1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/direct-io.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * O_DIRECT 8 * 9 * 04Jul2002 Andrew Morton 10 * Initial version 11 * 11Sep2002 janetinc@us.ibm.com 12 * added readv/writev support. 13 * 29Oct2002 Andrew Morton 14 * rewrote bio_add_page() support. 15 * 30Oct2002 pbadari@us.ibm.com 16 * added support for non-aligned IO. 17 * 06Nov2002 pbadari@us.ibm.com 18 * added asynchronous IO support. 19 * 21Jul2003 nathans@sgi.com 20 * added IO completion notifier. 21 */ 22 23 #include <linux/kernel.h> 24 #include <linux/module.h> 25 #include <linux/types.h> 26 #include <linux/fs.h> 27 #include <linux/mm.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/pagemap.h> 31 #include <linux/task_io_accounting_ops.h> 32 #include <linux/bio.h> 33 #include <linux/wait.h> 34 #include <linux/err.h> 35 #include <linux/blkdev.h> 36 #include <linux/buffer_head.h> 37 #include <linux/rwsem.h> 38 #include <linux/uio.h> 39 #include <linux/atomic.h> 40 #include <linux/prefetch.h> 41 42 #include "internal.h" 43 44 /* 45 * How many user pages to map in one call to get_user_pages(). This determines 46 * the size of a structure in the slab cache 47 */ 48 #define DIO_PAGES 64 49 50 /* 51 * Flags for dio_complete() 52 */ 53 #define DIO_COMPLETE_ASYNC 0x01 /* This is async IO */ 54 #define DIO_COMPLETE_INVALIDATE 0x02 /* Can invalidate pages */ 55 56 /* 57 * This code generally works in units of "dio_blocks". A dio_block is 58 * somewhere between the hard sector size and the filesystem block size. it 59 * is determined on a per-invocation basis. When talking to the filesystem 60 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity 61 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted 62 * to bio_block quantities by shifting left by blkfactor. 63 * 64 * If blkfactor is zero then the user's request was aligned to the filesystem's 65 * blocksize. 66 */ 67 68 /* dio_state only used in the submission path */ 69 70 struct dio_submit { 71 struct bio *bio; /* bio under assembly */ 72 unsigned blkbits; /* doesn't change */ 73 unsigned blkfactor; /* When we're using an alignment which 74 is finer than the filesystem's soft 75 blocksize, this specifies how much 76 finer. blkfactor=2 means 1/4-block 77 alignment. Does not change */ 78 unsigned start_zero_done; /* flag: sub-blocksize zeroing has 79 been performed at the start of a 80 write */ 81 int pages_in_io; /* approximate total IO pages */ 82 sector_t block_in_file; /* Current offset into the underlying 83 file in dio_block units. */ 84 unsigned blocks_available; /* At block_in_file. changes */ 85 int reap_counter; /* rate limit reaping */ 86 sector_t final_block_in_request;/* doesn't change */ 87 int boundary; /* prev block is at a boundary */ 88 get_block_t *get_block; /* block mapping function */ 89 dio_submit_t *submit_io; /* IO submition function */ 90 91 loff_t logical_offset_in_bio; /* current first logical block in bio */ 92 sector_t final_block_in_bio; /* current final block in bio + 1 */ 93 sector_t next_block_for_io; /* next block to be put under IO, 94 in dio_blocks units */ 95 96 /* 97 * Deferred addition of a page to the dio. These variables are 98 * private to dio_send_cur_page(), submit_page_section() and 99 * dio_bio_add_page(). 100 */ 101 struct page *cur_page; /* The page */ 102 unsigned cur_page_offset; /* Offset into it, in bytes */ 103 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ 104 sector_t cur_page_block; /* Where it starts */ 105 loff_t cur_page_fs_offset; /* Offset in file */ 106 107 struct iov_iter *iter; 108 /* 109 * Page queue. These variables belong to dio_refill_pages() and 110 * dio_get_page(). 111 */ 112 unsigned head; /* next page to process */ 113 unsigned tail; /* last valid page + 1 */ 114 size_t from, to; 115 }; 116 117 /* dio_state communicated between submission path and end_io */ 118 struct dio { 119 int flags; /* doesn't change */ 120 blk_opf_t opf; /* request operation type and flags */ 121 struct gendisk *bio_disk; 122 struct inode *inode; 123 loff_t i_size; /* i_size when submitted */ 124 dio_iodone_t *end_io; /* IO completion function */ 125 126 void *private; /* copy from map_bh.b_private */ 127 128 /* BIO completion state */ 129 spinlock_t bio_lock; /* protects BIO fields below */ 130 int page_errors; /* errno from get_user_pages() */ 131 int is_async; /* is IO async ? */ 132 bool defer_completion; /* defer AIO completion to workqueue? */ 133 bool should_dirty; /* if pages should be dirtied */ 134 int io_error; /* IO error in completion path */ 135 unsigned long refcount; /* direct_io_worker() and bios */ 136 struct bio *bio_list; /* singly linked via bi_private */ 137 struct task_struct *waiter; /* waiting task (NULL if none) */ 138 139 /* AIO related stuff */ 140 struct kiocb *iocb; /* kiocb */ 141 ssize_t result; /* IO result */ 142 143 /* 144 * pages[] (and any fields placed after it) are not zeroed out at 145 * allocation time. Don't add new fields after pages[] unless you 146 * wish that they not be zeroed. 147 */ 148 union { 149 struct page *pages[DIO_PAGES]; /* page buffer */ 150 struct work_struct complete_work;/* deferred AIO completion */ 151 }; 152 } ____cacheline_aligned_in_smp; 153 154 static struct kmem_cache *dio_cache __read_mostly; 155 156 /* 157 * How many pages are in the queue? 