xref: /openbmc/linux/fs/direct-io.c (revision edfd52e6)
1 /*
2  * fs/direct-io.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * O_DIRECT
7  *
8  * 04Jul2002	Andrew Morton
9  *		Initial version
10  * 11Sep2002	janetinc@us.ibm.com
11  * 		added readv/writev support.
12  * 29Oct2002	Andrew Morton
13  *		rewrote bio_add_page() support.
14  * 30Oct2002	pbadari@us.ibm.com
15  *		added support for non-aligned IO.
16  * 06Nov2002	pbadari@us.ibm.com
17  *		added asynchronous IO support.
18  * 21Jul2003	nathans@sgi.com
19  *		added IO completion notifier.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <linux/atomic.h>
39 
40 /*
41  * How many user pages to map in one call to get_user_pages().  This determines
42  * the size of a structure in the slab cache
43  */
44 #define DIO_PAGES	64
45 
46 /*
47  * This code generally works in units of "dio_blocks".  A dio_block is
48  * somewhere between the hard sector size and the filesystem block size.  it
49  * is determined on a per-invocation basis.   When talking to the filesystem
50  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
51  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
52  * to bio_block quantities by shifting left by blkfactor.
53  *
54  * If blkfactor is zero then the user's request was aligned to the filesystem's
55  * blocksize.
56  */
57 
58 /* dio_state only used in the submission path */
59 
60 struct dio_submit {
61 	struct bio *bio;		/* bio under assembly */
62 	unsigned blkbits;		/* doesn't change */
63 	unsigned blkfactor;		/* When we're using an alignment which
64 					   is finer than the filesystem's soft
65 					   blocksize, this specifies how much
66 					   finer.  blkfactor=2 means 1/4-block
67 					   alignment.  Does not change */
68 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
69 					   been performed at the start of a
70 					   write */
71 	int pages_in_io;		/* approximate total IO pages */
72 	size_t	size;			/* total request size (doesn't change)*/
73 	sector_t block_in_file;		/* Current offset into the underlying
74 					   file in dio_block units. */
75 	unsigned blocks_available;	/* At block_in_file.  changes */
76 	int reap_counter;		/* rate limit reaping */
77 	sector_t final_block_in_request;/* doesn't change */
78 	unsigned first_block_in_page;	/* doesn't change, Used only once */
79 	int boundary;			/* prev block is at a boundary */
80 	get_block_t *get_block;		/* block mapping function */
81 	dio_submit_t *submit_io;	/* IO submition function */
82 
83 	loff_t logical_offset_in_bio;	/* current first logical block in bio */
84 	sector_t final_block_in_bio;	/* current final block in bio + 1 */
85 	sector_t next_block_for_io;	/* next block to be put under IO,
86 					   in dio_blocks units */
87 
88 	/*
89 	 * Deferred addition of a page to the dio.  These variables are
90 	 * private to dio_send_cur_page(), submit_page_section() and
91 	 * dio_bio_add_page().
92 	 */
93 	struct page *cur_page;		/* The page */
94 	unsigned cur_page_offset;	/* Offset into it, in bytes */
95 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
96 	sector_t cur_page_block;	/* Where it starts */
97 	loff_t cur_page_fs_offset;	/* Offset in file */
98 
99 	/*
100 	 * Page fetching state. These variables belong to dio_refill_pages().
101 	 */
102 	int curr_page;			/* changes */
103 	int total_pages;		/* doesn't change */
104 	unsigned long curr_user_address;/* changes */
105 
106 	/*
107 	 * Page queue.  These variables belong to dio_refill_pages() and
108 	 * dio_get_page().
109 	 */
110 	unsigned head;			/* next page to process */
111 	unsigned tail;			/* last valid page + 1 */
112 };
113 
114 /* dio_state communicated between submission path and end_io */
115 struct dio {
116 	int flags;			/* doesn't change */
117 	int rw;
118 	struct inode *inode;
119 	loff_t i_size;			/* i_size when submitted */
120 	dio_iodone_t *end_io;		/* IO completion function */
121 
122 	void *private;			/* copy from map_bh.b_private */
123 
124 	/* BIO completion state */
125 	spinlock_t bio_lock;		/* protects BIO fields below */
126 	int page_errors;		/* errno from get_user_pages() */
127 	int is_async;			/* is IO async ? */
128 	int io_error;			/* IO error in completion path */
129 	unsigned long refcount;		/* direct_io_worker() and bios */
130 	struct bio *bio_list;		/* singly linked via bi_private */
131 	struct task_struct *waiter;	/* waiting task (NULL if none) */
132 
133 	/* AIO related stuff */
134 	struct kiocb *iocb;		/* kiocb */
135 	ssize_t result;                 /* IO result */
136 
137 	/*
138 	 * pages[] (and any fields placed after it) are not zeroed out at
139 	 * allocation time.  Don't add new fields after pages[] unless you
140 	 * wish that they not be zeroed.
141 	 */
142 	struct page *pages[DIO_PAGES];	/* page buffer */
143 } ____cacheline_aligned_in_smp;
144 
145 static struct kmem_cache *dio_cache __read_mostly;
146 
147 static void __inode_dio_wait(struct inode *inode)
148 {
149 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
150 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
151 
152 	do {
153 		prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
154 		if (atomic_read(&inode->i_dio_count))
155 			schedule();
156 	} while (atomic_read(&inode->i_dio_count));
157 	finish_wait(wq, &q.wait);
158 }
159 
160 /**
161  * inode_dio_wait - wait for outstanding DIO requests to finish
162  * @inode: inode to wait for
163  *
164  * Waits for all pending direct I/O requests to finish so that we can
165  * proceed with a truncate or equivalent operation.
166  *
167  * Must be called under a lock that serializes taking new references
168  * to i_dio_count, usually by inode->i_mutex.
