ALIGN(i_size_read(dio->inode), 874 1 << blkbits); 875 if (dio->block_in_file >= 876 i_size_aligned >> blkbits) { 877 /* We hit eof */ 878 page_cache_release(page); 879 goto out; 880 } 881 zero_user(page, block_in_page << blkbits, 882 1 << blkbits); 883 dio->block_in_file++; 884 block_in_page++; 885 goto next_block; 886 } 887 888 /* 889 * If we're performing IO which has an alignment which 890 * is finer than the underlying fs, go check to see if 891 * we must zero out the start of this block. 892 */ 893 if (unlikely(dio->blkfactor && !dio->start_zero_done)) 894 dio_zero_block(dio, 0); 895 896 /* 897 * Work out, in this_chunk_blocks, how much disk we 898 * can add to this page 899 */ 900 this_chunk_blocks = dio->blocks_available; 901 u = (PAGE_SIZE - offset_in_page) >> blkbits; 902 if (this_chunk_blocks > u) 903 this_chunk_blocks = u; 904 u = dio->final_block_in_request - dio->block_in_file; 905 if (this_chunk_blocks > u) 906 this_chunk_blocks = u; 907 this_chunk_bytes = this_chunk_blocks << blkbits; 908 BUG_ON(this_chunk_bytes == 0); 909 910 dio->boundary = buffer_boundary(map_bh); 911 ret = submit_page_section(dio, page, offset_in_page, 912 this_chunk_bytes, dio->next_block_for_io); 913 if (ret) { 914 page_cache_release(page); 915 goto out; 916 } 917 dio->next_block_for_io += this_chunk_blocks; 918 919 dio->block_in_file += this_chunk_blocks; 920 block_in_page += this_chunk_blocks; 921 dio->blocks_available -= this_chunk_blocks; 922 next_block: 923 BUG_ON(dio->block_in_file > dio->final_block_in_request); 924 if (dio->block_in_file == dio->final_block_in_request) 925 break; 926 } 927 928 /* Drop the ref which was taken in get_user_pages() */ 929 page_cache_release(page); 930 block_in_page = 0; 931 } 932 out: 933 return ret; 934 } 935 936 /* 937 * Releases both i_mutex and i_alloc_sem 938 */ 939 static ssize_t 940 direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode, 941 const struct iovec *iov, loff_t offset, unsigned long nr_segs, 942 unsigned blkbits, get_block_t get_block, dio_iodone_t end_io, 943 struct dio *dio) 944 { 945 unsigned long user_addr; 946 unsigned long flags; 947 int seg; 948 ssize_t ret = 0; 949 ssize_t ret2; 950 size_t bytes; 951 952 dio->inode = inode; 953 dio->rw = rw; 954 dio->blkbits = blkbits; 955 dio->blkfactor = inode->i_blkbits - blkbits; 956 dio->block_in_file = offset >> blkbits; 957 958 dio->get_block = get_block; 959 dio->end_io = end_io; 960 dio->final_block_in_bio = -1; 961 dio->next_block_for_io = -1; 962 963 dio->iocb = iocb; 964 dio->i_size = i_size_read(inode); 965 966 spin_lock_init(&dio->bio_lock); 967 dio->refcount = 1; 968 969 /* 970 * In case of non-aligned buffers, we may need 2 more 971 * pages since we need to zero out first and last block. 972 */ 973 if (unlikely(dio->blkfactor)) 974 dio->pages_in_io = 2; 975 976 for (seg = 0; seg < nr_segs; seg++) { 977 user_addr = (unsigned long)iov[seg].iov_base; 978 dio->pages_in_io += 979 ((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE 980 - user_addr/PAGE_SIZE); 981 } 982 983 for (seg = 0; seg < nr_segs; seg++) { 984 user_addr = (unsigned long)iov[seg].iov_base; 985 dio->size += bytes = iov[seg].iov_len; 986 987 /* Index into the first page of the first block */ 988 dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits; 989 dio->final_block_in_request = dio->block_in_file + 990 (bytes >> blkbits); 991 /* Page fetching state */ 992 dio->head = 0; 993 dio->tail = 0; 994 dio->curr_page = 0; 995 996 dio->total_pages = 0; 997 if (user_addr & (PAGE_SIZE-1)) { 998 dio->total_pages++; 999 bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1)); 1000 } 1001 dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE; 