xref: /openbmc/linux/fs/direct-io.c (revision e8e0929d)
1 /*
2  * fs/direct-io.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * O_DIRECT
7  *
8  * 04Jul2002	Andrew Morton
9  *		Initial version
10  * 11Sep2002	janetinc@us.ibm.com
11  * 		added readv/writev support.
12  * 29Oct2002	Andrew Morton
13  *		rewrote bio_add_page() support.
14  * 30Oct2002	pbadari@us.ibm.com
15  *		added support for non-aligned IO.
16  * 06Nov2002	pbadari@us.ibm.com
17  *		added asynchronous IO support.
18  * 21Jul2003	nathans@sgi.com
19  *		added IO completion notifier.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <asm/atomic.h>
39 
40 /*
41  * How many user pages to map in one call to get_user_pages().  This determines
42  * the size of a structure on the stack.
43  */
44 #define DIO_PAGES	64
45 
46 /*
47  * This code generally works in units of "dio_blocks".  A dio_block is
48  * somewhere between the hard sector size and the filesystem block size.  it
49  * is determined on a per-invocation basis.   When talking to the filesystem
50  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
51  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
52  * to bio_block quantities by shifting left by blkfactor.
53  *
54  * If blkfactor is zero then the user's request was aligned to the filesystem's
55  * blocksize.
56  *
57  * lock_type is DIO_LOCKING for regular files on direct-IO-naive filesystems.
58  * This determines whether we need to do the fancy locking which prevents
59  * direct-IO from being able to read uninitialised disk blocks.  If its zero
60  * (blockdev) this locking is not done, and if it is DIO_OWN_LOCKING i_mutex is
61  * not held for the entire direct write (taken briefly, initially, during a
62  * direct read though, but its never held for the duration of a direct-IO).
63  */
64 
65 struct dio {
66 	/* BIO submission state */
67 	struct bio *bio;		/* bio under assembly */
68 	struct inode *inode;
69 	int rw;
70 	loff_t i_size;			/* i_size when submitted */
71 	int lock_type;			/* doesn't change */
72 	unsigned blkbits;		/* doesn't change */
73 	unsigned blkfactor;		/* When we're using an alignment which
74 					   is finer than the filesystem's soft
75 					   blocksize, this specifies how much
76 					   finer.  blkfactor=2 means 1/4-block
77 					   alignment.  Does not change */
78 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
79 					   been performed at the start of a
80 					   write */
81 	int pages_in_io;		/* approximate total IO pages */
82 	size_t	size;			/* total request size (doesn't change)*/
83 	sector_t block_in_file;		/* Current offset into the underlying
84 					   file in dio_block units. */
85 	unsigned blocks_available;	/* At block_in_file.  changes */
86 	sector_t final_block_in_request;/* doesn't change */
87 	unsigned first_block_in_page;	/* doesn't change, Used only once */
88 	int boundary;			/* prev block is at a boundary */
89 	int reap_counter;		/* rate limit reaping */
90 	get_block_t *get_block;		/* block mapping function */
91 	dio_iodone_t *end_io;		/* IO completion function */
92 	sector_t final_block_in_bio;	/* current final block in bio + 1 */
93 	sector_t next_block_for_io;	/* next block to be put under IO,
94 					   in dio_blocks units */
95 	struct buffer_head map_bh;	/* last get_block() result */
96 
97 	/*
98 	 * Deferred addition of a page to the dio.  These variables are
99 	 * private to dio_send_cur_page(), submit_page_section() and
100 	 * dio_bio_add_page().
101 	 */
102 	struct page *cur_page;		/* The page */
103 	unsigned cur_page_offset;	/* Offset into it, in bytes */
104 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
105 	sector_t cur_page_block;	/* Where it starts */
106 
107 	/*
108 	 * Page fetching state. These variables belong to dio_refill_pages().
109 	 */
110 	int curr_page;			/* changes */
111 	int total_pages;		/* doesn't change */
112 	unsigned long curr_user_address;/* changes */
113 
114 	/*
115 	 * Page queue.  These variables belong to dio_refill_pages() and
116 	 * dio_get_page().
117 	 */
118 	struct page *pages[DIO_PAGES];	/* page buffer */
119 	unsigned head;			/* next page to process */
120 	unsigned tail;			/* last valid page + 1 */
121 	int page_errors;		/* errno from get_user_pages() */
122 
123 	/* BIO completion state */
124 	spinlock_t bio_lock;		/* protects BIO fields below */
125 	unsigned long refcount;		/* direct_io_worker() and bios */
126 	struct bio *bio_list;		/* singly linked via bi_private */
127 	struct task_struct *waiter;	/* waiting task (NULL if none) */
128 
129 	/* AIO related stuff */
130 	struct kiocb *iocb;		/* kiocb */
131 	int is_async;			/* is IO async ? */
132 	int io_error;			/* IO error in completion path */
133 	ssize_t result;                 /* IO result */
134 };
135 
136 /*
137  * How many pages are in the queue?
138  */
139 static inline unsigned dio_pages_present(struct dio *dio)
140 {
141 	return dio->tail - dio->head;
142 }
143 
144 /*
145  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
146  */
147 static int dio_refill_pages(struct dio *dio)
148 {
149 	int ret;
150 	int nr_pages;
151 
152 	nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES);
153 	ret = get_user_pages_fast(
154 		dio->curr_user_address,		/* Where from? */
155 		nr_pages,			/* How many pages? */
156 		dio->rw == READ,		/* Write to memory? */
157 		&dio->pages[0]);		/* Put results here */
158 
159 	if (ret < 0 && dio->blocks_available && (dio->rw & WRITE)) {
160 		struct page *page = ZERO_PAGE(0);
161 		/*
162 		 * A memory fault, but the filesystem has some outstanding
163 		 * mapped blocks.  We need to use those blocks up to avoid
164 		 * leaking stale data in the file.