169  */
170 void inode_dio_wait(struct inode *inode)
171 {
172 	if (atomic_read(&inode->i_dio_count))
173 		__inode_dio_wait(inode);
174 }
175 EXPORT_SYMBOL_GPL(inode_dio_wait);
176 
177 /*
178  * inode_dio_done - signal finish of a direct I/O requests
179  * @inode: inode the direct I/O happens on
180  *
181  * This is called once we've finished processing a direct I/O request,
182  * and is used to wake up callers waiting for direct I/O to be quiesced.
183  */
184 void inode_dio_done(struct inode *inode)
185 {
186 	if (atomic_dec_and_test(&inode->i_dio_count))
187 		wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
188 }
189 EXPORT_SYMBOL_GPL(inode_dio_done);
190 
191 /*
192  * How many pages are in the queue?
193  */
194 static inline unsigned dio_pages_present(struct dio_submit *sdio)
195 {
196 	return sdio->tail - sdio->head;
197 }
198 
199 /*
200  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
201  */
202 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
203 {
204 	int ret;
205 	int nr_pages;
206 
207 	nr_pages = min(sdio->total_pages - sdio->curr_page, DIO_PAGES);
208 	ret = get_user_pages_fast(
209 		sdio->curr_user_address,		/* Where from? */
210 		nr_pages,			/* How many pages? */
211 		dio->rw == READ,		/* Write to memory? */
212 		&dio->pages[0]);		/* Put results here */
213 
214 	if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) {
215 		struct page *page = ZERO_PAGE(0);
216 		/*
217 		 * A memory fault, but the filesystem has some outstanding
218 		 * mapped blocks.  We need to use those blocks up to avoid
219 		 * leaking stale data in the file.
220 		 */
221 		if (dio->page_errors == 0)
222 			dio->page_errors = ret;
223 		page_cache_get(page);
224 		dio->pages[0] = page;
225 		sdio->head = 0;
226 		sdio->tail = 1;
227 		ret = 0;
228 		goto out;
229 	}
230 
231 	if (ret >= 0) {
232 		sdio->curr_user_address += ret * PAGE_SIZE;
233 		sdio->curr_page += ret;
234 		sdio->head = 0;
235 		sdio->tail = ret;
236 		ret = 0;
237 	}
238 out:
239 	return ret;
240 }
241 
242 /*
243  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
244  * buffered inside the dio so that we can call get_user_pages() against a
245  * decent number of pages, less frequently.  To provide nicer use of the
246  * L1 cache.
247  */
248 static inline struct page *dio_get_page(struct dio *dio,
249 		struct dio_submit *sdio)
250 {
251 	if (dio_pages_present(sdio) == 0) {
252 		int ret;
253 
254 		ret = dio_refill_pages(dio, sdio);
255 		if (ret)
256 			return ERR_PTR(ret);
257 		BUG_ON(dio_pages_present(sdio) == 0);
258 	}
259 	return dio->pages[sdio->head++];
260 }
261 
262 /**
263  * dio_complete() - called when all DIO BIO I/O has been completed
264  * @offset: the byte offset in the file of the completed operation
265  *
266  * This releases locks as dictated by the locking type, lets interested parties
267  * know that a DIO operation has completed, and calculates the resulting return
268  * code for the operation.
269  *
270  * It lets the filesystem know if it registered an interest earlier via
271  * get_block.  Pass the private field of the map buffer_head so that
272  * filesystems can use it to hold additional state between get_block calls and
273  * dio_complete.
274  */
275 static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret, bool is_async)
276 {
277 	ssize_t transferred = 0;
278 
279 	/*
280 	 * AIO submission can race with bio completion to get here while
281 	 * expecting to have the last io completed by bio completion.
282 	 * In that case -EIOCBQUEUED is in fact not an error we want
283 	 * to preserve through this call.
284 	 */
285 	if (ret == -EIOCBQUEUED)
286 		ret = 0;
287 
288 	if (dio->result) {
289 		transferred = dio->result;
290 
291 		/* Check for short read case */
292 		if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
293 			transferred = dio->i_size - offset;
294 	}
295 
296 	if (ret == 0)
297 		ret = dio->page_errors;
298 	if (ret == 0)
299 		ret = dio->io_error;
300 	if (ret == 0)
301 		ret = transferred;
302 
303 	if (dio->end_io && dio->result) {
304 		dio->end_io(dio->iocb, offset, transferred,
305 			    dio->private, ret, is_async);
306 	} else {
307 		if (is_async)
308 			aio_complete(dio->iocb, ret, 0);
309 		inode_dio_done(dio->inode);
310 	}
311 
312 	return ret;
313 }
314 
315 static int dio_bio_complete(struct dio *dio, struct bio *bio);
316 /*
317  * Asynchronous IO callback.
318  */
319 static void dio_bio_end_aio(struct bio *bio, int error)
320 {
321 	struct dio *dio = bio->bi_private;
322 	unsigned long remaining;
323 	unsigned long flags;
324 
325 	/* cleanup the bio */
326 	dio_bio_complete(dio, bio);
327 
328 	spin_lock_irqsave(&dio->bio_lock, flags);
329 	remaining = --dio->refcount;
330 	if (remaining == 1 && dio->waiter)
331 		wake_up_process(dio->waiter);
332 	spin_unlock_irqrestore(&dio->bio_lock, flags);
333 
334 	if (remaining == 0) {
335 		dio_complete(dio, dio->iocb->ki_pos, 0, true);
336 		kmem_cache_free(dio_cache, dio);
337 	}
338 }
339 
340 /*
341  * The BIO completion handler simply queues the BIO up for the process-context
342  * handler.
343  *
344  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
345  * implement a singly-linked list of completed BIOs, at dio->bio_list.
