1 /* 2 * fs/direct-io.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * O_DIRECT 7 * 8 * 04Jul2002 Andrew Morton 9 * Initial version 10 * 11Sep2002 janetinc@us.ibm.com 11 * added readv/writev support. 12 * 29Oct2002 Andrew Morton 13 * rewrote bio_add_page() support. 14 * 30Oct2002 pbadari@us.ibm.com 15 * added support for non-aligned IO. 16 * 06Nov2002 pbadari@us.ibm.com 17 * added asynchronous IO support. 18 * 21Jul2003 nathans@sgi.com 19 * added IO completion notifier. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/types.h> 25 #include <linux/fs.h> 26 #include <linux/mm.h> 27 #include <linux/slab.h> 28 #include <linux/highmem.h> 29 #include <linux/pagemap.h> 30 #include <linux/task_io_accounting_ops.h> 31 #include <linux/bio.h> 32 #include <linux/wait.h> 33 #include <linux/err.h> 34 #include <linux/blkdev.h> 35 #include <linux/buffer_head.h> 36 #include <linux/rwsem.h> 37 #include <linux/uio.h> 38 #include <asm/atomic.h> 39 40 /* 41 * How many user pages to map in one call to get_user_pages(). This determines 42 * the size of a structure on the stack. 43 */ 44 #define DIO_PAGES 64 45 46 /* 47 * This code generally works in units of "dio_blocks". A dio_block is 48 * somewhere between the hard sector size and the filesystem block size. it 49 * is determined on a per-invocation basis. When talking to the filesystem 50 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity 51 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted 52 * to bio_block quantities by shifting left by blkfactor. 53 * 54 * If blkfactor is zero then the user's request was aligned to the filesystem's 55 * blocksize. 56 * 57 * lock_type is DIO_LOCKING for regular files on direct-IO-naive filesystems. 58 * This determines whether we need to do the fancy locking which prevents 59 * direct-IO from being able to read uninitialised disk blocks. If its zero 60 * (blockdev) this locking is not done, and if it is DIO_OWN_LOCKING i_mutex is 61 * not held for the entire direct write (taken briefly, initially, during a 62 * direct read though, but its never held for the duration of a direct-IO). 63 */ 64 65 struct dio { 66 /* BIO submission state */ 67 struct bio *bio; /* bio under assembly */ 68 struct inode *inode; 69 int rw; 70 loff_t i_size; /* i_size when submitted */ 71 int lock_type; /* doesn't change */ 72 unsigned blkbits; /* doesn't change */ 73 unsigned blkfactor; /* When we're using an alignment which 74 is finer than the filesystem's soft 75 blocksize, this specifies how much 76 finer. blkfactor=2 means 1/4-block 77 alignment. Does not change */ 78 unsigned start_zero_done; /* flag: sub-blocksize zeroing has 79 been performed at the start of a 80 write */ 81 int pages_in_io; /* approximate total IO pages */ 82 size_t size; /* total request size (doesn't change)*/ 83 sector_t block_in_file; /* Current offset into the underlying 84 file in dio_block units. */ 85 unsigned blocks_available; /* At block_in_file. changes */ 86 sector_t final_block_in_request;/* doesn't change */ 87 unsigned first_block_in_page; /* doesn't change, Used only once */ 88 int boundary; /* prev block is at a boundary */ 89 int reap_counter; /* rate limit reaping */ 90 get_block_t *get_block; /* block mapping function */ 91 dio_iodone_t *end_io; /* IO completion function */ 92 sector_t final_block_in_bio; /* current final block in bio + 1 */ 93 sector_t next_block_for_io; /* next block to be put under IO, 94 in dio_blocks units */ 95 struct buffer_head map_bh; /* last get_block() result */ 96 97 /* 98 * Deferred addition of a page to the dio. These variables are 99 * private to dio_send_cur_page(), submit_page_section() and 100 * dio_bio_add_page(). 101 */ 102 struct page *cur_page; /* The page */ 103 unsigned cur_page_offset; /* Offset into it, in bytes */ 104 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ 105 sector_t cur_page_block; /* Where it starts */ 106 107 /* 108 * Page fetching state. These variables belong to dio_refill_pages(). 109 */ 110 int curr_page; /* changes */ 111 int total_pages; /* doesn't change */ 112 unsigned long curr_user_address;/* changes */ 113 114 /* 115 * Page queue. These variables belong to dio_refill_pages() and 116 * dio_get_page(). 117 */ 118 struct page *pages[DIO_PAGES]; /* page buffer */ 119 unsigned head; /* next page to process */ 120 unsigned tail; /* last valid page + 1 */ 121 int page_errors; /* errno from get_user_pages() */ 122 123 /* BIO completion state */ 124 spinlock_t bio_lock; /* protects BIO fields below */ 125 unsigned long refcount; /* direct_io_worker() and bios */ 126 struct bio *bio_list; /* singly linked via bi_private */ 127 struct task_struct *waiter; /* waiting task (NULL if none) */ 128 129 /* AIO related stuff */ 130 struct kiocb *iocb; /* kiocb */ 131 int is_async; /* is IO async ? */ 132 int io_error; /* IO error in completion path */ 133 ssize_t result; /* IO result */ 134 }; 135 136 /* 137 * How many pages are in the queue? 