165 		 */
166 		if (dio->page_errors == 0)
167 			dio->page_errors = ret;
168 		page_cache_get(page);
169 		dio->pages[0] = page;
170 		dio->head = 0;
171 		dio->tail = 1;
172 		ret = 0;
173 		goto out;
174 	}
175 
176 	if (ret >= 0) {
177 		dio->curr_user_address += ret * PAGE_SIZE;
178 		dio->curr_page += ret;
179 		dio->head = 0;
180 		dio->tail = ret;
181 		ret = 0;
182 	}
183 out:
184 	return ret;
185 }
186 
187 /*
188  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
189  * buffered inside the dio so that we can call get_user_pages() against a
190  * decent number of pages, less frequently.  To provide nicer use of the
191  * L1 cache.
192  */
193 static struct page *dio_get_page(struct dio *dio)
194 {
195 	if (dio_pages_present(dio) == 0) {
196 		int ret;
197 
198 		ret = dio_refill_pages(dio);
199 		if (ret)
200 			return ERR_PTR(ret);
201 		BUG_ON(dio_pages_present(dio) == 0);
202 	}
203 	return dio->pages[dio->head++];
204 }
205 
206 /**
207  * dio_complete() - called when all DIO BIO I/O has been completed
208  * @offset: the byte offset in the file of the completed operation
209  *
210  * This releases locks as dictated by the locking type, lets interested parties
211  * know that a DIO operation has completed, and calculates the resulting return
212  * code for the operation.
213  *
214  * It lets the filesystem know if it registered an interest earlier via
215  * get_block.  Pass the private field of the map buffer_head so that
216  * filesystems can use it to hold additional state between get_block calls and
217  * dio_complete.
218  */
219 static int dio_complete(struct dio *dio, loff_t offset, int ret)
220 {
221 	ssize_t transferred = 0;
222 
223 	/*
224 	 * AIO submission can race with bio completion to get here while
225 	 * expecting to have the last io completed by bio completion.
226 	 * In that case -EIOCBQUEUED is in fact not an error we want
227 	 * to preserve through this call.
228 	 */
229 	if (ret == -EIOCBQUEUED)
230 		ret = 0;
231 
232 	if (dio->result) {
233 		transferred = dio->result;
234 
235 		/* Check for short read case */
236 		if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
237 			transferred = dio->i_size - offset;
238 	}
239 
240 	if (dio->end_io && dio->result)
241 		dio->end_io(dio->iocb, offset, transferred,
242 			    dio->map_bh.b_private);
243 	if (dio->lock_type == DIO_LOCKING)
244 		/* lockdep: non-owner release */
245 		up_read_non_owner(&dio->inode->i_alloc_sem);
246 
247 	if (ret == 0)
248 		ret = dio->page_errors;
249 	if (ret == 0)
250 		ret = dio->io_error;
251 	if (ret == 0)
252 		ret = transferred;
253 
254 	return ret;
255 }
256 
257 static int dio_bio_complete(struct dio *dio, struct bio *bio);
258 /*
259  * Asynchronous IO callback.
260  */
261 static void dio_bio_end_aio(struct bio *bio, int error)
262 {
263 	struct dio *dio = bio->bi_private;
264 	unsigned long remaining;
265 	unsigned long flags;
266 
267 	/* cleanup the bio */
268 	dio_bio_complete(dio, bio);
269 
270 	spin_lock_irqsave(&dio->bio_lock, flags);
271 	remaining = --dio->refcount;
272 	if (remaining == 1 && dio->waiter)
273 		wake_up_process(dio->waiter);
274 	spin_unlock_irqrestore(&dio->bio_lock, flags);
275 
276 	if (remaining == 0) {
277 		int ret = dio_complete(dio, dio->iocb->ki_pos, 0);
278 		aio_complete(dio->iocb, ret, 0);
279 		kfree(dio);
280 	}
281 }
282 
283 /*
284  * The BIO completion handler simply queues the BIO up for the process-context
285  * handler.
286  *
287  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
288  * implement a singly-linked list of completed BIOs, at dio->bio_list.
289  */
290 static void dio_bio_end_io(struct bio *bio, int error)
291 {
292 	struct dio *dio = bio->bi_private;
293 	unsigned long flags;
294 
295 	spin_lock_irqsave(&dio->bio_lock, flags);
296 	bio->bi_private = dio->bio_list;
297 	dio->bio_list = bio;
298 	if (--dio->refcount == 1 && dio->waiter)
299 		wake_up_process(dio->waiter);
300 	spin_unlock_irqrestore(&dio->bio_lock, flags);
301 }
302 
303 static int
304 dio_bio_alloc(struct dio *dio, struct block_device *bdev,
305 		sector_t first_sector, int nr_vecs)
306 {
307 	struct bio *bio;
308 
309 	bio = bio_alloc(GFP_KERNEL, nr_vecs);
310 
311 	bio->bi_bdev = bdev;
312 	bio->bi_sector = first_sector;
313 	if (dio->is_async)
314 		bio->bi_end_io = dio_bio_end_aio;
315 	else
316 		bio->bi_end_io = dio_bio_end_io;
317 
318 	dio->bio = bio;
319 	return 0;
320 }
321 
322 /*
323  * In the AIO read case we speculatively dirty the pages before starting IO.
