1 /* 2 * fs/direct-io.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * O_DIRECT 7 * 8 * 04Jul2002 Andrew Morton 9 * Initial version 10 * 11Sep2002 janetinc@us.ibm.com 11 * added readv/writev support. 12 * 29Oct2002 Andrew Morton 13 * rewrote bio_add_page() support. 14 * 30Oct2002 pbadari@us.ibm.com 15 * added support for non-aligned IO. 16 * 06Nov2002 pbadari@us.ibm.com 17 * added asynchronous IO support. 18 * 21Jul2003 nathans@sgi.com 19 * added IO completion notifier. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/types.h> 25 #include <linux/fs.h> 26 #include <linux/mm.h> 27 #include <linux/slab.h> 28 #include <linux/highmem.h> 29 #include <linux/pagemap.h> 30 #include <linux/task_io_accounting_ops.h> 31 #include <linux/bio.h> 32 #include <linux/wait.h> 33 #include <linux/err.h> 34 #include <linux/blkdev.h> 35 #include <linux/buffer_head.h> 36 #include <linux/rwsem.h> 37 #include <linux/uio.h> 38 #include <linux/atomic.h> 39 #include <linux/prefetch.h> 40 #include <linux/aio.h> 41 42 /* 43 * How many user pages to map in one call to get_user_pages(). This determines 44 * the size of a structure in the slab cache 45 */ 46 #define DIO_PAGES 64 47 48 /* 49 * This code generally works in units of "dio_blocks". A dio_block is 50 * somewhere between the hard sector size and the filesystem block size. it 51 * is determined on a per-invocation basis. When talking to the filesystem 52 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity 53 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted 54 * to bio_block quantities by shifting left by blkfactor. 55 * 56 * If blkfactor is zero then the user's request was aligned to the filesystem's 57 * blocksize. 58 */ 59 60 /* dio_state only used in the submission path */ 61 62 struct dio_submit { 63 struct bio *bio; /* bio under assembly */ 64 unsigned blkbits; /* doesn't change */ 65 unsigned blkfactor; /* When we're using an alignment which 66 is finer than the filesystem's soft 67 blocksize, this specifies how much 68 finer. blkfactor=2 means 1/4-block 69 alignment. Does not change */ 70 unsigned start_zero_done; /* flag: sub-blocksize zeroing has 71 been performed at the start of a 72 write */ 73 int pages_in_io; /* approximate total IO pages */ 74 size_t size; /* total request size (doesn't change)*/ 75 sector_t block_in_file; /* Current offset into the underlying 76 file in dio_block units. */ 77 unsigned blocks_available; /* At block_in_file. changes */ 78 int reap_counter; /* rate limit reaping */ 79 sector_t final_block_in_request;/* doesn't change */ 80 unsigned first_block_in_page; /* doesn't change, Used only once */ 81 int boundary; /* prev block is at a boundary */ 82 get_block_t *get_block; /* block mapping function */ 83 dio_submit_t *submit_io; /* IO submition function */ 84 85 loff_t logical_offset_in_bio; /* current first logical block in bio */ 86 sector_t final_block_in_bio; /* current final block in bio + 1 */ 87 sector_t next_block_for_io; /* next block to be put under IO, 88 in dio_blocks units */ 89 90 /* 91 * Deferred addition of a page to the dio. These variables are 92 * private to dio_send_cur_page(), submit_page_section() and 93 * dio_bio_add_page(). 94 */ 95 struct page *cur_page; /* The page */ 96 unsigned cur_page_offset; /* Offset into it, in bytes */ 97 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ 98 sector_t cur_page_block; /* Where it starts */ 99 loff_t cur_page_fs_offset; /* Offset in file */ 100 101 /* 102 * Page fetching state. These variables belong to dio_refill_pages(). 103 */ 104 int curr_page; /* changes */ 105 int total_pages; /* doesn't change */ 106 unsigned long curr_user_address;/* changes */ 107 108 /* 109 * Page queue. These variables belong to dio_refill_pages() and 110 * dio_get_page(). 111 */ 112 unsigned head; /* next page to process */ 113 unsigned tail; /* last valid page + 1 */ 114 }; 115 116 /* dio_state communicated between submission path and end_io */ 117 struct dio { 118 int flags; /* doesn't change */ 119 int rw; 120 struct inode *inode; 121 loff_t i_size; /* i_size when submitted */ 122 dio_iodone_t *end_io; /* IO completion function */ 123 124 void *private; /* copy from map_bh.b_private */ 125 126 /* BIO completion state */ 127 spinlock_t bio_lock; /* protects BIO fields below */ 128 int page_errors; /* errno from get_user_pages() */ 129 int is_async; /* is IO async ? */ 130 int io_error; /* IO error in completion path */ 131 unsigned long refcount; /* direct_io_worker() and bios */ 132 struct bio *bio_list; /* singly linked via bi_private */ 133 struct task_struct *waiter; /* waiting task (NULL if none) */ 134 135 /* AIO related stuff */ 136 struct kiocb *iocb; /* kiocb */ 137 ssize_t result; /* IO result */ 138 139 /* 140 * pages[] (and any fields placed after it) are not zeroed out at 141 * allocation time. Don't add new fields after pages[] unless you 142 * wish that they not be zeroed. 143 */ 144 struct page *pages[DIO_PAGES]; /* page buffer */ 145 } ____cacheline_aligned_in_smp; 146 147 static struct kmem_cache *dio_cache __read_mostly; 148 149 /* 150 * How many pages are in the queue? 