xref: /openbmc/linux/fs/direct-io.c (revision e6c81cce)
1 /*
2  * fs/direct-io.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * O_DIRECT
7  *
8  * 04Jul2002	Andrew Morton
9  *		Initial version
10  * 11Sep2002	janetinc@us.ibm.com
11  * 		added readv/writev support.
12  * 29Oct2002	Andrew Morton
13  *		rewrote bio_add_page() support.
14  * 30Oct2002	pbadari@us.ibm.com
15  *		added support for non-aligned IO.
16  * 06Nov2002	pbadari@us.ibm.com
17  *		added asynchronous IO support.
18  * 21Jul2003	nathans@sgi.com
19  *		added IO completion notifier.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <linux/atomic.h>
39 #include <linux/prefetch.h>
40 
41 /*
42  * How many user pages to map in one call to get_user_pages().  This determines
43  * the size of a structure in the slab cache
44  */
45 #define DIO_PAGES	64
46 
47 /*
48  * This code generally works in units of "dio_blocks".  A dio_block is
49  * somewhere between the hard sector size and the filesystem block size.  it
50  * is determined on a per-invocation basis.   When talking to the filesystem
51  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
52  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
53  * to bio_block quantities by shifting left by blkfactor.
54  *
55  * If blkfactor is zero then the user's request was aligned to the filesystem's
56  * blocksize.
57  */
58 
59 /* dio_state only used in the submission path */
60 
61 struct dio_submit {
62 	struct bio *bio;		/* bio under assembly */
63 	unsigned blkbits;		/* doesn't change */
64 	unsigned blkfactor;		/* When we're using an alignment which
65 					   is finer than the filesystem's soft
66 					   blocksize, this specifies how much
67 					   finer.  blkfactor=2 means 1/4-block
68 					   alignment.  Does not change */
69 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
70 					   been performed at the start of a
71 					   write */
72 	int pages_in_io;		/* approximate total IO pages */
73 	sector_t block_in_file;		/* Current offset into the underlying
74 					   file in dio_block units. */
75 	unsigned blocks_available;	/* At block_in_file.  changes */
76 	int reap_counter;		/* rate limit reaping */
77 	sector_t final_block_in_request;/* doesn't change */
78 	int boundary;			/* prev block is at a boundary */
79 	get_block_t *get_block;		/* block mapping function */
80 	dio_submit_t *submit_io;	/* IO submition function */
81 
82 	loff_t logical_offset_in_bio;	/* current first logical block in bio */
83 	sector_t final_block_in_bio;	/* current final block in bio + 1 */
84 	sector_t next_block_for_io;	/* next block to be put under IO,
85 					   in dio_blocks units */
86 
87 	/*
88 	 * Deferred addition of a page to the dio.  These variables are
89 	 * private to dio_send_cur_page(), submit_page_section() and
90 	 * dio_bio_add_page().
91 	 */
92 	struct page *cur_page;		/* The page */
93 	unsigned cur_page_offset;	/* Offset into it, in bytes */
94 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
95 	sector_t cur_page_block;	/* Where it starts */
96 	loff_t cur_page_fs_offset;	/* Offset in file */
97 
98 	struct iov_iter *iter;
99 	/*
100 	 * Page queue.  These variables belong to dio_refill_pages() and
101 	 * dio_get_page().
102 	 */
103 	unsigned head;			/* next page to process */
104 	unsigned tail;			/* last valid page + 1 */
105 	size_t from, to;
106 };
107 
108 /* dio_state communicated between submission path and end_io */
109 struct dio {
110 	int flags;			/* doesn't change */
111 	int rw;
112 	struct inode *inode;
113 	loff_t i_size;			/* i_size when submitted */
114 	dio_iodone_t *end_io;		/* IO completion function */
115 
116 	void *private;			/* copy from map_bh.b_private */
117 
118 	/* BIO completion state */
119 	spinlock_t bio_lock;		/* protects BIO fields below */
120 	int page_errors;		/* errno from get_user_pages() */
121 	int is_async;			/* is IO async ? */
122 	bool defer_completion;		/* defer AIO completion to workqueue? */
123 	int io_error;			/* IO error in completion path */
124 	unsigned long refcount;		/* direct_io_worker() and bios */
125 	struct bio *bio_list;		/* singly linked via bi_private */
126 	struct task_struct *waiter;	/* waiting task (NULL if none) */
127 
128 	/* AIO related stuff */
129 	struct kiocb *iocb;		/* kiocb */
130 	ssize_t result;                 /* IO result */
131 
132 	/*
133 	 * pages[] (and any fields placed after it) are not zeroed out at
134 	 * allocation time.  Don't add new fields after pages[] unless you
135 	 * wish that they not be zeroed.
136 	 */
137 	union {
138 		struct page *pages[DIO_PAGES];	/* page buffer */
139 		struct work_struct complete_work;/* deferred AIO completion */
140 	};
141 } ____cacheline_aligned_in_smp;
142 
143 static struct kmem_cache *dio_cache __read_mostly;
144 
145 /*
146  * How many pages are in the queue?
147  */
148 static inline unsigned dio_pages_present(struct dio_submit *sdio)
149 {
150 	return sdio->tail - sdio->head;
151 }
152 
153 /*
154  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
155  */
156 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
157 {
158 	ssize_t ret;
159 
160 	ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
161 				&sdio->from);
162 
163 	if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) {
164 		struct page *page = ZERO_PAGE(0);
165 		/*
166 		 * A memory fault, but the filesystem has some outstanding
167 		 * mapped blocks.  We need to use those blocks up to avoid
168 		 * leaking stale data in the file.
