xref: /openbmc/linux/fs/direct-io.c (revision f42b3800)
1 /*
2  * fs/direct-io.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * O_DIRECT
7  *
8  * 04Jul2002	akpm@zip.com.au
9  *		Initial version
10  * 11Sep2002	janetinc@us.ibm.com
11  * 		added readv/writev support.
12  * 29Oct2002	akpm@zip.com.au
13  *		rewrote bio_add_page() support.
14  * 30Oct2002	pbadari@us.ibm.com
15  *		added support for non-aligned IO.
16  * 06Nov2002	pbadari@us.ibm.com
17  *		added asynchronous IO support.
18  * 21Jul2003	nathans@sgi.com
19  *		added IO completion notifier.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <asm/atomic.h>
39 
40 /*
41  * How many user pages to map in one call to get_user_pages().  This determines
42  * the size of a structure on the stack.
43  */
44 #define DIO_PAGES	64
45 
46 /*
47  * This code generally works in units of "dio_blocks".  A dio_block is
48  * somewhere between the hard sector size and the filesystem block size.  it
49  * is determined on a per-invocation basis.   When talking to the filesystem
50  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
51  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
52  * to bio_block quantities by shifting left by blkfactor.
53  *
54  * If blkfactor is zero then the user's request was aligned to the filesystem's
55  * blocksize.
56  *
57  * lock_type is DIO_LOCKING for regular files on direct-IO-naive filesystems.
58  * This determines whether we need to do the fancy locking which prevents
59  * direct-IO from being able to read uninitialised disk blocks.  If its zero
60  * (blockdev) this locking is not done, and if it is DIO_OWN_LOCKING i_mutex is
61  * not held for the entire direct write (taken briefly, initially, during a
62  * direct read though, but its never held for the duration of a direct-IO).
63  */
64 
65 struct dio {
66 	/* BIO submission state */
67 	struct bio *bio;		/* bio under assembly */
68 	struct inode *inode;
69 	int rw;
70 	loff_t i_size;			/* i_size when submitted */
71 	int lock_type;			/* doesn't change */
72 	unsigned blkbits;		/* doesn't change */
73 	unsigned blkfactor;		/* When we're using an alignment which
74 					   is finer than the filesystem's soft
75 					   blocksize, this specifies how much
76 					   finer.  blkfactor=2 means 1/4-block
77 					   alignment.  Does not change */
78 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
79 					   been performed at the start of a
80 					   write */
81 	int pages_in_io;		/* approximate total IO pages */
82 	size_t	size;			/* total request size (doesn't change)*/
83 	sector_t block_in_file;		/* Current offset into the underlying
84 					   file in dio_block units. */
85 	unsigned blocks_available;	/* At block_in_file.  changes */
86 	sector_t final_block_in_request;/* doesn't change */
87 	unsigned first_block_in_page;	/* doesn't change, Used only once */
88 	int boundary;			/* prev block is at a boundary */
89 	int reap_counter;		/* rate limit reaping */
90 	get_block_t *get_block;		/* block mapping function */
91 	dio_iodone_t *end_io;		/* IO completion function */
92 	sector_t final_block_in_bio;	/* current final block in bio + 1 */
93 	sector_t next_block_for_io;	/* next block to be put under IO,
94 					   in dio_blocks units */
95 	struct buffer_head map_bh;	/* last get_block() result */
96 
97 	/*
98 	 * Deferred addition of a page to the dio.  These variables are
99 	 * private to dio_send_cur_page(), submit_page_section() and
100 	 * dio_bio_add_page().
101 	 */
102 	struct page *cur_page;		/* The page */
103 	unsigned cur_page_offset;	/* Offset into it, in bytes */
104 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
105 	sector_t cur_page_block;	/* Where it starts */
106 
107 	/*
108 	 * Page fetching state. These variables belong to dio_refill_pages().
109 	 */
110 	int curr_page;			/* changes */
111 	int total_pages;		/* doesn't change */
112 	unsigned long curr_user_address;/* changes */
113 
114 	/*
115 	 * Page queue.  These variables belong to dio_refill_pages() and
116 	 * dio_get_page().
117 	 */
118 	struct page *pages[DIO_PAGES];	/* page buffer */
119 	unsigned head;			/* next page to process */
120 	unsigned tail;			/* last valid page + 1 */
121 	int page_errors;		/* errno from get_user_pages() */
122 
123 	/* BIO completion state */
124 	spinlock_t bio_lock;		/* protects BIO fields below */
125 	unsigned long refcount;		/* direct_io_worker() and bios */
126 	struct bio *bio_list;		/* singly linked via bi_private */
127 	struct task_struct *waiter;	/* waiting task (NULL if none) */
128 
129 	/* AIO related stuff */
130 	struct kiocb *iocb;		/* kiocb */
131 	int is_async;			/* is IO async ? */
132 	int io_error;			/* IO error in completion path */
133 	ssize_t result;                 /* IO result */
134 };
135 
136 /*
137  * How many pages are in the queue?
