1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/direct-io.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * O_DIRECT 8 * 9 * 04Jul2002 Andrew Morton 10 * Initial version 11 * 11Sep2002 janetinc@us.ibm.com 12 * added readv/writev support. 13 * 29Oct2002 Andrew Morton 14 * rewrote bio_add_page() support. 15 * 30Oct2002 pbadari@us.ibm.com 16 * added support for non-aligned IO. 17 * 06Nov2002 pbadari@us.ibm.com 18 * added asynchronous IO support. 19 * 21Jul2003 nathans@sgi.com 20 * added IO completion notifier. 21 */ 22 23 #include <linux/kernel.h> 24 #include <linux/module.h> 25 #include <linux/types.h> 26 #include <linux/fs.h> 27 #include <linux/mm.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/pagemap.h> 31 #include <linux/task_io_accounting_ops.h> 32 #include <linux/bio.h> 33 #include <linux/wait.h> 34 #include <linux/err.h> 35 #include <linux/blkdev.h> 36 #include <linux/buffer_head.h> 37 #include <linux/rwsem.h> 38 #include <linux/uio.h> 39 #include <linux/atomic.h> 40 #include <linux/prefetch.h> 41 42 /* 43 * How many user pages to map in one call to get_user_pages(). This determines 44 * the size of a structure in the slab cache 45 */ 46 #define DIO_PAGES 64 47 48 /* 49 * Flags for dio_complete() 50 */ 51 #define DIO_COMPLETE_ASYNC 0x01 /* This is async IO */ 52 #define DIO_COMPLETE_INVALIDATE 0x02 /* Can invalidate pages */ 53 54 /* 55 * This code generally works in units of "dio_blocks". A dio_block is 56 * somewhere between the hard sector size and the filesystem block size. it 57 * is determined on a per-invocation basis. When talking to the filesystem 58 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity 59 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted 60 * to bio_block quantities by shifting left by blkfactor. 61 * 62 * If blkfactor is zero then the user's request was aligned to the filesystem's 63 * blocksize. 64 */ 65 66 /* dio_state only used in the submission path */ 67 68 struct dio_submit { 69 struct bio *bio; /* bio under assembly */ 70 unsigned blkbits; /* doesn't change */ 71 unsigned blkfactor; /* When we're using an alignment which 72 is finer than the filesystem's soft 73 blocksize, this specifies how much 74 finer. blkfactor=2 means 1/4-block 75 alignment. Does not change */ 76 unsigned start_zero_done; /* flag: sub-blocksize zeroing has 77 been performed at the start of a 78 write */ 79 int pages_in_io; /* approximate total IO pages */ 80 sector_t block_in_file; /* Current offset into the underlying 81 file in dio_block units. */ 82 unsigned blocks_available; /* At block_in_file. changes */ 83 int reap_counter; /* rate limit reaping */ 84 sector_t final_block_in_request;/* doesn't change */ 85 int boundary; /* prev block is at a boundary */ 86 get_block_t *get_block; /* block mapping function */ 87 dio_submit_t *submit_io; /* IO submition function */ 88 89 loff_t logical_offset_in_bio; /* current first logical block in bio */ 90 sector_t final_block_in_bio; /* current final block in bio + 1 */ 91 sector_t next_block_for_io; /* next block to be put under IO, 92 in dio_blocks units */ 93 94 /* 95 * Deferred addition of a page to the dio. These variables are 96 * private to dio_send_cur_page(), submit_page_section() and 97 * dio_bio_add_page(). 98 */ 99 struct page *cur_page; /* The page */ 100 unsigned cur_page_offset; /* Offset into it, in bytes */ 101 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ 102 sector_t cur_page_block; /* Where it starts */ 103 loff_t cur_page_fs_offset; /* Offset in file */ 104 105 struct iov_iter *iter; 106 /* 107 * Page queue. These variables belong to dio_refill_pages() and 108 * dio_get_page(). 