138 */ 139 static inline unsigned dio_pages_present(struct dio *dio) 140 { 141 return dio->tail - dio->head; 142 } 143 144 /* 145 * Go grab and pin some userspace pages. Typically we'll get 64 at a time. 146 */ 147 static int dio_refill_pages(struct dio *dio) 148 { 149 int ret; 150 int nr_pages; 151 152 nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES); 153 ret = get_user_pages_fast( 154 dio->curr_user_address, /* Where from? */ 155 nr_pages, /* How many pages? */ 156 dio->rw == READ, /* Write to memory? */ 157 &dio->pages[0]); /* Put results here */ 158 159 if (ret < 0 && dio->blocks_available && (dio->rw & WRITE)) { 160 struct page *page = ZERO_PAGE(0); 161 /* 162 * A memory fault, but the filesystem has some outstanding 163 * mapped blocks. We need to use those blocks up to avoid 164 * leaking stale data in the file. 165 */ 166 if (dio->page_errors == 0) 167 dio->page_errors = ret; 168 page_cache_get(page); 169 dio->pages[0] = page; 170 dio->head = 0; 171 dio->tail = 1; 172 ret = 0; 173 goto out; 174 } 175 176 if (ret >= 0) { 177 dio->curr_user_address += ret * PAGE_SIZE; 178 dio->curr_page += ret; 179 dio->head = 0; 180 dio->tail = ret; 181 ret = 0; 182 } 183 out: 184 return ret; 185 } 186 187 /* 188 * Get another userspace page. Returns an ERR_PTR on error. Pages are 189 * buffered inside the dio so that we can call get_user_pages() against a 190 * decent number of pages, less frequently. To provide nicer use of the 191 * L1 cache. 192 */ 193 static struct page *dio_get_page(struct dio *dio) 194 { 195 if (dio_pages_present(dio) == 0) { 196 int ret; 197 198 ret = dio_refill_pages(dio); 199 if (ret) 200 return ERR_PTR(ret); 201 BUG_ON(dio_pages_present(dio) == 0); 202 } 203 return dio->pages[dio->head++]; 204 } 205 206 /** 207 * dio_complete() - called when all DIO BIO I/O has been completed 208 * @offset: the byte offset in the file of the completed operation 209 * 210 * This releases locks as dictated by the locking type, lets interested parties 211 * know that a DIO operation has completed, and calculates the resulting return 212 * code for the operation. 213 * 214 * It lets the filesystem know if it registered an interest earlier via 215 * get_block. Pass the private field of the map buffer_head so that 216 * filesystems can use it to hold additional state between get_block calls and 217 * dio_complete. 218 */ 219 static int dio_complete(struct dio *dio, loff_t offset, int ret) 220 { 221 ssize_t transferred = 0; 222 223 /* 224 * AIO submission can race with bio completion to get here while 225 * expecting to have the last io completed by bio completion. 226 * In that case -EIOCBQUEUED is in fact not an error we want 227 * to preserve through this call. 228 */ 229 if (ret == -EIOCBQUEUED) 230 ret = 0; 231 232 if (dio->result) { 233 transferred = dio->result; 234 235 /* Check for short read case */ 236 if ((dio->rw == READ) && ((offset + transferred) > dio->i_size)) 237 transferred = dio->i_size - offset; 238 } 239 240 if (dio->end_io && dio->result) 241 dio->end_io(dio->iocb, offset, transferred, 242 dio->map_bh.b_private); 243 if (dio->lock_type == DIO_LOCKING) 244 /* lockdep: non-owner release */ 245 up_read_non_owner(&dio->inode->i_alloc_sem); 246 247 if (ret == 0) 248 ret = dio->page_errors; 249 if (ret == 0) 250 ret = dio->io_error; 251 if (ret == 0) 252 ret = transferred; 253 254 return ret; 255 } 256 257 static int dio_bio_complete(struct dio *dio, struct bio *bio); 258 /* 259 * Asynchronous IO callback. 260 */ 261 static void dio_bio_end_aio(struct bio *bio, int error) 262 { 263 struct dio *dio = bio->bi_private; 264 unsigned long remaining; 265 unsigned long flags; 266 267 /* cleanup the bio */ 268 dio_bio_complete(dio, bio); 269 270 spin_lock_irqsave(&dio->bio_lock, flags); 271 remaining = --dio->refcount; 272 if (remaining == 1 && dio->waiter) 273 wake_up_process(dio->waiter); 274 spin_unlock_irqrestore(&dio->bio_lock, flags); 275 276 if (remaining == 0) { 277 int ret = dio_complete(dio, dio->iocb->ki_pos, 0); 278 aio_complete(dio->iocb, ret, 0); 279 kfree(dio); 280 } 281 } 282 283 /* 284 * The BIO completion handler simply queues the BIO up for the process-context 285 * handler. 