151 */ 152 static inline unsigned dio_pages_present(struct dio_submit *sdio) 153 { 154 return sdio->tail - sdio->head; 155 } 156 157 /* 158 * Go grab and pin some userspace pages. Typically we'll get 64 at a time. 159 */ 160 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio) 161 { 162 int ret; 163 int nr_pages; 164 165 nr_pages = min(sdio->total_pages - sdio->curr_page, DIO_PAGES); 166 ret = get_user_pages_fast( 167 sdio->curr_user_address, /* Where from? */ 168 nr_pages, /* How many pages? */ 169 dio->rw == READ, /* Write to memory? */ 170 &dio->pages[0]); /* Put results here */ 171 172 if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) { 173 struct page *page = ZERO_PAGE(0); 174 /* 175 * A memory fault, but the filesystem has some outstanding 176 * mapped blocks. We need to use those blocks up to avoid 177 * leaking stale data in the file. 178 */ 179 if (dio->page_errors == 0) 180 dio->page_errors = ret; 181 page_cache_get(page); 182 dio->pages[0] = page; 183 sdio->head = 0; 184 sdio->tail = 1; 185 ret = 0; 186 goto out; 187 } 188 189 if (ret >= 0) { 190 sdio->curr_user_address += ret * PAGE_SIZE; 191 sdio->curr_page += ret; 192 sdio->head = 0; 193 sdio->tail = ret; 194 ret = 0; 195 } 196 out: 197 return ret; 198 } 199 200 /* 201 * Get another userspace page. Returns an ERR_PTR on error. Pages are 202 * buffered inside the dio so that we can call get_user_pages() against a 203 * decent number of pages, less frequently. To provide nicer use of the 204 * L1 cache. 205 */ 206 static inline struct page *dio_get_page(struct dio *dio, 207 struct dio_submit *sdio) 208 { 209 if (dio_pages_present(sdio) == 0) { 210 int ret; 211 212 ret = dio_refill_pages(dio, sdio); 213 if (ret) 214 return ERR_PTR(ret); 215 BUG_ON(dio_pages_present(sdio) == 0); 216 } 217 return dio->pages[sdio->head++]; 218 } 219 220 /** 221 * dio_complete() - called when all DIO BIO I/O has been completed 222 * @offset: the byte offset in the file of the completed operation 223 * 224 * This releases locks as dictated by the locking type, lets interested parties 225 * know that a DIO operation has completed, and calculates the resulting return 226 * code for the operation. 227 * 228 * It lets the filesystem know if it registered an interest earlier via 229 * get_block. Pass the private field of the map buffer_head so that 230 * filesystems can use it to hold additional state between get_block calls and 231 * dio_complete. 232 */ 233 static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret, bool is_async) 234 { 235 ssize_t transferred = 0; 236 237 /* 238 * AIO submission can race with bio completion to get here while 239 * expecting to have the last io completed by bio completion. 240 * In that case -EIOCBQUEUED is in fact not an error we want 241 * to preserve through this call. 242 */ 243 if (ret == -EIOCBQUEUED) 244 ret = 0; 245 246 if (dio->result) { 247 transferred = dio->result; 248 249 /* Check for short read case */ 250 if ((dio->rw == READ) && ((offset + transferred) > dio->i_size)) 251 transferred = dio->i_size - offset; 252 } 253 254 if (ret == 0) 255 ret = dio->page_errors; 256 if (ret == 0) 257 ret = dio->io_error; 258 if (ret == 0) 259 ret = transferred; 260 261 if (dio->end_io && dio->result) { 262 dio->end_io(dio->iocb, offset, transferred, 263 dio->private, ret, is_async); 264 } else { 265 inode_dio_done(dio->inode); 266 if (is_async) 267 aio_complete(dio->iocb, ret, 0); 268 } 269 270 return ret; 271 } 272 273 static int dio_bio_complete(struct dio *dio, struct bio *bio); 274 /* 275 * Asynchronous IO callback. 276 */ 277 static void dio_bio_end_aio(struct bio *bio, int error) 278 { 279 struct dio *dio = bio->bi_private; 280 unsigned long remaining; 281 unsigned long flags; 282 283 /* cleanup the bio */ 284 dio_bio_complete(dio, bio); 285 286 spin_lock_irqsave(&dio->bio_lock, flags); 287 remaining = --dio->refcount; 288 if (remaining == 1 && dio->waiter) 289 wake_up_process(dio->waiter); 290 spin_unlock_irqrestore(&dio->bio_lock, flags); 291 292 if (remaining == 0) { 293 dio_complete(dio, dio->iocb->ki_pos, 0, true); 294 kmem_cache_free(dio_cache, dio); 295 } 296 } 297 298 /* 299 * The BIO completion handler simply queues the BIO up for the process-context 300 * handler. 301 * 302 * During I/O bi_private points at the dio. After I/O, bi_private is used to 303 * implement a singly-linked list of completed BIOs, at dio->bio_list. 304 */ 305 static void dio_bio_end_io(struct bio *bio, int error) 306 { 307 struct dio *dio = bio->bi_private; 308 unsigned long flags; 309 310 spin_lock_irqsave(&dio->bio_lock, flags); 311 bio->bi_private = dio->bio_list; 312 dio->bio_list = bio; 313 if (--dio->refcount == 1 && dio->waiter) 314 wake_up_process(dio->waiter); 315 spin_unlock_irqrestore(&dio->bio_lock, flags); 316 } 317 318 /** 319 * dio_end_io - handle the end io action for the given bio 320 * @bio: The direct io bio thats being completed 321 * @error: Error if there was one 322 * 323 * This is meant to be called by any filesystem that uses their own dio_submit_t 324 * so that the DIO specific endio actions are dealt with after the filesystem 325 * has done it's completion work. 326 */ 327 void dio_end_io(struct bio *bio, int error) 328 { 329 struct dio *dio = bio->bi_private; 330 331 if (dio->is_async) 332 dio_bio_end_aio(bio, error); 333 else 334 dio_bio_end_io(bio, error); 335 } 336 EXPORT_SYMBOL_GPL(dio_end_io); 337 338 static inline void 339 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio, 340 struct block_device *bdev, 341 sector_t first_sector, int nr_vecs) 342 { 343 struct bio *bio; 344 345 /* 346 * bio_alloc() is guaranteed to return a bio when called with 347 * __GFP_WAIT and we request a valid number of vectors. 