109 */ 110 unsigned head; /* next page to process */ 111 unsigned tail; /* last valid page + 1 */ 112 size_t from, to; 113 }; 114 115 /* dio_state communicated between submission path and end_io */ 116 struct dio { 117 int flags; /* doesn't change */ 118 int op; 119 int op_flags; 120 blk_qc_t bio_cookie; 121 struct gendisk *bio_disk; 122 struct inode *inode; 123 loff_t i_size; /* i_size when submitted */ 124 dio_iodone_t *end_io; /* IO completion function */ 125 126 void *private; /* copy from map_bh.b_private */ 127 128 /* BIO completion state */ 129 spinlock_t bio_lock; /* protects BIO fields below */ 130 int page_errors; /* errno from get_user_pages() */ 131 int is_async; /* is IO async ? */ 132 bool defer_completion; /* defer AIO completion to workqueue? */ 133 bool should_dirty; /* if pages should be dirtied */ 134 int io_error; /* IO error in completion path */ 135 unsigned long refcount; /* direct_io_worker() and bios */ 136 struct bio *bio_list; /* singly linked via bi_private */ 137 struct task_struct *waiter; /* waiting task (NULL if none) */ 138 139 /* AIO related stuff */ 140 struct kiocb *iocb; /* kiocb */ 141 ssize_t result; /* IO result */ 142 143 /* 144 * pages[] (and any fields placed after it) are not zeroed out at 145 * allocation time. Don't add new fields after pages[] unless you 146 * wish that they not be zeroed. 147 */ 148 union { 149 struct page *pages[DIO_PAGES]; /* page buffer */ 150 struct work_struct complete_work;/* deferred AIO completion */ 151 }; 152 } ____cacheline_aligned_in_smp; 153 154 static struct kmem_cache *dio_cache __read_mostly; 155 156 /* 157 * How many pages are in the queue? 158 */ 159 static inline unsigned dio_pages_present(struct dio_submit *sdio) 160 { 161 return sdio->tail - sdio->head; 162 } 163 164 /* 165 * Go grab and pin some userspace pages. Typically we'll get 64 at a time. 166 */ 167 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio) 168 { 169 ssize_t ret; 170 171 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES, 172 &sdio->from); 173 174 if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) { 175 struct page *page = ZERO_PAGE(0); 176 /* 177 * A memory fault, but the filesystem has some outstanding 178 * mapped blocks. We need to use those blocks up to avoid 179 * leaking stale data in the file. 180 */ 181 if (dio->page_errors == 0) 182 dio->page_errors = ret; 183 get_page(page); 184 dio->pages[0] = page; 185 sdio->head = 0; 186 sdio->tail = 1; 187 sdio->from = 0; 188 sdio->to = PAGE_SIZE; 189 return 0; 190 } 191 192 if (ret >= 0) { 193 iov_iter_advance(sdio->iter, ret); 194 ret += sdio->from; 195 sdio->head = 0; 196 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE; 197 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1; 198 return 0; 199 } 200 return ret; 201 } 202 203 /* 204 * Get another userspace page. Returns an ERR_PTR on error. Pages are 205 * buffered inside the dio so that we can call get_user_pages() against a 206 * decent number of pages, less frequently. To provide nicer use of the 207 * L1 cache. 208 */ 209 static inline struct page *dio_get_page(struct dio *dio, 210 struct dio_submit *sdio) 211 { 212 if (dio_pages_present(sdio) == 0) { 213 int ret; 214 215 ret = dio_refill_pages(dio, sdio); 216 if (ret) 217 return ERR_PTR(ret); 218 BUG_ON(dio_pages_present(sdio) == 0); 219 } 220 return dio->pages[sdio->head]; 221 } 222 223 /* 224 * Warn about a page cache invalidation failure during a direct io write. 225 */ 226 void dio_warn_stale_pagecache(struct file *filp) 227 { 228 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 229 char pathname[128]; 230 struct inode *inode = file_inode(filp); 231 char *path; 232 233 errseq_set(&inode->i_mapping->wb_err, -EIO); 234 if (__ratelimit(&_rs)) { 235 path = file_path(filp, pathname, sizeof(pathname)); 236 if (IS_ERR(path)) 237 path = "(unknown)"; 238 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 239 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 240 current->comm); 241 } 242 } 243 244 /** 245 * dio_complete() - called when all DIO BIO I/O has been completed 246 * @offset: the byte offset in the file of the completed operation 247 * 248 * This drops i_dio_count, lets interested parties know that a DIO operation 249 * has completed, and calculates the resulting return code for the operation. 250 * 251 * It lets the filesystem know if it registered an interest earlier via 252 * get_block. Pass the private field of the map buffer_head so that 253 * filesystems can use it to hold additional state between get_block calls and 254 * dio_complete. 