324  * During IO completion, any of these pages which happen to have been written
325  * back will be redirtied by bio_check_pages_dirty().
326  *
327  * bios hold a dio reference between submit_bio and ->end_io.
328  */
329 static void dio_bio_submit(struct dio *dio)
330 {
331 	struct bio *bio = dio->bio;
332 	unsigned long flags;
333 
334 	bio->bi_private = dio;
335 
336 	spin_lock_irqsave(&dio->bio_lock, flags);
337 	dio->refcount++;
338 	spin_unlock_irqrestore(&dio->bio_lock, flags);
339 
340 	if (dio->is_async && dio->rw == READ)
341 		bio_set_pages_dirty(bio);
342 
343 	submit_bio(dio->rw, bio);
344 
345 	dio->bio = NULL;
346 	dio->boundary = 0;
347 }
348 
349 /*
350  * Release any resources in case of a failure
351  */
352 static void dio_cleanup(struct dio *dio)
353 {
354 	while (dio_pages_present(dio))
355 		page_cache_release(dio_get_page(dio));
356 }
357 
358 /*
359  * Wait for the next BIO to complete.  Remove it and return it.  NULL is
360  * returned once all BIOs have been completed.  This must only be called once
361  * all bios have been issued so that dio->refcount can only decrease.  This
362  * requires that that the caller hold a reference on the dio.
363  */
364 static struct bio *dio_await_one(struct dio *dio)
365 {
366 	unsigned long flags;
367 	struct bio *bio = NULL;
368 
369 	spin_lock_irqsave(&dio->bio_lock, flags);
370 
371 	/*
372 	 * Wait as long as the list is empty and there are bios in flight.  bio
373 	 * completion drops the count, maybe adds to the list, and wakes while
374 	 * holding the bio_lock so we don't need set_current_state()'s barrier
375 	 * and can call it after testing our condition.
376 	 */
377 	while (dio->refcount > 1 && dio->bio_list == NULL) {
378 		__set_current_state(TASK_UNINTERRUPTIBLE);
379 		dio->waiter = current;
380 		spin_unlock_irqrestore(&dio->bio_lock, flags);
381 		io_schedule();
382 		/* wake up sets us TASK_RUNNING */
383 		spin_lock_irqsave(&dio->bio_lock, flags);
384 		dio->waiter = NULL;
385 	}
386 	if (dio->bio_list) {
387 		bio = dio->bio_list;
388 		dio->bio_list = bio->bi_private;
389 	}
390 	spin_unlock_irqrestore(&dio->bio_lock, flags);
391 	return bio;
392 }
393 
394 /*
395  * Process one completed BIO.  No locks are held.
396  */
397 static int dio_bio_complete(struct dio *dio, struct bio *bio)
398 {
399 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
400 	struct bio_vec *bvec = bio->bi_io_vec;
401 	int page_no;
402 
403 	if (!uptodate)
404 		dio->io_error = -EIO;
405 
406 	if (dio->is_async && dio->rw == READ) {
407 		bio_check_pages_dirty(bio);	/* transfers ownership */
408 	} else {
409 		for (page_no = 0; page_no < bio->bi_vcnt; page_no++) {
410 			struct page *page = bvec[page_no].bv_page;
411 
412 			if (dio->rw == READ && !PageCompound(page))
413 				set_page_dirty_lock(page);
414 			page_cache_release(page);
415 		}
416 		bio_put(bio);
417 	}
418 	return uptodate ? 0 : -EIO;
419 }
420 
421 /*
422  * Wait on and process all in-flight BIOs.  This must only be called once
423  * all bios have been issued so that the refcount can only decrease.
424  * This just waits for all bios to make it through dio_bio_complete.  IO
425  * errors are propagated through dio->io_error and should be propagated via
426  * dio_complete().
427  */
428 static void dio_await_completion(struct dio *dio)
429 {
430 	struct bio *bio;
431 	do {
432 		bio = dio_await_one(dio);
433 		if (bio)
434 			dio_bio_complete(dio, bio);
435 	} while (bio);
436 }
437 
438 /*
439  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
440  * to keep the memory consumption sane we periodically reap any completed BIOs
441  * during the BIO generation phase.
442  *
443  * This also helps to limit the peak amount of pinned userspace memory.
444  */
445 static int dio_bio_reap(struct dio *dio)
446 {
447 	int ret = 0;
448 
449 	if (dio->reap_counter++ >= 64) {
450 		while (dio->bio_list) {
451 			unsigned long flags;
452 			struct bio *bio;
453 			int ret2;
454 
455 			spin_lock_irqsave(&dio->bio_lock, flags);
456 			bio = dio->bio_list;
457 			dio->bio_list = bio->bi_private;
458 			spin_unlock_irqrestore(&dio->bio_lock, flags);
459 			ret2 = dio_bio_complete(dio, bio);
460 			if (ret == 0)
461 				ret = ret2;
462 		}
463 		dio->reap_counter = 0;
464 	}
465 	return ret;
466 }
467 
468 /*
469  * Call into the fs to map some more disk blocks.  We record the current number
470  * of available blocks at dio->blocks_available.  These are in units of the
471  * fs blocksize, (1 << inode->i_blkbits).
472  *
473  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
474  * it uses the passed inode-relative block number as the file offset, as usual.
475  *
476  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
477  * has remaining to do.  The fs should not map more than this number of blocks.
478  *
479  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
480  * indicate how much contiguous disk space has been made available at
481  * bh->b_blocknr.