348 */ 349 bio = bio_alloc(GFP_KERNEL, nr_vecs); 350 351 bio->bi_bdev = bdev; 352 bio->bi_sector = first_sector; 353 if (dio->is_async) 354 bio->bi_end_io = dio_bio_end_aio; 355 else 356 bio->bi_end_io = dio_bio_end_io; 357 358 sdio->bio = bio; 359 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset; 360 } 361 362 /* 363 * In the AIO read case we speculatively dirty the pages before starting IO. 364 * During IO completion, any of these pages which happen to have been written 365 * back will be redirtied by bio_check_pages_dirty(). 366 * 367 * bios hold a dio reference between submit_bio and ->end_io. 368 */ 369 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio) 370 { 371 struct bio *bio = sdio->bio; 372 unsigned long flags; 373 374 bio->bi_private = dio; 375 376 spin_lock_irqsave(&dio->bio_lock, flags); 377 dio->refcount++; 378 spin_unlock_irqrestore(&dio->bio_lock, flags); 379 380 if (dio->is_async && dio->rw == READ) 381 bio_set_pages_dirty(bio); 382 383 if (sdio->submit_io) 384 sdio->submit_io(dio->rw, bio, dio->inode, 385 sdio->logical_offset_in_bio); 386 else 387 submit_bio(dio->rw, bio); 388 389 sdio->bio = NULL; 390 sdio->boundary = 0; 391 sdio->logical_offset_in_bio = 0; 392 } 393 394 /* 395 * Release any resources in case of a failure 396 */ 397 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio) 398 { 399 while (dio_pages_present(sdio)) 400 page_cache_release(dio_get_page(dio, sdio)); 401 } 402 403 /* 404 * Wait for the next BIO to complete. Remove it and return it. NULL is 405 * returned once all BIOs have been completed. This must only be called once 406 * all bios have been issued so that dio->refcount can only decrease. This 407 * requires that that the caller hold a reference on the dio. 408 */ 409 static struct bio *dio_await_one(struct dio *dio) 410 { 411 unsigned long flags; 412 struct bio *bio = NULL; 413 414 spin_lock_irqsave(&dio->bio_lock, flags); 415 416 /* 417 * Wait as long as the list is empty and there are bios in flight. bio 418 * completion drops the count, maybe adds to the list, and wakes while 419 * holding the bio_lock so we don't need set_current_state()'s barrier 420 * and can call it after testing our condition. 421 */ 422 while (dio->refcount > 1 && dio->bio_list == NULL) { 423 __set_current_state(TASK_UNINTERRUPTIBLE); 424 dio->waiter = current; 425 spin_unlock_irqrestore(&dio->bio_lock, flags); 426 io_schedule(); 427 /* wake up sets us TASK_RUNNING */ 428 spin_lock_irqsave(&dio->bio_lock, flags); 429 dio->waiter = NULL; 430 } 431 if (dio->bio_list) { 432 bio = dio->bio_list; 433 dio->bio_list = bio->bi_private; 434 } 435 spin_unlock_irqrestore(&dio->bio_lock, flags); 436 return bio; 437 } 438 439 /* 440 * Process one completed BIO. No locks are held. 441 */ 442 static int dio_bio_complete(struct dio *dio, struct bio *bio) 443 { 444 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 445 struct bio_vec *bvec; 446 unsigned i; 447 448 if (!uptodate) 449 dio->io_error = -EIO; 450 451 if (dio->is_async && dio->rw == READ) { 452 bio_check_pages_dirty(bio); /* transfers ownership */ 453 } else { 454 bio_for_each_segment_all(bvec, bio, i) { 455 struct page *page = bvec->bv_page; 456 457 if (dio->rw == READ && !PageCompound(page)) 458 set_page_dirty_lock(page); 459 page_cache_release(page); 460 } 461 bio_put(bio); 462 } 463 return uptodate ? 0 : -EIO; 464 } 465 466 /* 467 * Wait on and process all in-flight BIOs. This must only be called once 468 * all bios have been issued so that the refcount can only decrease. 469 * This just waits for all bios to make it through dio_bio_complete. IO 470 * errors are propagated through dio->io_error and should be propagated via 471 * dio_complete(). 472 */ 473 static void dio_await_completion(struct dio *dio) 474 { 475 struct bio *bio; 476 do { 477 bio = dio_await_one(dio); 478 if (bio) 479 dio_bio_complete(dio, bio); 480 } while (bio); 481 } 482 483 /* 484 * A really large O_DIRECT read or write can generate a lot of BIOs. So 485 * to keep the memory consumption sane we periodically reap any completed BIOs 486 * during the BIO generation phase. 487 * 488 * This also helps to limit the peak amount of pinned userspace memory. 