158 */ 159 static inline unsigned dio_pages_present(struct dio_submit *sdio) 160 { 161 return sdio->tail - sdio->head; 162 } 163 164 /* 165 * Go grab and pin some userspace pages. Typically we'll get 64 at a time. 166 */ 167 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio) 168 { 169 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 170 ssize_t ret; 171 172 ret = iov_iter_get_pages2(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES, 173 &sdio->from); 174 175 if (ret < 0 && sdio->blocks_available && dio_op == REQ_OP_WRITE) { 176 struct page *page = ZERO_PAGE(0); 177 /* 178 * A memory fault, but the filesystem has some outstanding 179 * mapped blocks. We need to use those blocks up to avoid 180 * leaking stale data in the file. 181 */ 182 if (dio->page_errors == 0) 183 dio->page_errors = ret; 184 get_page(page); 185 dio->pages[0] = page; 186 sdio->head = 0; 187 sdio->tail = 1; 188 sdio->from = 0; 189 sdio->to = PAGE_SIZE; 190 return 0; 191 } 192 193 if (ret >= 0) { 194 ret += sdio->from; 195 sdio->head = 0; 196 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE; 197 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1; 198 return 0; 199 } 200 return ret; 201 } 202 203 /* 204 * Get another userspace page. Returns an ERR_PTR on error. Pages are 205 * buffered inside the dio so that we can call get_user_pages() against a 206 * decent number of pages, less frequently. To provide nicer use of the 207 * L1 cache. 208 */ 209 static inline struct page *dio_get_page(struct dio *dio, 210 struct dio_submit *sdio) 211 { 212 if (dio_pages_present(sdio) == 0) { 213 int ret; 214 215 ret = dio_refill_pages(dio, sdio); 216 if (ret) 217 return ERR_PTR(ret); 218 BUG_ON(dio_pages_present(sdio) == 0); 219 } 220 return dio->pages[sdio->head]; 221 } 222 223 /* 224 * dio_complete() - called when all DIO BIO I/O has been completed 225 * 226 * This drops i_dio_count, lets interested parties know that a DIO operation 227 * has completed, and calculates the resulting return code for the operation. 228 * 229 * It lets the filesystem know if it registered an interest earlier via 230 * get_block. Pass the private field of the map buffer_head so that 231 * filesystems can use it to hold additional state between get_block calls and 232 * dio_complete. 233 */ 234 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags) 235 { 236 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 237 loff_t offset = dio->iocb->ki_pos; 238 ssize_t transferred = 0; 239 int err; 240 241 /* 242 * AIO submission can race with bio completion to get here while 243 * expecting to have the last io completed by bio completion. 244 * In that case -EIOCBQUEUED is in fact not an error we want 245 * to preserve through this call. 246 */ 247 if (ret == -EIOCBQUEUED) 248 ret = 0; 249 250 if (dio->result) { 251 transferred = dio->result; 252 253 /* Check for short read case */ 254 if (dio_op == REQ_OP_READ && 255 ((offset + transferred) > dio->i_size)) 256 transferred = dio->i_size - offset; 257 /* ignore EFAULT if some IO has been done */ 258 if (unlikely(ret == -EFAULT) && transferred) 259 ret = 0; 260 } 261 262 if (ret == 0) 263 ret = dio->page_errors; 264 if (ret == 0) 265 ret = dio->io_error; 266 if (ret == 0) 267 ret = transferred; 268 269 if (dio->end_io) { 270 // XXX: ki_pos?? 271 err = dio->end_io(dio->iocb, offset, ret, dio->private); 272 if (err) 273 ret = err; 274 } 275 276 /* 277 * Try again to invalidate clean pages which might have been cached by 278 * non-direct readahead, or faulted in by get_user_pages() if the source 279 * of the write was an mmap'ed region of the file we're writing. Either 280 * one is a pretty crazy thing to do, so we don't support it 100%. If 281 * this invalidation fails, tough, the write still worked... 282 * 283 * And this page cache invalidation has to be after dio->end_io(), as 284 * some filesystems convert unwritten extents to real allocations in 285 * end_io() when necessary, otherwise a racing buffer read would cache 286 * zeros from unwritten extents. 287 */ 288 if (flags & DIO_COMPLETE_INVALIDATE && 289 ret > 0 && dio_op == REQ_OP_WRITE && 290 dio->inode->i_mapping->nrpages) { 291 err = invalidate_inode_pages2_range(dio->inode->i_mapping, 292 offset >> PAGE_SHIFT, 293 (offset + ret - 1) >> PAGE_SHIFT); 294 if (err) 295 dio_warn_stale_pagecache(dio->iocb->ki_filp); 296 } 297 298 inode_dio_end(dio->inode); 299 300 if (flags & DIO_COMPLETE_ASYNC) { 301 /* 302 * generic_write_sync expects ki_pos to have been updated 303 * already, but the submission path only does this for 304 * synchronous I/O. 305 */ 306 dio->iocb->ki_pos += transferred; 307 308 if (ret > 0 && dio_op == REQ_OP_WRITE) 309 ret = generic_write_sync(dio->iocb, ret); 310 dio->iocb->ki_complete(dio->iocb, ret); 311 } 312 313 kmem_cache_free(dio_cache, dio); 314 return ret; 315 } 316 317 static void dio_aio_complete_work(struct work_struct *work) 318 { 319 struct dio *dio = container_of(work, struct dio, complete_work); 320 321 dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE); 322 } 323 324 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio); 325 326 /* 327 * Asynchronous IO callback. 