346  */
347 static void dio_bio_end_io(struct bio *bio, int error)
348 {
349 	struct dio *dio = bio->bi_private;
350 	unsigned long flags;
351 
352 	spin_lock_irqsave(&dio->bio_lock, flags);
353 	bio->bi_private = dio->bio_list;
354 	dio->bio_list = bio;
355 	if (--dio->refcount == 1 && dio->waiter)
356 		wake_up_process(dio->waiter);
357 	spin_unlock_irqrestore(&dio->bio_lock, flags);
358 }
359 
360 /**
361  * dio_end_io - handle the end io action for the given bio
362  * @bio: The direct io bio thats being completed
363  * @error: Error if there was one
364  *
365  * This is meant to be called by any filesystem that uses their own dio_submit_t
366  * so that the DIO specific endio actions are dealt with after the filesystem
367  * has done it's completion work.
368  */
369 void dio_end_io(struct bio *bio, int error)
370 {
371 	struct dio *dio = bio->bi_private;
372 
373 	if (dio->is_async)
374 		dio_bio_end_aio(bio, error);
375 	else
376 		dio_bio_end_io(bio, error);
377 }
378 EXPORT_SYMBOL_GPL(dio_end_io);
379 
380 static inline void
381 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
382 	      struct block_device *bdev,
383 	      sector_t first_sector, int nr_vecs)
384 {
385 	struct bio *bio;
386 
387 	/*
388 	 * bio_alloc() is guaranteed to return a bio when called with
389 	 * __GFP_WAIT and we request a valid number of vectors.
390 	 */
391 	bio = bio_alloc(GFP_KERNEL, nr_vecs);
392 
393 	bio->bi_bdev = bdev;
394 	bio->bi_sector = first_sector;
395 	if (dio->is_async)
396 		bio->bi_end_io = dio_bio_end_aio;
397 	else
398 		bio->bi_end_io = dio_bio_end_io;
399 
400 	sdio->bio = bio;
401 	sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
402 }
403 
404 /*
405  * In the AIO read case we speculatively dirty the pages before starting IO.
406  * During IO completion, any of these pages which happen to have been written
407  * back will be redirtied by bio_check_pages_dirty().
408  *
409  * bios hold a dio reference between submit_bio and ->end_io.
410  */
411 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
412 {
413 	struct bio *bio = sdio->bio;
414 	unsigned long flags;
415 
416 	bio->bi_private = dio;
417 
418 	spin_lock_irqsave(&dio->bio_lock, flags);
419 	dio->refcount++;
420 	spin_unlock_irqrestore(&dio->bio_lock, flags);
421 
422 	if (dio->is_async && dio->rw == READ)
423 		bio_set_pages_dirty(bio);
424 
425 	if (sdio->submit_io)
426 		sdio->submit_io(dio->rw, bio, dio->inode,
427 			       sdio->logical_offset_in_bio);
428 	else
429 		submit_bio(dio->rw, bio);
430 
431 	sdio->bio = NULL;
432 	sdio->boundary = 0;
433 	sdio->logical_offset_in_bio = 0;
434 }
435 
436 /*
437  * Release any resources in case of a failure
438  */
439 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
440 {
441 	while (dio_pages_present(sdio))
442 		page_cache_release(dio_get_page(dio, sdio));
443 }
444 
445 /*
446  * Wait for the next BIO to complete.  Remove it and return it.  NULL is
447  * returned once all BIOs have been completed.  This must only be called once
448  * all bios have been issued so that dio->refcount can only decrease.  This
449  * requires that that the caller hold a reference on the dio.
450  */
451 static struct bio *dio_await_one(struct dio *dio)
452 {
453 	unsigned long flags;
454 	struct bio *bio = NULL;
455 
456 	spin_lock_irqsave(&dio->bio_lock, flags);
457 
458 	/*
459 	 * Wait as long as the list is empty and there are bios in flight.  bio
460 	 * completion drops the count, maybe adds to the list, and wakes while
461 	 * holding the bio_lock so we don't need set_current_state()'s barrier
462 	 * and can call it after testing our condition.
463 	 */
464 	while (dio->refcount > 1 && dio->bio_list == NULL) {
465 		__set_current_state(TASK_UNINTERRUPTIBLE);
466 		dio->waiter = current;
467 		spin_unlock_irqrestore(&dio->bio_lock, flags);
468 		io_schedule();
469 		/* wake up sets us TASK_RUNNING */
470 		spin_lock_irqsave(&dio->bio_lock, flags);
471 		dio->waiter = NULL;
472 	}
473 	if (dio->bio_list) {
474 		bio = dio->bio_list;
475 		dio->bio_list = bio->bi_private;
476 	}
477 	spin_unlock_irqrestore(&dio->bio_lock, flags);
478 	return bio;
479 }
480 
481 /*
482  * Process one completed BIO.  No locks are held.
483  */
484 static int dio_bio_complete(struct dio *dio, struct bio *bio)
485 {
486 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
487 	struct bio_vec *bvec = bio->bi_io_vec;
488 	int page_no;
489 
490 	if (!uptodate)
491 		dio->io_error = -EIO;
492 
493 	if (dio->is_async && dio->rw == READ) {
494 		bio_check_pages_dirty(bio);	/* transfers ownership */
495 	} else {
496 		for (page_no = 0; page_no < bio->bi_vcnt; page_no++) {
497 			struct page *page = bvec[page_no].bv_page;
498 
499 			if (dio->rw == READ && !PageCompound(page))
500 				set_page_dirty_lock(page);
501 			page_cache_release(page);
502 		}
503 		bio_put(bio);
504 	}
505 	return uptodate ? 0 : -EIO;
506 }
507 
508 /*
509  * Wait on and process all in-flight BIOs.  This must only be called once
510  * all bios have been issued so that the refcount can only decrease.