489 */ 490 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio) 491 { 492 int ret = 0; 493 494 if (sdio->reap_counter++ >= 64) { 495 while (dio->bio_list) { 496 unsigned long flags; 497 struct bio *bio; 498 int ret2; 499 500 spin_lock_irqsave(&dio->bio_lock, flags); 501 bio = dio->bio_list; 502 dio->bio_list = bio->bi_private; 503 spin_unlock_irqrestore(&dio->bio_lock, flags); 504 ret2 = dio_bio_complete(dio, bio); 505 if (ret == 0) 506 ret = ret2; 507 } 508 sdio->reap_counter = 0; 509 } 510 return ret; 511 } 512 513 /* 514 * Call into the fs to map some more disk blocks. We record the current number 515 * of available blocks at sdio->blocks_available. These are in units of the 516 * fs blocksize, (1 << inode->i_blkbits). 517 * 518 * The fs is allowed to map lots of blocks at once. If it wants to do that, 519 * it uses the passed inode-relative block number as the file offset, as usual. 520 * 521 * get_block() is passed the number of i_blkbits-sized blocks which direct_io 522 * has remaining to do. The fs should not map more than this number of blocks. 523 * 524 * If the fs has mapped a lot of blocks, it should populate bh->b_size to 525 * indicate how much contiguous disk space has been made available at 526 * bh->b_blocknr. 527 * 528 * If *any* of the mapped blocks are new, then the fs must set buffer_new(). 529 * This isn't very efficient... 530 * 531 * In the case of filesystem holes: the fs may return an arbitrarily-large 532 * hole by returning an appropriate value in b_size and by clearing 533 * buffer_mapped(). However the direct-io code will only process holes one 534 * block at a time - it will repeatedly call get_block() as it walks the hole. 535 */ 536 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio, 537 struct buffer_head *map_bh) 538 { 539 int ret; 540 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ 541 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */ 542 unsigned long fs_count; /* Number of filesystem-sized blocks */ 543 int create; 544 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor; 545 546 /* 547 * If there was a memory error and we've overwritten all the 548 * mapped blocks then we can now return that memory error 549 */ 550 ret = dio->page_errors; 551 if (ret == 0) { 552 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request); 553 fs_startblk = sdio->block_in_file >> sdio->blkfactor; 554 fs_endblk = (sdio->final_block_in_request - 1) >> 555 sdio->blkfactor; 556 fs_count = fs_endblk - fs_startblk + 1; 557 558 map_bh->b_state = 0; 559 map_bh->b_size = fs_count << i_blkbits; 560 561 /* 562 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we 563 * forbid block creations: only overwrites are permitted. 564 * We will return early to the caller once we see an 565 * unmapped buffer head returned, and the caller will fall 566 * back to buffered I/O. 567 * 568 * Otherwise the decision is left to the get_blocks method, 569 * which may decide to handle it or also return an unmapped 570 * buffer head. 571 */ 572 create = dio->rw & WRITE; 573 if (dio->flags & DIO_SKIP_HOLES) { 574 if (sdio->block_in_file < (i_size_read(dio->inode) >> 575 sdio->blkbits)) 576 create = 0; 577 } 578 579 ret = (*sdio->get_block)(dio->inode, fs_startblk, 580 map_bh, create); 581 582 /* Store for completion */ 583 dio->private = map_bh->b_private; 584 } 585 return ret; 586 } 587 588 /* 589 * There is no bio. Make one now. 590 */ 591 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio, 592 sector_t start_sector, struct buffer_head *map_bh) 593 { 594 sector_t sector; 595 int ret, nr_pages; 596 597 ret = dio_bio_reap(dio, sdio); 598 if (ret) 599 goto out; 600 sector = start_sector << (sdio->blkbits - 9); 601 nr_pages = min(sdio->pages_in_io, bio_get_nr_vecs(map_bh->b_bdev)); 602 nr_pages = min(nr_pages, BIO_MAX_PAGES); 603 BUG_ON(nr_pages <= 0); 604 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages); 605 sdio->boundary = 0; 606 out: 607 return ret; 608 } 609 610 /* 611 * Attempt to put the current chunk of 'cur_page' into the current BIO. If 612 * that was successful then update final_block_in_bio and take a ref against 613 * the just-added page. 614 * 615 * Return zero on success. Non-zero means the caller needs to start a new BIO. 616 */ 617 static inline int dio_bio_add_page(struct dio_submit *sdio) 618 { 619 int ret; 620 621 ret = bio_add_page(sdio->bio, sdio->cur_page, 622 sdio->cur_page_len, sdio->cur_page_offset); 623 if (ret == sdio->cur_page_len) { 624 /* 625 * Decrement count only, if we are done with this page 626 */ 627 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE) 628 sdio->pages_in_io--; 629 page_cache_get(sdio->cur_page); 630 sdio->final_block_in_bio = sdio->cur_page_block + 631 (sdio->cur_page_len >> sdio->blkbits); 632 ret = 0; 633 } else { 634 ret = 1; 635 } 636 return ret; 637 } 638 639 /* 640 * Put cur_page under IO. The section of cur_page which is described by 641 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page 642 * starts on-disk at cur_page_block. 643 * 644 * We take a ref against the page here (on behalf of its presence in the bio). 645 * 646 * The caller of this function is responsible for removing cur_page from the 647 * dio, and for dropping the refcount which came from that presence. 