328 */ 329 static void dio_bio_end_aio(struct bio *bio) 330 { 331 struct dio *dio = bio->bi_private; 332 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 333 unsigned long remaining; 334 unsigned long flags; 335 bool defer_completion = false; 336 337 /* cleanup the bio */ 338 dio_bio_complete(dio, bio); 339 340 spin_lock_irqsave(&dio->bio_lock, flags); 341 remaining = --dio->refcount; 342 if (remaining == 1 && dio->waiter) 343 wake_up_process(dio->waiter); 344 spin_unlock_irqrestore(&dio->bio_lock, flags); 345 346 if (remaining == 0) { 347 /* 348 * Defer completion when defer_completion is set or 349 * when the inode has pages mapped and this is AIO write. 350 * We need to invalidate those pages because there is a 351 * chance they contain stale data in the case buffered IO 352 * went in between AIO submission and completion into the 353 * same region. 354 */ 355 if (dio->result) 356 defer_completion = dio->defer_completion || 357 (dio_op == REQ_OP_WRITE && 358 dio->inode->i_mapping->nrpages); 359 if (defer_completion) { 360 INIT_WORK(&dio->complete_work, dio_aio_complete_work); 361 queue_work(dio->inode->i_sb->s_dio_done_wq, 362 &dio->complete_work); 363 } else { 364 dio_complete(dio, 0, DIO_COMPLETE_ASYNC); 365 } 366 } 367 } 368 369 /* 370 * The BIO completion handler simply queues the BIO up for the process-context 371 * handler. 372 * 373 * During I/O bi_private points at the dio. After I/O, bi_private is used to 374 * implement a singly-linked list of completed BIOs, at dio->bio_list. 375 */ 376 static void dio_bio_end_io(struct bio *bio) 377 { 378 struct dio *dio = bio->bi_private; 379 unsigned long flags; 380 381 spin_lock_irqsave(&dio->bio_lock, flags); 382 bio->bi_private = dio->bio_list; 383 dio->bio_list = bio; 384 if (--dio->refcount == 1 && dio->waiter) 385 wake_up_process(dio->waiter); 386 spin_unlock_irqrestore(&dio->bio_lock, flags); 387 } 388 389 static inline void 390 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio, 391 struct block_device *bdev, 392 sector_t first_sector, int nr_vecs) 393 { 394 struct bio *bio; 395 396 /* 397 * bio_alloc() is guaranteed to return a bio when allowed to sleep and 398 * we request a valid number of vectors. 399 */ 400 bio = bio_alloc(bdev, nr_vecs, dio->opf, GFP_KERNEL); 401 bio->bi_iter.bi_sector = first_sector; 402 if (dio->is_async) 403 bio->bi_end_io = dio_bio_end_aio; 404 else 405 bio->bi_end_io = dio_bio_end_io; 406 sdio->bio = bio; 407 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset; 408 } 409 410 /* 411 * In the AIO read case we speculatively dirty the pages before starting IO. 412 * During IO completion, any of these pages which happen to have been written 413 * back will be redirtied by bio_check_pages_dirty(). 414 * 415 * bios hold a dio reference between submit_bio and ->end_io. 416 */ 417 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio) 418 { 419 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 420 struct bio *bio = sdio->bio; 421 unsigned long flags; 422 423 bio->bi_private = dio; 424 /* don't account direct I/O as memory stall */ 425 bio_clear_flag(bio, BIO_WORKINGSET); 426 427 spin_lock_irqsave(&dio->bio_lock, flags); 428 dio->refcount++; 429 spin_unlock_irqrestore(&dio->bio_lock, flags); 430 431 if (dio->is_async && dio_op == REQ_OP_READ && dio->should_dirty) 432 bio_set_pages_dirty(bio); 433 434 dio->bio_disk = bio->bi_bdev->bd_disk; 435 436 if (sdio->submit_io) 437 sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio); 438 else 439 submit_bio(bio); 440 441 sdio->bio = NULL; 442 sdio->boundary = 0; 443 sdio->logical_offset_in_bio = 0; 444 } 445 446 /* 447 * Release any resources in case of a failure 448 */ 449 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio) 450 { 451 while (sdio->head < sdio->tail) 452 put_page(dio->pages[sdio->head++]); 453 } 454 455 /* 456 * Wait for the next BIO to complete. Remove it and return it. NULL is 457 * returned once all BIOs have been completed. This must only be called once 458 * all bios have been issued so that dio->refcount can only decrease. This 459 * requires that the caller hold a reference on the dio. 460 */ 461 static struct bio *dio_await_one(struct dio *dio) 462 { 463 unsigned long flags; 464 struct bio *bio = NULL; 465 466 spin_lock_irqsave(&dio->bio_lock, flags); 467 468 /* 469 * Wait as long as the list is empty and there are bios in flight. bio 470 * completion drops the count, maybe adds to the list, and wakes while 471 * holding the bio_lock so we don't need set_current_state()'s barrier 472 * and can call it after testing our condition. 473 */ 474 while (dio->refcount > 1 && dio->bio_list == NULL) { 475 __set_current_state(TASK_UNINTERRUPTIBLE); 476 dio->waiter = current; 477 spin_unlock_irqrestore(&dio->bio_lock, flags); 478 blk_io_schedule(); 479 /* wake up sets us TASK_RUNNING */ 480 spin_lock_irqsave(&dio->bio_lock, flags); 481 dio->waiter = NULL; 482 } 483 if (dio->bio_list) { 484 bio = dio->bio_list; 485 dio->bio_list = bio->bi_private; 486 } 487 spin_unlock_irqrestore(&dio->bio_lock, flags); 488 return bio; 489 } 490 491 /* 492 * Process one completed BIO. No locks are held. 493 */ 494 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio) 495 { 496 blk_status_t err = bio->bi_status; 497 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 498 bool should_dirty = dio_op == REQ_OP_READ && dio->should_dirty; 499 500 if (err) { 501 if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT)) 502 dio->io_error = -EAGAIN; 503 else 504 dio->io_error = -EIO; 505 } 506 507 if (dio->is_async && should_dirty) { 508 bio_check_pages_dirty(bio); /* transfers ownership */ 509 } else { 510 bio_release_pages(bio, should_dirty); 511 bio_put(bio); 512 } 513 return err; 514 } 515 516 /* 517 * Wait on and process all in-flight BIOs. This must only be called once 518 * all bios have been issued so that the refcount can only decrease. 