169 		 */
170 		if (dio->page_errors == 0)
171 			dio->page_errors = ret;
172 		page_cache_get(page);
173 		dio->pages[0] = page;
174 		sdio->head = 0;
175 		sdio->tail = 1;
176 		sdio->from = 0;
177 		sdio->to = PAGE_SIZE;
178 		return 0;
179 	}
180 
181 	if (ret >= 0) {
182 		iov_iter_advance(sdio->iter, ret);
183 		ret += sdio->from;
184 		sdio->head = 0;
185 		sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
186 		sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
187 		return 0;
188 	}
189 	return ret;
190 }
191 
192 /*
193  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
194  * buffered inside the dio so that we can call get_user_pages() against a
195  * decent number of pages, less frequently.  To provide nicer use of the
196  * L1 cache.
197  */
198 static inline struct page *dio_get_page(struct dio *dio,
199 					struct dio_submit *sdio)
200 {
201 	if (dio_pages_present(sdio) == 0) {
202 		int ret;
203 
204 		ret = dio_refill_pages(dio, sdio);
205 		if (ret)
206 			return ERR_PTR(ret);
207 		BUG_ON(dio_pages_present(sdio) == 0);
208 	}
209 	return dio->pages[sdio->head];
210 }
211 
212 /**
213  * dio_complete() - called when all DIO BIO I/O has been completed
214  * @offset: the byte offset in the file of the completed operation
215  *
216  * This drops i_dio_count, lets interested parties know that a DIO operation
217  * has completed, and calculates the resulting return code for the operation.
218  *
219  * It lets the filesystem know if it registered an interest earlier via
220  * get_block.  Pass the private field of the map buffer_head so that
221  * filesystems can use it to hold additional state between get_block calls and
222  * dio_complete.
223  */
224 static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret,
225 		bool is_async)
226 {
227 	ssize_t transferred = 0;
228 
229 	/*
230 	 * AIO submission can race with bio completion to get here while
231 	 * expecting to have the last io completed by bio completion.
232 	 * In that case -EIOCBQUEUED is in fact not an error we want
233 	 * to preserve through this call.
234 	 */
235 	if (ret == -EIOCBQUEUED)
236 		ret = 0;
237 
238 	if (dio->result) {
239 		transferred = dio->result;
240 
241 		/* Check for short read case */
242 		if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
243 			transferred = dio->i_size - offset;
244 	}
245 
246 	if (ret == 0)
247 		ret = dio->page_errors;
248 	if (ret == 0)
249 		ret = dio->io_error;
250 	if (ret == 0)
251 		ret = transferred;
252 
253 	if (dio->end_io && dio->result)
254 		dio->end_io(dio->iocb, offset, transferred, dio->private);
255 
256 	inode_dio_done(dio->inode);
257 	if (is_async) {
258 		if (dio->rw & WRITE) {
259 			int err;
260 
261 			err = generic_write_sync(dio->iocb->ki_filp, offset,
262 						 transferred);
263 			if (err < 0 && ret > 0)
264 				ret = err;
265 		}
266 
267 		dio->iocb->ki_complete(dio->iocb, ret, 0);
268 	}
269 
270 	kmem_cache_free(dio_cache, dio);
271 	return ret;
272 }
273 
274 static void dio_aio_complete_work(struct work_struct *work)
275 {
276 	struct dio *dio = container_of(work, struct dio, complete_work);
277 
278 	dio_complete(dio, dio->iocb->ki_pos, 0, true);
279 }
280 
281 static int dio_bio_complete(struct dio *dio, struct bio *bio);
282 
283 /*
284  * Asynchronous IO callback.
285  */
286 static void dio_bio_end_aio(struct bio *bio, int error)
287 {
288 	struct dio *dio = bio->bi_private;
289 	unsigned long remaining;
290 	unsigned long flags;
291 
292 	/* cleanup the bio */
293 	dio_bio_complete(dio, bio);
294 
295 	spin_lock_irqsave(&dio->bio_lock, flags);
296 	remaining = --dio->refcount;
297 	if (remaining == 1 && dio->waiter)
298 		wake_up_process(dio->waiter);
299 	spin_unlock_irqrestore(&dio->bio_lock, flags);
300 
301 	if (remaining == 0) {
302 		if (dio->result && dio->defer_completion) {
303 			INIT_WORK(&dio->complete_work, dio_aio_complete_work);
304 			queue_work(dio->inode->i_sb->s_dio_done_wq,
305 				   &dio->complete_work);
306 		} else {
307 			dio_complete(dio, dio->iocb->ki_pos, 0, true);
308 		}
309 	}
310 }
311 
312 /*
313  * The BIO completion handler simply queues the BIO up for the process-context
314  * handler.
315  *
316  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
317  * implement a singly-linked list of completed BIOs, at dio->bio_list.
318  */
319 static void dio_bio_end_io(struct bio *bio, int error)
320 {
321 	struct dio *dio = bio->bi_private;
322 	unsigned long flags;
323 
324 	spin_lock_irqsave(&dio->bio_lock, flags);
325 	bio->bi_private = dio->bio_list;
326 	dio->bio_list = bio;
327 	if (--dio->refcount == 1 && dio->waiter)
328 		wake_up_process(dio->waiter);
329 	spin_unlock_irqrestore(&dio->bio_lock, flags);
330 }
331 
332 /**
333  * dio_end_io - handle the end io action for the given bio
334  * @bio: The direct io bio thats being completed
335  * @error: Error if there was one
336  *
337  * This is meant to be called by any filesystem that uses their own dio_submit_t
338  * so that the DIO specific endio actions are dealt with after the filesystem
339  * has done it's completion work.