255 */ 256 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags) 257 { 258 loff_t offset = dio->iocb->ki_pos; 259 ssize_t transferred = 0; 260 int err; 261 262 /* 263 * AIO submission can race with bio completion to get here while 264 * expecting to have the last io completed by bio completion. 265 * In that case -EIOCBQUEUED is in fact not an error we want 266 * to preserve through this call. 267 */ 268 if (ret == -EIOCBQUEUED) 269 ret = 0; 270 271 if (dio->result) { 272 transferred = dio->result; 273 274 /* Check for short read case */ 275 if ((dio->op == REQ_OP_READ) && 276 ((offset + transferred) > dio->i_size)) 277 transferred = dio->i_size - offset; 278 /* ignore EFAULT if some IO has been done */ 279 if (unlikely(ret == -EFAULT) && transferred) 280 ret = 0; 281 } 282 283 if (ret == 0) 284 ret = dio->page_errors; 285 if (ret == 0) 286 ret = dio->io_error; 287 if (ret == 0) 288 ret = transferred; 289 290 if (dio->end_io) { 291 // XXX: ki_pos?? 292 err = dio->end_io(dio->iocb, offset, ret, dio->private); 293 if (err) 294 ret = err; 295 } 296 297 /* 298 * Try again to invalidate clean pages which might have been cached by 299 * non-direct readahead, or faulted in by get_user_pages() if the source 300 * of the write was an mmap'ed region of the file we're writing. Either 301 * one is a pretty crazy thing to do, so we don't support it 100%. If 302 * this invalidation fails, tough, the write still worked... 303 * 304 * And this page cache invalidation has to be after dio->end_io(), as 305 * some filesystems convert unwritten extents to real allocations in 306 * end_io() when necessary, otherwise a racing buffer read would cache 307 * zeros from unwritten extents. 308 */ 309 if (flags & DIO_COMPLETE_INVALIDATE && 310 ret > 0 && dio->op == REQ_OP_WRITE && 311 dio->inode->i_mapping->nrpages) { 312 err = invalidate_inode_pages2_range(dio->inode->i_mapping, 313 offset >> PAGE_SHIFT, 314 (offset + ret - 1) >> PAGE_SHIFT); 315 if (err) 316 dio_warn_stale_pagecache(dio->iocb->ki_filp); 317 } 318 319 inode_dio_end(dio->inode); 320 321 if (flags & DIO_COMPLETE_ASYNC) { 322 /* 323 * generic_write_sync expects ki_pos to have been updated 324 * already, but the submission path only does this for 325 * synchronous I/O. 326 */ 327 dio->iocb->ki_pos += transferred; 328 329 if (ret > 0 && dio->op == REQ_OP_WRITE) 330 ret = generic_write_sync(dio->iocb, ret); 331 dio->iocb->ki_complete(dio->iocb, ret, 0); 332 } 333 334 kmem_cache_free(dio_cache, dio); 335 return ret; 336 } 337 338 static void dio_aio_complete_work(struct work_struct *work) 339 { 340 struct dio *dio = container_of(work, struct dio, complete_work); 341 342 dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE); 343 } 344 345 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio); 346 347 /* 348 * Asynchronous IO callback. 349 */ 350 static void dio_bio_end_aio(struct bio *bio) 351 { 352 struct dio *dio = bio->bi_private; 353 unsigned long remaining; 354 unsigned long flags; 355 bool defer_completion = false; 356 357 /* cleanup the bio */ 358 dio_bio_complete(dio, bio); 359 360 spin_lock_irqsave(&dio->bio_lock, flags); 361 remaining = --dio->refcount; 362 if (remaining == 1 && dio->waiter) 363 wake_up_process(dio->waiter); 364 spin_unlock_irqrestore(&dio->bio_lock, flags); 365 366 if (remaining == 0) { 367 /* 368 * Defer completion when defer_completion is set or 369 * when the inode has pages mapped and this is AIO write. 370 * We need to invalidate those pages because there is a 371 * chance they contain stale data in the case buffered IO 372 * went in between AIO submission and completion into the 373 * same region. 374 */ 375 if (dio->result) 376 defer_completion = dio->defer_completion || 377 (dio->op == REQ_OP_WRITE && 378 dio->inode->i_mapping->nrpages); 379 if (defer_completion) { 380 INIT_WORK(&dio->complete_work, dio_aio_complete_work); 381 queue_work(dio->inode->i_sb->s_dio_done_wq, 382 &dio->complete_work); 383 } else { 384 dio_complete(dio, 0, DIO_COMPLETE_ASYNC); 385 } 386 } 387 } 388 389 /* 390 * The BIO completion handler simply queues the BIO up for the process-context 391 * handler. 