519 * This just waits for all bios to make it through dio_bio_complete. IO 520 * errors are propagated through dio->io_error and should be propagated via 521 * dio_complete(). 522 */ 523 static void dio_await_completion(struct dio *dio) 524 { 525 struct bio *bio; 526 do { 527 bio = dio_await_one(dio); 528 if (bio) 529 dio_bio_complete(dio, bio); 530 } while (bio); 531 } 532 533 /* 534 * A really large O_DIRECT read or write can generate a lot of BIOs. So 535 * to keep the memory consumption sane we periodically reap any completed BIOs 536 * during the BIO generation phase. 537 * 538 * This also helps to limit the peak amount of pinned userspace memory. 539 */ 540 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio) 541 { 542 int ret = 0; 543 544 if (sdio->reap_counter++ >= 64) { 545 while (dio->bio_list) { 546 unsigned long flags; 547 struct bio *bio; 548 int ret2; 549 550 spin_lock_irqsave(&dio->bio_lock, flags); 551 bio = dio->bio_list; 552 dio->bio_list = bio->bi_private; 553 spin_unlock_irqrestore(&dio->bio_lock, flags); 554 ret2 = blk_status_to_errno(dio_bio_complete(dio, bio)); 555 if (ret == 0) 556 ret = ret2; 557 } 558 sdio->reap_counter = 0; 559 } 560 return ret; 561 } 562 563 /* 564 * Create workqueue for deferred direct IO completions. We allocate the 565 * workqueue when it's first needed. This avoids creating workqueue for 566 * filesystems that don't need it and also allows us to create the workqueue 567 * late enough so the we can include s_id in the name of the workqueue. 568 */ 569 int sb_init_dio_done_wq(struct super_block *sb) 570 { 571 struct workqueue_struct *old; 572 struct workqueue_struct *wq = alloc_workqueue("dio/%s", 573 WQ_MEM_RECLAIM, 0, 574 sb->s_id); 575 if (!wq) 576 return -ENOMEM; 577 /* 578 * This has to be atomic as more DIOs can race to create the workqueue 579 */ 580 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq); 581 /* Someone created workqueue before us? Free ours... */ 582 if (old) 583 destroy_workqueue(wq); 584 return 0; 585 } 586 587 static int dio_set_defer_completion(struct dio *dio) 588 { 589 struct super_block *sb = dio->inode->i_sb; 590 591 if (dio->defer_completion) 592 return 0; 593 dio->defer_completion = true; 594 if (!sb->s_dio_done_wq) 595 return sb_init_dio_done_wq(sb); 596 return 0; 597 } 598 599 /* 600 * Call into the fs to map some more disk blocks. We record the current number 601 * of available blocks at sdio->blocks_available. These are in units of the 602 * fs blocksize, i_blocksize(inode). 603 * 604 * The fs is allowed to map lots of blocks at once. If it wants to do that, 605 * it uses the passed inode-relative block number as the file offset, as usual. 606 * 607 * get_block() is passed the number of i_blkbits-sized blocks which direct_io 608 * has remaining to do. The fs should not map more than this number of blocks. 609 * 610 * If the fs has mapped a lot of blocks, it should populate bh->b_size to 611 * indicate how much contiguous disk space has been made available at 612 * bh->b_blocknr. 613 * 614 * If *any* of the mapped blocks are new, then the fs must set buffer_new(). 615 * This isn't very efficient... 616 * 617 * In the case of filesystem holes: the fs may return an arbitrarily-large 618 * hole by returning an appropriate value in b_size and by clearing 619 * buffer_mapped(). However the direct-io code will only process holes one 620 * block at a time - it will repeatedly call get_block() as it walks the hole. 621 */ 622 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio, 623 struct buffer_head *map_bh) 624 { 625 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 626 int ret; 627 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ 628 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */ 629 unsigned long fs_count; /* Number of filesystem-sized blocks */ 630 int create; 631 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor; 632 loff_t i_size; 633 634 /* 635 * If there was a memory error and we've overwritten all the 636 * mapped blocks then we can now return that memory error 637 */ 638 ret = dio->page_errors; 639 if (ret == 0) { 640 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request); 641 fs_startblk = sdio->block_in_file >> sdio->blkfactor; 642 fs_endblk = (sdio->final_block_in_request - 1) >> 643 sdio->blkfactor; 644 fs_count = fs_endblk - fs_startblk + 1; 645 646 map_bh->b_state = 0; 647 map_bh->b_size = fs_count << i_blkbits; 648 649 /* 650 * For writes that could fill holes inside i_size on a 651 * DIO_SKIP_HOLES filesystem we forbid block creations: only 652 * overwrites are permitted. We will return early to the caller 653 * once we see an unmapped buffer head returned, and the caller 654 * will fall back to buffered I/O. 655 * 656 * Otherwise the decision is left to the get_blocks method, 657 * which may decide to handle it or also return an unmapped 658 * buffer head. 659 */ 660 create = dio_op == REQ_OP_WRITE; 661 if (dio->flags & DIO_SKIP_HOLES) { 662 i_size = i_size_read(dio->inode); 