340  */
341 void dio_end_io(struct bio *bio, int error)
342 {
343 	struct dio *dio = bio->bi_private;
344 
345 	if (dio->is_async)
346 		dio_bio_end_aio(bio, error);
347 	else
348 		dio_bio_end_io(bio, error);
349 }
350 EXPORT_SYMBOL_GPL(dio_end_io);
351 
352 static inline void
353 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
354 	      struct block_device *bdev,
355 	      sector_t first_sector, int nr_vecs)
356 {
357 	struct bio *bio;
358 
359 	/*
360 	 * bio_alloc() is guaranteed to return a bio when called with
361 	 * __GFP_WAIT and we request a valid number of vectors.
362 	 */
363 	bio = bio_alloc(GFP_KERNEL, nr_vecs);
364 
365 	bio->bi_bdev = bdev;
366 	bio->bi_iter.bi_sector = first_sector;
367 	if (dio->is_async)
368 		bio->bi_end_io = dio_bio_end_aio;
369 	else
370 		bio->bi_end_io = dio_bio_end_io;
371 
372 	sdio->bio = bio;
373 	sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
374 }
375 
376 /*
377  * In the AIO read case we speculatively dirty the pages before starting IO.
378  * During IO completion, any of these pages which happen to have been written
379  * back will be redirtied by bio_check_pages_dirty().
380  *
381  * bios hold a dio reference between submit_bio and ->end_io.
382  */
383 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
384 {
385 	struct bio *bio = sdio->bio;
386 	unsigned long flags;
387 
388 	bio->bi_private = dio;
389 
390 	spin_lock_irqsave(&dio->bio_lock, flags);
391 	dio->refcount++;
392 	spin_unlock_irqrestore(&dio->bio_lock, flags);
393 
394 	if (dio->is_async && dio->rw == READ)
395 		bio_set_pages_dirty(bio);
396 
397 	if (sdio->submit_io)
398 		sdio->submit_io(dio->rw, bio, dio->inode,
399 			       sdio->logical_offset_in_bio);
400 	else
401 		submit_bio(dio->rw, bio);
402 
403 	sdio->bio = NULL;
404 	sdio->boundary = 0;
405 	sdio->logical_offset_in_bio = 0;
406 }
407 
408 /*
409  * Release any resources in case of a failure
410  */
411 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
412 {
413 	while (sdio->head < sdio->tail)
414 		page_cache_release(dio->pages[sdio->head++]);
415 }
416 
417 /*
418  * Wait for the next BIO to complete.  Remove it and return it.  NULL is
419  * returned once all BIOs have been completed.  This must only be called once
420  * all bios have been issued so that dio->refcount can only decrease.  This
421  * requires that that the caller hold a reference on the dio.
422  */
423 static struct bio *dio_await_one(struct dio *dio)
424 {
425 	unsigned long flags;
426 	struct bio *bio = NULL;
427 
428 	spin_lock_irqsave(&dio->bio_lock, flags);
429 
430 	/*
431 	 * Wait as long as the list is empty and there are bios in flight.  bio
432 	 * completion drops the count, maybe adds to the list, and wakes while
433 	 * holding the bio_lock so we don't need set_current_state()'s barrier
434 	 * and can call it after testing our condition.
435 	 */
436 	while (dio->refcount > 1 && dio->bio_list == NULL) {
437 		__set_current_state(TASK_UNINTERRUPTIBLE);
438 		dio->waiter = current;
439 		spin_unlock_irqrestore(&dio->bio_lock, flags);
440 		io_schedule();
441 		/* wake up sets us TASK_RUNNING */
442 		spin_lock_irqsave(&dio->bio_lock, flags);
443 		dio->waiter = NULL;
444 	}
445 	if (dio->bio_list) {
446 		bio = dio->bio_list;
447 		dio->bio_list = bio->bi_private;
448 	}
449 	spin_unlock_irqrestore(&dio->bio_lock, flags);
450 	return bio;
451 }
452 
453 /*
454  * Process one completed BIO.  No locks are held.
455  */
456 static int dio_bio_complete(struct dio *dio, struct bio *bio)
457 {
458 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
459 	struct bio_vec *bvec;
460 	unsigned i;
461 
462 	if (!uptodate)
463 		dio->io_error = -EIO;
464 
465 	if (dio->is_async && dio->rw == READ) {
466 		bio_check_pages_dirty(bio);	/* transfers ownership */
467 	} else {
468 		bio_for_each_segment_all(bvec, bio, i) {
469 			struct page *page = bvec->bv_page;
470 
471 			if (dio->rw == READ && !PageCompound(page))
472 				set_page_dirty_lock(page);
473 			page_cache_release(page);
474 		}
475 		bio_put(bio);
476 	}
477 	return uptodate ? 0 : -EIO;
478 }
479 
480 /*
481  * Wait on and process all in-flight BIOs.  This must only be called once
482  * all bios have been issued so that the refcount can only decrease.
483  * This just waits for all bios to make it through dio_bio_complete.  IO
484  * errors are propagated through dio->io_error and should be propagated via
485  * dio_complete().
486  */
487 static void dio_await_completion(struct dio *dio)
488 {
489 	struct bio *bio;
490 	do {
491 		bio = dio_await_one(dio);
492 		if (bio)
493 			dio_bio_complete(dio, bio);
494 	} while (bio);
495 }
496 
497 /*
498  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
499  * to keep the memory consumption sane we periodically reap any completed BIOs
500  * during the BIO generation phase.
501  *
502  * This also helps to limit the peak amount of pinned userspace memory.