482  *
483  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
484  * This isn't very efficient...
485  *
486  * In the case of filesystem holes: the fs may return an arbitrarily-large
487  * hole by returning an appropriate value in b_size and by clearing
488  * buffer_mapped().  However the direct-io code will only process holes one
489  * block at a time - it will repeatedly call get_block() as it walks the hole.
490  */
491 static int get_more_blocks(struct dio *dio)
492 {
493 	int ret;
494 	struct buffer_head *map_bh = &dio->map_bh;
495 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
496 	unsigned long fs_count;	/* Number of filesystem-sized blocks */
497 	unsigned long dio_count;/* Number of dio_block-sized blocks */
498 	unsigned long blkmask;
499 	int create;
500 
501 	/*
502 	 * If there was a memory error and we've overwritten all the
503 	 * mapped blocks then we can now return that memory error
504 	 */
505 	ret = dio->page_errors;
506 	if (ret == 0) {
507 		BUG_ON(dio->block_in_file >= dio->final_block_in_request);
508 		fs_startblk = dio->block_in_file >> dio->blkfactor;
509 		dio_count = dio->final_block_in_request - dio->block_in_file;
510 		fs_count = dio_count >> dio->blkfactor;
511 		blkmask = (1 << dio->blkfactor) - 1;
512 		if (dio_count & blkmask)
513 			fs_count++;
514 
515 		map_bh->b_state = 0;
516 		map_bh->b_size = fs_count << dio->inode->i_blkbits;
517 
518 		create = dio->rw & WRITE;
519 		if (dio->lock_type == DIO_LOCKING) {
520 			if (dio->block_in_file < (i_size_read(dio->inode) >>
521 							dio->blkbits))
522 				create = 0;
523 		} else if (dio->lock_type == DIO_NO_LOCKING) {
524 			create = 0;
525 		}
526 
527 		/*
528 		 * For writes inside i_size we forbid block creations: only
529 		 * overwrites are permitted.  We fall back to buffered writes
530 		 * at a higher level for inside-i_size block-instantiating
531 		 * writes.
532 		 */
533 		ret = (*dio->get_block)(dio->inode, fs_startblk,
534 						map_bh, create);
535 	}
536 	return ret;
537 }
538 
539 /*
540  * There is no bio.  Make one now.
541  */
542 static int dio_new_bio(struct dio *dio, sector_t start_sector)
543 {
544 	sector_t sector;
545 	int ret, nr_pages;
546 
547 	ret = dio_bio_reap(dio);
548 	if (ret)
549 		goto out;
550 	sector = start_sector << (dio->blkbits - 9);
551 	nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev));
552 	BUG_ON(nr_pages <= 0);
553 	ret = dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages);
554 	dio->boundary = 0;
555 out:
556 	return ret;
557 }
558 
559 /*
560  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
561  * that was successful then update final_block_in_bio and take a ref against
562  * the just-added page.
563  *
564  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
565  */
566 static int dio_bio_add_page(struct dio *dio)
567 {
568 	int ret;
569 
570 	ret = bio_add_page(dio->bio, dio->cur_page,
571 			dio->cur_page_len, dio->cur_page_offset);
572 	if (ret == dio->cur_page_len) {
573 		/*
574 		 * Decrement count only, if we are done with this page
575 		 */
576 		if ((dio->cur_page_len + dio->cur_page_offset) == PAGE_SIZE)
577 			dio->pages_in_io--;
578 		page_cache_get(dio->cur_page);
579 		dio->final_block_in_bio = dio->cur_page_block +
580 			(dio->cur_page_len >> dio->blkbits);
581 		ret = 0;
582 	} else {
583 		ret = 1;
584 	}
585 	return ret;
586 }
587 
588 /*
589  * Put cur_page under IO.  The section of cur_page which is described by
590  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
591  * starts on-disk at cur_page_block.
592  *
593  * We take a ref against the page here (on behalf of its presence in the bio).
594  *
595  * The caller of this function is responsible for removing cur_page from the
596  * dio, and for dropping the refcount which came from that presence.
597  */
598 static int dio_send_cur_page(struct dio *dio)
599 {
600 	int ret = 0;
601 
602 	if (dio->bio) {
603 		/*
604 		 * See whether this new request is contiguous with the old
605 		 */
606 		if (dio->final_block_in_bio != dio->cur_page_block)
607 			dio_bio_submit(dio);
608 		/*
609 		 * Submit now if the underlying fs is about to perform a
610 		 * metadata read
611 		 */
612 		if (dio->boundary)
613 			dio_bio_submit(dio);
614 	}
615 
616 	if (dio->bio == NULL) {
617 		ret = dio_new_bio(dio, dio->cur_page_block);
618 		if (ret)
619 			goto out;
620 	}
621 
622 	if (dio_bio_add_page(dio) != 0) {
623 		dio_bio_submit(dio);
624 		ret = dio_new_bio(dio, dio->cur_page_block);
625 		if (ret == 0) {
626 			ret = dio_bio_add_page(dio);
627 			BUG_ON(ret != 0);
628 		}
629 	}
630 out:
631 	return ret;
632 }
633 
634 /*
635  * An autonomous function to put a chunk of a page under deferred IO.
636  *
637  * The caller doesn't actually know (or care) whether this piece of page is in
638  * a BIO, or is under IO or whatever.  We just take care of all possible
639  * situations here.  The separation between the logic of do_direct_IO() and
640  * that of submit_page_section() is important for clarity.  Please don't break.