392 * 393 * During I/O bi_private points at the dio. After I/O, bi_private is used to 394 * implement a singly-linked list of completed BIOs, at dio->bio_list. 395 */ 396 static void dio_bio_end_io(struct bio *bio) 397 { 398 struct dio *dio = bio->bi_private; 399 unsigned long flags; 400 401 spin_lock_irqsave(&dio->bio_lock, flags); 402 bio->bi_private = dio->bio_list; 403 dio->bio_list = bio; 404 if (--dio->refcount == 1 && dio->waiter) 405 wake_up_process(dio->waiter); 406 spin_unlock_irqrestore(&dio->bio_lock, flags); 407 } 408 409 /** 410 * dio_end_io - handle the end io action for the given bio 411 * @bio: The direct io bio thats being completed 412 * 413 * This is meant to be called by any filesystem that uses their own dio_submit_t 414 * so that the DIO specific endio actions are dealt with after the filesystem 415 * has done it's completion work. 416 */ 417 void dio_end_io(struct bio *bio) 418 { 419 struct dio *dio = bio->bi_private; 420 421 if (dio->is_async) 422 dio_bio_end_aio(bio); 423 else 424 dio_bio_end_io(bio); 425 } 426 EXPORT_SYMBOL_GPL(dio_end_io); 427 428 static inline void 429 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio, 430 struct block_device *bdev, 431 sector_t first_sector, int nr_vecs) 432 { 433 struct bio *bio; 434 435 /* 436 * bio_alloc() is guaranteed to return a bio when allowed to sleep and 437 * we request a valid number of vectors. 438 */ 439 bio = bio_alloc(GFP_KERNEL, nr_vecs); 440 441 bio_set_dev(bio, bdev); 442 bio->bi_iter.bi_sector = first_sector; 443 bio_set_op_attrs(bio, dio->op, dio->op_flags); 444 if (dio->is_async) 445 bio->bi_end_io = dio_bio_end_aio; 446 else 447 bio->bi_end_io = dio_bio_end_io; 448 449 bio->bi_write_hint = dio->iocb->ki_hint; 450 451 sdio->bio = bio; 452 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset; 453 } 454 455 /* 456 * In the AIO read case we speculatively dirty the pages before starting IO. 457 * During IO completion, any of these pages which happen to have been written 458 * back will be redirtied by bio_check_pages_dirty(). 459 * 460 * bios hold a dio reference between submit_bio and ->end_io. 461 */ 462 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio) 463 { 464 struct bio *bio = sdio->bio; 465 unsigned long flags; 466 467 bio->bi_private = dio; 468 469 spin_lock_irqsave(&dio->bio_lock, flags); 470 dio->refcount++; 471 spin_unlock_irqrestore(&dio->bio_lock, flags); 472 473 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) 474 bio_set_pages_dirty(bio); 475 476 dio->bio_disk = bio->bi_disk; 477 478 if (sdio->submit_io) { 479 sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio); 480 dio->bio_cookie = BLK_QC_T_NONE; 481 } else 482 dio->bio_cookie = submit_bio(bio); 483 484 sdio->bio = NULL; 485 sdio->boundary = 0; 486 sdio->logical_offset_in_bio = 0; 487 } 488 489 /* 490 * Release any resources in case of a failure 491 */ 492 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio) 493 { 494 while (sdio->head < sdio->tail) 495 put_page(dio->pages[sdio->head++]); 496 } 497 498 /* 499 * Wait for the next BIO to complete. Remove it and return it. NULL is 500 * returned once all BIOs have been completed. This must only be called once 501 * all bios have been issued so that dio->refcount can only decrease. This 502 * requires that that the caller hold a reference on the dio. 503 */ 504 static struct bio *dio_await_one(struct dio *dio) 505 { 506 unsigned long flags; 507 struct bio *bio = NULL; 508 509 spin_lock_irqsave(&dio->bio_lock, flags); 510 511 /* 512 * Wait as long as the list is empty and there are bios in flight. bio 513 * completion drops the count, maybe adds to the list, and wakes while 514 * holding the bio_lock so we don't need set_current_state()'s barrier 515 * and can call it after testing our condition. 516 */ 517 while (dio->refcount > 1 && dio->bio_list == NULL) { 518 __set_current_state(TASK_UNINTERRUPTIBLE); 519 dio->waiter = current; 520 spin_unlock_irqrestore(&dio->bio_lock, flags); 521 if (!