286 * 287 * During I/O bi_private points at the dio. After I/O, bi_private is used to 288 * implement a singly-linked list of completed BIOs, at dio->bio_list. 289 */ 290 static void dio_bio_end_io(struct bio *bio, int error) 291 { 292 struct dio *dio = bio->bi_private; 293 unsigned long flags; 294 295 spin_lock_irqsave(&dio->bio_lock, flags); 296 bio->bi_private = dio->bio_list; 297 dio->bio_list = bio; 298 if (--dio->refcount == 1 && dio->waiter) 299 wake_up_process(dio->waiter); 300 spin_unlock_irqrestore(&dio->bio_lock, flags); 301 } 302 303 static int 304 dio_bio_alloc(struct dio *dio, struct block_device *bdev, 305 sector_t first_sector, int nr_vecs) 306 { 307 struct bio *bio; 308 309 bio = bio_alloc(GFP_KERNEL, nr_vecs); 310 311 bio->bi_bdev = bdev; 312 bio->bi_sector = first_sector; 313 if (dio->is_async) 314 bio->bi_end_io = dio_bio_end_aio; 315 else 316 bio->bi_end_io = dio_bio_end_io; 317 318 dio->bio = bio; 319 return 0; 320 } 321 322 /* 323 * In the AIO read case we speculatively dirty the pages before starting IO. 324 * During IO completion, any of these pages which happen to have been written 325 * back will be redirtied by bio_check_pages_dirty(). 326 * 327 * bios hold a dio reference between submit_bio and ->end_io. 328 */ 329 static void dio_bio_submit(struct dio *dio) 330 { 331 struct bio *bio = dio->bio; 332 unsigned long flags; 333 334 bio->bi_private = dio; 335 336 spin_lock_irqsave(&dio->bio_lock, flags); 337 dio->refcount++; 338 spin_unlock_irqrestore(&dio->bio_lock, flags); 339 340 if (dio->is_async && dio->rw == READ) 341 bio_set_pages_dirty(bio); 342 343 submit_bio(dio->rw, bio); 344 345 dio->bio = NULL; 346 dio->boundary = 0; 347 } 348 349 /* 350 * Release any resources in case of a failure 351 */ 352 static void dio_cleanup(struct dio *dio) 353 { 354 while (dio_pages_present(dio)) 355 page_cache_release(dio_get_page(dio)); 356 } 357 358 /* 359 * Wait for the next BIO to complete. Remove it and return it. NULL is 360 * returned once all BIOs have been completed. This must only be called once 361 * all bios have been issued so that dio->refcount can only decrease. This 362 * requires that that the caller hold a reference on the dio. 363 */ 364 static struct bio *dio_await_one(struct dio *dio) 365 { 366 unsigned long flags; 367 struct bio *bio = NULL; 368 369 spin_lock_irqsave(&dio->bio_lock, flags); 370 371 /* 372 * Wait as long as the list is empty and there are bios in flight. bio 373 * completion drops the count, maybe adds to the list, and wakes while 374 * holding the bio_lock so we don't need set_current_state()'s barrier 375 * and can call it after testing our condition. 376 */ 377 while (dio->refcount > 1 && dio->bio_list == NULL) { 378 __set_current_state(TASK_UNINTERRUPTIBLE); 379 dio->waiter = current; 380 spin_unlock_irqrestore(&dio->bio_lock, flags); 381 io_schedule(); 382 /* wake up sets us TASK_RUNNING */ 383 spin_lock_irqsave(&dio->bio_lock, flags); 384 dio->waiter = NULL; 385 } 386 if (dio->bio_list) { 387 bio = dio->bio_list; 388 dio->bio_list = bio->bi_private; 389 } 390 spin_unlock_irqrestore(&dio->bio_lock, flags); 391 return bio; 392 } 393 394 /* 395 * Process one completed BIO. No locks are held. 396 */ 397 static int dio_bio_complete(struct dio *dio, struct bio *bio) 398 { 399 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 400 struct bio_vec *bvec = bio->bi_io_vec; 401 int page_no; 402 403 if (!uptodate) 404 dio->io_error = -EIO; 405 406 if (dio->is_async && dio->rw == READ) { 407 bio_check_pages_dirty(bio); /* transfers ownership */ 408 } else { 409 for (page_no = 0; page_no < bio->bi_vcnt; page_no++) { 410 struct page *page = bvec[page_no].bv_page; 411 412 if (dio->rw == READ && !PageCompound(page)) 413 set_page_dirty_lock(page); 414 page_cache_release(page); 415 } 416 bio_put(bio); 417 } 418 return uptodate ? 0 : -EIO; 419 } 420 421 /* 422 * Wait on and process all in-flight BIOs. This must only be called once 423 * all bios have been issued so that the refcount can only decrease. 424 * This just waits for all bios to make it through dio_bio_complete. IO 425 * errors are propagated through dio->io_error and should be propagated via 426 * dio_complete(). 427 */ 428 static void dio_await_completion(struct dio *dio) 429 { 430 struct bio *bio; 431 do { 432 bio = dio_await_one(dio); 433 if (bio) 434 dio_bio_complete(dio, bio); 435 } while (bio); 436 } 437 438 /* 439 * A really large O_DIRECT read or write can generate a lot of BIOs. So 440 * to keep the memory consumption sane we periodically reap any completed BIOs 441 * during the BIO generation phase. 442 * 443 * This also helps to limit the peak amount of pinned userspace memory. 444 */ 445 static int dio_bio_reap(struct dio *dio) 446 { 447 int ret = 0; 448 449 if (dio->reap_counter++ >= 64) { 450 while (dio->bio_list) { 451 unsigned long flags; 452 struct bio *bio; 453 int ret2; 454 455 spin_lock_irqsave(&dio->bio_lock, flags); 456 bio = dio->bio_list; 457 dio->bio_list = bio->bi_private; 458 spin_unlock_irqrestore(&dio->bio_lock, flags); 459 ret2 = dio_bio_complete(dio, bio); 460 if (ret == 0) 461 ret = ret2; 462 } 463 dio->reap_counter = 0; 464 } 465 return ret; 466 } 467 468 /* 469 * Call into the fs to map some more disk blocks. We record the current number 470 * of available blocks at dio->blocks_available. These are in units of the 471 * fs blocksize, (1 << inode->i_blkbits). 