641  *
642  * The chunk of page starts on-disk at blocknr.
643  *
644  * We perform deferred IO, by recording the last-submitted page inside our
645  * private part of the dio structure.  If possible, we just expand the IO
646  * across that page here.
647  *
648  * If that doesn't work out then we put the old page into the bio and add this
649  * page to the dio instead.
650  */
651 static int
652 submit_page_section(struct dio *dio, struct page *page,
653 		unsigned offset, unsigned len, sector_t blocknr)
654 {
655 	int ret = 0;
656 
657 	if (dio->rw & WRITE) {
658 		/*
659 		 * Read accounting is performed in submit_bio()
660 		 */
661 		task_io_account_write(len);
662 	}
663 
664 	/*
665 	 * Can we just grow the current page's presence in the dio?
666 	 */
667 	if (	(dio->cur_page == page) &&
668 		(dio->cur_page_offset + dio->cur_page_len == offset) &&
669 		(dio->cur_page_block +
670 			(dio->cur_page_len >> dio->blkbits) == blocknr)) {
671 		dio->cur_page_len += len;
672 
673 		/*
674 		 * If dio->boundary then we want to schedule the IO now to
675 		 * avoid metadata seeks.
676 		 */
677 		if (dio->boundary) {
678 			ret = dio_send_cur_page(dio);
679 			page_cache_release(dio->cur_page);
680 			dio->cur_page = NULL;
681 		}
682 		goto out;
683 	}
684 
685 	/*
686 	 * If there's a deferred page already there then send it.
687 	 */
688 	if (dio->cur_page) {
689 		ret = dio_send_cur_page(dio);
690 		page_cache_release(dio->cur_page);
691 		dio->cur_page = NULL;
692 		if (ret)
693 			goto out;
694 	}
695 
696 	page_cache_get(page);		/* It is in dio */
697 	dio->cur_page = page;
698 	dio->cur_page_offset = offset;
699 	dio->cur_page_len = len;
700 	dio->cur_page_block = blocknr;
701 out:
702 	return ret;
703 }
704 
705 /*
706  * Clean any dirty buffers in the blockdev mapping which alias newly-created
707  * file blocks.  Only called for S_ISREG files - blockdevs do not set
708  * buffer_new
709  */
710 static void clean_blockdev_aliases(struct dio *dio)
711 {
712 	unsigned i;
713 	unsigned nblocks;
714 
715 	nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits;
716 
717 	for (i = 0; i < nblocks; i++) {
718 		unmap_underlying_metadata(dio->map_bh.b_bdev,
719 					dio->map_bh.b_blocknr + i);
720 	}
721 }
722 
723 /*
724  * If we are not writing the entire block and get_block() allocated
725  * the block for us, we need to fill-in the unused portion of the
726  * block with zeros. This happens only if user-buffer, fileoffset or
727  * io length is not filesystem block-size multiple.
728  *
729  * `end' is zero if we're doing the start of the IO, 1 at the end of the
730  * IO.
731  */
732 static void dio_zero_block(struct dio *dio, int end)
733 {
734 	unsigned dio_blocks_per_fs_block;
735 	unsigned this_chunk_blocks;	/* In dio_blocks */
736 	unsigned this_chunk_bytes;
737 	struct page *page;
738 
739 	dio->start_zero_done = 1;
740 	if (!dio->blkfactor || !buffer_new(&dio->map_bh))
741 		return;
742 
743 	dio_blocks_per_fs_block = 1 << dio->blkfactor;
744 	this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1);
745 
746 	if (!this_chunk_blocks)
747 		return;
748 
749 	/*
750 	 * We need to zero out part of an fs block.  It is either at the
751 	 * beginning or the end of the fs block.
752 	 */
753 	if (end)
754 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
755 
756 	this_chunk_bytes = this_chunk_blocks << dio->blkbits;
757 
758 	page = ZERO_PAGE(0);
759 	if (submit_page_section(dio, page, 0, this_chunk_bytes,
760 				dio->next_block_for_io))
761 		return;
762 
763 	dio->next_block_for_io += this_chunk_blocks;
764 }
765 
766 /*
767  * Walk the user pages, and the file, mapping blocks to disk and generating
768  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
769  * into submit_page_section(), which takes care of the next stage of submission
770  *
771  * Direct IO against a blockdev is different from a file.  Because we can
772  * happily perform page-sized but 512-byte aligned IOs.  It is important that
773  * blockdev IO be able to have fine alignment and large sizes.
774  *
775  * So what we do is to permit the ->get_block function to populate bh.b_size
776  * with the size of IO which is permitted at this offset and this i_blkbits.
777  *
778  * For best results, the blockdev should be set up with 512-byte i_blkbits and
779  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
780  * fine alignment but still allows this function to work in PAGE_SIZE units.