(dio->iocb->ki_flags & IOCB_HIPRI) || 522 !blk_poll(dio->bio_disk->queue, dio->bio_cookie, true)) 523 io_schedule(); 524 /* wake up sets us TASK_RUNNING */ 525 spin_lock_irqsave(&dio->bio_lock, flags); 526 dio->waiter = NULL; 527 } 528 if (dio->bio_list) { 529 bio = dio->bio_list; 530 dio->bio_list = bio->bi_private; 531 } 532 spin_unlock_irqrestore(&dio->bio_lock, flags); 533 return bio; 534 } 535 536 /* 537 * Process one completed BIO. No locks are held. 538 */ 539 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio) 540 { 541 blk_status_t err = bio->bi_status; 542 bool should_dirty = dio->op == REQ_OP_READ && dio->should_dirty; 543 544 if (err) { 545 if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT)) 546 dio->io_error = -EAGAIN; 547 else 548 dio->io_error = -EIO; 549 } 550 551 if (dio->is_async && should_dirty) { 552 bio_check_pages_dirty(bio); /* transfers ownership */ 553 } else { 554 bio_release_pages(bio, should_dirty); 555 bio_put(bio); 556 } 557 return err; 558 } 559 560 /* 561 * Wait on and process all in-flight BIOs. This must only be called once 562 * all bios have been issued so that the refcount can only decrease. 563 * This just waits for all bios to make it through dio_bio_complete. IO 564 * errors are propagated through dio->io_error and should be propagated via 565 * dio_complete(). 566 */ 567 static void dio_await_completion(struct dio *dio) 568 { 569 struct bio *bio; 570 do { 571 bio = dio_await_one(dio); 572 if (bio) 573 dio_bio_complete(dio, bio); 574 } while (bio); 575 } 576 577 /* 578 * A really large O_DIRECT read or write can generate a lot of BIOs. So 579 * to keep the memory consumption sane we periodically reap any completed BIOs 580 * during the BIO generation phase. 581 * 582 * This also helps to limit the peak amount of pinned userspace memory. 583 */ 584 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio) 585 { 586 int ret = 0; 587 588 if (sdio->reap_counter++ >= 64) { 589 while (dio->bio_list) { 590 unsigned long flags; 591 struct bio *bio; 592 int ret2; 593 594 spin_lock_irqsave(&dio->bio_lock, flags); 595 bio = dio->bio_list; 596 dio->bio_list = bio->bi_private; 597 spin_unlock_irqrestore(&dio->bio_lock, flags); 598 ret2 = blk_status_to_errno(dio_bio_complete(dio, bio)); 599 if (ret == 0) 600 ret = ret2; 601 } 602 sdio->reap_counter = 0; 603 } 604 return ret; 605 } 606 607 /* 608 * Create workqueue for deferred direct IO completions. We allocate the 609 * workqueue when it's first needed. This avoids creating workqueue for 610 * filesystems that don't need it and also allows us to create the workqueue 611 * late enough so the we can include s_id in the name of the workqueue. 612 */ 613 int sb_init_dio_done_wq(struct super_block *sb) 614 { 615 struct workqueue_struct *old; 616 struct workqueue_struct *wq = alloc_workqueue("dio/%s", 617 WQ_MEM_RECLAIM, 0, 618 sb->s_id); 619 if (!wq) 620 return -ENOMEM; 621 /* 622 * This has to be atomic as more DIOs can race to create the workqueue 623 */ 624 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq); 625 /* Someone created workqueue before us? Free ours... */ 626 if (old) 627 destroy_workqueue(wq); 628 return 0; 629 } 630 631 static int dio_set_defer_completion(struct dio *dio) 632 { 633 struct super_block *sb = dio->inode->i_sb; 634 635 if (dio->defer_completion) 636 return 0; 637 dio->defer_completion = true; 638 if (!sb->s_dio_done_wq) 639 return sb_init_dio_done_wq(sb); 640 return 0; 641 } 642 643 /* 644 * Call into the fs to map some more disk blocks. We record the current number 645 * of available blocks at sdio->blocks_available. These are in units of the 646 * fs blocksize, i_blocksize(inode). 647 * 648 * The fs is allowed to map lots of blocks at once. If it wants to do that, 649 * it uses the passed inode-relative block number as the file offset, as usual. 650 * 651 * get_block() is passed the number of i_blkbits-sized blocks which direct_io 652 * has remaining to do. The fs should not map more than this number of blocks. 