138  */
139 static inline unsigned dio_pages_present(struct dio *dio)
140 {
141 	return dio->tail - dio->head;
142 }
143 
144 /*
145  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
146  */
147 static int dio_refill_pages(struct dio *dio)
148 {
149 	int ret;
150 	int nr_pages;
151 
152 	nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES);
153 	down_read(&current->mm->mmap_sem);
154 	ret = get_user_pages(
155 		current,			/* Task for fault acounting */
156 		current->mm,			/* whose pages? */
157 		dio->curr_user_address,		/* Where from? */
158 		nr_pages,			/* How many pages? */
159 		dio->rw == READ,		/* Write to memory? */
160 		0,				/* force (?) */
161 		&dio->pages[0],
162 		NULL);				/* vmas */
163 	up_read(&current->mm->mmap_sem);
164 
165 	if (ret < 0 && dio->blocks_available && (dio->rw & WRITE)) {
166 		struct page *page = ZERO_PAGE(0);
167 		/*
168 		 * A memory fault, but the filesystem has some outstanding
169 		 * mapped blocks.  We need to use those blocks up to avoid
170 		 * leaking stale data in the file.
171 		 */
172 		if (dio->page_errors == 0)
173 			dio->page_errors = ret;
174 		page_cache_get(page);
175 		dio->pages[0] = page;
176 		dio->head = 0;
177 		dio->tail = 1;
178 		ret = 0;
179 		goto out;
180 	}
181 
182 	if (ret >= 0) {
183 		dio->curr_user_address += ret * PAGE_SIZE;
184 		dio->curr_page += ret;
185 		dio->head = 0;
186 		dio->tail = ret;
187 		ret = 0;
188 	}
189 out:
190 	return ret;
191 }
192 
193 /*
194  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
195  * buffered inside the dio so that we can call get_user_pages() against a
196  * decent number of pages, less frequently.  To provide nicer use of the
197  * L1 cache.
198  */
199 static struct page *dio_get_page(struct dio *dio)
200 {
201 	if (dio_pages_present(dio) == 0) {
202 		int ret;
203 
204 		ret = dio_refill_pages(dio);
205 		if (ret)
206 			return ERR_PTR(ret);
207 		BUG_ON(dio_pages_present(dio) == 0);
208 	}
209 	return dio->pages[dio->head++];
210 }
211 
212 /**
213  * dio_complete() - called when all DIO BIO I/O has been completed
214  * @offset: the byte offset in the file of the completed operation
215  *
216  * This releases locks as dictated by the locking type, lets interested parties
217  * know that a DIO operation has completed, and calculates the resulting return
218  * code for the operation.
219  *
220  * It lets the filesystem know if it registered an interest earlier via
221  * get_block.  Pass the private field of the map buffer_head so that
222  * filesystems can use it to hold additional state between get_block calls and
223  * dio_complete.
224  */
225 static int dio_complete(struct dio *dio, loff_t offset, int ret)
226 {
227 	ssize_t transferred = 0;
228 
229 	/*
230 	 * AIO submission can race with bio completion to get here while
231 	 * expecting to have the last io completed by bio completion.
232 	 * In that case -EIOCBQUEUED is in fact not an error we want
233 	 * to preserve through this call.
234 	 */
235 	if (ret == -EIOCBQUEUED)
236 		ret = 0;
237 
238 	if (dio->result) {
239 		transferred = dio->result;
240 
241 		/* Check for short read case */
242 		if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
243 			transferred = dio->i_size - offset;
244 	}
245 
246 	if (dio->end_io && dio->result)
247 		dio->end_io(dio->iocb, offset, transferred,
248 			    dio->map_bh.b_private);
249 	if (dio->lock_type == DIO_LOCKING)
250 		/* lockdep: non-owner release */
251 		up_read_non_owner(&dio->inode->i_alloc_sem);
252 
253 	if (ret == 0)
254 		ret = dio->page_errors;
255 	if (ret == 0)
256 		ret = dio->io_error;
257 	if (ret == 0)
258 		ret = transferred;
259 
260 	return ret;
261 }
262 
263 static int dio_bio_complete(struct dio *dio, struct bio *bio);
264 /*
265  * Asynchronous IO callback.
266  */
267 static void dio_bio_end_aio(struct bio *bio, int error)
268 {
269 	struct dio *dio = bio->bi_private;
270 	unsigned long remaining;
271 	unsigned long flags;
272 
273 	/* cleanup the bio */
274 	dio_bio_complete(dio, bio);
275 
276 	spin_lock_irqsave(&dio->bio_lock, flags);
277 	remaining = --dio->refcount;
278 	if (remaining == 1 && dio->waiter)
279 		wake_up_process(dio->waiter);
280 	spin_unlock_irqrestore(&dio->bio_lock, flags);
281 
282 	if (remaining == 0) {
283 		int ret = dio_complete(dio, dio->iocb->ki_pos, 0);
284 		aio_complete(dio->iocb, ret, 0);
285 		kfree(dio);
286 	}
287 }
288 
289 /*
290  * The BIO completion handler simply queues the BIO up for the process-context
291  * handler.
292  *
293  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
294  * implement a singly-linked list of completed BIOs, at dio->bio_list.
295  */
296 static void dio_bio_end_io(struct bio *bio, int error)
297 {
298 	struct dio *dio = bio->bi_private;
299 	unsigned long flags;
300 
301 	spin_lock_irqsave(&dio->bio_lock, flags);
302 	bio->bi_private = dio->bio_list;
303 	dio->bio_list = bio;
304 	if (--dio->refcount == 1 && dio->waiter)
305 		wake_up_process(dio->waiter);
306 	spin_unlock_irqrestore(&dio->bio_lock, flags);
307 }
308 
309 static int
310 dio_bio_alloc(struct dio *dio, struct block_device *bdev,
311 		sector_t first_sector, int nr_vecs)
312 {
313 	struct bio *bio;
314 
315 	bio = bio_alloc(GFP_KERNEL, nr_vecs);
316 	if (bio == NULL)
317 		return -ENOMEM;
318 
319 	bio->bi_bdev = bdev;
320 	bio->bi_sector = first_sector;
321 	if (dio->is_async)
322 		bio->bi_end_io = dio_bio_end_aio;
323 	else
324 		bio->bi_end_io = dio_bio_end_io;
325 
326 	dio->bio = bio;
327 	return 0;
328 }
329 
330 /*
331  * In the AIO read case we speculatively dirty the pages before starting IO.