503  */
504 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
505 {
506 	int ret = 0;
507 
508 	if (sdio->reap_counter++ >= 64) {
509 		while (dio->bio_list) {
510 			unsigned long flags;
511 			struct bio *bio;
512 			int ret2;
513 
514 			spin_lock_irqsave(&dio->bio_lock, flags);
515 			bio = dio->bio_list;
516 			dio->bio_list = bio->bi_private;
517 			spin_unlock_irqrestore(&dio->bio_lock, flags);
518 			ret2 = dio_bio_complete(dio, bio);
519 			if (ret == 0)
520 				ret = ret2;
521 		}
522 		sdio->reap_counter = 0;
523 	}
524 	return ret;
525 }
526 
527 /*
528  * Create workqueue for deferred direct IO completions. We allocate the
529  * workqueue when it's first needed. This avoids creating workqueue for
530  * filesystems that don't need it and also allows us to create the workqueue
531  * late enough so the we can include s_id in the name of the workqueue.
532  */
533 static int sb_init_dio_done_wq(struct super_block *sb)
534 {
535 	struct workqueue_struct *old;
536 	struct workqueue_struct *wq = alloc_workqueue("dio/%s",
537 						      WQ_MEM_RECLAIM, 0,
538 						      sb->s_id);
539 	if (!wq)
540 		return -ENOMEM;
541 	/*
542 	 * This has to be atomic as more DIOs can race to create the workqueue
543 	 */
544 	old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
545 	/* Someone created workqueue before us? Free ours... */
546 	if (old)
547 		destroy_workqueue(wq);
548 	return 0;
549 }
550 
551 static int dio_set_defer_completion(struct dio *dio)
552 {
553 	struct super_block *sb = dio->inode->i_sb;
554 
555 	if (dio->defer_completion)
556 		return 0;
557 	dio->defer_completion = true;
558 	if (!sb->s_dio_done_wq)
559 		return sb_init_dio_done_wq(sb);
560 	return 0;
561 }
562 
563 /*
564  * Call into the fs to map some more disk blocks.  We record the current number
565  * of available blocks at sdio->blocks_available.  These are in units of the
566  * fs blocksize, (1 << inode->i_blkbits).
567  *
568  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
569  * it uses the passed inode-relative block number as the file offset, as usual.
570  *
571  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
572  * has remaining to do.  The fs should not map more than this number of blocks.
573  *
574  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
575  * indicate how much contiguous disk space has been made available at
576  * bh->b_blocknr.
577  *
578  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
579  * This isn't very efficient...
580  *
581  * In the case of filesystem holes: the fs may return an arbitrarily-large
582  * hole by returning an appropriate value in b_size and by clearing
583  * buffer_mapped().  However the direct-io code will only process holes one
584  * block at a time - it will repeatedly call get_block() as it walks the hole.
585  */
586 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
587 			   struct buffer_head *map_bh)
588 {
589 	int ret;
590 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
591 	sector_t fs_endblk;	/* Into file, in filesystem-sized blocks */
592 	unsigned long fs_count;	/* Number of filesystem-sized blocks */
593 	int create;
594 	unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
595 
596 	/*
597 	 * If there was a memory error and we've overwritten all the
598 	 * mapped blocks then we can now return that memory error
599 	 */
600 	ret = dio->page_errors;
601 	if (ret == 0) {
602 		BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
603 		fs_startblk = sdio->block_in_file >> sdio->blkfactor;
604 		fs_endblk = (sdio->final_block_in_request - 1) >>
605 					sdio->blkfactor;
606 		fs_count = fs_endblk - fs_startblk + 1;
607 
608 		map_bh->b_state = 0;
609 		map_bh->b_size = fs_count << i_blkbits;
610 
611 		/*
612 		 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
613 		 * forbid block creations: only overwrites are permitted.
614 		 * We will return early to the caller once we see an
615 		 * unmapped buffer head returned, and the caller will fall
616 		 * back to buffered I/O.
617 		 *
618 		 * Otherwise the decision is left to the get_blocks method,
619 		 * which may decide to handle it or also return an unmapped
620 		 * buffer head.
621 		 */
622 		create = dio->rw & WRITE;
623 		if (dio->flags & DIO_SKIP_HOLES) {
624 			if (sdio->block_in_file < (i_size_read(dio->inode) >>
625 							sdio->blkbits))
626 				create = 0;
627 		}
628 
629 		ret = (*sdio->get_block)(dio->inode, fs_startblk,
630 						map_bh, create);
631 
632 		/* Store for completion */
633 		dio->private = map_bh->b_private;
634 
635 		if (ret == 0 && buffer_defer_completion(map_bh))
636 			ret = dio_set_defer_completion(dio);
637 	}
638 	return ret;
639 }
640 
641 /*
642  * There is no bio.  Make one now.
643  */
644 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
645 		sector_t start_sector, struct buffer_head *map_bh)
646 {
647 	sector_t sector;
648 	int ret, nr_pages;
649 
650 	ret = dio_bio_reap(dio, sdio);
651 	if (ret)
652 		goto out;
653 	sector = start_sector << (sdio->blkbits - 9);
654 	nr_pages = min(sdio->pages_in_io, bio_get_nr_vecs(map_bh->b_bdev));
655 	BUG_ON(nr_pages <= 0);
656 	dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
657 	sdio->boundary = 0;
658 out:
659 	return ret;
660 }
661 
662 /*
663  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
664  * that was successful then update final_block_in_bio and take a ref against
665  * the just-added page.
666  *
667  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
668  */
669 static inline int dio_bio_add_page(struct dio_submit *sdio)
670 {
671 	int ret;
672 
673 	ret = bio_add_page(sdio->bio, sdio->cur_page,
674 			sdio->cur_page_len, sdio->cur_page_offset);
675 	if (ret == sdio->cur_page_len) {
676 		/*
677 		 * Decrement count only, if we are done with this page
678 		 */
679 		if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
680 			sdio->pages_in_io--;
681 		page_cache_get(sdio->cur_page);
682 		sdio->final_block_in_bio = sdio->cur_page_block +
683 			(sdio->cur_page_len >> sdio->blkbits);
684 		ret = 0;
685 	} else {
686 		ret = 1;
687 	}
688 	return ret;
689 }
690 
691 /*
692  * Put cur_page under IO.  The section of cur_page which is described by
693  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
694  * starts on-disk at cur_page_block.