663 if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits) 664 create = 0; 665 } 666 667 ret = (*sdio->get_block)(dio->inode, fs_startblk, 668 map_bh, create); 669 670 /* Store for completion */ 671 dio->private = map_bh->b_private; 672 673 if (ret == 0 && buffer_defer_completion(map_bh)) 674 ret = dio_set_defer_completion(dio); 675 } 676 return ret; 677 } 678 679 /* 680 * There is no bio. Make one now. 681 */ 682 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio, 683 sector_t start_sector, struct buffer_head *map_bh) 684 { 685 sector_t sector; 686 int ret, nr_pages; 687 688 ret = dio_bio_reap(dio, sdio); 689 if (ret) 690 goto out; 691 sector = start_sector << (sdio->blkbits - 9); 692 nr_pages = bio_max_segs(sdio->pages_in_io); 693 BUG_ON(nr_pages <= 0); 694 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages); 695 sdio->boundary = 0; 696 out: 697 return ret; 698 } 699 700 /* 701 * Attempt to put the current chunk of 'cur_page' into the current BIO. If 702 * that was successful then update final_block_in_bio and take a ref against 703 * the just-added page. 704 * 705 * Return zero on success. Non-zero means the caller needs to start a new BIO. 706 */ 707 static inline int dio_bio_add_page(struct dio_submit *sdio) 708 { 709 int ret; 710 711 ret = bio_add_page(sdio->bio, sdio->cur_page, 712 sdio->cur_page_len, sdio->cur_page_offset); 713 if (ret == sdio->cur_page_len) { 714 /* 715 * Decrement count only, if we are done with this page 716 */ 717 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE) 718 sdio->pages_in_io--; 719 get_page(sdio->cur_page); 720 sdio->final_block_in_bio = sdio->cur_page_block + 721 (sdio->cur_page_len >> sdio->blkbits); 722 ret = 0; 723 } else { 724 ret = 1; 725 } 726 return ret; 727 } 728 729 /* 730 * Put cur_page under IO. The section of cur_page which is described by 731 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page 732 * starts on-disk at cur_page_block. 733 * 734 * We take a ref against the page here (on behalf of its presence in the bio). 735 * 736 * The caller of this function is responsible for removing cur_page from the 737 * dio, and for dropping the refcount which came from that presence. 738 */ 739 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio, 740 struct buffer_head *map_bh) 741 { 742 int ret = 0; 743 744 if (sdio->bio) { 745 loff_t cur_offset = sdio->cur_page_fs_offset; 746 loff_t bio_next_offset = sdio->logical_offset_in_bio + 747 sdio->bio->bi_iter.bi_size; 748 749 /* 750 * See whether this new request is contiguous with the old. 751 * 752 * Btrfs cannot handle having logically non-contiguous requests 753 * submitted. For example if you have 754 * 755 * Logical: [0-4095][HOLE][8192-12287] 756 * Physical: [0-4095] [4096-8191] 757 * 758 * We cannot submit those pages together as one BIO. So if our 759 * current logical offset in the file does not equal what would 760 * be the next logical offset in the bio, submit the bio we 761 * have. 762 */ 763 if (sdio->final_block_in_bio != sdio->cur_page_block || 764 cur_offset != bio_next_offset) 765 dio_bio_submit(dio, sdio); 766 } 767 768 if (sdio->bio == NULL) { 769 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 770 if (ret) 771 goto out; 772 } 773 774 if (dio_bio_add_page(sdio) != 0) { 775 dio_bio_submit(dio, sdio); 776 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 777 if (ret == 0) { 778 ret = dio_bio_add_page(sdio); 779 BUG_ON(ret != 0); 780 } 781 } 782 out: 783 return ret; 784 } 785 786 /* 787 * An autonomous function to put a chunk of a page under deferred IO. 788 * 789 * The caller doesn't actually know (or care) whether this piece of page is in 790 * a BIO, or is under IO or whatever. We just take care of all possible 791 * situations here. The separation between the logic of do_direct_IO() and 792 * that of submit_page_section() is important for clarity. Please don't break. 793 * 794 * The chunk of page starts on-disk at blocknr. 795 * 796 * We perform deferred IO, by recording the last-submitted page inside our 797 * private part of the dio structure. If possible, we just expand the IO 798 * across that page here. 799 * 800 * If that doesn't work out then we put the old page into the bio and add this 801 * page to the dio instead. 802 */ 803 static inline int 804 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page, 805 unsigned offset, unsigned len, sector_t blocknr, 806 struct buffer_head *map_bh) 807 { 808 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 809 int ret = 0; 810 int boundary = sdio->boundary; /* dio_send_cur_page may clear it */ 811 812 if (dio_op == REQ_OP_WRITE) { 813 /* 814 * Read accounting is performed in submit_bio() 815 */ 816 task_io_account_write(len); 817 } 818 819 /* 820 * Can we just grow the current page's presence in the dio? 821 */ 822 if (sdio->cur_page == page && 823 sdio->cur_page_offset + sdio->cur_page_len == offset && 824 sdio->cur_page_block + 825 (sdio->cur_page_len >> sdio->blkbits) == blocknr) { 826 sdio->cur_page_len += len; 827 goto out; 828 } 829 830 /* 831 * If there's a deferred page already there then send it. 832 */ 833 if (sdio->cur_page) { 834 ret = dio_send_cur_page(dio, sdio, map_bh); 835 put_page(sdio->cur_page); 836 sdio->cur_page = NULL; 837 if (ret) 838 return ret; 839 } 840 841 get_page(page); /* It is in dio */ 842 sdio->cur_page = page; 843 sdio->cur_page_offset = offset; 844 sdio->cur_page_len = len; 845 sdio->cur_page_block = blocknr; 846 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits; 847 out: 848 /* 849 * If boundary then we want to schedule the IO now to 850 * avoid metadata seeks. 