648 */ 649 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio, 650 struct buffer_head *map_bh) 651 { 652 int ret = 0; 653 654 if (sdio->bio) { 655 loff_t cur_offset = sdio->cur_page_fs_offset; 656 loff_t bio_next_offset = sdio->logical_offset_in_bio + 657 sdio->bio->bi_size; 658 659 /* 660 * See whether this new request is contiguous with the old. 661 * 662 * Btrfs cannot handle having logically non-contiguous requests 663 * submitted. For example if you have 664 * 665 * Logical: [0-4095][HOLE][8192-12287] 666 * Physical: [0-4095] [4096-8191] 667 * 668 * We cannot submit those pages together as one BIO. So if our 669 * current logical offset in the file does not equal what would 670 * be the next logical offset in the bio, submit the bio we 671 * have. 672 */ 673 if (sdio->final_block_in_bio != sdio->cur_page_block || 674 cur_offset != bio_next_offset) 675 dio_bio_submit(dio, sdio); 676 } 677 678 if (sdio->bio == NULL) { 679 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 680 if (ret) 681 goto out; 682 } 683 684 if (dio_bio_add_page(sdio) != 0) { 685 dio_bio_submit(dio, sdio); 686 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 687 if (ret == 0) { 688 ret = dio_bio_add_page(sdio); 689 BUG_ON(ret != 0); 690 } 691 } 692 out: 693 return ret; 694 } 695 696 /* 697 * An autonomous function to put a chunk of a page under deferred IO. 698 * 699 * The caller doesn't actually know (or care) whether this piece of page is in 700 * a BIO, or is under IO or whatever. We just take care of all possible 701 * situations here. The separation between the logic of do_direct_IO() and 702 * that of submit_page_section() is important for clarity. Please don't break. 703 * 704 * The chunk of page starts on-disk at blocknr. 705 * 706 * We perform deferred IO, by recording the last-submitted page inside our 707 * private part of the dio structure. If possible, we just expand the IO 708 * across that page here. 709 * 710 * If that doesn't work out then we put the old page into the bio and add this 711 * page to the dio instead. 712 */ 713 static inline int 714 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page, 715 unsigned offset, unsigned len, sector_t blocknr, 716 struct buffer_head *map_bh) 717 { 718 int ret = 0; 719 720 if (dio->rw & WRITE) { 721 /* 722 * Read accounting is performed in submit_bio() 723 */ 724 task_io_account_write(len); 725 } 726 727 /* 728 * Can we just grow the current page's presence in the dio? 729 */ 730 if (sdio->cur_page == page && 731 sdio->cur_page_offset + sdio->cur_page_len == offset && 732 sdio->cur_page_block + 733 (sdio->cur_page_len >> sdio->blkbits) == blocknr) { 734 sdio->cur_page_len += len; 735 goto out; 736 } 737 738 /* 739 * If there's a deferred page already there then send it. 740 */ 741 if (sdio->cur_page) { 742 ret = dio_send_cur_page(dio, sdio, map_bh); 743 page_cache_release(sdio->cur_page); 744 sdio->cur_page = NULL; 745 if (ret) 746 return ret; 747 } 748 749 page_cache_get(page); /* It is in dio */ 750 sdio->cur_page = page; 751 sdio->cur_page_offset = offset; 752 sdio->cur_page_len = len; 753 sdio->cur_page_block = blocknr; 754 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits; 755 out: 756 /* 757 * If sdio->boundary then we want to schedule the IO now to 758 * avoid metadata seeks. 759 */ 760 if (sdio->boundary) { 761 ret = dio_send_cur_page(dio, sdio, map_bh); 762 dio_bio_submit(dio, sdio); 763 page_cache_release(sdio->cur_page); 764 sdio->cur_page = NULL; 765 } 766 return ret; 767 } 768 769 /* 770 * Clean any dirty buffers in the blockdev mapping which alias newly-created 771 * file blocks. Only called for S_ISREG files - blockdevs do not set 772 * buffer_new 773 */ 774 static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh) 775 { 776 unsigned i; 777 unsigned nblocks; 778 779 nblocks = map_bh->b_size >> dio->inode->i_blkbits; 780 781 for (i = 0; i < nblocks; i++) { 782 unmap_underlying_metadata(map_bh->b_bdev, 783 map_bh->b_blocknr + i); 784 } 785 } 786 787 /* 788 * If we are not writing the entire block and get_block() allocated 789 * the block for us, we need to fill-in the unused portion of the 790 * block with zeros. This happens only if user-buffer, fileoffset or 791 * io length is not filesystem block-size multiple. 792 * 793 * `end' is zero if we're doing the start of the IO, 1 at the end of the 794 * IO. 795 */ 796 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio, 797 int end, struct buffer_head *map_bh) 798 { 799 unsigned dio_blocks_per_fs_block; 800 unsigned this_chunk_blocks; /* In dio_blocks */ 801 unsigned this_chunk_bytes; 802 struct page *page; 803 804 sdio->start_zero_done = 1; 805 if (!sdio->blkfactor || !buffer_new(map_bh)) 806 return; 807 808 dio_blocks_per_fs_block = 1 << sdio->blkfactor; 809 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1); 810 811 if (!this_chunk_blocks) 812 return; 813 814 /* 815 * We need to zero out part of an fs block. It is either at the 816 * beginning or the end of the fs block. 