511  * This just waits for all bios to make it through dio_bio_complete.  IO
512  * errors are propagated through dio->io_error and should be propagated via
513  * dio_complete().
514  */
515 static void dio_await_completion(struct dio *dio)
516 {
517 	struct bio *bio;
518 	do {
519 		bio = dio_await_one(dio);
520 		if (bio)
521 			dio_bio_complete(dio, bio);
522 	} while (bio);
523 }
524 
525 /*
526  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
527  * to keep the memory consumption sane we periodically reap any completed BIOs
528  * during the BIO generation phase.
529  *
530  * This also helps to limit the peak amount of pinned userspace memory.
531  */
532 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
533 {
534 	int ret = 0;
535 
536 	if (sdio->reap_counter++ >= 64) {
537 		while (dio->bio_list) {
538 			unsigned long flags;
539 			struct bio *bio;
540 			int ret2;
541 
542 			spin_lock_irqsave(&dio->bio_lock, flags);
543 			bio = dio->bio_list;
544 			dio->bio_list = bio->bi_private;
545 			spin_unlock_irqrestore(&dio->bio_lock, flags);
546 			ret2 = dio_bio_complete(dio, bio);
547 			if (ret == 0)
548 				ret = ret2;
549 		}
550 		sdio->reap_counter = 0;
551 	}
552 	return ret;
553 }
554 
555 /*
556  * Call into the fs to map some more disk blocks.  We record the current number
557  * of available blocks at sdio->blocks_available.  These are in units of the
558  * fs blocksize, (1 << inode->i_blkbits).
559  *
560  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
561  * it uses the passed inode-relative block number as the file offset, as usual.
562  *
563  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
564  * has remaining to do.  The fs should not map more than this number of blocks.
565  *
566  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
567  * indicate how much contiguous disk space has been made available at
568  * bh->b_blocknr.
569  *
570  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
571  * This isn't very efficient...
572  *
573  * In the case of filesystem holes: the fs may return an arbitrarily-large
574  * hole by returning an appropriate value in b_size and by clearing
575  * buffer_mapped().  However the direct-io code will only process holes one
576  * block at a time - it will repeatedly call get_block() as it walks the hole.
577  */
578 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
579 			   struct buffer_head *map_bh)
580 {
581 	int ret;
582 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
583 	unsigned long fs_count;	/* Number of filesystem-sized blocks */
584 	unsigned long dio_count;/* Number of dio_block-sized blocks */
585 	unsigned long blkmask;
586 	int create;
587 
588 	/*
589 	 * If there was a memory error and we've overwritten all the
590 	 * mapped blocks then we can now return that memory error
591 	 */
592 	ret = dio->page_errors;
593 	if (ret == 0) {
594 		BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
595 		fs_startblk = sdio->block_in_file >> sdio->blkfactor;
596 		dio_count = sdio->final_block_in_request - sdio->block_in_file;
597 		fs_count = dio_count >> sdio->blkfactor;
598 		blkmask = (1 << sdio->blkfactor) - 1;
599 		if (dio_count & blkmask)
600 			fs_count++;
601 
602 		map_bh->b_state = 0;
603 		map_bh->b_size = fs_count << dio->inode->i_blkbits;
604 
605 		/*
606 		 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
607 		 * forbid block creations: only overwrites are permitted.
608 		 * We will return early to the caller once we see an
609 		 * unmapped buffer head returned, and the caller will fall
610 		 * back to buffered I/O.
611 		 *
612 		 * Otherwise the decision is left to the get_blocks method,
613 		 * which may decide to handle it or also return an unmapped
614 		 * buffer head.
615 		 */
616 		create = dio->rw & WRITE;
617 		if (dio->flags & DIO_SKIP_HOLES) {
618 			if (sdio->block_in_file < (i_size_read(dio->inode) >>
619 							sdio->blkbits))
620 				create = 0;
621 		}
622 
623 		ret = (*sdio->get_block)(dio->inode, fs_startblk,
624 						map_bh, create);
625 
626 		/* Store for completion */
627 		dio->private = map_bh->b_private;
628 	}
629 	return ret;
630 }
631 
632 /*
633  * There is no bio.  Make one now.
634  */
635 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
636 		sector_t start_sector, struct buffer_head *map_bh)
637 {
638 	sector_t sector;
639 	int ret, nr_pages;
640 
641 	ret = dio_bio_reap(dio, sdio);
642 	if (ret)
643 		goto out;
644 	sector = start_sector << (sdio->blkbits - 9);
645 	nr_pages = min(sdio->pages_in_io, bio_get_nr_vecs(map_bh->b_bdev));
646 	nr_pages = min(nr_pages, BIO_MAX_PAGES);
647 	BUG_ON(nr_pages <= 0);
648 	dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
649 	sdio->boundary = 0;
650 out:
651 	return ret;
652 }
653 
654 /*
655  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
656  * that was successful then update final_block_in_bio and take a ref against
657  * the just-added page.
658  *
659  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
660  */
661 static inline int dio_bio_add_page(struct dio_submit *sdio)
662 {
663 	int ret;
664 
665 	ret = bio_add_page(sdio->bio, sdio->cur_page,
666 			sdio->cur_page_len, sdio->cur_page_offset);
667 	if (ret == sdio->cur_page_len) {
668 		/*
669 		 * Decrement count only, if we are done with this page
670 		 */
671 		if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
672 			sdio->pages_in_io--;
673 		page_cache_get(sdio->cur_page);
674 		sdio->final_block_in_bio = sdio->cur_page_block +
675 			(sdio->cur_page_len >> sdio->blkbits);
676 		ret = 0;
677 	} else {
678 		ret = 1;
679 	}
680 	return ret;
681 }
682 
683 /*
684  * Put cur_page under IO.  The section of cur_page which is described by
685  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
686  * starts on-disk at cur_page_block.