332  * During IO completion, any of these pages which happen to have been written
333  * back will be redirtied by bio_check_pages_dirty().
334  *
335  * bios hold a dio reference between submit_bio and ->end_io.
336  */
337 static void dio_bio_submit(struct dio *dio)
338 {
339 	struct bio *bio = dio->bio;
340 	unsigned long flags;
341 
342 	bio->bi_private = dio;
343 
344 	spin_lock_irqsave(&dio->bio_lock, flags);
345 	dio->refcount++;
346 	spin_unlock_irqrestore(&dio->bio_lock, flags);
347 
348 	if (dio->is_async && dio->rw == READ)
349 		bio_set_pages_dirty(bio);
350 
351 	submit_bio(dio->rw, bio);
352 
353 	dio->bio = NULL;
354 	dio->boundary = 0;
355 }
356 
357 /*
358  * Release any resources in case of a failure
359  */
360 static void dio_cleanup(struct dio *dio)
361 {
362 	while (dio_pages_present(dio))
363 		page_cache_release(dio_get_page(dio));
364 }
365 
366 /*
367  * Wait for the next BIO to complete.  Remove it and return it.  NULL is
368  * returned once all BIOs have been completed.  This must only be called once
369  * all bios have been issued so that dio->refcount can only decrease.  This
370  * requires that that the caller hold a reference on the dio.
371  */
372 static struct bio *dio_await_one(struct dio *dio)
373 {
374 	unsigned long flags;
375 	struct bio *bio = NULL;
376 
377 	spin_lock_irqsave(&dio->bio_lock, flags);
378 
379 	/*
380 	 * Wait as long as the list is empty and there are bios in flight.  bio
381 	 * completion drops the count, maybe adds to the list, and wakes while
382 	 * holding the bio_lock so we don't need set_current_state()'s barrier
383 	 * and can call it after testing our condition.
384 	 */
385 	while (dio->refcount > 1 && dio->bio_list == NULL) {
386 		__set_current_state(TASK_UNINTERRUPTIBLE);
387 		dio->waiter = current;
388 		spin_unlock_irqrestore(&dio->bio_lock, flags);
389 		io_schedule();
390 		/* wake up sets us TASK_RUNNING */
391 		spin_lock_irqsave(&dio->bio_lock, flags);
392 		dio->waiter = NULL;
393 	}
394 	if (dio->bio_list) {
395 		bio = dio->bio_list;
396 		dio->bio_list = bio->bi_private;
397 	}
398 	spin_unlock_irqrestore(&dio->bio_lock, flags);
399 	return bio;
400 }
401 
402 /*
403  * Process one completed BIO.  No locks are held.
404  */
405 static int dio_bio_complete(struct dio *dio, struct bio *bio)
406 {
407 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
408 	struct bio_vec *bvec = bio->bi_io_vec;
409 	int page_no;
410 
411 	if (!uptodate)
412 		dio->io_error = -EIO;
413 
414 	if (dio->is_async && dio->rw == READ) {
415 		bio_check_pages_dirty(bio);	/* transfers ownership */
416 	} else {
417 		for (page_no = 0; page_no < bio->bi_vcnt; page_no++) {
418 			struct page *page = bvec[page_no].bv_page;
419 
420 			if (dio->rw == READ && !PageCompound(page))
421 				set_page_dirty_lock(page);
422 			page_cache_release(page);
423 		}
424 		bio_put(bio);
425 	}
426 	return uptodate ? 0 : -EIO;
427 }
428 
429 /*
430  * Wait on and process all in-flight BIOs.  This must only be called once
431  * all bios have been issued so that the refcount can only decrease.
432  * This just waits for all bios to make it through dio_bio_complete.  IO
433  * errors are propagated through dio->io_error and should be propagated via
434  * dio_complete().
435  */
436 static void dio_await_completion(struct dio *dio)
437 {
438 	struct bio *bio;
439 	do {
440 		bio = dio_await_one(dio);
441 		if (bio)
442 			dio_bio_complete(dio, bio);
443 	} while (bio);
444 }
445 
446 /*
447  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
448  * to keep the memory consumption sane we periodically reap any completed BIOs
449  * during the BIO generation phase.
450  *
451  * This also helps to limit the peak amount of pinned userspace memory.
452  */
453 static int dio_bio_reap(struct dio *dio)
454 {
455 	int ret = 0;
456 
457 	if (dio->reap_counter++ >= 64) {
458 		while (dio->bio_list) {
459 			unsigned long flags;
460 			struct bio *bio;
461 			int ret2;
462 
463 			spin_lock_irqsave(&dio->bio_lock, flags);
464 			bio = dio->bio_list;
465 			dio->bio_list = bio->bi_private;
466 			spin_unlock_irqrestore(&dio->bio_lock, flags);
467 			ret2 = dio_bio_complete(dio, bio);
468 			if (ret == 0)
469 				ret = ret2;
470 		}
471 		dio->reap_counter = 0;
472 	}
473 	return ret;
474 }
475 
476 /*
477  * Call into the fs to map some more disk blocks.  We record the current number
478  * of available blocks at dio->blocks_available.  These are in units of the
479  * fs blocksize, (1 << inode->i_blkbits).