695  *
696  * We take a ref against the page here (on behalf of its presence in the bio).
697  *
698  * The caller of this function is responsible for removing cur_page from the
699  * dio, and for dropping the refcount which came from that presence.
700  */
701 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
702 		struct buffer_head *map_bh)
703 {
704 	int ret = 0;
705 
706 	if (sdio->bio) {
707 		loff_t cur_offset = sdio->cur_page_fs_offset;
708 		loff_t bio_next_offset = sdio->logical_offset_in_bio +
709 			sdio->bio->bi_iter.bi_size;
710 
711 		/*
712 		 * See whether this new request is contiguous with the old.
713 		 *
714 		 * Btrfs cannot handle having logically non-contiguous requests
715 		 * submitted.  For example if you have
716 		 *
717 		 * Logical:  [0-4095][HOLE][8192-12287]
718 		 * Physical: [0-4095]      [4096-8191]
719 		 *
720 		 * We cannot submit those pages together as one BIO.  So if our
721 		 * current logical offset in the file does not equal what would
722 		 * be the next logical offset in the bio, submit the bio we
723 		 * have.
724 		 */
725 		if (sdio->final_block_in_bio != sdio->cur_page_block ||
726 		    cur_offset != bio_next_offset)
727 			dio_bio_submit(dio, sdio);
728 	}
729 
730 	if (sdio->bio == NULL) {
731 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
732 		if (ret)
733 			goto out;
734 	}
735 
736 	if (dio_bio_add_page(sdio) != 0) {
737 		dio_bio_submit(dio, sdio);
738 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
739 		if (ret == 0) {
740 			ret = dio_bio_add_page(sdio);
741 			BUG_ON(ret != 0);
742 		}
743 	}
744 out:
745 	return ret;
746 }
747 
748 /*
749  * An autonomous function to put a chunk of a page under deferred IO.
750  *
751  * The caller doesn't actually know (or care) whether this piece of page is in
752  * a BIO, or is under IO or whatever.  We just take care of all possible
753  * situations here.  The separation between the logic of do_direct_IO() and
754  * that of submit_page_section() is important for clarity.  Please don't break.
755  *
756  * The chunk of page starts on-disk at blocknr.
757  *
758  * We perform deferred IO, by recording the last-submitted page inside our
759  * private part of the dio structure.  If possible, we just expand the IO
760  * across that page here.
761  *
762  * If that doesn't work out then we put the old page into the bio and add this
763  * page to the dio instead.
764  */
765 static inline int
766 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
767 		    unsigned offset, unsigned len, sector_t blocknr,
768 		    struct buffer_head *map_bh)
769 {
770 	int ret = 0;
771 
772 	if (dio->rw & WRITE) {
773 		/*
774 		 * Read accounting is performed in submit_bio()
775 		 */
776 		task_io_account_write(len);
777 	}
778 
779 	/*
780 	 * Can we just grow the current page's presence in the dio?
781 	 */
782 	if (sdio->cur_page == page &&
783 	    sdio->cur_page_offset + sdio->cur_page_len == offset &&
784 	    sdio->cur_page_block +
785 	    (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
786 		sdio->cur_page_len += len;
787 		goto out;
788 	}
789 
790 	/*
791 	 * If there's a deferred page already there then send it.
792 	 */
793 	if (sdio->cur_page) {
794 		ret = dio_send_cur_page(dio, sdio, map_bh);
795 		page_cache_release(sdio->cur_page);
796 		sdio->cur_page = NULL;
797 		if (ret)
798 			return ret;
799 	}
800 
801 	page_cache_get(page);		/* It is in dio */
802 	sdio->cur_page = page;
803 	sdio->cur_page_offset = offset;
804 	sdio->cur_page_len = len;
805 	sdio->cur_page_block = blocknr;
806 	sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
807 out:
808 	/*
809 	 * If sdio->boundary then we want to schedule the IO now to
810 	 * avoid metadata seeks.
811 	 */
812 	if (sdio->boundary) {
813 		ret = dio_send_cur_page(dio, sdio, map_bh);
814 		dio_bio_submit(dio, sdio);
815 		page_cache_release(sdio->cur_page);
816 		sdio->cur_page = NULL;
817 	}
818 	return ret;
819 }
820 
821 /*
822  * Clean any dirty buffers in the blockdev mapping which alias newly-created
823  * file blocks.  Only called for S_ISREG files - blockdevs do not set
824  * buffer_new
825  */
826 static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh)
827 {
828 	unsigned i;
829 	unsigned nblocks;
830 
831 	nblocks = map_bh->b_size >> dio->inode->i_blkbits;
832 
833 	for (i = 0; i < nblocks; i++) {
834 		unmap_underlying_metadata(map_bh->b_bdev,
835 					  map_bh->b_blocknr + i);
836 	}
837 }
838 
839 /*
840  * If we are not writing the entire block and get_block() allocated
841  * the block for us, we need to fill-in the unused portion of the
842  * block with zeros. This happens only if user-buffer, fileoffset or
843  * io length is not filesystem block-size multiple.
844  *
845  * `end' is zero if we're doing the start of the IO, 1 at the end of the
846  * IO.
847  */
848 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
849 		int end, struct buffer_head *map_bh)
850 {
851 	unsigned dio_blocks_per_fs_block;
852 	unsigned this_chunk_blocks;	/* In dio_blocks */
853 	unsigned this_chunk_bytes;
854 	struct page *page;
855 
856 	sdio->start_zero_done = 1;
857 	if (!sdio->blkfactor || !buffer_new(map_bh))
858 		return;
859 
860 	dio_blocks_per_fs_block = 1 << sdio->blkfactor;
861 	this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
862 
863 	if (!this_chunk_blocks)
864 		return;
865 
866 	/*
867 	 * We need to zero out part of an fs block.  It is either at the
868 	 * beginning or the end of the fs block.