687  *
688  * We take a ref against the page here (on behalf of its presence in the bio).
689  *
690  * The caller of this function is responsible for removing cur_page from the
691  * dio, and for dropping the refcount which came from that presence.
692  */
693 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
694 		struct buffer_head *map_bh)
695 {
696 	int ret = 0;
697 
698 	if (sdio->bio) {
699 		loff_t cur_offset = sdio->cur_page_fs_offset;
700 		loff_t bio_next_offset = sdio->logical_offset_in_bio +
701 			sdio->bio->bi_size;
702 
703 		/*
704 		 * See whether this new request is contiguous with the old.
705 		 *
706 		 * Btrfs cannot handle having logically non-contiguous requests
707 		 * submitted.  For example if you have
708 		 *
709 		 * Logical:  [0-4095][HOLE][8192-12287]
710 		 * Physical: [0-4095]      [4096-8191]
711 		 *
712 		 * We cannot submit those pages together as one BIO.  So if our
713 		 * current logical offset in the file does not equal what would
714 		 * be the next logical offset in the bio, submit the bio we
715 		 * have.
716 		 */
717 		if (sdio->final_block_in_bio != sdio->cur_page_block ||
718 		    cur_offset != bio_next_offset)
719 			dio_bio_submit(dio, sdio);
720 		/*
721 		 * Submit now if the underlying fs is about to perform a
722 		 * metadata read
723 		 */
724 		else if (sdio->boundary)
725 			dio_bio_submit(dio, sdio);
726 	}
727 
728 	if (sdio->bio == NULL) {
729 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
730 		if (ret)
731 			goto out;
732 	}
733 
734 	if (dio_bio_add_page(sdio) != 0) {
735 		dio_bio_submit(dio, sdio);
736 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
737 		if (ret == 0) {
738 			ret = dio_bio_add_page(sdio);
739 			BUG_ON(ret != 0);
740 		}
741 	}
742 out:
743 	return ret;
744 }
745 
746 /*
747  * An autonomous function to put a chunk of a page under deferred IO.
748  *
749  * The caller doesn't actually know (or care) whether this piece of page is in
750  * a BIO, or is under IO or whatever.  We just take care of all possible
751  * situations here.  The separation between the logic of do_direct_IO() and
752  * that of submit_page_section() is important for clarity.  Please don't break.
753  *
754  * The chunk of page starts on-disk at blocknr.
755  *
756  * We perform deferred IO, by recording the last-submitted page inside our
757  * private part of the dio structure.  If possible, we just expand the IO
758  * across that page here.
759  *
760  * If that doesn't work out then we put the old page into the bio and add this
761  * page to the dio instead.
762  */
763 static inline int
764 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
765 		    unsigned offset, unsigned len, sector_t blocknr,
766 		    struct buffer_head *map_bh)
767 {
768 	int ret = 0;
769 
770 	if (dio->rw & WRITE) {
771 		/*
772 		 * Read accounting is performed in submit_bio()
773 		 */
774 		task_io_account_write(len);
775 	}
776 
777 	/*
778 	 * Can we just grow the current page's presence in the dio?
779 	 */
780 	if (sdio->cur_page == page &&
781 	    sdio->cur_page_offset + sdio->cur_page_len == offset &&
782 	    sdio->cur_page_block +
783 	    (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
784 		sdio->cur_page_len += len;
785 
786 		/*
787 		 * If sdio->boundary then we want to schedule the IO now to
788 		 * avoid metadata seeks.
789 		 */
790 		if (sdio->boundary) {
791 			ret = dio_send_cur_page(dio, sdio, map_bh);
792 			page_cache_release(sdio->cur_page);
793 			sdio->cur_page = NULL;
794 		}
795 		goto out;
796 	}
797 
798 	/*
799 	 * If there's a deferred page already there then send it.
800 	 */
801 	if (sdio->cur_page) {
802 		ret = dio_send_cur_page(dio, sdio, map_bh);
803 		page_cache_release(sdio->cur_page);
804 		sdio->cur_page = NULL;
805 		if (ret)
806 			goto out;
807 	}
808 
809 	page_cache_get(page);		/* It is in dio */
810 	sdio->cur_page = page;
811 	sdio->cur_page_offset = offset;
812 	sdio->cur_page_len = len;
813 	sdio->cur_page_block = blocknr;
814 	sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
815 out:
816 	return ret;
817 }
818 
819 /*
820  * Clean any dirty buffers in the blockdev mapping which alias newly-created
821  * file blocks.  Only called for S_ISREG files - blockdevs do not set
822  * buffer_new
823  */
824 static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh)
825 {
826 	unsigned i;
827 	unsigned nblocks;
828 
829 	nblocks = map_bh->b_size >> dio->inode->i_blkbits;
830 
831 	for (i = 0; i < nblocks; i++) {
832 		unmap_underlying_metadata(map_bh->b_bdev,
833 					  map_bh->b_blocknr + i);
834 	}
835 }
836 
837 /*
838  * If we are not writing the entire block and get_block() allocated
839  * the block for us, we need to fill-in the unused portion of the
840  * block with zeros. This happens only if user-buffer, fileoffset or
841  * io length is not filesystem block-size multiple.
842  *
843  * `end' is zero if we're doing the start of the IO, 1 at the end of the
844  * IO.
845  */
846 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
847 		int end, struct buffer_head *map_bh)
848 {
849 	unsigned dio_blocks_per_fs_block;
850 	unsigned this_chunk_blocks;	/* In dio_blocks */
851 	unsigned this_chunk_bytes;
852 	struct page *page;
853 
854 	sdio->start_zero_done = 1;
855 	if (!sdio->blkfactor || !buffer_new(map_bh))
856 		return;
857 
858 	dio_blocks_per_fs_block = 1 << sdio->blkfactor;
859 	this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
860 
861 	if (!this_chunk_blocks)
862 		return;
863 
864 	/*
865 	 * We need to zero out part of an fs block.  It is either at the
866 	 * beginning or the end of the fs block.