781  */
782 static int do_direct_IO(struct dio *dio)
783 {
784 	const unsigned blkbits = dio->blkbits;
785 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
786 	struct page *page;
787 	unsigned block_in_page;
788 	struct buffer_head *map_bh = &dio->map_bh;
789 	int ret = 0;
790 
791 	/* The I/O can start at any block offset within the first page */
792 	block_in_page = dio->first_block_in_page;
793 
794 	while (dio->block_in_file < dio->final_block_in_request) {
795 		page = dio_get_page(dio);
796 		if (IS_ERR(page)) {
797 			ret = PTR_ERR(page);
798 			goto out;
799 		}
800 
801 		while (block_in_page < blocks_per_page) {
802 			unsigned offset_in_page = block_in_page << blkbits;
803 			unsigned this_chunk_bytes;	/* # of bytes mapped */
804 			unsigned this_chunk_blocks;	/* # of blocks */
805 			unsigned u;
806 
807 			if (dio->blocks_available == 0) {
808 				/*
809 				 * Need to go and map some more disk
810 				 */
811 				unsigned long blkmask;
812 				unsigned long dio_remainder;
813 
814 				ret = get_more_blocks(dio);
815 				if (ret) {
816 					page_cache_release(page);
817 					goto out;
818 				}
819 				if (!buffer_mapped(map_bh))
820 					goto do_holes;
821 
822 				dio->blocks_available =
823 						map_bh->b_size >> dio->blkbits;
824 				dio->next_block_for_io =
825 					map_bh->b_blocknr << dio->blkfactor;
826 				if (buffer_new(map_bh))
827 					clean_blockdev_aliases(dio);
828 
829 				if (!dio->blkfactor)
830 					goto do_holes;
831 
832 				blkmask = (1 << dio->blkfactor) - 1;
833 				dio_remainder = (dio->block_in_file & blkmask);
834 
835 				/*
836 				 * If we are at the start of IO and that IO
837 				 * starts partway into a fs-block,
838 				 * dio_remainder will be non-zero.  If the IO
839 				 * is a read then we can simply advance the IO
840 				 * cursor to the first block which is to be
841 				 * read.  But if the IO is a write and the
842 				 * block was newly allocated we cannot do that;
843 				 * the start of the fs block must be zeroed out
844 				 * on-disk
845 				 */
846 				if (!buffer_new(map_bh))
847 					dio->next_block_for_io += dio_remainder;
848 				dio->blocks_available -= dio_remainder;
849 			}
850 do_holes:
851 			/* Handle holes */
852 			if (!buffer_mapped(map_bh)) {
853 				loff_t i_size_aligned;
854 
855 				/* AKPM: eargh, -ENOTBLK is a hack */
856 				if (dio->rw & WRITE) {
857 					page_cache_release(page);
858 					return -ENOTBLK;
859 				}
860 
861 				/*
862 				 * Be sure to account for a partial block as the
863 				 * last block in the file
864 				 */
865 				i_size_aligned = ALIGN(i_size_read(dio->inode),
866 							1 << blkbits);
867 				if (dio->block_in_file >=
868 						i_size_aligned >> blkbits) {
869 					/* We hit eof */
870 					page_cache_release(page);
871 					goto out;
872 				}
873 				zero_user(page, block_in_page << blkbits,
874 						1 << blkbits);
875 				dio->block_in_file++;
876 				block_in_page++;
877 				goto next_block;
878 			}
879 
880 			/*
881 			 * If we're performing IO which has an alignment which
882 			 * is finer than the underlying fs, go check to see if
883 			 * we must zero out the start of this block.
884 			 */
885 			if (unlikely(dio->blkfactor && !dio->start_zero_done))
886 				dio_zero_block(dio, 0);
887 
888 			/*
889 			 * Work out, in this_chunk_blocks, how much disk we
890 			 * can add to this page
891 			 */
892 			this_chunk_blocks = dio->blocks_available;
893 			u = (PAGE_SIZE - offset_in_page) >> blkbits;
894 			if (this_chunk_blocks > u)
895 				this_chunk_blocks = u;
896 			u = dio->final_block_in_request - dio->block_in_file;
897 			if (this_chunk_blocks > u)
898 				this_chunk_blocks = u;
899 			this_chunk_bytes = this_chunk_blocks << blkbits;
900 			BUG_ON(this_chunk_bytes == 0);
901 
902 			dio->boundary = buffer_boundary(map_bh);
903 			ret = submit_page_section(dio, page, offset_in_page,
904 				this_chunk_bytes, dio->next_block_for_io);
905 			if (ret) {
906 				page_cache_release(page);
907 				goto out;
908 			}
909 			dio->next_block_for_io += this_chunk_blocks;
910 
911 			dio->block_in_file += this_chunk_blocks;
912 			block_in_page += this_chunk_blocks;
913 			dio->blocks_available -= this_chunk_blocks;
914 next_block:
915 			BUG_ON(dio->block_in_file > dio->final_block_in_request);
916 			if (dio->block_in_file == dio->final_block_in_request)
917 				break;
918 		}
919 
920 		/* Drop the ref which was taken in get_user_pages() */
921 		page_cache_release(page);
922 		block_in_page = 0;
923 	}
924 out:
925 	return ret;
926 }
927 
928 /*
929  * Releases both i_mutex and i_alloc_sem
930  */
931 static ssize_t
932 direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode,
933 	const struct iovec *iov, loff_t offset, unsigned long nr_segs,
934 	unsigned blkbits, get_block_t get_block, dio_iodone_t end_io,
935 	struct dio *dio)
936 {
937 	unsigned long user_addr;
938 	unsigned long flags;
939 	int seg;
940 	ssize_t ret = 0;
941 	ssize_t ret2;
942 	size_t bytes;
943 
944 	dio->inode = inode;
945 	dio->rw = rw;
946 	dio->blkbits = blkbits;
947 	dio->blkfactor = inode->i_blkbits - blkbits;
948 	dio->block_in_file = offset >> blkbits;
949 
950 	dio->get_block = get_block;
951 	dio->end_io = end_io;
952 	dio->final_block_in_bio = -1;
953 	dio->next_block_for_io = -1;
954 
955 	dio->iocb = iocb;
956 	dio->i_size = i_size_read(inode);
957 
958 	spin_lock_init(&dio->bio_lock);
959 	dio->refcount = 1;
960 
961 	/*
962 	 * In case of non-aligned buffers, we may need 2 more
963 	 * pages since we need to zero out first and last block.