851 */ 852 if (boundary) { 853 ret = dio_send_cur_page(dio, sdio, map_bh); 854 if (sdio->bio) 855 dio_bio_submit(dio, sdio); 856 put_page(sdio->cur_page); 857 sdio->cur_page = NULL; 858 } 859 return ret; 860 } 861 862 /* 863 * If we are not writing the entire block and get_block() allocated 864 * the block for us, we need to fill-in the unused portion of the 865 * block with zeros. This happens only if user-buffer, fileoffset or 866 * io length is not filesystem block-size multiple. 867 * 868 * `end' is zero if we're doing the start of the IO, 1 at the end of the 869 * IO. 870 */ 871 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio, 872 int end, struct buffer_head *map_bh) 873 { 874 unsigned dio_blocks_per_fs_block; 875 unsigned this_chunk_blocks; /* In dio_blocks */ 876 unsigned this_chunk_bytes; 877 struct page *page; 878 879 sdio->start_zero_done = 1; 880 if (!sdio->blkfactor || !buffer_new(map_bh)) 881 return; 882 883 dio_blocks_per_fs_block = 1 << sdio->blkfactor; 884 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1); 885 886 if (!this_chunk_blocks) 887 return; 888 889 /* 890 * We need to zero out part of an fs block. It is either at the 891 * beginning or the end of the fs block. 892 */ 893 if (end) 894 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; 895 896 this_chunk_bytes = this_chunk_blocks << sdio->blkbits; 897 898 page = ZERO_PAGE(0); 899 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes, 900 sdio->next_block_for_io, map_bh)) 901 return; 902 903 sdio->next_block_for_io += this_chunk_blocks; 904 } 905 906 /* 907 * Walk the user pages, and the file, mapping blocks to disk and generating 908 * a sequence of (page,offset,len,block) mappings. These mappings are injected 909 * into submit_page_section(), which takes care of the next stage of submission 910 * 911 * Direct IO against a blockdev is different from a file. Because we can 912 * happily perform page-sized but 512-byte aligned IOs. It is important that 913 * blockdev IO be able to have fine alignment and large sizes. 914 * 915 * So what we do is to permit the ->get_block function to populate bh.b_size 916 * with the size of IO which is permitted at this offset and this i_blkbits. 917 * 918 * For best results, the blockdev should be set up with 512-byte i_blkbits and 919 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives 920 * fine alignment but still allows this function to work in PAGE_SIZE units. 921 */ 922 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio, 923 struct buffer_head *map_bh) 924 { 925 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 926 const unsigned blkbits = sdio->blkbits; 927 const unsigned i_blkbits = blkbits + sdio->blkfactor; 928 int ret = 0; 929 930 while (sdio->block_in_file < sdio->final_block_in_request) { 931 struct page *page; 932 size_t from, to; 933 934 page = dio_get_page(dio, sdio); 935 if (IS_ERR(page)) { 936 ret = PTR_ERR(page); 937 goto out; 938 } 939 from = sdio->head ? 0 : sdio->from; 940 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE; 941 sdio->head++; 942 943 while (from < to) { 944 unsigned this_chunk_bytes; /* # of bytes mapped */ 945 unsigned this_chunk_blocks; /* # of blocks */ 946 unsigned u; 947 948 if (sdio->blocks_available == 0) { 949 /* 950 * Need to go and map some more disk 951 */ 952 unsigned long blkmask; 953 unsigned long dio_remainder; 954 955 ret = get_more_blocks(dio, sdio, map_bh); 956 if (ret) { 957 put_page(page); 958 goto out; 959 } 960 if (!buffer_mapped(map_bh)) 961 goto do_holes; 962 963 sdio->blocks_available = 964 map_bh->b_size >> blkbits; 965 sdio->next_block_for_io = 966 map_bh->b_blocknr << sdio->blkfactor; 967 if (buffer_new(map_bh)) { 968 clean_bdev_aliases( 969 map_bh->b_bdev, 970 map_bh->b_blocknr, 971 map_bh->b_size >> i_blkbits); 972 } 973 974 if (!sdio->blkfactor) 975 goto do_holes; 976 977 blkmask = (1 << sdio->blkfactor) - 1; 978 dio_remainder = (sdio->block_in_file & blkmask); 979 980 /* 981 * If we are at the start of IO and that IO 982 * starts partway into a fs-block, 983 * dio_remainder will be non-zero. If the IO 984 * is a read then we can simply advance the IO 985 * cursor to the first block which is to be 986 * read. But if the IO is a write and the 987 * block was newly allocated we cannot do that; 988 * the start of the fs block must be zeroed out 989 * on-disk 990 */ 991 if (!buffer_new(map_bh)) 992 sdio->next_block_for_io += dio_remainder; 993 sdio->blocks_available -= dio_remainder; 994 } 995 do_holes: 996 /* Handle holes */ 997 if (!buffer_mapped(map_bh)) { 998 loff_t i_size_aligned; 999 1000 /* AKPM: eargh, -ENOTBLK is a hack */ 1001 if (dio_op == REQ_OP_WRITE) { 1002 put_page(page); 1003 return -ENOTBLK; 1004 } 1005 1006 /* 1007 * Be sure to account for a partial block as the 1008 * last block in the file 1009 */ 1010 i_size_aligned = ALIGN(i_size_read(dio->inode), 1011 1 << blkbits); 1012 if (sdio->block_in_file >= 1013 i_size_aligned >> blkbits) { 1014 /* We hit eof */ 1015 put_page(page); 1016 goto out; 1017 } 1018 zero_user(page, from, 1 << blkbits); 1019 sdio->block_in_file++; 1020 from += 1 << blkbits; 1021 dio->result += 1 << blkbits; 1022 goto next_block; 1023 } 1024 1025 /* 1026 * If we're performing IO which has an alignment which 1027 * is finer than the underlying fs, go check to see if 1028 * we must zero out the start of this block. 