867 	 */
868 	if (end)
869 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
870 
871 	this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
872 
873 	page = ZERO_PAGE(0);
874 	if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
875 				sdio->next_block_for_io, map_bh))
876 		return;
877 
878 	sdio->next_block_for_io += this_chunk_blocks;
879 }
880 
881 /*
882  * Walk the user pages, and the file, mapping blocks to disk and generating
883  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
884  * into submit_page_section(), which takes care of the next stage of submission
885  *
886  * Direct IO against a blockdev is different from a file.  Because we can
887  * happily perform page-sized but 512-byte aligned IOs.  It is important that
888  * blockdev IO be able to have fine alignment and large sizes.
889  *
890  * So what we do is to permit the ->get_block function to populate bh.b_size
891  * with the size of IO which is permitted at this offset and this i_blkbits.
892  *
893  * For best results, the blockdev should be set up with 512-byte i_blkbits and
894  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
895  * fine alignment but still allows this function to work in PAGE_SIZE units.
896  */
897 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
898 			struct buffer_head *map_bh)
899 {
900 	const unsigned blkbits = sdio->blkbits;
901 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
902 	struct page *page;
903 	unsigned block_in_page;
904 	int ret = 0;
905 
906 	/* The I/O can start at any block offset within the first page */
907 	block_in_page = sdio->first_block_in_page;
908 
909 	while (sdio->block_in_file < sdio->final_block_in_request) {
910 		page = dio_get_page(dio, sdio);
911 		if (IS_ERR(page)) {
912 			ret = PTR_ERR(page);
913 			goto out;
914 		}
915 
916 		while (block_in_page < blocks_per_page) {
917 			unsigned offset_in_page = block_in_page << blkbits;
918 			unsigned this_chunk_bytes;	/* # of bytes mapped */
919 			unsigned this_chunk_blocks;	/* # of blocks */
920 			unsigned u;
921 
922 			if (sdio->blocks_available == 0) {
923 				/*
924 				 * Need to go and map some more disk
925 				 */
926 				unsigned long blkmask;
927 				unsigned long dio_remainder;
928 
929 				ret = get_more_blocks(dio, sdio, map_bh);
930 				if (ret) {
931 					page_cache_release(page);
932 					goto out;
933 				}
934 				if (!buffer_mapped(map_bh))
935 					goto do_holes;
936 
937 				sdio->blocks_available =
938 						map_bh->b_size >> sdio->blkbits;
939 				sdio->next_block_for_io =
940 					map_bh->b_blocknr << sdio->blkfactor;
941 				if (buffer_new(map_bh))
942 					clean_blockdev_aliases(dio, map_bh);
943 
944 				if (!sdio->blkfactor)
945 					goto do_holes;
946 
947 				blkmask = (1 << sdio->blkfactor) - 1;
948 				dio_remainder = (sdio->block_in_file & blkmask);
949 
950 				/*
951 				 * If we are at the start of IO and that IO
952 				 * starts partway into a fs-block,
953 				 * dio_remainder will be non-zero.  If the IO
954 				 * is a read then we can simply advance the IO
955 				 * cursor to the first block which is to be
956 				 * read.  But if the IO is a write and the
957 				 * block was newly allocated we cannot do that;
958 				 * the start of the fs block must be zeroed out
959 				 * on-disk
960 				 */
961 				if (!buffer_new(map_bh))
962 					sdio->next_block_for_io += dio_remainder;
963 				sdio->blocks_available -= dio_remainder;
964 			}
965 do_holes:
966 			/* Handle holes */
967 			if (!buffer_mapped(map_bh)) {
968 				loff_t i_size_aligned;
969 
970 				/* AKPM: eargh, -ENOTBLK is a hack */
971 				if (dio->rw & WRITE) {
972 					page_cache_release(page);
973 					return -ENOTBLK;
974 				}
975 
976 				/*
977 				 * Be sure to account for a partial block as the
978 				 * last block in the file
979 				 */
980 				i_size_aligned = ALIGN(i_size_read(dio->inode),
981 							1 << blkbits);
982 				if (sdio->block_in_file >=
983 						i_size_aligned >> blkbits) {
984 					/* We hit eof */
985 					page_cache_release(page);
986 					goto out;
987 				}
988 				zero_user(page, block_in_page << blkbits,
989 						1 << blkbits);
990 				sdio->block_in_file++;
991 				block_in_page++;
992 				goto next_block;
993 			}
994 
995 			/*
996 			 * If we're performing IO which has an alignment which
997 			 * is finer than the underlying fs, go check to see if
998 			 * we must zero out the start of this block.