869 	 */
870 	if (end)
871 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
872 
873 	this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
874 
875 	page = ZERO_PAGE(0);
876 	if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
877 				sdio->next_block_for_io, map_bh))
878 		return;
879 
880 	sdio->next_block_for_io += this_chunk_blocks;
881 }
882 
883 /*
884  * Walk the user pages, and the file, mapping blocks to disk and generating
885  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
886  * into submit_page_section(), which takes care of the next stage of submission
887  *
888  * Direct IO against a blockdev is different from a file.  Because we can
889  * happily perform page-sized but 512-byte aligned IOs.  It is important that
890  * blockdev IO be able to have fine alignment and large sizes.
891  *
892  * So what we do is to permit the ->get_block function to populate bh.b_size
893  * with the size of IO which is permitted at this offset and this i_blkbits.
894  *
895  * For best results, the blockdev should be set up with 512-byte i_blkbits and
896  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
897  * fine alignment but still allows this function to work in PAGE_SIZE units.
898  */
899 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
900 			struct buffer_head *map_bh)
901 {
902 	const unsigned blkbits = sdio->blkbits;
903 	int ret = 0;
904 
905 	while (sdio->block_in_file < sdio->final_block_in_request) {
906 		struct page *page;
907 		size_t from, to;
908 
909 		page = dio_get_page(dio, sdio);
910 		if (IS_ERR(page)) {
911 			ret = PTR_ERR(page);
912 			goto out;
913 		}
914 		from = sdio->head ? 0 : sdio->from;
915 		to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
916 		sdio->head++;
917 
918 		while (from < to) {
919 			unsigned this_chunk_bytes;	/* # of bytes mapped */
920 			unsigned this_chunk_blocks;	/* # of blocks */
921 			unsigned u;
922 
923 			if (sdio->blocks_available == 0) {
924 				/*
925 				 * Need to go and map some more disk
926 				 */
927 				unsigned long blkmask;
928 				unsigned long dio_remainder;
929 
930 				ret = get_more_blocks(dio, sdio, map_bh);
931 				if (ret) {
932 					page_cache_release(page);
933 					goto out;
934 				}
935 				if (!buffer_mapped(map_bh))
936 					goto do_holes;
937 
938 				sdio->blocks_available =
939 						map_bh->b_size >> sdio->blkbits;
940 				sdio->next_block_for_io =
941 					map_bh->b_blocknr << sdio->blkfactor;
942 				if (buffer_new(map_bh))
943 					clean_blockdev_aliases(dio, map_bh);
944 
945 				if (!sdio->blkfactor)
946 					goto do_holes;
947 
948 				blkmask = (1 << sdio->blkfactor) - 1;
949 				dio_remainder = (sdio->block_in_file & blkmask);
950 
951 				/*
952 				 * If we are at the start of IO and that IO
953 				 * starts partway into a fs-block,
954 				 * dio_remainder will be non-zero.  If the IO
955 				 * is a read then we can simply advance the IO
956 				 * cursor to the first block which is to be
957 				 * read.  But if the IO is a write and the
958 				 * block was newly allocated we cannot do that;
959 				 * the start of the fs block must be zeroed out
960 				 * on-disk
961 				 */
962 				if (!buffer_new(map_bh))
963 					sdio->next_block_for_io += dio_remainder;
964 				sdio->blocks_available -= dio_remainder;
965 			}
966 do_holes:
967 			/* Handle holes */
968 			if (!buffer_mapped(map_bh)) {
969 				loff_t i_size_aligned;
970 
971 				/* AKPM: eargh, -ENOTBLK is a hack */
972 				if (dio->rw & WRITE) {
973 					page_cache_release(page);
974 					return -ENOTBLK;
975 				}
976 
977 				/*
978 				 * Be sure to account for a partial block as the
979 				 * last block in the file
980 				 */
981 				i_size_aligned = ALIGN(i_size_read(dio->inode),
982 							1 << blkbits);
983 				if (sdio->block_in_file >=
984 						i_size_aligned >> blkbits) {
985 					/* We hit eof */
986 					page_cache_release(page);
987 					goto out;
988 				}
989 				zero_user(page, from, 1 << blkbits);
990 				sdio->block_in_file++;
991 				from += 1 << blkbits;
992 				dio->result += 1 << blkbits;
993 				goto next_block;
994 			}
995 
996 			/*
997 			 * If we're performing IO which has an alignment which
998 			 * is finer than the underlying fs, go check to see if
999 			 * we must zero out the start of this block.