964 	 */
965 	if (unlikely(dio->blkfactor))
966 		dio->pages_in_io = 2;
967 
968 	for (seg = 0; seg < nr_segs; seg++) {
969 		user_addr = (unsigned long)iov[seg].iov_base;
970 		dio->pages_in_io +=
971 			((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE
972 				- user_addr/PAGE_SIZE);
973 	}
974 
975 	for (seg = 0; seg < nr_segs; seg++) {
976 		user_addr = (unsigned long)iov[seg].iov_base;
977 		dio->size += bytes = iov[seg].iov_len;
978 
979 		/* Index into the first page of the first block */
980 		dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
981 		dio->final_block_in_request = dio->block_in_file +
982 						(bytes >> blkbits);
983 		/* Page fetching state */
984 		dio->head = 0;
985 		dio->tail = 0;
986 		dio->curr_page = 0;
987 
988 		dio->total_pages = 0;
989 		if (user_addr & (PAGE_SIZE-1)) {
990 			dio->total_pages++;
991 			bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
992 		}
993 		dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
994 		dio->curr_user_address = user_addr;
995 
996 		ret = do_direct_IO(dio);
997 
998 		dio->result += iov[seg].iov_len -
999 			((dio->final_block_in_request - dio->block_in_file) <<
1000 					blkbits);
1001 
1002 		if (ret) {
1003 			dio_cleanup(dio);
1004 			break;
1005 		}
1006 	} /* end iovec loop */
1007 
1008 	if (ret == -ENOTBLK && (rw & WRITE)) {
1009 		/*
1010 		 * The remaining part of the request will be
1011 		 * be handled by buffered I/O when we return
1012 		 */
1013 		ret = 0;
1014 	}
1015 	/*
1016 	 * There may be some unwritten disk at the end of a part-written
1017 	 * fs-block-sized block.  Go zero that now.
1018 	 */
1019 	dio_zero_block(dio, 1);
1020 
1021 	if (dio->cur_page) {
1022 		ret2 = dio_send_cur_page(dio);
1023 		if (ret == 0)
1024 			ret = ret2;
1025 		page_cache_release(dio->cur_page);
1026 		dio->cur_page = NULL;
1027 	}
1028 	if (dio->bio)
1029 		dio_bio_submit(dio);
1030 
1031 	/* All IO is now issued, send it on its way */
1032 	blk_run_address_space(inode->i_mapping);
1033 
1034 	/*
1035 	 * It is possible that, we return short IO due to end of file.
1036 	 * In that case, we need to release all the pages we got hold on.
1037 	 */
1038 	dio_cleanup(dio);
1039 
1040 	/*
1041 	 * All block lookups have been performed. For READ requests
1042 	 * we can let i_mutex go now that its achieved its purpose
1043 	 * of protecting us from looking up uninitialized blocks.
1044 	 */
1045 	if ((rw == READ) && (dio->lock_type == DIO_LOCKING))
1046 		mutex_unlock(&dio->inode->i_mutex);
1047 
1048 	/*
1049 	 * The only time we want to leave bios in flight is when a successful
1050 	 * partial aio read or full aio write have been setup.  In that case
1051 	 * bio completion will call aio_complete.  The only time it's safe to
1052 	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1053 	 * This had *better* be the only place that raises -EIOCBQUEUED.
1054 	 */
1055 	BUG_ON(ret == -EIOCBQUEUED);
1056 	if (dio->is_async && ret == 0 && dio->result &&
1057 	    ((rw & READ) || (dio->result == dio->size)))
1058 		ret = -EIOCBQUEUED;
1059 
1060 	if (ret != -EIOCBQUEUED)
1061 		dio_await_completion(dio);
1062 
1063 	/*
1064 	 * Sync will always be dropping the final ref and completing the
1065 	 * operation.  AIO can if it was a broken operation described above or
1066 	 * in fact if all the bios race to complete before we get here.  In
1067 	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1068 	 * return code that the caller will hand to aio_complete().
1069 	 *
1070 	 * This is managed by the bio_lock instead of being an atomic_t so that
1071 	 * completion paths can drop their ref and use the remaining count to
1072 	 * decide to wake the submission path atomically.
1073 	 */
1074 	spin_lock_irqsave(&dio->bio_lock, flags);
1075 	ret2 = --dio->refcount;
1076 	spin_unlock_irqrestore(&dio->bio_lock, flags);
1077 
1078 	if (ret2 == 0) {
1079 		ret = dio_complete(dio, offset, ret);
1080 		kfree(dio);
1081 	} else
1082 		BUG_ON(ret != -EIOCBQUEUED);
1083 
1084 	return ret;
1085 }
1086 
1087 /*
1088  * This is a library function for use by filesystem drivers.
1089  * The locking rules are governed by the dio_lock_type parameter.
1090  *
1091  * DIO_NO_LOCKING (no locking, for raw block device access)
1092  * For writes, i_mutex is not held on entry; it is never taken.
1093  *
1094  * DIO_LOCKING (simple locking for regular files)
1095  * For writes we are called under i_mutex and return with i_mutex held, even
1096  * though it is internally dropped.
1097  * For reads, i_mutex is not held on entry, but it is taken and dropped before
1098  * returning.