999 			 */
1000 			if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1001 				dio_zero_block(dio, sdio, 0, map_bh);
1002 
1003 			/*
1004 			 * Work out, in this_chunk_blocks, how much disk we
1005 			 * can add to this page
1006 			 */
1007 			this_chunk_blocks = sdio->blocks_available;
1008 			u = (PAGE_SIZE - offset_in_page) >> blkbits;
1009 			if (this_chunk_blocks > u)
1010 				this_chunk_blocks = u;
1011 			u = sdio->final_block_in_request - sdio->block_in_file;
1012 			if (this_chunk_blocks > u)
1013 				this_chunk_blocks = u;
1014 			this_chunk_bytes = this_chunk_blocks << blkbits;
1015 			BUG_ON(this_chunk_bytes == 0);
1016 
1017 			sdio->boundary = buffer_boundary(map_bh);
1018 			ret = submit_page_section(dio, sdio, page,
1019 						  offset_in_page,
1020 						  this_chunk_bytes,
1021 						  sdio->next_block_for_io,
1022 						  map_bh);
1023 			if (ret) {
1024 				page_cache_release(page);
1025 				goto out;
1026 			}
1027 			sdio->next_block_for_io += this_chunk_blocks;
1028 
1029 			sdio->block_in_file += this_chunk_blocks;
1030 			block_in_page += this_chunk_blocks;
1031 			sdio->blocks_available -= this_chunk_blocks;
1032 next_block:
1033 			BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1034 			if (sdio->block_in_file == sdio->final_block_in_request)
1035 				break;
1036 		}
1037 
1038 		/* Drop the ref which was taken in get_user_pages() */
1039 		page_cache_release(page);
1040 		block_in_page = 0;
1041 	}
1042 out:
1043 	return ret;
1044 }
1045 
1046 static inline int drop_refcount(struct dio *dio)
1047 {
1048 	int ret2;
1049 	unsigned long flags;
1050 
1051 	/*
1052 	 * Sync will always be dropping the final ref and completing the
1053 	 * operation.  AIO can if it was a broken operation described above or
1054 	 * in fact if all the bios race to complete before we get here.  In
1055 	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1056 	 * return code that the caller will hand to aio_complete().
1057 	 *
1058 	 * This is managed by the bio_lock instead of being an atomic_t so that
1059 	 * completion paths can drop their ref and use the remaining count to
1060 	 * decide to wake the submission path atomically.
1061 	 */
1062 	spin_lock_irqsave(&dio->bio_lock, flags);
1063 	ret2 = --dio->refcount;
1064 	spin_unlock_irqrestore(&dio->bio_lock, flags);
1065 	return ret2;
1066 }
1067 
1068 /*
1069  * This is a library function for use by filesystem drivers.
1070  *
1071  * The locking rules are governed by the flags parameter:
1072  *  - if the flags value contains DIO_LOCKING we use a fancy locking
1073  *    scheme for dumb filesystems.
1074  *    For writes this function is called under i_mutex and returns with
1075  *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1076  *    taken and dropped again before returning.
1077  *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1078  *    internal locking but rather rely on the filesystem to synchronize
1079  *    direct I/O reads/writes versus each other and truncate.
1080  *
1081  * To help with locking against truncate we incremented the i_dio_count
1082  * counter before starting direct I/O, and decrement it once we are done.
1083  * Truncate can wait for it to reach zero to provide exclusion.  It is
1084  * expected that filesystem provide exclusion between new direct I/O
1085  * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1086  * but other filesystems need to take care of this on their own.
1087  *
1088  * NOTE: if you pass "sdio" to anything by pointer make sure that function
1089  * is always inlined. Otherwise gcc is unable to split the structure into
1090  * individual fields and will generate much worse code. This is important
1091  * for the whole file.
1092  */
1093 ssize_t
1094 __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1095 	struct block_device *bdev, const struct iovec *iov, loff_t offset,
1096 	unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1097 	dio_submit_t submit_io,	int flags)
1098 {
1099 	int seg;
1100 	size_t size;
1101 	unsigned long addr;
1102 	unsigned blkbits = inode->i_blkbits;
1103 	unsigned bdev_blkbits = 0;
1104 	unsigned blocksize_mask = (1 << blkbits) - 1;
1105 	ssize_t retval = -EINVAL;
1106 	loff_t end = offset;
1107 	struct dio *dio;
1108 	struct dio_submit sdio = { 0, };
1109 	unsigned long user_addr;
1110 	size_t bytes;
1111 	struct buffer_head map_bh = { 0, };
1112 
1113 	if (rw & WRITE)
1114 		rw = WRITE_ODIRECT;
1115 
1116 	if (bdev)
1117 		bdev_blkbits = blksize_bits(bdev_logical_block_size(bdev));
1118 
1119 	if (offset & blocksize_mask) {
1120 		if (bdev)
1121 			 blkbits = bdev_blkbits;
1122 		blocksize_mask = (1 << blkbits) - 1;
1123 		if (offset & blocksize_mask)
1124 			goto out;
1125 	}
1126 
1127 	/* Check the memory alignment.  Blocks cannot straddle pages */
1128 	for (seg = 0; seg < nr_segs; seg++) {
1129 		addr = (unsigned long)iov[seg].iov_base;
1130 		size = iov[seg].iov_len;
1131 		end += size;
1132 		if ((addr & blocksize_mask) || (size & blocksize_mask))  {
1133 			if (bdev)
1134 				 blkbits = bdev_blkbits;
1135 			blocksize_mask = (1 << blkbits) - 1;
1136 			if ((addr & blocksize_mask) || (size & blocksize_mask))
1137 				goto out;
1138 		}
1139 	}
1140 
1141 	/* watch out for a 0 len io from a tricksy fs */
1142 	if (rw == READ && end == offset)
1143 		return 0;
1144 
1145 	dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1146 	retval = -ENOMEM;
1147 	if (!dio)
1148 		goto out;
1149 	/*
1150 	 * Believe it or not, zeroing out the page array caused a .5%
1151 	 * performance regression in a database benchmark.  So, we take
1152 	 * care to only zero out what's needed.
1153 	 */
1154 	memset(dio, 0, offsetof(struct dio, pages));
1155 
1156 	dio->flags = flags;
1157 	if (dio->flags & DIO_LOCKING) {
1158 		if (rw == READ) {
1159 			struct address_space *mapping =
1160 					iocb->ki_filp->f_mapping;
1161 
1162 			/* will be released by direct_io_worker */
1163 			mutex_lock(&inode->i_mutex);
1164 
1165 			retval = filemap_write_and_wait_range(mapping, offset,
1166 							      end - 1);
1167 			if (retval) {
1168 				mutex_unlock(&inode->i_mutex);
1169 				kmem_cache_free(dio_cache, dio);
1170 				goto out;
1171 			}
1172 		}
1173 	}
1174 
1175 	/*
1176 	 * Will be decremented at I/O completion time.