1000 			 */
1001 			if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1002 				dio_zero_block(dio, sdio, 0, map_bh);
1003 
1004 			/*
1005 			 * Work out, in this_chunk_blocks, how much disk we
1006 			 * can add to this page
1007 			 */
1008 			this_chunk_blocks = sdio->blocks_available;
1009 			u = (to - from) >> blkbits;
1010 			if (this_chunk_blocks > u)
1011 				this_chunk_blocks = u;
1012 			u = sdio->final_block_in_request - sdio->block_in_file;
1013 			if (this_chunk_blocks > u)
1014 				this_chunk_blocks = u;
1015 			this_chunk_bytes = this_chunk_blocks << blkbits;
1016 			BUG_ON(this_chunk_bytes == 0);
1017 
1018 			if (this_chunk_blocks == sdio->blocks_available)
1019 				sdio->boundary = buffer_boundary(map_bh);
1020 			ret = submit_page_section(dio, sdio, page,
1021 						  from,
1022 						  this_chunk_bytes,
1023 						  sdio->next_block_for_io,
1024 						  map_bh);
1025 			if (ret) {
1026 				page_cache_release(page);
1027 				goto out;
1028 			}
1029 			sdio->next_block_for_io += this_chunk_blocks;
1030 
1031 			sdio->block_in_file += this_chunk_blocks;
1032 			from += this_chunk_bytes;
1033 			dio->result += this_chunk_bytes;
1034 			sdio->blocks_available -= this_chunk_blocks;
1035 next_block:
1036 			BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1037 			if (sdio->block_in_file == sdio->final_block_in_request)
1038 				break;
1039 		}
1040 
1041 		/* Drop the ref which was taken in get_user_pages() */
1042 		page_cache_release(page);
1043 	}
1044 out:
1045 	return ret;
1046 }
1047 
1048 static inline int drop_refcount(struct dio *dio)
1049 {
1050 	int ret2;
1051 	unsigned long flags;
1052 
1053 	/*
1054 	 * Sync will always be dropping the final ref and completing the
1055 	 * operation.  AIO can if it was a broken operation described above or
1056 	 * in fact if all the bios race to complete before we get here.  In
1057 	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1058 	 * return code that the caller will hand to ->complete().
1059 	 *
1060 	 * This is managed by the bio_lock instead of being an atomic_t so that
1061 	 * completion paths can drop their ref and use the remaining count to
1062 	 * decide to wake the submission path atomically.
1063 	 */
1064 	spin_lock_irqsave(&dio->bio_lock, flags);
1065 	ret2 = --dio->refcount;
1066 	spin_unlock_irqrestore(&dio->bio_lock, flags);
1067 	return ret2;
1068 }
1069 
1070 /*
1071  * This is a library function for use by filesystem drivers.
1072  *
1073  * The locking rules are governed by the flags parameter:
1074  *  - if the flags value contains DIO_LOCKING we use a fancy locking
1075  *    scheme for dumb filesystems.
1076  *    For writes this function is called under i_mutex and returns with
1077  *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1078  *    taken and dropped again before returning.
1079  *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1080  *    internal locking but rather rely on the filesystem to synchronize
1081  *    direct I/O reads/writes versus each other and truncate.
1082  *
1083  * To help with locking against truncate we incremented the i_dio_count
1084  * counter before starting direct I/O, and decrement it once we are done.
1085  * Truncate can wait for it to reach zero to provide exclusion.  It is
1086  * expected that filesystem provide exclusion between new direct I/O
1087  * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1088  * but other filesystems need to take care of this on their own.
1089  *
1090  * NOTE: if you pass "sdio" to anything by pointer make sure that function
1091  * is always inlined. Otherwise gcc is unable to split the structure into
1092  * individual fields and will generate much worse code. This is important
1093  * for the whole file.
1094  */
1095 static inline ssize_t
1096 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1097 		      struct block_device *bdev, struct iov_iter *iter,
1098 		      loff_t offset, get_block_t get_block, dio_iodone_t end_io,
1099 		      dio_submit_t submit_io, int flags)
1100 {
1101 	unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits);
1102 	unsigned blkbits = i_blkbits;
1103 	unsigned blocksize_mask = (1 << blkbits) - 1;
1104 	ssize_t retval = -EINVAL;
1105 	size_t count = iov_iter_count(iter);
1106 	loff_t end = offset + count;
1107 	struct dio *dio;
1108 	struct dio_submit sdio = { 0, };
1109 	struct buffer_head map_bh = { 0, };
1110 	struct blk_plug plug;
1111 	unsigned long align = offset | iov_iter_alignment(iter);
1112 
1113 	/*
1114 	 * Avoid references to bdev if not absolutely needed to give
1115 	 * the early prefetch in the caller enough time.
1116 	 */
1117 
1118 	if (align & blocksize_mask) {
1119 		if (bdev)
1120 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
1121 		blocksize_mask = (1 << blkbits) - 1;
1122 		if (align & blocksize_mask)
1123 			goto out;
1124 	}
1125 
1126 	/* watch out for a 0 len io from a tricksy fs */
1127 	if (iov_iter_rw(iter) == READ && !iov_iter_count(iter))
1128 		return 0;
1129 
1130 	dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1131 	retval = -ENOMEM;
1132 	if (!dio)
1133 		goto out;
1134 	/*
1135 	 * Believe it or not, zeroing out the page array caused a .5%
1136 	 * performance regression in a database benchmark.  So, we take
1137 	 * care to only zero out what's needed.
1138 	 */
1139 	memset(dio, 0, offsetof(struct dio, pages));
1140 
1141 	dio->flags = flags;
1142 	if (dio->flags & DIO_LOCKING) {
1143 		if (iov_iter_rw(iter) == READ) {
1144 			struct address_space *mapping =
1145 					iocb->ki_filp->f_mapping;
1146 
1147 			/* will be released by direct_io_worker */
1148 			mutex_lock(&inode->i_mutex);
1149 
1150 			retval = filemap_write_and_wait_range(mapping, offset,
1151 							      end - 1);
1152 			if (retval) {
1153 				mutex_unlock(&inode->i_mutex);
1154 				kmem_cache_free(dio_cache, dio);
1155 				goto out;
1156 			}
1157 		}
1158 	}
1159 
1160 	/*
1161 	 * For file extending writes updating i_size before data writeouts
1162 	 * complete can expose uninitialized blocks in dumb filesystems.
1163 	 * In that case we need to wait for I/O completion even if asked
1164 	 * for an asynchronous write.
1165 	 */
1166 	if (is_sync_kiocb(iocb))
1167 		dio->is_async = false;
1168 	else if (!(dio->flags & DIO_ASYNC_EXTEND) &&
1169 		 iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1170 		dio->is_async = false;
1171 	else
1172 		dio->is_async = true;
1173 
1174 	dio->inode = inode;
1175 	dio->rw = iov_iter_rw(iter) == WRITE ? WRITE_ODIRECT : READ;
1176 
1177 	/*
1178 	 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1179 	 * so that we can call ->fsync.