472 * 473 * The fs is allowed to map lots of blocks at once. If it wants to do that, 474 * it uses the passed inode-relative block number as the file offset, as usual. 475 * 476 * get_block() is passed the number of i_blkbits-sized blocks which direct_io 477 * has remaining to do. The fs should not map more than this number of blocks. 478 * 479 * If the fs has mapped a lot of blocks, it should populate bh->b_size to 480 * indicate how much contiguous disk space has been made available at 481 * bh->b_blocknr. 482 * 483 * If *any* of the mapped blocks are new, then the fs must set buffer_new(). 484 * This isn't very efficient... 485 * 486 * In the case of filesystem holes: the fs may return an arbitrarily-large 487 * hole by returning an appropriate value in b_size and by clearing 488 * buffer_mapped(). However the direct-io code will only process holes one 489 * block at a time - it will repeatedly call get_block() as it walks the hole. 490 */ 491 static int get_more_blocks(struct dio *dio) 492 { 493 int ret; 494 struct buffer_head *map_bh = &dio->map_bh; 495 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ 496 unsigned long fs_count; /* Number of filesystem-sized blocks */ 497 unsigned long dio_count;/* Number of dio_block-sized blocks */ 498 unsigned long blkmask; 499 int create; 500 501 /* 502 * If there was a memory error and we've overwritten all the 503 * mapped blocks then we can now return that memory error 504 */ 505 ret = dio->page_errors; 506 if (ret == 0) { 507 BUG_ON(dio->block_in_file >= dio->final_block_in_request); 508 fs_startblk = dio->block_in_file >> dio->blkfactor; 509 dio_count = dio->final_block_in_request - dio->block_in_file; 510 fs_count = dio_count >> dio->blkfactor; 511 blkmask = (1 << dio->blkfactor) - 1; 512 if (dio_count & blkmask) 513 fs_count++; 514 515 map_bh->b_state = 0; 516 map_bh->b_size = fs_count << dio->inode->i_blkbits; 517 518 create = dio->rw & WRITE; 519 if (dio->lock_type == DIO_LOCKING) { 520 if (dio->block_in_file < (i_size_read(dio->inode) >> 521 dio->blkbits)) 522 create = 0; 523 } else if (dio->lock_type == DIO_NO_LOCKING) { 524 create = 0; 525 } 526 527 /* 528 * For writes inside i_size we forbid block creations: only 529 * overwrites are permitted. We fall back to buffered writes 530 * at a higher level for inside-i_size block-instantiating 531 * writes. 532 */ 533 ret = (*dio->get_block)(dio->inode, fs_startblk, 534 map_bh, create); 535 } 536 return ret; 537 } 538 539 /* 540 * There is no bio. Make one now. 541 */ 542 static int dio_new_bio(struct dio *dio, sector_t start_sector) 543 { 544 sector_t sector; 545 int ret, nr_pages; 546 547 ret = dio_bio_reap(dio); 548 if (ret) 549 goto out; 550 sector = start_sector << (dio->blkbits - 9); 551 nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev)); 552 BUG_ON(nr_pages <= 0); 553 ret = dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages); 554 dio->boundary = 0; 555 out: 556 return ret; 557 } 558 559 /* 560 * Attempt to put the current chunk of 'cur_page' into the current BIO. If 561 * that was successful then update final_block_in_bio and take a ref against 562 * the just-added page. 563 * 564 * Return zero on success. Non-zero means the caller needs to start a new BIO. 565 */ 566 static int dio_bio_add_page(struct dio *dio) 567 { 568 int ret; 569 570 ret = bio_add_page(dio->bio, dio->cur_page, 571 dio->cur_page_len, dio->cur_page_offset); 572 if (ret == dio->cur_page_len) { 573 /* 574 * Decrement count only, if we are done with this page 575 */ 576 if ((dio->cur_page_len + dio->cur_page_offset) == PAGE_SIZE) 577 dio->pages_in_io--; 578 page_cache_get(dio->cur_page); 579 dio->final_block_in_bio = dio->cur_page_block + 580 (dio->cur_page_len >> dio->blkbits); 581 ret = 0; 582 } else { 583 ret = 1; 584 } 585 return ret; 586 } 587 588 /* 589 * Put cur_page under IO. The section of cur_page which is described by 590 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page 591 * starts on-disk at cur_page_block. 592 * 593 * We take a ref against the page here (on behalf of its presence in the bio). 594 * 595 * The caller of this function is responsible for removing cur_page from the 596 * dio, and for dropping the refcount which came from that presence. 