817 */ 818 if (end) 819 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; 820 821 this_chunk_bytes = this_chunk_blocks << sdio->blkbits; 822 823 page = ZERO_PAGE(0); 824 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes, 825 sdio->next_block_for_io, map_bh)) 826 return; 827 828 sdio->next_block_for_io += this_chunk_blocks; 829 } 830 831 /* 832 * Walk the user pages, and the file, mapping blocks to disk and generating 833 * a sequence of (page,offset,len,block) mappings. These mappings are injected 834 * into submit_page_section(), which takes care of the next stage of submission 835 * 836 * Direct IO against a blockdev is different from a file. Because we can 837 * happily perform page-sized but 512-byte aligned IOs. It is important that 838 * blockdev IO be able to have fine alignment and large sizes. 839 * 840 * So what we do is to permit the ->get_block function to populate bh.b_size 841 * with the size of IO which is permitted at this offset and this i_blkbits. 842 * 843 * For best results, the blockdev should be set up with 512-byte i_blkbits and 844 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives 845 * fine alignment but still allows this function to work in PAGE_SIZE units. 846 */ 847 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio, 848 struct buffer_head *map_bh) 849 { 850 const unsigned blkbits = sdio->blkbits; 851 const unsigned blocks_per_page = PAGE_SIZE >> blkbits; 852 struct page *page; 853 unsigned block_in_page; 854 int ret = 0; 855 856 /* The I/O can start at any block offset within the first page */ 857 block_in_page = sdio->first_block_in_page; 858 859 while (sdio->block_in_file < sdio->final_block_in_request) { 860 page = dio_get_page(dio, sdio); 861 if (IS_ERR(page)) { 862 ret = PTR_ERR(page); 863 goto out; 864 } 865 866 while (block_in_page < blocks_per_page) { 867 unsigned offset_in_page = block_in_page << blkbits; 868 unsigned this_chunk_bytes; /* # of bytes mapped */ 869 unsigned this_chunk_blocks; /* # of blocks */ 870 unsigned u; 871 872 if (sdio->blocks_available == 0) { 873 /* 874 * Need to go and map some more disk 875 */ 876 unsigned long blkmask; 877 unsigned long dio_remainder; 878 879 ret = get_more_blocks(dio, sdio, map_bh); 880 if (ret) { 881 page_cache_release(page); 882 goto out; 883 } 884 if (!buffer_mapped(map_bh)) 885 goto do_holes; 886 887 sdio->blocks_available = 888 map_bh->b_size >> sdio->blkbits; 889 sdio->next_block_for_io = 890 map_bh->b_blocknr << sdio->blkfactor; 891 if (buffer_new(map_bh)) 892 clean_blockdev_aliases(dio, map_bh); 893 894 if (!sdio->blkfactor) 895 goto do_holes; 896 897 blkmask = (1 << sdio->blkfactor) - 1; 898 dio_remainder = (sdio->block_in_file & blkmask); 899 900 /* 901 * If we are at the start of IO and that IO 902 * starts partway into a fs-block, 903 * dio_remainder will be non-zero. If the IO 904 * is a read then we can simply advance the IO 905 * cursor to the first block which is to be 906 * read. But if the IO is a write and the 907 * block was newly allocated we cannot do that; 908 * the start of the fs block must be zeroed out 909 * on-disk 910 */ 911 if (!buffer_new(map_bh)) 912 sdio->next_block_for_io += dio_remainder; 913 sdio->blocks_available -= dio_remainder; 914 } 915 do_holes: 916 /* Handle holes */ 917 if (!buffer_mapped(map_bh)) { 918 loff_t i_size_aligned; 919 920 /* AKPM: eargh, -ENOTBLK is a hack */ 921 if (dio->rw & WRITE) { 922 page_cache_release(page); 923 return -ENOTBLK; 924 } 925 926 /* 927 * Be sure to account for a partial block as the 928 * last block in the file 929 */ 930 i_size_aligned = ALIGN(i_size_read(dio->inode), 931 1 << blkbits); 932 if (sdio->block_in_file >= 933 i_size_aligned >> blkbits) { 934 /* We hit eof */ 935 page_cache_release(page); 936 goto out; 937 } 938 zero_user(page, block_in_page << blkbits, 939 1 << blkbits); 940 sdio->block_in_file++; 941 block_in_page++; 942 goto next_block; 943 } 944 945 /* 946 * If we're performing IO which has an alignment which 947 * is finer than the underlying fs, go check to see if 948 * we must zero out the start of this block. 949 */ 950 if (unlikely(sdio->blkfactor && !sdio->start_zero_done)) 951 dio_zero_block(dio, sdio, 0, map_bh); 952 953 /* 954 * Work out, in this_chunk_blocks, how much disk we 955 * can add to this page 956 */ 957 this_chunk_blocks = sdio->blocks_available; 958 u = (PAGE_SIZE - offset_in_page) >> blkbits; 959 if (this_chunk_blocks > u) 960 this_chunk_blocks = u; 961 u = sdio->final_block_in_request - sdio->block_in_file; 962 if (this_chunk_blocks > u) 963 this_chunk_blocks = u; 964 this_chunk_bytes = this_chunk_blocks << blkbits; 965 BUG_ON(this_chunk_bytes == 0); 966 967 if (this_chunk_blocks == sdio->blocks_available) 968 sdio->boundary = buffer_boundary(map_bh); 969 ret = submit_page_section(dio, sdio, page, 970 offset_in_page, 971 this_chunk_bytes, 972 sdio->next_block_for_io, 973 map_bh); 974 if (ret) { 975 page_cache_release(page); 976 goto out; 977 } 978 sdio->next_block_for_io += this_chunk_blocks; 979 980 sdio->block_in_file += this_chunk_blocks; 981 block_in_page += this_chunk_blocks; 982 sdio->blocks_available -= this_chunk_blocks; 983 next_block: 984 BUG_ON(sdio->block_in_file > sdio->final_block_in_request); 985 if (sdio->block_in_file == sdio->final_block_in_request) 986 break; 987 } 988 989 /* Drop the ref which was taken in get_user_pages() */ 990 page_cache_release(page); 991 block_in_page = 0; 992 } 993 out: 994 return ret; 995 } 996 997 static inline int drop_refcount(struct dio *dio) 998 { 999 int ret2; 1000 unsigned long flags; 1001 1002 /* 1003 * Sync will always be dropping the final ref and completing the 1004 * operation. AIO can if it was a broken operation described above or 1005 * in fact if all the bios race to complete before we get here. In 1006 * that case dio_complete() translates the EIOCBQUEUED into the proper 1007 * return code that the caller will hand to aio_complete(). 