1180 	 */
1181 	if (dio->is_async && iov_iter_rw(iter) == WRITE &&
1182 	    ((iocb->ki_filp->f_flags & O_DSYNC) ||
1183 	     IS_SYNC(iocb->ki_filp->f_mapping->host))) {
1184 		retval = dio_set_defer_completion(dio);
1185 		if (retval) {
1186 			/*
1187 			 * We grab i_mutex only for reads so we don't have
1188 			 * to release it here
1189 			 */
1190 			kmem_cache_free(dio_cache, dio);
1191 			goto out;
1192 		}
1193 	}
1194 
1195 	/*
1196 	 * Will be decremented at I/O completion time.
1197 	 */
1198 	atomic_inc(&inode->i_dio_count);
1199 
1200 	retval = 0;
1201 	sdio.blkbits = blkbits;
1202 	sdio.blkfactor = i_blkbits - blkbits;
1203 	sdio.block_in_file = offset >> blkbits;
1204 
1205 	sdio.get_block = get_block;
1206 	dio->end_io = end_io;
1207 	sdio.submit_io = submit_io;
1208 	sdio.final_block_in_bio = -1;
1209 	sdio.next_block_for_io = -1;
1210 
1211 	dio->iocb = iocb;
1212 	dio->i_size = i_size_read(inode);
1213 
1214 	spin_lock_init(&dio->bio_lock);
1215 	dio->refcount = 1;
1216 
1217 	sdio.iter = iter;
1218 	sdio.final_block_in_request =
1219 		(offset + iov_iter_count(iter)) >> blkbits;
1220 
1221 	/*
1222 	 * In case of non-aligned buffers, we may need 2 more
1223 	 * pages since we need to zero out first and last block.
1224 	 */
1225 	if (unlikely(sdio.blkfactor))
1226 		sdio.pages_in_io = 2;
1227 
1228 	sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1229 
1230 	blk_start_plug(&plug);
1231 
1232 	retval = do_direct_IO(dio, &sdio, &map_bh);
1233 	if (retval)
1234 		dio_cleanup(dio, &sdio);
1235 
1236 	if (retval == -ENOTBLK) {
1237 		/*
1238 		 * The remaining part of the request will be
1239 		 * be handled by buffered I/O when we return
1240 		 */
1241 		retval = 0;
1242 	}
1243 	/*
1244 	 * There may be some unwritten disk at the end of a part-written
1245 	 * fs-block-sized block.  Go zero that now.
1246 	 */
1247 	dio_zero_block(dio, &sdio, 1, &map_bh);
1248 
1249 	if (sdio.cur_page) {
1250 		ssize_t ret2;
1251 
1252 		ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1253 		if (retval == 0)
1254 			retval = ret2;
1255 		page_cache_release(sdio.cur_page);
1256 		sdio.cur_page = NULL;
1257 	}
1258 	if (sdio.bio)
1259 		dio_bio_submit(dio, &sdio);
1260 
1261 	blk_finish_plug(&plug);
1262 
1263 	/*
1264 	 * It is possible that, we return short IO due to end of file.
1265 	 * In that case, we need to release all the pages we got hold on.
1266 	 */
1267 	dio_cleanup(dio, &sdio);
1268 
1269 	/*
1270 	 * All block lookups have been performed. For READ requests
1271 	 * we can let i_mutex go now that its achieved its purpose
1272 	 * of protecting us from looking up uninitialized blocks.
1273 	 */
1274 	if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1275 		mutex_unlock(&dio->inode->i_mutex);
1276 
1277 	/*
1278 	 * The only time we want to leave bios in flight is when a successful
1279 	 * partial aio read or full aio write have been setup.  In that case
1280 	 * bio completion will call aio_complete.  The only time it's safe to
1281 	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1282 	 * This had *better* be the only place that raises -EIOCBQUEUED.
1283 	 */
1284 	BUG_ON(retval == -EIOCBQUEUED);
1285 	if (dio->is_async && retval == 0 && dio->result &&
1286 	    (iov_iter_rw(iter) == READ || dio->result == count))
1287 		retval = -EIOCBQUEUED;
1288 	else
1289 		dio_await_completion(dio);
1290 
1291 	if (drop_refcount(dio) == 0) {
1292 		retval = dio_complete(dio, offset, retval, false);
1293 	} else
1294 		BUG_ON(retval != -EIOCBQUEUED);
1295 
1296 out:
1297 	return retval;
1298 }
1299 
1300 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1301 			     struct block_device *bdev, struct iov_iter *iter,
1302 			     loff_t offset, get_block_t get_block,
1303 			     dio_iodone_t end_io, dio_submit_t submit_io,
1304 			     int flags)
1305 {
1306 	/*
1307 	 * The block device state is needed in the end to finally
1308 	 * submit everything.  Since it's likely to be cache cold
1309 	 * prefetch it here as first thing to hide some of the
1310 	 * latency.
1311 	 *
1312 	 * Attempt to prefetch the pieces we likely need later.
1313 	 */
1314 	prefetch(&bdev->bd_disk->part_tbl);
1315 	prefetch(bdev->bd_queue);
1316 	prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1317 
1318 	return do_blockdev_direct_IO(iocb, inode, bdev, iter, offset, get_block,
1319 				     end_io, submit_io, flags);
1320 }
1321 
1322 EXPORT_SYMBOL(__blockdev_direct_IO);
1323 
1324 static __init int dio_init(void)
1325 {
1326 	dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1327 	return 0;
1328 }
1329 module_init(dio_init)
1330