480  *
481  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
482  * it uses the passed inode-relative block number as the file offset, as usual.
483  *
484  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
485  * has remaining to do.  The fs should not map more than this number of blocks.
486  *
487  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
488  * indicate how much contiguous disk space has been made available at
489  * bh->b_blocknr.
490  *
491  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
492  * This isn't very efficient...
493  *
494  * In the case of filesystem holes: the fs may return an arbitrarily-large
495  * hole by returning an appropriate value in b_size and by clearing
496  * buffer_mapped().  However the direct-io code will only process holes one
497  * block at a time - it will repeatedly call get_block() as it walks the hole.
498  */
499 static int get_more_blocks(struct dio *dio)
500 {
501 	int ret;
502 	struct buffer_head *map_bh = &dio->map_bh;
503 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
504 	unsigned long fs_count;	/* Number of filesystem-sized blocks */
505 	unsigned long dio_count;/* Number of dio_block-sized blocks */
506 	unsigned long blkmask;
507 	int create;
508 
509 	/*
510 	 * If there was a memory error and we've overwritten all the
511 	 * mapped blocks then we can now return that memory error
512 	 */
513 	ret = dio->page_errors;
514 	if (ret == 0) {
515 		BUG_ON(dio->block_in_file >= dio->final_block_in_request);
516 		fs_startblk = dio->block_in_file >> dio->blkfactor;
517 		dio_count = dio->final_block_in_request - dio->block_in_file;
518 		fs_count = dio_count >> dio->blkfactor;
519 		blkmask = (1 << dio->blkfactor) - 1;
520 		if (dio_count & blkmask)
521 			fs_count++;
522 
523 		map_bh->b_state = 0;
524 		map_bh->b_size = fs_count << dio->inode->i_blkbits;
525 
526 		create = dio->rw & WRITE;
527 		if (dio->lock_type == DIO_LOCKING) {
528 			if (dio->block_in_file < (i_size_read(dio->inode) >>
529 							dio->blkbits))
530 				create = 0;
531 		} else if (dio->lock_type == DIO_NO_LOCKING) {
532 			create = 0;
533 		}
534 
535 		/*
536 		 * For writes inside i_size we forbid block creations: only
537 		 * overwrites are permitted.  We fall back to buffered writes
538 		 * at a higher level for inside-i_size block-instantiating
539 		 * writes.
540 		 */
541 		ret = (*dio->get_block)(dio->inode, fs_startblk,
542 						map_bh, create);
543 	}
544 	return ret;
545 }
546 
547 /*
548  * There is no bio.  Make one now.
549  */
550 static int dio_new_bio(struct dio *dio, sector_t start_sector)
551 {
552 	sector_t sector;
553 	int ret, nr_pages;
554 
555 	ret = dio_bio_reap(dio);
556 	if (ret)
557 		goto out;
558 	sector = start_sector << (dio->blkbits - 9);
559 	nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev));
560 	BUG_ON(nr_pages <= 0);
561 	ret = dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages);
562 	dio->boundary = 0;
563 out:
564 	return ret;
565 }
566 
567 /*
568  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
569  * that was successful then update final_block_in_bio and take a ref against
570  * the just-added page.
571  *
572  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
573  */
574 static int dio_bio_add_page(struct dio *dio)
575 {
576 	int ret;
577 
578 	ret = bio_add_page(dio->bio, dio->cur_page,
579 			dio->cur_page_len, dio->cur_page_offset);
580 	if (ret == dio->cur_page_len) {
581 		/*
582 		 * Decrement count only, if we are done with this page
583 		 */
584 		if ((dio->cur_page_len + dio->cur_page_offset) == PAGE_SIZE)
585 			dio->pages_in_io--;
586 		page_cache_get(dio->cur_page);
587 		dio->final_block_in_bio = dio->cur_page_block +
588 			(dio->cur_page_len >> dio->blkbits);
589 		ret = 0;
590 	} else {
591 		ret = 1;
592 	}
593 	return ret;
594 }
595 
596 /*
597  * Put cur_page under IO.  The section of cur_page which is described by
598  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
599  * starts on-disk at cur_page_block.
600  *
601  * We take a ref against the page here (on behalf of its presence in the bio).
602  *
603  * The caller of this function is responsible for removing cur_page from the
604  * dio, and for dropping the refcount which came from that presence.
605  */
606 static int dio_send_cur_page(struct dio *dio)
607 {
608 	int ret = 0;
609 
610 	if (dio->bio) {
611 		/*
612 		 * See whether this new request is contiguous with the old
613 		 */
614 		if (dio->final_block_in_bio != dio->cur_page_block)
615 			dio_bio_submit(dio);
616 		/*
617 		 * Submit now if the underlying fs is about to perform a
618 		 * metadata read
619 		 */
620 		if (dio->boundary)
621 			dio_bio_submit(dio);
622 	}
623 
624 	if (dio->bio == NULL) {
625 		ret = dio_new_bio(dio, dio->cur_page_block);
626 		if (ret)
627 			goto out;
628 	}
629 
630 	if (dio_bio_add_page(dio) != 0) {
631 		dio_bio_submit(dio);
632 		ret = dio_new_bio(dio, dio->cur_page_block);
633 		if (ret == 0) {
634 			ret = dio_bio_add_page(dio);
635 			BUG_ON(ret != 0);
636 		}
637 	}
638 out:
639 	return ret;
640 }
641 
642 /*
643  * An autonomous function to put a chunk of a page under deferred IO.