1177 	 */
1178 	atomic_inc(&inode->i_dio_count);
1179 
1180 	/*
1181 	 * For file extending writes updating i_size before data
1182 	 * writeouts complete can expose uninitialized blocks. So
1183 	 * even for AIO, we need to wait for i/o to complete before
1184 	 * returning in this case.
1185 	 */
1186 	dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) &&
1187 		(end > i_size_read(inode)));
1188 
1189 	retval = 0;
1190 
1191 	dio->inode = inode;
1192 	dio->rw = rw;
1193 	sdio.blkbits = blkbits;
1194 	sdio.blkfactor = inode->i_blkbits - blkbits;
1195 	sdio.block_in_file = offset >> blkbits;
1196 
1197 	sdio.get_block = get_block;
1198 	dio->end_io = end_io;
1199 	sdio.submit_io = submit_io;
1200 	sdio.final_block_in_bio = -1;
1201 	sdio.next_block_for_io = -1;
1202 
1203 	dio->iocb = iocb;
1204 	dio->i_size = i_size_read(inode);
1205 
1206 	spin_lock_init(&dio->bio_lock);
1207 	dio->refcount = 1;
1208 
1209 	/*
1210 	 * In case of non-aligned buffers, we may need 2 more
1211 	 * pages since we need to zero out first and last block.
1212 	 */
1213 	if (unlikely(sdio.blkfactor))
1214 		sdio.pages_in_io = 2;
1215 
1216 	for (seg = 0; seg < nr_segs; seg++) {
1217 		user_addr = (unsigned long)iov[seg].iov_base;
1218 		sdio.pages_in_io +=
1219 			((user_addr + iov[seg].iov_len + PAGE_SIZE-1) /
1220 				PAGE_SIZE - user_addr / PAGE_SIZE);
1221 	}
1222 
1223 	for (seg = 0; seg < nr_segs; seg++) {
1224 		user_addr = (unsigned long)iov[seg].iov_base;
1225 		sdio.size += bytes = iov[seg].iov_len;
1226 
1227 		/* Index into the first page of the first block */
1228 		sdio.first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
1229 		sdio.final_block_in_request = sdio.block_in_file +
1230 						(bytes >> blkbits);
1231 		/* Page fetching state */
1232 		sdio.head = 0;
1233 		sdio.tail = 0;
1234 		sdio.curr_page = 0;
1235 
1236 		sdio.total_pages = 0;
1237 		if (user_addr & (PAGE_SIZE-1)) {
1238 			sdio.total_pages++;
1239 			bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
1240 		}
1241 		sdio.total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1242 		sdio.curr_user_address = user_addr;
1243 
1244 		retval = do_direct_IO(dio, &sdio, &map_bh);
1245 
1246 		dio->result += iov[seg].iov_len -
1247 			((sdio.final_block_in_request - sdio.block_in_file) <<
1248 					blkbits);
1249 
1250 		if (retval) {
1251 			dio_cleanup(dio, &sdio);
1252 			break;
1253 		}
1254 	} /* end iovec loop */
1255 
1256 	if (retval == -ENOTBLK) {
1257 		/*
1258 		 * The remaining part of the request will be
1259 		 * be handled by buffered I/O when we return
1260 		 */
1261 		retval = 0;
1262 	}
1263 	/*
1264 	 * There may be some unwritten disk at the end of a part-written
1265 	 * fs-block-sized block.  Go zero that now.
1266 	 */
1267 	dio_zero_block(dio, &sdio, 1, &map_bh);
1268 
1269 	if (sdio.cur_page) {
1270 		ssize_t ret2;
1271 
1272 		ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1273 		if (retval == 0)
1274 			retval = ret2;
1275 		page_cache_release(sdio.cur_page);
1276 		sdio.cur_page = NULL;
1277 	}
1278 	if (sdio.bio)
1279 		dio_bio_submit(dio, &sdio);
1280 
1281 	/*
1282 	 * It is possible that, we return short IO due to end of file.
1283 	 * In that case, we need to release all the pages we got hold on.
1284 	 */
1285 	dio_cleanup(dio, &sdio);
1286 
1287 	/*
1288 	 * All block lookups have been performed. For READ requests
1289 	 * we can let i_mutex go now that its achieved its purpose
1290 	 * of protecting us from looking up uninitialized blocks.
1291 	 */
1292 	if (rw == READ && (dio->flags & DIO_LOCKING))
1293 		mutex_unlock(&dio->inode->i_mutex);
1294 
1295 	/*
1296 	 * The only time we want to leave bios in flight is when a successful
1297 	 * partial aio read or full aio write have been setup.  In that case
1298 	 * bio completion will call aio_complete.  The only time it's safe to
1299 	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1300 	 * This had *better* be the only place that raises -EIOCBQUEUED.
1301 	 */
1302 	BUG_ON(retval == -EIOCBQUEUED);
1303 	if (dio->is_async && retval == 0 && dio->result &&
1304 	    ((rw & READ) || (dio->result == sdio.size)))
1305 		retval = -EIOCBQUEUED;
1306 
1307 	if (retval != -EIOCBQUEUED)
1308 		dio_await_completion(dio);
1309 
1310 	if (drop_refcount(dio) == 0) {
1311 		retval = dio_complete(dio, offset, retval, false);
1312 		kmem_cache_free(dio_cache, dio);
1313 	} else
1314 		BUG_ON(retval != -EIOCBQUEUED);
1315 
1316 out:
1317 	return retval;
1318 }
1319 EXPORT_SYMBOL(__blockdev_direct_IO);
1320 
1321 static __init int dio_init(void)
1322 {
1323 	dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1324 	return 0;
1325 }
1326 module_init(dio_init)
1327