1002 dio->curr_user_address = user_addr; 1003 1004 ret = do_direct_IO(dio); 1005 1006 dio->result += iov[seg].iov_len - 1007 ((dio->final_block_in_request - dio->block_in_file) << 1008 blkbits); 1009 1010 if (ret) { 1011 dio_cleanup(dio); 1012 break; 1013 } 1014 } /* end iovec loop */ 1015 1016 if (ret == -ENOTBLK && (rw & WRITE)) { 1017 /* 1018 * The remaining part of the request will be 1019 * be handled by buffered I/O when we return 1020 */ 1021 ret = 0; 1022 } 1023 /* 1024 * There may be some unwritten disk at the end of a part-written 1025 * fs-block-sized block. Go zero that now. 1026 */ 1027 dio_zero_block(dio, 1); 1028 1029 if (dio->cur_page) { 1030 ret2 = dio_send_cur_page(dio); 1031 if (ret == 0) 1032 ret = ret2; 1033 page_cache_release(dio->cur_page); 1034 dio->cur_page = NULL; 1035 } 1036 if (dio->bio) 1037 dio_bio_submit(dio); 1038 1039 /* All IO is now issued, send it on its way */ 1040 blk_run_address_space(inode->i_mapping); 1041 1042 /* 1043 * It is possible that, we return short IO due to end of file. 1044 * In that case, we need to release all the pages we got hold on. 1045 */ 1046 dio_cleanup(dio); 1047 1048 /* 1049 * All block lookups have been performed. For READ requests 1050 * we can let i_mutex go now that its achieved its purpose 1051 * of protecting us from looking up uninitialized blocks. 1052 */ 1053 if ((rw == READ) && (dio->lock_type == DIO_LOCKING)) 1054 mutex_unlock(&dio->inode->i_mutex); 1055 1056 /* 1057 * The only time we want to leave bios in flight is when a successful 1058 * partial aio read or full aio write have been setup. In that case 1059 * bio completion will call aio_complete. The only time it's safe to 1060 * call aio_complete is when we return -EIOCBQUEUED, so we key on that. 1061 * This had *better* be the only place that raises -EIOCBQUEUED. 1062 */ 1063 BUG_ON(ret == -EIOCBQUEUED); 1064 if (dio->is_async && ret == 0 && dio->result && 1065 ((rw & READ) || (dio->result == dio->size))) 1066 ret = -EIOCBQUEUED; 1067 1068 if (ret != -EIOCBQUEUED) 1069 dio_await_completion(dio); 1070 1071 /* 1072 * Sync will always be dropping the final ref and completing the 1073 * operation. AIO can if it was a broken operation described above or 1074 * in fact if all the bios race to complete before we get here. In 1075 * that case dio_complete() translates the EIOCBQUEUED into the proper 1076 * return code that the caller will hand to aio_complete(). 1077 * 1078 * This is managed by the bio_lock instead of being an atomic_t so that 1079 * completion paths can drop their ref and use the remaining count to 1080 * decide to wake the submission path atomically. 1081 */ 1082 spin_lock_irqsave(&dio->bio_lock, flags); 1083 ret2 = --dio->refcount; 1084 spin_unlock_irqrestore(&dio->bio_lock, flags); 1085 1086 if (ret2 == 0) { 1087 ret = dio_complete(dio, offset, ret); 1088 kfree(dio); 1089 } else 1090 BUG_ON(ret != -EIOCBQUEUED); 1091 1092 return ret; 1093 } 1094 1095 /* 1096 * This is a library function for use by filesystem drivers. 1097 * The locking rules are governed by the dio_lock_type parameter. 1098 * 1099 * DIO_NO_LOCKING (no locking, for raw block device access) 1100 * For writes, i_mutex is not held on entry; it is never taken. 1101 * 1102 * DIO_LOCKING (simple locking for regular files) 1103 * For writes we are called under i_mutex and return with i_mutex held, even 1104 * though it is internally dropped. 1105 * For reads, i_mutex is not held on entry, but it is taken and dropped before 1106 * returning. 