644  *
645  * The caller doesn't actually know (or care) whether this piece of page is in
646  * a BIO, or is under IO or whatever.  We just take care of all possible
647  * situations here.  The separation between the logic of do_direct_IO() and
648  * that of submit_page_section() is important for clarity.  Please don't break.
649  *
650  * The chunk of page starts on-disk at blocknr.
651  *
652  * We perform deferred IO, by recording the last-submitted page inside our
653  * private part of the dio structure.  If possible, we just expand the IO
654  * across that page here.
655  *
656  * If that doesn't work out then we put the old page into the bio and add this
657  * page to the dio instead.
658  */
659 static int
660 submit_page_section(struct dio *dio, struct page *page,
661 		unsigned offset, unsigned len, sector_t blocknr)
662 {
663 	int ret = 0;
664 
665 	if (dio->rw & WRITE) {
666 		/*
667 		 * Read accounting is performed in submit_bio()
668 		 */
669 		task_io_account_write(len);
670 	}
671 
672 	/*
673 	 * Can we just grow the current page's presence in the dio?
674 	 */
675 	if (	(dio->cur_page == page) &&
676 		(dio->cur_page_offset + dio->cur_page_len == offset) &&
677 		(dio->cur_page_block +
678 			(dio->cur_page_len >> dio->blkbits) == blocknr)) {
679 		dio->cur_page_len += len;
680 
681 		/*
682 		 * If dio->boundary then we want to schedule the IO now to
683 		 * avoid metadata seeks.
684 		 */
685 		if (dio->boundary) {
686 			ret = dio_send_cur_page(dio);
687 			page_cache_release(dio->cur_page);
688 			dio->cur_page = NULL;
689 		}
690 		goto out;
691 	}
692 
693 	/*
694 	 * If there's a deferred page already there then send it.
695 	 */
696 	if (dio->cur_page) {
697 		ret = dio_send_cur_page(dio);
698 		page_cache_release(dio->cur_page);
699 		dio->cur_page = NULL;
700 		if (ret)
701 			goto out;
702 	}
703 
704 	page_cache_get(page);		/* It is in dio */
705 	dio->cur_page = page;
706 	dio->cur_page_offset = offset;
707 	dio->cur_page_len = len;
708 	dio->cur_page_block = blocknr;
709 out:
710 	return ret;
711 }
712 
713 /*
714  * Clean any dirty buffers in the blockdev mapping which alias newly-created
715  * file blocks.  Only called for S_ISREG files - blockdevs do not set
716  * buffer_new
717  */
718 static void clean_blockdev_aliases(struct dio *dio)
719 {
720 	unsigned i;
721 	unsigned nblocks;
722 
723 	nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits;
724 
725 	for (i = 0; i < nblocks; i++) {
726 		unmap_underlying_metadata(dio->map_bh.b_bdev,
727 					dio->map_bh.b_blocknr + i);
728 	}
729 }
730 
731 /*
732  * If we are not writing the entire block and get_block() allocated
733  * the block for us, we need to fill-in the unused portion of the
734  * block with zeros. This happens only if user-buffer, fileoffset or
735  * io length is not filesystem block-size multiple.
736  *
737  * `end' is zero if we're doing the start of the IO, 1 at the end of the
738  * IO.
739  */
740 static void dio_zero_block(struct dio *dio, int end)
741 {
742 	unsigned dio_blocks_per_fs_block;
743 	unsigned this_chunk_blocks;	/* In dio_blocks */
744 	unsigned this_chunk_bytes;
745 	struct page *page;
746 
747 	dio->start_zero_done = 1;
748 	if (!dio->blkfactor || !buffer_new(&dio->map_bh))
749 		return;
750 
751 	dio_blocks_per_fs_block = 1 << dio->blkfactor;
752 	this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1);
753 
754 	if (!this_chunk_blocks)
755 		return;
756 
757 	/*
758 	 * We need to zero out part of an fs block.  It is either at the
759 	 * beginning or the end of the fs block.
760 	 */
761 	if (end)
762 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
763 
764 	this_chunk_bytes = this_chunk_blocks << dio->blkbits;
765 
766 	page = ZERO_PAGE(0);
767 	if (submit_page_section(dio, page, 0, this_chunk_bytes,
768 				dio->next_block_for_io))
769 		return;
770 
771 	dio->next_block_for_io += this_chunk_blocks;
772 }
773 
774 /*
775  * Walk the user pages, and the file, mapping blocks to disk and generating
776  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
777  * into submit_page_section(), which takes care of the next stage of submission
778  *
779  * Direct IO against a blockdev is different from a file.  Because we can
780  * happily perform page-sized but 512-byte aligned IOs.  It is important that
781  * blockdev IO be able to have fine alignment and large sizes.
782  *
783  * So what we do is to permit the ->get_block function to populate bh.b_size
784  * with the size of IO which is permitted at this offset and this i_blkbits.
785  *
786  * For best results, the blockdev should be set up with 512-byte i_blkbits and
787  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
788  * fine alignment but still allows this function to work in PAGE_SIZE units.