1029 */ 1030 if (unlikely(sdio->blkfactor && !sdio->start_zero_done)) 1031 dio_zero_block(dio, sdio, 0, map_bh); 1032 1033 /* 1034 * Work out, in this_chunk_blocks, how much disk we 1035 * can add to this page 1036 */ 1037 this_chunk_blocks = sdio->blocks_available; 1038 u = (to - from) >> blkbits; 1039 if (this_chunk_blocks > u) 1040 this_chunk_blocks = u; 1041 u = sdio->final_block_in_request - sdio->block_in_file; 1042 if (this_chunk_blocks > u) 1043 this_chunk_blocks = u; 1044 this_chunk_bytes = this_chunk_blocks << blkbits; 1045 BUG_ON(this_chunk_bytes == 0); 1046 1047 if (this_chunk_blocks == sdio->blocks_available) 1048 sdio->boundary = buffer_boundary(map_bh); 1049 ret = submit_page_section(dio, sdio, page, 1050 from, 1051 this_chunk_bytes, 1052 sdio->next_block_for_io, 1053 map_bh); 1054 if (ret) { 1055 put_page(page); 1056 goto out; 1057 } 1058 sdio->next_block_for_io += this_chunk_blocks; 1059 1060 sdio->block_in_file += this_chunk_blocks; 1061 from += this_chunk_bytes; 1062 dio->result += this_chunk_bytes; 1063 sdio->blocks_available -= this_chunk_blocks; 1064 next_block: 1065 BUG_ON(sdio->block_in_file > sdio->final_block_in_request); 1066 if (sdio->block_in_file == sdio->final_block_in_request) 1067 break; 1068 } 1069 1070 /* Drop the ref which was taken in get_user_pages() */ 1071 put_page(page); 1072 } 1073 out: 1074 return ret; 1075 } 1076 1077 static inline int drop_refcount(struct dio *dio) 1078 { 1079 int ret2; 1080 unsigned long flags; 1081 1082 /* 1083 * Sync will always be dropping the final ref and completing the 1084 * operation. AIO can if it was a broken operation described above or 1085 * in fact if all the bios race to complete before we get here. In 1086 * that case dio_complete() translates the EIOCBQUEUED into the proper 1087 * return code that the caller will hand to ->complete(). 1088 * 1089 * This is managed by the bio_lock instead of being an atomic_t so that 1090 * completion paths can drop their ref and use the remaining count to 1091 * decide to wake the submission path atomically. 1092 */ 1093 spin_lock_irqsave(&dio->bio_lock, flags); 1094 ret2 = --dio->refcount; 1095 spin_unlock_irqrestore(&dio->bio_lock, flags); 1096 return ret2; 1097 } 1098 1099 /* 1100 * This is a library function for use by filesystem drivers. 1101 * 1102 * The locking rules are governed by the flags parameter: 1103 * - if the flags value contains DIO_LOCKING we use a fancy locking 1104 * scheme for dumb filesystems. 1105 * For writes this function is called under i_mutex and returns with 1106 * i_mutex held, for reads, i_mutex is not held on entry, but it is 1107 * taken and dropped again before returning. 1108 * - if the flags value does NOT contain DIO_LOCKING we don't use any 1109 * internal locking but rather rely on the filesystem to synchronize 1110 * direct I/O reads/writes versus each other and truncate. 1111 * 1112 * To help with locking against truncate we incremented the i_dio_count 1113 * counter before starting direct I/O, and decrement it once we are done. 1114 * Truncate can wait for it to reach zero to provide exclusion. It is 1115 * expected that filesystem provide exclusion between new direct I/O 1116 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex, 1117 * but other filesystems need to take care of this on their own. 1118 * 1119 * NOTE: if you pass "sdio" to anything by pointer make sure that function 1120 * is always inlined. Otherwise gcc is unable to split the structure into 1121 * individual fields and will generate much worse code. This is important 1122 * for the whole file. 1123 */ 1124 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1125 struct block_device *bdev, struct iov_iter *iter, 1126 get_block_t get_block, dio_iodone_t end_io, 1127 dio_submit_t submit_io, int flags) 1128 { 1129 unsigned i_blkbits = READ_ONCE(inode->i_blkbits); 1130 unsigned blkbits = i_blkbits; 1131 unsigned blocksize_mask = (1 << blkbits) - 1; 1132 ssize_t retval = -EINVAL; 1133 const size_t count = iov_iter_count(iter); 1134 loff_t offset = iocb->ki_pos; 1135 const loff_t end = offset + count; 1136 struct dio *dio; 1137 struct dio_submit sdio = { 0, }; 1138 struct buffer_head map_bh = { 0, }; 1139 struct blk_plug plug; 1140 unsigned long align = offset | iov_iter_alignment(iter); 1141 1142 /* 1143 * Avoid references to bdev if not absolutely needed to give 1144 * the early prefetch in the caller enough time. 1145 */ 1146 1147 /* watch out for a 0 len io from a tricksy fs */ 1148 if (iov_iter_rw(iter) == READ && !count) 1149 return 0; 1150 1151 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL); 1152 if (!dio) 1153 return -ENOMEM; 1154 /* 1155 * Believe it or not, zeroing out the page array caused a .5% 1156 * performance regression in a database benchmark. So, we take 1157 * care to only zero out what's needed. 