1107 * 1108 * DIO_OWN_LOCKING (filesystem provides synchronisation and handling of 1109 * uninitialised data, allowing parallel direct readers and writers) 1110 * For writes we are called without i_mutex, return without it, never touch it. 1111 * For reads we are called under i_mutex and return with i_mutex held, even 1112 * though it may be internally dropped. 1113 * 1114 * Additional i_alloc_sem locking requirements described inline below. 1115 */ 1116 ssize_t 1117 __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode, 1118 struct block_device *bdev, const struct iovec *iov, loff_t offset, 1119 unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io, 1120 int dio_lock_type) 1121 { 1122 int seg; 1123 size_t size; 1124 unsigned long addr; 1125 unsigned blkbits = inode->i_blkbits; 1126 unsigned bdev_blkbits = 0; 1127 unsigned blocksize_mask = (1 << blkbits) - 1; 1128 ssize_t retval = -EINVAL; 1129 loff_t end = offset; 1130 struct dio *dio; 1131 int release_i_mutex = 0; 1132 int acquire_i_mutex = 0; 1133 1134 if (rw & WRITE) 1135 rw = WRITE_SYNC; 1136 1137 if (bdev) 1138 bdev_blkbits = blksize_bits(bdev_hardsect_size(bdev)); 1139 1140 if (offset & blocksize_mask) { 1141 if (bdev) 1142 blkbits = bdev_blkbits; 1143 blocksize_mask = (1 << blkbits) - 1; 1144 if (offset & blocksize_mask) 1145 goto out; 1146 } 1147 1148 /* Check the memory alignment. Blocks cannot straddle pages */ 1149 for (seg = 0; seg < nr_segs; seg++) { 1150 addr = (unsigned long)iov[seg].iov_base; 1151 size = iov[seg].iov_len; 1152 end += size; 1153 if ((addr & blocksize_mask) || (size & blocksize_mask)) { 1154 if (bdev) 1155 blkbits = bdev_blkbits; 1156 blocksize_mask = (1 << blkbits) - 1; 1157 if ((addr & blocksize_mask) || (size & blocksize_mask)) 1158 goto out; 1159 } 1160 } 1161 1162 dio = kzalloc(sizeof(*dio), GFP_KERNEL); 1163 retval = -ENOMEM; 1164 if (!dio) 1165 goto out; 1166 1167 /* 1168 * For block device access DIO_NO_LOCKING is used, 1169 * neither readers nor writers do any locking at all 1170 * For regular files using DIO_LOCKING, 1171 * readers need to grab i_mutex and i_alloc_sem 1172 * writers need to grab i_alloc_sem only (i_mutex is already held) 1173 * For regular files using DIO_OWN_LOCKING, 1174 * neither readers nor writers take any locks here 1175 */ 1176 dio->lock_type = dio_lock_type; 1177 if (dio_lock_type != DIO_NO_LOCKING) { 1178 /* watch out for a 0 len io from a tricksy fs */ 1179 if (rw == READ && end > offset) { 1180 struct address_space *mapping; 1181 1182 mapping = iocb->ki_filp->f_mapping; 1183 if (dio_lock_type != DIO_OWN_LOCKING) { 1184 mutex_lock(&inode->i_mutex); 1185 release_i_mutex = 1; 1186 } 1187 1188 retval = filemap_write_and_wait_range(mapping, offset, 1189 end - 1); 1190 if (retval) { 1191 kfree(dio); 1192 goto out; 1193 } 1194 1195 if (dio_lock_type == DIO_OWN_LOCKING) { 1196 mutex_unlock(&inode->i_mutex); 1197 acquire_i_mutex = 1; 1198 } 1199 } 1200 1201 if (dio_lock_type == DIO_LOCKING) 1202 /* lockdep: not the owner will release it */ 1203 down_read_non_owner(&inode->i_alloc_sem); 1204 } 1205 1206 /* 1207 * For file extending writes updating i_size before data 1208 * writeouts complete can expose uninitialized blocks. So 1209 * even for AIO, we need to wait for i/o to complete before 1210 * returning in this case. 1211 */ 1212 dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) && 1213 (end > i_size_read(inode))); 1214 1215 retval = direct_io_worker(rw, iocb, inode, iov, offset, 1216 nr_segs, blkbits, get_block, end_io, dio); 1217 1218 if (rw == READ && dio_lock_type == DIO_LOCKING) 1219 release_i_mutex = 0; 1220 1221 out: 1222 if (release_i_mutex) 1223 mutex_unlock(&inode->i_mutex); 1224 else if (acquire_i_mutex) 1225 mutex_lock(&inode->i_mutex); 1226 return retval; 1227 } 1228 EXPORT_SYMBOL(__blockdev_direct_IO); 1229