597 */ 598 static int dio_send_cur_page(struct dio *dio) 599 { 600 int ret = 0; 601 602 if (dio->bio) { 603 /* 604 * See whether this new request is contiguous with the old 605 */ 606 if (dio->final_block_in_bio != dio->cur_page_block) 607 dio_bio_submit(dio); 608 /* 609 * Submit now if the underlying fs is about to perform a 610 * metadata read 611 */ 612 if (dio->boundary) 613 dio_bio_submit(dio); 614 } 615 616 if (dio->bio == NULL) { 617 ret = dio_new_bio(dio, dio->cur_page_block); 618 if (ret) 619 goto out; 620 } 621 622 if (dio_bio_add_page(dio) != 0) { 623 dio_bio_submit(dio); 624 ret = dio_new_bio(dio, dio->cur_page_block); 625 if (ret == 0) { 626 ret = dio_bio_add_page(dio); 627 BUG_ON(ret != 0); 628 } 629 } 630 out: 631 return ret; 632 } 633 634 /* 635 * An autonomous function to put a chunk of a page under deferred IO. 636 * 637 * The caller doesn't actually know (or care) whether this piece of page is in 638 * a BIO, or is under IO or whatever. We just take care of all possible 639 * situations here. The separation between the logic of do_direct_IO() and 640 * that of submit_page_section() is important for clarity. Please don't break. 641 * 642 * The chunk of page starts on-disk at blocknr. 643 * 644 * We perform deferred IO, by recording the last-submitted page inside our 645 * private part of the dio structure. If possible, we just expand the IO 646 * across that page here. 647 * 648 * If that doesn't work out then we put the old page into the bio and add this 649 * page to the dio instead. 650 */ 651 static int 652 submit_page_section(struct dio *dio, struct page *page, 653 unsigned offset, unsigned len, sector_t blocknr) 654 { 655 int ret = 0; 656 657 if (dio->rw & WRITE) { 658 /* 659 * Read accounting is performed in submit_bio() 660 */ 661 task_io_account_write(len); 662 } 663 664 /* 665 * Can we just grow the current page's presence in the dio? 666 */ 667 if ( (dio->cur_page == page) && 668 (dio->cur_page_offset + dio->cur_page_len == offset) && 669 (dio->cur_page_block + 670 (dio->cur_page_len >> dio->blkbits) == blocknr)) { 671 dio->cur_page_len += len; 672 673 /* 674 * If dio->boundary then we want to schedule the IO now to 675 * avoid metadata seeks. 676 */ 677 if (dio->boundary) { 678 ret = dio_send_cur_page(dio); 679 page_cache_release(dio->cur_page); 680 dio->cur_page = NULL; 681 } 682 goto out; 683 } 684 685 /* 686 * If there's a deferred page already there then send it. 687 */ 688 if (dio->cur_page) { 689 ret = dio_send_cur_page(dio); 690 page_cache_release(dio->cur_page); 691 dio->cur_page = NULL; 692 if (ret) 693 goto out; 694 } 695 696 page_cache_get(page); /* It is in dio */ 697 dio->cur_page = page; 698 dio->cur_page_offset = offset; 699 dio->cur_page_len = len; 700 dio->cur_page_block = blocknr; 701 out: 702 return ret; 703 } 704 705 /* 706 * Clean any dirty buffers in the blockdev mapping which alias newly-created 707 * file blocks. Only called for S_ISREG files - blockdevs do not set 708 * buffer_new 709 */ 710 static void clean_blockdev_aliases(struct dio *dio) 711 { 712 unsigned i; 713 unsigned nblocks; 714 715 nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits; 716 717 for (i = 0; i < nblocks; i++) { 718 unmap_underlying_metadata(dio->map_bh.b_bdev, 719 dio->map_bh.b_blocknr + i); 720 } 721 } 722 723 /* 724 * If we are not writing the entire block and get_block() allocated 725 * the block for us, we need to fill-in the unused portion of the 726 * block with zeros. This happens only if user-buffer, fileoffset or 727 * io length is not filesystem block-size multiple. 728 * 729 * `end' is zero if we're doing the start of the IO, 1 at the end of the 730 * IO. 731 */ 732 static void dio_zero_block(struct dio *dio, int end) 733 { 734 unsigned dio_blocks_per_fs_block; 735 unsigned this_chunk_blocks; /* In dio_blocks */ 736 unsigned this_chunk_bytes; 737 struct page *page; 738 739 dio->start_zero_done = 1; 740 if (!dio->blkfactor || !buffer_new(&dio->map_bh)) 741 return; 742 743 dio_blocks_per_fs_block = 1 << dio->blkfactor; 744 this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1); 745 746 if (!this_chunk_blocks) 747 return; 748 749 /* 750 * We need to zero out part of an fs block. It is either at the 751 * beginning or the end of the fs block. 752 */ 753 if (end) 754 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; 755 756 this_chunk_bytes = this_chunk_blocks << dio->blkbits; 757 758 page = ZERO_PAGE(0); 759 if (submit_page_section(dio, page, 0, this_chunk_bytes, 760 dio->next_block_for_io)) 761 return; 762 763 dio->next_block_for_io += this_chunk_blocks; 764 } 765 766 /* 767 * Walk the user pages, and the file, mapping blocks to disk and generating 768 * a sequence of (page,offset,len,block) mappings. These mappings are injected 769 * into submit_page_section(), which takes care of the next stage of submission 770 * 771 * Direct IO against a blockdev is different from a file. Because we can 772 * happily perform page-sized but 512-byte aligned IOs. It is important that 773 * blockdev IO be able to have fine alignment and large sizes. 