653 * 654 * If the fs has mapped a lot of blocks, it should populate bh->b_size to 655 * indicate how much contiguous disk space has been made available at 656 * bh->b_blocknr. 657 * 658 * If *any* of the mapped blocks are new, then the fs must set buffer_new(). 659 * This isn't very efficient... 660 * 661 * In the case of filesystem holes: the fs may return an arbitrarily-large 662 * hole by returning an appropriate value in b_size and by clearing 663 * buffer_mapped(). However the direct-io code will only process holes one 664 * block at a time - it will repeatedly call get_block() as it walks the hole. 665 */ 666 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio, 667 struct buffer_head *map_bh) 668 { 669 int ret; 670 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ 671 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */ 672 unsigned long fs_count; /* Number of filesystem-sized blocks */ 673 int create; 674 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor; 675 loff_t i_size; 676 677 /* 678 * If there was a memory error and we've overwritten all the 679 * mapped blocks then we can now return that memory error 680 */ 681 ret = dio->page_errors; 682 if (ret == 0) { 683 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request); 684 fs_startblk = sdio->block_in_file >> sdio->blkfactor; 685 fs_endblk = (sdio->final_block_in_request - 1) >> 686 sdio->blkfactor; 687 fs_count = fs_endblk - fs_startblk + 1; 688 689 map_bh->b_state = 0; 690 map_bh->b_size = fs_count << i_blkbits; 691 692 /* 693 * For writes that could fill holes inside i_size on a 694 * DIO_SKIP_HOLES filesystem we forbid block creations: only 695 * overwrites are permitted. We will return early to the caller 696 * once we see an unmapped buffer head returned, and the caller 697 * will fall back to buffered I/O. 698 * 699 * Otherwise the decision is left to the get_blocks method, 700 * which may decide to handle it or also return an unmapped 701 * buffer head. 702 */ 703 create = dio->op == REQ_OP_WRITE; 704 if (dio->flags & DIO_SKIP_HOLES) { 705 i_size = i_size_read(dio->inode); 706 if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits) 707 create = 0; 708 } 709 710 ret = (*sdio->get_block)(dio->inode, fs_startblk, 711 map_bh, create); 712 713 /* Store for completion */ 714 dio->private = map_bh->b_private; 715 716 if (ret == 0 && buffer_defer_completion(map_bh)) 717 ret = dio_set_defer_completion(dio); 718 } 719 return ret; 720 } 721 722 /* 723 * There is no bio. Make one now. 724 */ 725 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio, 726 sector_t start_sector, struct buffer_head *map_bh) 727 { 728 sector_t sector; 729 int ret, nr_pages; 730 731 ret = dio_bio_reap(dio, sdio); 732 if (ret) 733 goto out; 734 sector = start_sector << (sdio->blkbits - 9); 735 nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES); 736 BUG_ON(nr_pages <= 0); 737 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages); 738 sdio->boundary = 0; 739 out: 740 return ret; 741 } 742 743 /* 744 * Attempt to put the current chunk of 'cur_page' into the current BIO. If 745 * that was successful then update final_block_in_bio and take a ref against 746 * the just-added page. 747 * 748 * Return zero on success. Non-zero means the caller needs to start a new BIO. 749 */ 750 static inline int dio_bio_add_page(struct dio_submit *sdio) 751 { 752 int ret; 753 754 ret = bio_add_page(sdio->bio, sdio->cur_page, 755 sdio->cur_page_len, sdio->cur_page_offset); 756 if (ret == sdio->cur_page_len) { 757 /* 758 * Decrement count only, if we are done with this page 759 */ 760 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE) 761 sdio->pages_in_io--; 762 get_page(sdio->cur_page); 763 sdio->final_block_in_bio = sdio->cur_page_block + 764 (sdio->cur_page_len >> sdio->blkbits); 765 ret = 0; 766 } else { 767 ret = 1; 768 } 769 return ret; 770 } 771 772 /* 773 * Put cur_page under IO. The section of cur_page which is described by 774 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page 775 * starts on-disk at cur_page_block. 776 * 777 * We take a ref against the page here (on behalf of its presence in the bio). 