789  */
790 static int do_direct_IO(struct dio *dio)
791 {
792 	const unsigned blkbits = dio->blkbits;
793 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
794 	struct page *page;
795 	unsigned block_in_page;
796 	struct buffer_head *map_bh = &dio->map_bh;
797 	int ret = 0;
798 
799 	/* The I/O can start at any block offset within the first page */
800 	block_in_page = dio->first_block_in_page;
801 
802 	while (dio->block_in_file < dio->final_block_in_request) {
803 		page = dio_get_page(dio);
804 		if (IS_ERR(page)) {
805 			ret = PTR_ERR(page);
806 			goto out;
807 		}
808 
809 		while (block_in_page < blocks_per_page) {
810 			unsigned offset_in_page = block_in_page << blkbits;
811 			unsigned this_chunk_bytes;	/* # of bytes mapped */
812 			unsigned this_chunk_blocks;	/* # of blocks */
813 			unsigned u;
814 
815 			if (dio->blocks_available == 0) {
816 				/*
817 				 * Need to go and map some more disk
818 				 */
819 				unsigned long blkmask;
820 				unsigned long dio_remainder;
821 
822 				ret = get_more_blocks(dio);
823 				if (ret) {
824 					page_cache_release(page);
825 					goto out;
826 				}
827 				if (!buffer_mapped(map_bh))
828 					goto do_holes;
829 
830 				dio->blocks_available =
831 						map_bh->b_size >> dio->blkbits;
832 				dio->next_block_for_io =
833 					map_bh->b_blocknr << dio->blkfactor;
834 				if (buffer_new(map_bh))
835 					clean_blockdev_aliases(dio);
836 
837 				if (!dio->blkfactor)
838 					goto do_holes;
839 
840 				blkmask = (1 << dio->blkfactor) - 1;
841 				dio_remainder = (dio->block_in_file & blkmask);
842 
843 				/*
844 				 * If we are at the start of IO and that IO
845 				 * starts partway into a fs-block,
846 				 * dio_remainder will be non-zero.  If the IO
847 				 * is a read then we can simply advance the IO
848 				 * cursor to the first block which is to be
849 				 * read.  But if the IO is a write and the
850 				 * block was newly allocated we cannot do that;
851 				 * the start of the fs block must be zeroed out
852 				 * on-disk
853 				 */
854 				if (!buffer_new(map_bh))
855 					dio->next_block_for_io += dio_remainder;
856 				dio->blocks_available -= dio_remainder;
857 			}
858 do_holes:
859 			/* Handle holes */
860 			if (!buffer_mapped(map_bh)) {
861 				loff_t i_size_aligned;
862 
863 				/* AKPM: eargh, -ENOTBLK is a hack */
864 				if (dio->rw & WRITE) {
865 					page_cache_release(page);
866 					return -ENOTBLK;
867 				}
868 
869 				/*
870 				 * Be sure to account for a partial block as the
871 				 * last block in the file
872 				 */
873 				i_size_aligned = ALIGN(i_size_read(dio->inode),
874 							1 << blkbits);
875 				if (dio->block_in_file >=
876 						i_size_aligned >> blkbits) {
877 					/* We hit eof */
878 					page_cache_release(page);
879 					goto out;
880 				}
881 				zero_user(page, block_in_page << blkbits,
882 						1 << blkbits);
883 				dio->block_in_file++;
884 				block_in_page++;
885 				goto next_block;
886 			}
887 
888 			/*
889 			 * If we're performing IO which has an alignment which
890 			 * is finer than the underlying fs, go check to see if
891 			 * we must zero out the start of this block.
892 			 */
893 			if (unlikely(dio->blkfactor && !dio->start_zero_done))
894 				dio_zero_block(dio, 0);
895 
896 			/*
897 			 * Work out, in this_chunk_blocks, how much disk we
898 			 * can add to this page
899 			 */
900 			this_chunk_blocks = dio->blocks_available;
901 			u = (PAGE_SIZE - offset_in_page) >> blkbits;
902 			if (this_chunk_blocks > u)
903 				this_chunk_blocks = u;
904 			u = dio->final_block_in_request - dio->block_in_file;
905 			if (this_chunk_blocks > u)
906 				this_chunk_blocks = u;
907 			this_chunk_bytes = this_chunk_blocks << blkbits;
908 			BUG_ON(this_chunk_bytes == 0);
909 
910 			dio->boundary = buffer_boundary(map_bh);
911 			ret = submit_page_section(dio, page, offset_in_page,
912 				this_chunk_bytes, dio->next_block_for_io);
913 			if (ret) {
914 				page_cache_release(page);
915 				goto out;
916 			}
917 			dio->next_block_for_io += this_chunk_blocks;
918 
919 			dio->block_in_file += this_chunk_blocks;
920 			block_in_page += this_chunk_blocks;
921 			dio->blocks_available -= this_chunk_blocks;
922 next_block:
923 			BUG_ON(dio->block_in_file > dio->final_block_in_request);
924 			if (dio->block_in_file == dio->final_block_in_request)
925 				break;
926 		}
927 
928 		/* Drop the ref which was taken in get_user_pages() */
929 		page_cache_release(page);
930 		block_in_page = 0;
931 	}
932 out:
933 	return ret;
934 }
935 
936 /*
937  * Releases both i_mutex and i_alloc_sem
938  */
939 static ssize_t
940 direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode,
941 	const struct iovec *iov, loff_t offset, unsigned long nr_segs,
942 	unsigned blkbits, get_block_t get_block, dio_iodone_t end_io,
943 	struct dio *dio)
944 {
945 	unsigned long user_addr;
946 	unsigned long flags;
947 	int seg;
948 	ssize_t ret = 0;
949 	ssize_t ret2;
950 	size_t bytes;
951 
952 	dio->inode = inode;
953 	dio->rw = rw;
954 	dio->blkbits = blkbits;
955 	dio->blkfactor = inode->i_blkbits - blkbits;
956 	dio->block_in_file = offset >> blkbits;
957 
958 	dio->get_block = get_block;
959 	dio->end_io = end_io;
960 	dio->final_block_in_bio = -1;
961 	dio->next_block_for_io = -1;
962 
963 	dio->iocb = iocb;
964 	dio->i_size = i_size_read(inode);
965 
966 	spin_lock_init(&dio->bio_lock);
967 	dio->refcount = 1;
968 
969 	/*
970 	 * In case of non-aligned buffers, we may need 2 more
971 	 * pages since we need to zero out first and last block.