774 * 775 * So what we do is to permit the ->get_block function to populate bh.b_size 776 * with the size of IO which is permitted at this offset and this i_blkbits. 777 * 778 * For best results, the blockdev should be set up with 512-byte i_blkbits and 779 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives 780 * fine alignment but still allows this function to work in PAGE_SIZE units. 781 */ 782 static int do_direct_IO(struct dio *dio) 783 { 784 const unsigned blkbits = dio->blkbits; 785 const unsigned blocks_per_page = PAGE_SIZE >> blkbits; 786 struct page *page; 787 unsigned block_in_page; 788 struct buffer_head *map_bh = &dio->map_bh; 789 int ret = 0; 790 791 /* The I/O can start at any block offset within the first page */ 792 block_in_page = dio->first_block_in_page; 793 794 while (dio->block_in_file < dio->final_block_in_request) { 795 page = dio_get_page(dio); 796 if (IS_ERR(page)) { 797 ret = PTR_ERR(page); 798 goto out; 799 } 800 801 while (block_in_page < blocks_per_page) { 802 unsigned offset_in_page = block_in_page << blkbits; 803 unsigned this_chunk_bytes; /* # of bytes mapped */ 804 unsigned this_chunk_blocks; /* # of blocks */ 805 unsigned u; 806 807 if (dio->blocks_available == 0) { 808 /* 809 * Need to go and map some more disk 810 */ 811 unsigned long blkmask; 812 unsigned long dio_remainder; 813 814 ret = get_more_blocks(dio); 815 if (ret) { 816 page_cache_release(page); 817 goto out; 818 } 819 if (!buffer_mapped(map_bh)) 820 goto do_holes; 821 822 dio->blocks_available = 823 map_bh->b_size >> dio->blkbits; 824 dio->next_block_for_io = 825 map_bh->b_blocknr << dio->blkfactor; 826 if (buffer_new(map_bh)) 827 clean_blockdev_aliases(dio); 828 829 if (!dio->blkfactor) 830 goto do_holes; 831 832 blkmask = (1 << dio->blkfactor) - 1; 833 dio_remainder = (dio->block_in_file & blkmask); 834 835 /* 836 * If we are at the start of IO and that IO 837 * starts partway into a fs-block, 838 * dio_remainder will be non-zero. If the IO 839 * is a read then we can simply advance the IO 840 * cursor to the first block which is to be 841 * read. But if the IO is a write and the 842 * block was newly allocated we cannot do that; 843 * the start of the fs block must be zeroed out 844 * on-disk 845 */ 846 if (!buffer_new(map_bh)) 847 dio->next_block_for_io += dio_remainder; 848 dio->blocks_available -= dio_remainder; 849 } 850 do_holes: 851 /* Handle holes */ 852 if (!buffer_mapped(map_bh)) { 853 loff_t i_size_aligned; 854 855 /* AKPM: eargh, -ENOTBLK is a hack */ 856 if (dio->rw & WRITE) { 857 page_cache_release(page); 858 return -ENOTBLK; 859 } 860 861 /* 862 * Be sure to account for a partial block as the 863 * last block in the file 864 */ 865 i_size_aligned = ALIGN(i_size_read(dio->inode), 866 1 << blkbits); 867 if (dio->block_in_file >= 868 i_size_aligned >> blkbits) { 869 /* We hit eof */ 870 page_cache_release(page); 871 goto out; 872 } 873 zero_user(page, block_in_page << blkbits, 874 1 << blkbits); 875 dio->block_in_file++; 876 block_in_page++; 877 goto next_block; 878 } 879 880 /* 881 * If we're performing IO which has an alignment which 882 * is finer than the underlying fs, go check to see if 883 * we must zero out the start of this block. 884 */ 885 if (unlikely(dio->blkfactor && !dio->start_zero_done)) 886 dio_zero_block(dio, 0); 887 888 /* 889 * Work out, in this_chunk_blocks, how much disk we 890 * can add to this page 891 */ 892 this_chunk_blocks = dio->blocks_available; 893 u = (PAGE_SIZE - offset_in_page) >> blkbits; 894 if (this_chunk_blocks > u) 895 this_chunk_blocks = u; 896 u = dio->final_block_in_request - dio->block_in_file; 897 if (this_chunk_blocks > u) 898 this_chunk_blocks = u; 899 this_chunk_bytes = this_chunk_blocks << blkbits; 900 BUG_ON(this_chunk_bytes == 0); 901 902 dio->boundary = buffer_boundary(map_bh); 903 ret = submit_page_section(dio, page, offset_in_page, 904 this_chunk_bytes, dio->next_block_for_io); 905 if (ret) { 906 page_cache_release(page); 907 goto out; 908 } 909 dio->next_block_for_io += this_chunk_blocks; 910 911 dio->block_in_file += this_chunk_blocks; 912 block_in_page += this_chunk_blocks; 913 dio->blocks_available -= this_chunk_blocks; 914 next_block: 915 BUG_ON(dio->block_in_file > dio->final_block_in_request); 916 if (dio->block_in_file == dio->final_block_in_request) 917 break; 918 } 919 920 /* Drop the ref which was taken in get_user_pages() */ 921 page_cache_release(page); 922 block_in_page = 0; 923 } 924 out: 925 return ret; 926 } 927 928 /* 929 * Releases both i_mutex and i_alloc_sem 930 */ 931 static ssize_t 932 direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode, 933 const struct iovec *iov, loff_t