1099  *
1100  * DIO_OWN_LOCKING (filesystem provides synchronisation and handling of
1101  *	uninitialised data, allowing parallel direct readers and writers)
1102  * For writes we are called without i_mutex, return without it, never touch it.
1103  * For reads we are called under i_mutex and return with i_mutex held, even
1104  * though it may be internally dropped.
1105  *
1106  * Additional i_alloc_sem locking requirements described inline below.
1107  */
1108 ssize_t
1109 __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1110 	struct block_device *bdev, const struct iovec *iov, loff_t offset,
1111 	unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1112 	int dio_lock_type)
1113 {
1114 	int seg;
1115 	size_t size;
1116 	unsigned long addr;
1117 	unsigned blkbits = inode->i_blkbits;
1118 	unsigned bdev_blkbits = 0;
1119 	unsigned blocksize_mask = (1 << blkbits) - 1;
1120 	ssize_t retval = -EINVAL;
1121 	loff_t end = offset;
1122 	struct dio *dio;
1123 	int release_i_mutex = 0;
1124 	int acquire_i_mutex = 0;
1125 
1126 	if (rw & WRITE)
1127 		rw = WRITE_ODIRECT;
1128 
1129 	if (bdev)
1130 		bdev_blkbits = blksize_bits(bdev_logical_block_size(bdev));
1131 
1132 	if (offset & blocksize_mask) {
1133 		if (bdev)
1134 			 blkbits = bdev_blkbits;
1135 		blocksize_mask = (1 << blkbits) - 1;
1136 		if (offset & blocksize_mask)
1137 			goto out;
1138 	}
1139 
1140 	/* Check the memory alignment.  Blocks cannot straddle pages */
1141 	for (seg = 0; seg < nr_segs; seg++) {
1142 		addr = (unsigned long)iov[seg].iov_base;
1143 		size = iov[seg].iov_len;
1144 		end += size;
1145 		if ((addr & blocksize_mask) || (size & blocksize_mask))  {
1146 			if (bdev)
1147 				 blkbits = bdev_blkbits;
1148 			blocksize_mask = (1 << blkbits) - 1;
1149 			if ((addr & blocksize_mask) || (size & blocksize_mask))
1150 				goto out;
1151 		}
1152 	}
1153 
1154 	dio = kzalloc(sizeof(*dio), GFP_KERNEL);
1155 	retval = -ENOMEM;
1156 	if (!dio)
1157 		goto out;
1158 
1159 	/*
1160 	 * For block device access DIO_NO_LOCKING is used,
1161 	 *	neither readers nor writers do any locking at all
1162 	 * For regular files using DIO_LOCKING,
1163 	 *	readers need to grab i_mutex and i_alloc_sem
1164 	 *	writers need to grab i_alloc_sem only (i_mutex is already held)
1165 	 * For regular files using DIO_OWN_LOCKING,
1166 	 *	neither readers nor writers take any locks here
1167 	 */
1168 	dio->lock_type = dio_lock_type;
1169 	if (dio_lock_type != DIO_NO_LOCKING) {
1170 		/* watch out for a 0 len io from a tricksy fs */
1171 		if (rw == READ && end > offset) {
1172 			struct address_space *mapping;
1173 
1174 			mapping = iocb->ki_filp->f_mapping;
1175 			if (dio_lock_type != DIO_OWN_LOCKING) {
1176 				mutex_lock(&inode->i_mutex);
1177 				release_i_mutex = 1;
1178 			}
1179 
1180 			retval = filemap_write_and_wait_range(mapping, offset,
1181 							      end - 1);
1182 			if (retval) {
1183 				kfree(dio);
1184 				goto out;
1185 			}
1186 
1187 			if (dio_lock_type == DIO_OWN_LOCKING) {
1188 				mutex_unlock(&inode->i_mutex);
1189 				acquire_i_mutex = 1;
1190 			}
1191 		}
1192 
1193 		if (dio_lock_type == DIO_LOCKING)
1194 			/* lockdep: not the owner will release it */
1195 			down_read_non_owner(&inode->i_alloc_sem);
1196 	}
1197 
1198 	/*
1199 	 * For file extending writes updating i_size before data
1200 	 * writeouts complete can expose uninitialized blocks. So
1201 	 * even for AIO, we need to wait for i/o to complete before
1202 	 * returning in this case.
1203 	 */
1204 	dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) &&
1205 		(end > i_size_read(inode)));
1206 
1207 	retval = direct_io_worker(rw, iocb, inode, iov, offset,
1208 				nr_segs, blkbits, get_block, end_io, dio);
1209 
1210 	/*
1211 	 * In case of error extending write may have instantiated a few
1212 	 * blocks outside i_size. Trim these off again for DIO_LOCKING.
1213 	 * NOTE: DIO_NO_LOCK/DIO_OWN_LOCK callers have to handle this by
1214 	 * it's own meaner.
1215 	 */
1216 	if (unlikely(retval < 0 && (rw & WRITE))) {
1217 		loff_t isize = i_size_read(inode);
1218 
1219 		if (end > isize && dio_lock_type == DIO_LOCKING)
1220 			vmtruncate(inode, isize);
1221 	}
1222 
1223 	if (rw == READ && dio_lock_type == DIO_LOCKING)
1224 		release_i_mutex = 0;
1225 
1226 out:
1227 	if (release_i_mutex)
1228 		mutex_unlock(&inode->i_mutex);
1229 	else if (acquire_i_mutex)
1230 		mutex_lock(&inode->i_mutex);
1231 	return retval;
1232 }
1233 EXPORT_SYMBOL(__blockdev_direct_IO);
1234