972 	 */
973 	if (unlikely(dio->blkfactor))
974 		dio->pages_in_io = 2;
975 
976 	for (seg = 0; seg < nr_segs; seg++) {
977 		user_addr = (unsigned long)iov[seg].iov_base;
978 		dio->pages_in_io +=
979 			((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE
980 				- user_addr/PAGE_SIZE);
981 	}
982 
983 	for (seg = 0; seg < nr_segs; seg++) {
984 		user_addr = (unsigned long)iov[seg].iov_base;
985 		dio->size += bytes = iov[seg].iov_len;
986 
987 		/* Index into the first page of the first block */
988 		dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
989 		dio->final_block_in_request = dio->block_in_file +
990 						(bytes >> blkbits);
991 		/* Page fetching state */
992 		dio->head = 0;
993 		dio->tail = 0;
994 		dio->curr_page = 0;
995 
996 		dio->total_pages = 0;
997 		if (user_addr & (PAGE_SIZE-1)) {
998 			dio->total_pages++;
999 			bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
1000 		}
1001 		dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1002 		dio->curr_user_address = user_addr;
1003 
1004 		ret = do_direct_IO(dio);
1005 
1006 		dio->result += iov[seg].iov_len -
1007 			((dio->final_block_in_request - dio->block_in_file) <<
1008 					blkbits);
1009 
1010 		if (ret) {
1011 			dio_cleanup(dio);
1012 			break;
1013 		}
1014 	} /* end iovec loop */
1015 
1016 	if (ret == -ENOTBLK && (rw & WRITE)) {
1017 		/*
1018 		 * The remaining part of the request will be
1019 		 * be handled by buffered I/O when we return
1020 		 */
1021 		ret = 0;
1022 	}
1023 	/*
1024 	 * There may be some unwritten disk at the end of a part-written
1025 	 * fs-block-sized block.  Go zero that now.
1026 	 */
1027 	dio_zero_block(dio, 1);
1028 
1029 	if (dio->cur_page) {
1030 		ret2 = dio_send_cur_page(dio);
1031 		if (ret == 0)
1032 			ret = ret2;
1033 		page_cache_release(dio->cur_page);
1034 		dio->cur_page = NULL;
1035 	}
1036 	if (dio->bio)
1037 		dio_bio_submit(dio);
1038 
1039 	/* All IO is now issued, send it on its way */
1040 	blk_run_address_space(inode->i_mapping);
1041 
1042 	/*
1043 	 * It is possible that, we return short IO due to end of file.
1044 	 * In that case, we need to release all the pages we got hold on.
1045 	 */
1046 	dio_cleanup(dio);
1047 
1048 	/*
1049 	 * All block lookups have been performed. For READ requests
1050 	 * we can let i_mutex go now that its achieved its purpose
1051 	 * of protecting us from looking up uninitialized blocks.
1052 	 */
1053 	if ((rw == READ) && (dio->lock_type == DIO_LOCKING))
1054 		mutex_unlock(&dio->inode->i_mutex);
1055 
1056 	/*
1057 	 * The only time we want to leave bios in flight is when a successful
1058 	 * partial aio read or full aio write have been setup.  In that case
1059 	 * bio completion will call aio_complete.  The only time it's safe to
1060 	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1061 	 * This had *better* be the only place that raises -EIOCBQUEUED.
1062 	 */
1063 	BUG_ON(ret == -EIOCBQUEUED);
1064 	if (dio->is_async && ret == 0 && dio->result &&
1065 	    ((rw & READ) || (dio->result == dio->size)))
1066 		ret = -EIOCBQUEUED;
1067 
1068 	if (ret != -EIOCBQUEUED)
1069 		dio_await_completion(dio);
1070 
1071 	/*
1072 	 * Sync will always be dropping the final ref and completing the
1073 	 * operation.  AIO can if it was a broken operation described above or
1074 	 * in fact if all the bios race to complete before we get here.  In
1075 	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1076 	 * return code that the caller will hand to aio_complete().
1077 	 *
1078 	 * This is managed by the bio_lock instead of being an atomic_t so that
1079 	 * completion paths can drop their ref and use the remaining count to
1080 	 * decide to wake the submission path atomically.
1081 	 */
1082 	spin_lock_irqsave(&dio->bio_lock, flags);
1083 	ret2 = --dio->refcount;
1084 	spin_unlock_irqrestore(&dio->bio_lock, flags);
1085 
1086 	if (ret2 == 0) {
1087 		ret = dio_complete(dio, offset, ret);
1088 		kfree(dio);
1089 	} else
1090 		BUG_ON(ret != -EIOCBQUEUED);
1091 
1092 	return ret;
1093 }
1094 
1095 /*
1096  * This is a library function for use by filesystem drivers.