1008 * 1009 * This is managed by the bio_lock instead of being an atomic_t so that 1010 * completion paths can drop their ref and use the remaining count to 1011 * decide to wake the submission path atomically. 1012 */ 1013 spin_lock_irqsave(&dio->bio_lock, flags); 1014 ret2 = --dio->refcount; 1015 spin_unlock_irqrestore(&dio->bio_lock, flags); 1016 return ret2; 1017 } 1018 1019 /* 1020 * This is a library function for use by filesystem drivers. 1021 * 1022 * The locking rules are governed by the flags parameter: 1023 * - if the flags value contains DIO_LOCKING we use a fancy locking 1024 * scheme for dumb filesystems. 1025 * For writes this function is called under i_mutex and returns with 1026 * i_mutex held, for reads, i_mutex is not held on entry, but it is 1027 * taken and dropped again before returning. 1028 * - if the flags value does NOT contain DIO_LOCKING we don't use any 1029 * internal locking but rather rely on the filesystem to synchronize 1030 * direct I/O reads/writes versus each other and truncate. 1031 * 1032 * To help with locking against truncate we incremented the i_dio_count 1033 * counter before starting direct I/O, and decrement it once we are done. 1034 * Truncate can wait for it to reach zero to provide exclusion. It is 1035 * expected that filesystem provide exclusion between new direct I/O 1036 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex, 1037 * but other filesystems need to take care of this on their own. 1038 * 1039 * NOTE: if you pass "sdio" to anything by pointer make sure that function 1040 * is always inlined. Otherwise gcc is unable to split the structure into 1041 * individual fields and will generate much worse code. This is important 1042 * for the whole file. 1043 */ 1044 static inline ssize_t 1045 do_blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode, 1046 struct block_device *bdev, const struct iovec *iov, loff_t offset, 1047 unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io, 1048 dio_submit_t submit_io, int flags) 1049 { 1050 int seg; 1051 size_t size; 1052 unsigned long addr; 1053 unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits); 1054 unsigned blkbits = i_blkbits; 1055 unsigned blocksize_mask = (1 << blkbits) - 1; 1056 ssize_t retval = -EINVAL; 1057 loff_t end = offset; 1058 struct dio *dio; 1059 struct dio_submit sdio = { 0, }; 1060 unsigned long user_addr; 1061 size_t bytes; 1062 struct buffer_head map_bh = { 0, }; 1063 struct blk_plug plug; 1064 1065 if (rw & WRITE) 1066 rw = WRITE_ODIRECT; 1067 1068 /* 1069 * Avoid references to bdev if not absolutely needed to give 1070 * the early prefetch in the caller enough time. 1071 */ 1072 1073 if (offset & blocksize_mask) { 1074 if (bdev) 1075 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 1076 blocksize_mask = (1 << blkbits) - 1; 1077 if (offset & blocksize_mask) 1078 goto out; 1079 } 1080 1081 /* Check the memory alignment. Blocks cannot straddle pages */ 1082 for (seg = 0; seg < nr_segs; seg++) { 1083 addr = (unsigned long)iov[seg].iov_base; 1084 size = iov[seg].iov_len; 1085 end += size; 1086 if (unlikely((addr & blocksize_mask) || 1087 (size & blocksize_mask))) { 1088 if (bdev) 1089 blkbits = blksize_bits( 1090 bdev_logical_block_size(bdev)); 1091 blocksize_mask = (1 << blkbits) - 1; 1092 if ((addr & blocksize_mask) || (size & blocksize_mask)) 1093 goto out; 1094 } 1095 } 1096 1097 /* watch out for a 0 len io from a tricksy fs */ 1098 if (rw == READ && end == offset) 1099 return 0; 1100 1101 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL); 1102 retval = -ENOMEM; 1103 if (!dio) 1104 goto out; 1105 /* 1106 * Believe it or not, zeroing out the page array caused a .5% 1107 * performance regression in a database benchmark. So, we take 1108 * care to only zero out what's needed. 1109 */ 1110 memset(dio, 0, offsetof(struct dio, pages)); 1111 1112 dio->flags = flags; 1113 if (dio->flags & DIO_LOCKING) { 1114 if (rw == READ) { 1115 struct address_space *mapping = 1116 iocb->ki_filp->f_mapping; 1117 1118 /* will be released by direct_io_worker */ 1119 mutex_lock(&inode->i_mutex); 1120 1121 retval = filemap_write_and_wait_range(mapping, offset, 1122 end - 1); 1123 if (retval) { 1124 mutex_unlock(&inode->i_mutex); 1125 kmem_cache_free(dio_cache, dio); 1126 goto out; 1127 } 1128 } 1129 } 1130 1131 /* 1132 * Will be decremented at I/O completion time. 1133 */ 1134 atomic_inc(&inode->i_dio_count); 1135 1136 /* 1137 * For file extending writes updating i_size before data 1138 * writeouts complete can expose uninitialized blocks. So 1139 * even for AIO, we need to wait for i/o to complete before 1140 * returning in this case. 1141 */ 1142 dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) && 1143 (end > i_size_read(inode))); 1144 1145 retval = 0; 1146 1147 dio->inode = inode; 1148 dio->rw = rw; 1149 sdio.blkbits = blkbits; 1150 sdio.blkfactor = i_blkbits - blkbits; 1151 sdio.block_in_file = offset >> blkbits; 1152 1153 sdio.get_block = get_block; 1154 dio->end_io = end_io; 1155 sdio.submit_io = submit_io; 1156 sdio.final_block_in_bio = -1; 1157 sdio.next_block_for_io = -1; 1158 1159 dio->iocb = iocb; 1160 dio->i_size = i_size_read(inode); 1161 1162 spin_lock_init(&dio->bio_lock); 1163 dio->refcount = 1; 1164 1165 /* 1166 * In case of non-aligned buffers, we may need 2 more 1167 * pages since we need to zero out first and last block. 