offset, unsigned long nr_segs, 934 unsigned blkbits, get_block_t get_block, dio_iodone_t end_io, 935 struct dio *dio) 936 { 937 unsigned long user_addr; 938 unsigned long flags; 939 int seg; 940 ssize_t ret = 0; 941 ssize_t ret2; 942 size_t bytes; 943 944 dio->inode = inode; 945 dio->rw = rw; 946 dio->blkbits = blkbits; 947 dio->blkfactor = inode->i_blkbits - blkbits; 948 dio->block_in_file = offset >> blkbits; 949 950 dio->get_block = get_block; 951 dio->end_io = end_io; 952 dio->final_block_in_bio = -1; 953 dio->next_block_for_io = -1; 954 955 dio->iocb = iocb; 956 dio->i_size = i_size_read(inode); 957 958 spin_lock_init(&dio->bio_lock); 959 dio->refcount = 1; 960 961 /* 962 * In case of non-aligned buffers, we may need 2 more 963 * pages since we need to zero out first and last block. 964 */ 965 if (unlikely(dio->blkfactor)) 966 dio->pages_in_io = 2; 967 968 for (seg = 0; seg < nr_segs; seg++) { 969 user_addr = (unsigned long)iov[seg].iov_base; 970 dio->pages_in_io += 971 ((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE 972 - user_addr/PAGE_SIZE); 973 } 974 975 for (seg = 0; seg < nr_segs; seg++) { 976 user_addr = (unsigned long)iov[seg].iov_base; 977 dio->size += bytes = iov[seg].iov_len; 978 979 /* Index into the first page of the first block */ 980 dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits; 981 dio->final_block_in_request = dio->block_in_file + 982 (bytes >> blkbits); 983 /* Page fetching state */ 984 dio->head = 0; 985 dio->tail = 0; 986 dio->curr_page = 0; 987 988 dio->total_pages = 0; 989 if (user_addr & (PAGE_SIZE-1)) { 990 dio->total_pages++; 991 bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1)); 992 } 993 dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE; 994 dio->curr_user_address = user_addr; 995 996 ret = do_direct_IO(dio); 997 998 dio->result += iov[seg].iov_len - 999 ((dio->final_block_in_request - dio->block_in_file) << 1000 blkbits); 1001 1002 if (ret) { 1003 dio_cleanup(dio); 1004 break; 1005 } 1006 } /* end iovec loop */ 1007 1008 if (ret == -ENOTBLK && (rw & WRITE)) { 1009 /* 1010 * The remaining part of the request will be 1011 * be handled by buffered I/O when we return 1012 */ 1013 ret = 0; 1014 } 1015 /* 1016 * There may be some unwritten disk at the end of a part-written 1017 * fs-block-sized block. Go zero that now. 1018 */ 1019 dio_zero_block(dio, 1); 1020 1021 if (dio->cur_page) { 1022 ret2 = dio_send_cur_page(dio); 1023 if (ret == 0) 1024 ret = ret2; 1025 page_cache_release(dio->cur_page); 1026 dio->cur_page = NULL; 1027 } 1028 if (dio->bio) 1029 dio_bio_submit(dio); 1030 1031 /* All IO is now issued, send it on its way */ 1032 blk_run_address_space(inode->i_mapping); 1033 1034 /* 1035 * It is possible that, we return short IO due to end of file. 1036 * In that case, we need to release all the pages we got hold on. 1037 */ 1038 dio_cleanup(dio); 1039 1040 /* 1041 * All block lookups have been performed. For READ requests 1042 * we can let i_mutex go now that its achieved its purpose 1043 * of protecting us from looking up uninitialized blocks. 1044 */ 1045 if ((rw == READ) && (dio->lock_type == DIO_LOCKING)) 1046 mutex_unlock(&dio->inode->i_mutex); 1047 1048 /* 1049 * The only time we want to leave bios in flight is when a successful 1050 * partial aio read or full aio write have been setup. In that case 1051 * bio completion will call aio_complete. The only time it's safe to 1052 * call aio_complete is when we return -EIOCBQUEUED, so we key on that. 1053 * This had *better* be the only place that raises -EIOCBQUEUED. 1054 */ 1055 BUG_ON(ret == -EIOCBQUEUED); 1056 if (dio->is_async && ret == 0 && dio->result && 1057 ((rw & READ) || (dio->result == dio->size))) 1058 ret = -EIOCBQUEUED; 1059 1060 if (ret != -EIOCBQUEUED) 1061 dio_await_completion(dio); 1062 1063 /* 1064 * Sync will always be dropping the final ref and completing the 1065 * operation. AIO can if it was a broken operation described above or 1066 * in fact if all the bios race to complete before we get here. In 1067 * that case dio_complete() translates the EIOCBQUEUED into the proper 1068 * return code that the caller will hand to aio_complete(). 1069 * 1070 * This is managed by the bio_lock instead of being an atomic_t so that 1071 * completion paths can drop their ref and use the remaining count to 1072 * decide to wake the submission path atomically. 1073 */ 1074 spin_lock_irqsave(&dio->bio_lock, flags); 1075 ret2 = --dio->refcount; 1076 spin_unlock_irqrestore(&dio->bio_lock, flags); 1077 1078 if (ret2 == 0) { 1079 ret = dio_complete(dio, offset, ret); 1080 kfree(dio); 1081 } else 1082 BUG_ON(ret != -EIOCBQUEUED); 1083 1084 return ret; 1085 } 1086 1087 /* 1088 * This is a library function for use by filesystem drivers. 