1097  * The locking rules are governed by the dio_lock_type parameter.
1098  *
1099  * DIO_NO_LOCKING (no locking, for raw block device access)
1100  * For writes, i_mutex is not held on entry; it is never taken.
1101  *
1102  * DIO_LOCKING (simple locking for regular files)
1103  * For writes we are called under i_mutex and return with i_mutex held, even
1104  * though it is internally dropped.
1105  * For reads, i_mutex is not held on entry, but it is taken and dropped before
1106  * returning.
1107  *
1108  * DIO_OWN_LOCKING (filesystem provides synchronisation and handling of
1109  *	uninitialised data, allowing parallel direct readers and writers)
1110  * For writes we are called without i_mutex, return without it, never touch it.
1111  * For reads we are called under i_mutex and return with i_mutex held, even
1112  * though it may be internally dropped.
1113  *
1114  * Additional i_alloc_sem locking requirements described inline below.
1115  */
1116 ssize_t
1117 __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1118 	struct block_device *bdev, const struct iovec *iov, loff_t offset,
1119 	unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1120 	int dio_lock_type)
1121 {
1122 	int seg;
1123 	size_t size;
1124 	unsigned long addr;
1125 	unsigned blkbits = inode->i_blkbits;
1126 	unsigned bdev_blkbits = 0;
1127 	unsigned blocksize_mask = (1 << blkbits) - 1;
1128 	ssize_t retval = -EINVAL;
1129 	loff_t end = offset;
1130 	struct dio *dio;
1131 	int release_i_mutex = 0;
1132 	int acquire_i_mutex = 0;
1133 
1134 	if (rw & WRITE)
1135 		rw = WRITE_SYNC;
1136 
1137 	if (bdev)
1138 		bdev_blkbits = blksize_bits(bdev_hardsect_size(bdev));
1139 
1140 	if (offset & blocksize_mask) {
1141 		if (bdev)
1142 			 blkbits = bdev_blkbits;
1143 		blocksize_mask = (1 << blkbits) - 1;
1144 		if (offset & blocksize_mask)
1145 			goto out;
1146 	}
1147 
1148 	/* Check the memory alignment.  Blocks cannot straddle pages */
1149 	for (seg = 0; seg < nr_segs; seg++) {
1150 		addr = (unsigned long)iov[seg].iov_base;
1151 		size = iov[seg].iov_len;
1152 		end += size;
1153 		if ((addr & blocksize_mask) || (size & blocksize_mask))  {
1154 			if (bdev)
1155 				 blkbits = bdev_blkbits;
1156 			blocksize_mask = (1 << blkbits) - 1;
1157 			if ((addr & blocksize_mask) || (size & blocksize_mask))
1158 				goto out;
1159 		}
1160 	}
1161 
1162 	dio = kzalloc(sizeof(*dio), GFP_KERNEL);
1163 	retval = -ENOMEM;
1164 	if (!dio)
1165 		goto out;
1166 
1167 	/*
1168 	 * For block device access DIO_NO_LOCKING is used,
1169 	 *	neither readers nor writers do any locking at all
1170 	 * For regular files using DIO_LOCKING,
1171 	 *	readers need to grab i_mutex and i_alloc_sem
1172 	 *	writers need to grab i_alloc_sem only (i_mutex is already held)
1173 	 * For regular files using DIO_OWN_LOCKING,
1174 	 *	neither readers nor writers take any locks here
1175 	 */
1176 	dio->lock_type = dio_lock_type;
1177 	if (dio_lock_type != DIO_NO_LOCKING) {
1178 		/* watch out for a 0 len io from a tricksy fs */
1179 		if (rw == READ && end > offset) {
1180 			struct address_space *mapping;
1181 
1182 			mapping = iocb->ki_filp->f_mapping;
1183 			if (dio_lock_type != DIO_OWN_LOCKING) {
1184 				mutex_lock(&inode->i_mutex);
1185 				release_i_mutex = 1;
1186 			}
1187 
1188 			retval = filemap_write_and_wait_range(mapping, offset,
1189 							      end - 1);
1190 			if (retval) {
1191 				kfree(dio);
1192 				goto out;
1193 			}
1194 
1195 			if (dio_lock_type == DIO_OWN_LOCKING) {
1196 				mutex_unlock(&inode->i_mutex);
1197 				acquire_i_mutex = 1;
1198 			}
1199 		}
1200 
1201 		if (dio_lock_type == DIO_LOCKING)
1202 			/* lockdep: not the owner will release it */
1203 			down_read_non_owner(&inode->i_alloc_sem);
1204 	}
1205 
1206 	/*
1207 	 * For file extending writes updating i_size before data
1208 	 * writeouts complete can expose uninitialized blocks. So
1209 	 * even for AIO, we need to wait for i/o to complete before
1210 	 * returning in this case.
1211 	 */
1212 	dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) &&
1213 		(end > i_size_read(inode)));
1214 
1215 	retval = direct_io_worker(rw, iocb, inode, iov, offset,
1216 				nr_segs, blkbits, get_block, end_io, dio);
1217 
1218 	if (rw == READ && dio_lock_type == DIO_LOCKING)
1219 		release_i_mutex = 0;
1220 
1221 out:
1222 	if (release_i_mutex)
1223 		mutex_unlock(&inode->i_mutex);
1224 	else if (acquire_i_mutex)
1225 		mutex_lock(&inode->i_mutex);
1226 	return retval;
1227 }
1228 EXPORT_SYMBOL(__blockdev_direct_IO);
1229