1168 */ 1169 if (unlikely(sdio.blkfactor)) 1170 sdio.pages_in_io = 2; 1171 1172 for (seg = 0; seg < nr_segs; seg++) { 1173 user_addr = (unsigned long)iov[seg].iov_base; 1174 sdio.pages_in_io += 1175 ((user_addr + iov[seg].iov_len + PAGE_SIZE-1) / 1176 PAGE_SIZE - user_addr / PAGE_SIZE); 1177 } 1178 1179 blk_start_plug(&plug); 1180 1181 for (seg = 0; seg < nr_segs; seg++) { 1182 user_addr = (unsigned long)iov[seg].iov_base; 1183 sdio.size += bytes = iov[seg].iov_len; 1184 1185 /* Index into the first page of the first block */ 1186 sdio.first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits; 1187 sdio.final_block_in_request = sdio.block_in_file + 1188 (bytes >> blkbits); 1189 /* Page fetching state */ 1190 sdio.head = 0; 1191 sdio.tail = 0; 1192 sdio.curr_page = 0; 1193 1194 sdio.total_pages = 0; 1195 if (user_addr & (PAGE_SIZE-1)) { 1196 sdio.total_pages++; 1197 bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1)); 1198 } 1199 sdio.total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE; 1200 sdio.curr_user_address = user_addr; 1201 1202 retval = do_direct_IO(dio, &sdio, &map_bh); 1203 1204 dio->result += iov[seg].iov_len - 1205 ((sdio.final_block_in_request - sdio.block_in_file) << 1206 blkbits); 1207 1208 if (retval) { 1209 dio_cleanup(dio, &sdio); 1210 break; 1211 } 1212 } /* end iovec loop */ 1213 1214 if (retval == -ENOTBLK) { 1215 /* 1216 * The remaining part of the request will be 1217 * be handled by buffered I/O when we return 1218 */ 1219 retval = 0; 1220 } 1221 /* 1222 * There may be some unwritten disk at the end of a part-written 1223 * fs-block-sized block. Go zero that now. 1224 */ 1225 dio_zero_block(dio, &sdio, 1, &map_bh); 1226 1227 if (sdio.cur_page) { 1228 ssize_t ret2; 1229 1230 ret2 = dio_send_cur_page(dio, &sdio, &map_bh); 1231 if (retval == 0) 1232 retval = ret2; 1233 page_cache_release(sdio.cur_page); 1234 sdio.cur_page = NULL; 1235 } 1236 if (sdio.bio) 1237 dio_bio_submit(dio, &sdio); 1238 1239 blk_finish_plug(&plug); 1240 1241 /* 1242 * It is possible that, we return short IO due to end of file. 1243 * In that case, we need to release all the pages we got hold on. 1244 */ 1245 dio_cleanup(dio, &sdio); 1246 1247 /* 1248 * All block lookups have been performed. For READ requests 1249 * we can let i_mutex go now that its achieved its purpose 1250 * of protecting us from looking up uninitialized blocks. 1251 */ 1252 if (rw == READ && (dio->flags & DIO_LOCKING)) 1253 mutex_unlock(&dio->inode->i_mutex); 1254 1255 /* 1256 * The only time we want to leave bios in flight is when a successful 1257 * partial aio read or full aio write have been setup. In that case 1258 * bio completion will call aio_complete. The only time it's safe to 1259 * call aio_complete is when we return -EIOCBQUEUED, so we key on that. 1260 * This had *better* be the only place that raises -EIOCBQUEUED. 1261 */ 1262 BUG_ON(retval == -EIOCBQUEUED); 1263 if (dio->is_async && retval == 0 && dio->result && 1264 ((rw == READ) || (dio->result == sdio.size))) 1265 retval = -EIOCBQUEUED; 1266 1267 if (retval != -EIOCBQUEUED) 1268 dio_await_completion(dio); 1269 1270 if (drop_refcount(dio) == 0) { 1271 retval = dio_complete(dio, offset, retval, false); 1272 kmem_cache_free(dio_cache, dio); 1273 } else 1274 BUG_ON(retval != -EIOCBQUEUED); 1275 1276 out: 1277 return retval; 1278 } 1279 1280 ssize_t 1281 __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode, 1282 struct block_device *bdev, const struct iovec *iov, loff_t offset, 1283 unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io, 1284 dio_submit_t submit_io, int flags) 1285 { 1286 /* 1287 * The block device state is needed in the end to finally 1288 * submit everything. Since it's likely to be cache cold 1289 * prefetch it here as first thing to hide some of the 1290 * latency. 1291 * 1292 * Attempt to prefetch the pieces we likely need later. 1293 */ 1294 prefetch(&bdev->bd_disk->part_tbl); 1295 prefetch(bdev->bd_queue); 1296 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES); 1297 1298 return do_blockdev_direct_IO(rw, iocb, inode, bdev, iov, offset, 1299 nr_segs, get_block, end_io, 1300 submit_io, flags); 1301 } 1302 1303 EXPORT_SYMBOL(__blockdev_direct_IO); 1304 1305 static __init int dio_init(void) 1306 { 1307 dio_cache = KMEM_CACHE(dio, SLAB_PANIC); 1308 return 0; 1309 } 1310 module_init(dio_init) 1311