1089 * The locking rules are governed by the dio_lock_type parameter. 1090 * 1091 * DIO_NO_LOCKING (no locking, for raw block device access) 1092 * For writes, i_mutex is not held on entry; it is never taken. 1093 * 1094 * DIO_LOCKING (simple locking for regular files) 1095 * For writes we are called under i_mutex and return with i_mutex held, even 1096 * though it is internally dropped. 1097 * For reads, i_mutex is not held on entry, but it is taken and dropped before 1098 * returning. 1099 * 1100 * DIO_OWN_LOCKING (filesystem provides synchronisation and handling of 1101 * uninitialised data, allowing parallel direct readers and writers) 1102 * For writes we are called without i_mutex, return without it, never touch it. 1103 * For reads we are called under i_mutex and return with i_mutex held, even 1104 * though it may be internally dropped. 1105 * 1106 * Additional i_alloc_sem locking requirements described inline below. 1107 */ 1108 ssize_t 1109 __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode, 1110 struct block_device *bdev, const struct iovec *iov, loff_t offset, 1111 unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io, 1112 int dio_lock_type) 1113 { 1114 int seg; 1115 size_t size; 1116 unsigned long addr; 1117 unsigned blkbits = inode->i_blkbits; 1118 unsigned bdev_blkbits = 0; 1119 unsigned blocksize_mask = (1 << blkbits) - 1; 1120 ssize_t retval = -EINVAL; 1121 loff_t end = offset; 1122 struct dio *dio; 1123 int release_i_mutex = 0; 1124 int acquire_i_mutex = 0; 1125 1126 if (rw & WRITE) 1127 rw = WRITE_ODIRECT; 1128 1129 if (bdev) 1130 bdev_blkbits = blksize_bits(bdev_logical_block_size(bdev)); 1131 1132 if (offset & blocksize_mask) { 1133 if (bdev) 1134 blkbits = bdev_blkbits; 1135 blocksize_mask = (1 << blkbits) - 1; 1136 if (offset & blocksize_mask) 1137 goto out; 1138 } 1139 1140 /* Check the memory alignment. Blocks cannot straddle pages */ 1141 for (seg = 0; seg < nr_segs; seg++) { 1142 addr = (unsigned long)iov[seg].iov_base; 1143 size = iov[seg].iov_len; 1144 end += size; 1145 if ((addr & blocksize_mask) || (size & blocksize_mask)) { 1146 if (bdev) 1147 blkbits = bdev_blkbits; 1148 blocksize_mask = (1 << blkbits) - 1; 1149 if ((addr & blocksize_mask) || (size & blocksize_mask)) 1150 goto out; 1151 } 1152 } 1153 1154 dio = kzalloc(sizeof(*dio), GFP_KERNEL); 1155 retval = -ENOMEM; 1156 if (!dio) 1157 goto out; 1158 1159 /* 1160 * For block device access DIO_NO_LOCKING is used, 1161 * neither readers nor writers do any locking at all 1162 * For regular files using DIO_LOCKING, 1163 * readers need to grab i_mutex and i_alloc_sem 1164 * writers need to grab i_alloc_sem only (i_mutex is already held) 1165 * For regular files using DIO_OWN_LOCKING, 1166 * neither readers nor writers take any locks here 1167 */ 1168 dio->lock_type = dio_lock_type; 1169 if (dio_lock_type != DIO_NO_LOCKING) { 1170 /* watch out for a 0 len io from a tricksy fs */ 1171 if (rw == READ && end > offset) { 1172 struct address_space *mapping; 1173 1174 mapping = iocb->ki_filp->f_mapping; 1175 if (dio_lock_type != DIO_OWN_LOCKING) { 1176 mutex_lock(&inode->i_mutex); 1177 release_i_mutex = 1; 1178 } 1179 1180 retval = filemap_write_and_wait_range(mapping, offset, 1181 end - 1); 1182 if (retval) { 1183 kfree(dio); 1184 goto out; 1185 } 1186 1187 if (dio_lock_type == DIO_OWN_LOCKING) { 1188 mutex_unlock(&inode->i_mutex); 1189 acquire_i_mutex = 1; 1190 } 1191 } 1192 1193 if (dio_lock_type == DIO_LOCKING) 1194 /* lockdep: not the owner will release it */ 1195 down_read_non_owner(&inode->i_alloc_sem); 1196 } 1197 1198 /* 1199 * For file extending writes updating i_size before data 1200 * writeouts complete can expose uninitialized blocks. So 1201 * even for AIO, we need to wait for i/o to complete before 1202 * returning in this case. 1203 */ 1204 dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) && 1205 (end > i_size_read(inode))); 1206 1207 retval = direct_io_worker(rw, iocb, inode, iov, offset, 1208 nr_segs, blkbits, get_block, end_io, dio); 1209 1210 /* 1211 * In case of error extending write may have instantiated a few 1212 * blocks outside i_size. Trim these off again for DIO_LOCKING. 1213 * NOTE: DIO_NO_LOCK/DIO_OWN_LOCK callers have to handle this by 1214 * it's own meaner. 1215 */ 1216 if (unlikely(retval < 0 && (rw & WRITE))) { 1217 loff_t isize = i_size_read(inode); 1218 1219 if (end > isize && dio_lock_type == DIO_LOCKING) 1220 vmtruncate(inode, isize); 1221 } 1222 1223 if (rw == READ && dio_lock_type == DIO_LOCKING) 1224 release_i_mutex = 0; 1225 1226 out: 1227 if (release_i_mutex) 1228 mutex_unlock(&inode->i_mutex); 1229 else if (acquire_i_mutex) 1230 mutex_lock(&inode->i_mutex); 1231 return retval; 1232 } 1233 EXPORT_SYMBOL(__blockdev_direct_IO); 1234