1158 */ 1159 memset(dio, 0, offsetof(struct dio, pages)); 1160 1161 dio->flags = flags; 1162 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) { 1163 /* will be released by direct_io_worker */ 1164 inode_lock(inode); 1165 } 1166 1167 /* Once we sampled i_size check for reads beyond EOF */ 1168 dio->i_size = i_size_read(inode); 1169 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) { 1170 retval = 0; 1171 goto fail_dio; 1172 } 1173 1174 if (align & blocksize_mask) { 1175 if (bdev) 1176 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 1177 blocksize_mask = (1 << blkbits) - 1; 1178 if (align & blocksize_mask) 1179 goto fail_dio; 1180 } 1181 1182 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) { 1183 struct address_space *mapping = iocb->ki_filp->f_mapping; 1184 1185 retval = filemap_write_and_wait_range(mapping, offset, end - 1); 1186 if (retval) 1187 goto fail_dio; 1188 } 1189 1190 /* 1191 * For file extending writes updating i_size before data writeouts 1192 * complete can expose uninitialized blocks in dumb filesystems. 1193 * In that case we need to wait for I/O completion even if asked 1194 * for an asynchronous write. 1195 */ 1196 if (is_sync_kiocb(iocb)) 1197 dio->is_async = false; 1198 else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode)) 1199 dio->is_async = false; 1200 else 1201 dio->is_async = true; 1202 1203 dio->inode = inode; 1204 if (iov_iter_rw(iter) == WRITE) { 1205 dio->opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE; 1206 if (iocb->ki_flags & IOCB_NOWAIT) 1207 dio->opf |= REQ_NOWAIT; 1208 } else { 1209 dio->opf = REQ_OP_READ; 1210 } 1211 1212 /* 1213 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue 1214 * so that we can call ->fsync. 1215 */ 1216 if (dio->is_async && iov_iter_rw(iter) == WRITE) { 1217 retval = 0; 1218 if (iocb_is_dsync(iocb)) 1219 retval = dio_set_defer_completion(dio); 1220 else if (!dio->inode->i_sb->s_dio_done_wq) { 1221 /* 1222 * In case of AIO write racing with buffered read we 1223 * need to defer completion. We can't decide this now, 1224 * however the workqueue needs to be initialized here. 1225 */ 1226 retval = sb_init_dio_done_wq(dio->inode->i_sb); 1227 } 1228 if (retval) 1229 goto fail_dio; 1230 } 1231 1232 /* 1233 * Will be decremented at I/O completion time. 1234 */ 1235 inode_dio_begin(inode); 1236 1237 retval = 0; 1238 sdio.blkbits = blkbits; 1239 sdio.blkfactor = i_blkbits - blkbits; 1240 sdio.block_in_file = offset >> blkbits; 1241 1242 sdio.get_block = get_block; 1243 dio->end_io = end_io; 1244 sdio.submit_io = submit_io; 1245 sdio.final_block_in_bio = -1; 1246 sdio.next_block_for_io = -1; 1247 1248 dio->iocb = iocb; 1249 1250 spin_lock_init(&dio->bio_lock); 1251 dio->refcount = 1; 1252 1253 dio->should_dirty = user_backed_iter(iter) && iov_iter_rw(iter) == READ; 1254 sdio.iter = iter; 1255 sdio.final_block_in_request = end >> blkbits; 1256 1257 /* 1258 * In case of non-aligned buffers, we may need 2 more 1259 * pages since we need to zero out first and last block. 1260 */ 1261 if (unlikely(sdio.blkfactor)) 1262 sdio.pages_in_io = 2; 1263 1264 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX); 1265 1266 blk_start_plug(&plug); 1267 1268 retval = do_direct_IO(dio, &sdio, &map_bh); 1269 if (retval) 1270 dio_cleanup(dio, &sdio); 1271 1272 if (retval == -ENOTBLK) { 1273 /* 1274 * The remaining part of the request will be 1275 * handled by buffered I/O when we return 1276 */ 1277 retval = 0; 1278 } 1279 /* 1280 * There may be some unwritten disk at the end of a part-written 1281 * fs-block-sized block. Go zero that now. 1282 */ 1283 dio_zero_block(dio, &sdio, 1, &map_bh); 1284 1285 if (sdio.cur_page) { 1286 ssize_t ret2; 1287 1288 ret2 = dio_send_cur_page(dio, &sdio, &map_bh); 1289 if (retval == 0) 1290 retval = ret2; 1291 put_page(sdio.cur_page); 1292 sdio.cur_page = NULL; 1293 } 1294 if (sdio.bio) 1295 dio_bio_submit(dio, &sdio); 1296 1297 blk_finish_plug(&plug); 1298 1299 /* 1300 * It is possible that, we return short IO due to end of file. 1301 * In that case, we need to release all the pages we got hold on. 1302 */ 1303 dio_cleanup(dio, &sdio); 1304 1305 /* 1306 * All block lookups have been performed. For READ requests 1307 * we can let i_mutex go now that its achieved its purpose 1308 * of protecting us from looking up uninitialized blocks. 1309 */ 1310 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING)) 1311 inode_unlock(dio->inode); 1312 1313 /* 1314 * The only time we want to leave bios in flight is when a successful 1315 * partial aio read or full aio write have been setup. In that case 1316 * bio completion will call aio_complete. The only time it's safe to 1317 * call aio_complete is when we return -EIOCBQUEUED, so we key on that. 1318 * This had *better* be the only place that raises -EIOCBQUEUED. 1319 */ 1320 BUG_ON(retval == -EIOCBQUEUED); 1321 if (dio->is_async && retval == 0 && dio->result && 1322 (iov_iter_rw(iter) == READ || dio->result == count)) 1323 retval = -EIOCBQUEUED; 1324 else 1325 dio_await_completion(dio); 1326 1327 if (drop_refcount(dio) == 0) { 1328 retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE); 1329 } else 1330 BUG_ON(retval != -EIOCBQUEUED); 1331 1332 return retval; 1333 1334 fail_dio: 1335 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) 1336 inode_unlock(inode); 1337 1338 kmem_cache_free(dio_cache, dio); 1339 return retval; 1340 } 1341 EXPORT_SYMBOL(__blockdev_direct_IO); 1342 1343 static __init int dio_init(void) 1344 { 1345 dio_cache = KMEM_CACHE(dio, SLAB_PANIC); 1346 return 0; 1347 } 1348 module_init(dio_init) 1349