778 * 779 * The caller of this function is responsible for removing cur_page from the 780 * dio, and for dropping the refcount which came from that presence. 781 */ 782 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio, 783 struct buffer_head *map_bh) 784 { 785 int ret = 0; 786 787 if (sdio->bio) { 788 loff_t cur_offset = sdio->cur_page_fs_offset; 789 loff_t bio_next_offset = sdio->logical_offset_in_bio + 790 sdio->bio->bi_iter.bi_size; 791 792 /* 793 * See whether this new request is contiguous with the old. 794 * 795 * Btrfs cannot handle having logically non-contiguous requests 796 * submitted. For example if you have 797 * 798 * Logical: [0-4095][HOLE][8192-12287] 799 * Physical: [0-4095] [4096-8191] 800 * 801 * We cannot submit those pages together as one BIO. So if our 802 * current logical offset in the file does not equal what would 803 * be the next logical offset in the bio, submit the bio we 804 * have. 805 */ 806 if (sdio->final_block_in_bio != sdio->cur_page_block || 807 cur_offset != bio_next_offset) 808 dio_bio_submit(dio, sdio); 809 } 810 811 if (sdio->bio == NULL) { 812 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 813 if (ret) 814 goto out; 815 } 816 817 if (dio_bio_add_page(sdio) != 0) { 818 dio_bio_submit(dio, sdio); 819 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 820 if (ret == 0) { 821 ret = dio_bio_add_page(sdio); 822 BUG_ON(ret != 0); 823 } 824 } 825 out: 826 return ret; 827 } 828 829 /* 830 * An autonomous function to put a chunk of a page under deferred IO. 831 * 832 * The caller doesn't actually know (or care) whether this piece of page is in 833 * a BIO, or is under IO or whatever. We just take care of all possible 834 * situations here. The separation between the logic of do_direct_IO() and 835 * that of submit_page_section() is important for clarity. Please don't break. 836 * 837 * The chunk of page starts on-disk at blocknr. 838 * 839 * We perform deferred IO, by recording the last-submitted page inside our 840 * private part of the dio structure. If possible, we just expand the IO 841 * across that page here. 842 * 843 * If that doesn't work out then we put the old page into the bio and add this 844 * page to the dio instead. 845 */ 846 static inline int 847 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page, 848 unsigned offset, unsigned len, sector_t blocknr, 849 struct buffer_head *map_bh) 850 { 851 int ret = 0; 852 853 if (dio->op == REQ_OP_WRITE) { 854 /* 855 * Read accounting is performed in submit_bio() 856 */ 857 task_io_account_write(len); 858 } 859 860 /* 861 * Can we just grow the current page's presence in the dio? 862 */ 863 if (sdio->cur_page == page && 864 sdio->cur_page_offset + sdio->cur_page_len == offset && 865 sdio->cur_page_block + 866 (sdio->cur_page_len >> sdio->blkbits) == blocknr) { 867 sdio->cur_page_len += len; 868 goto out; 869 } 870 871 /* 872 * If there's a deferred page already there then send it. 873 */ 874 if (sdio->cur_page) { 875 ret = dio_send_cur_page(dio, sdio, map_bh); 876 put_page(sdio->cur_page); 877 sdio->cur_page = NULL; 878 if (ret) 879 return ret; 880 } 881 882 get_page(page); /* It is in dio */ 883 sdio->cur_page = page; 884 sdio->cur_page_offset = offset; 885 sdio->cur_page_len = len; 886 sdio->cur_page_block = blocknr; 887 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits; 888 out: 889 /* 890 * If sdio->boundary then we want to schedule the IO now to 891 * avoid metadata seeks. 892 */ 893 if (sdio->boundary) { 894 ret = dio_send_cur_page(dio, sdio, map_bh); 895 if (sdio->bio) 896 dio_bio_submit(dio, sdio); 897 put_page(sdio->cur_page); 898 sdio->cur_page = NULL; 899 } 900 return ret; 901 } 902 903 /* 904 * If we are not writing the entire block and get_block() allocated 905 * the block for us, we need to fill-in the unused portion of the 906 * block with zeros. This happens only if user-buffer, fileoffset or 907 * io length is not filesystem block-size multiple. 908 * 909 * `end' is zero if we're doing the start of the IO, 1 at the end of the 910 * IO. 911 */ 912 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio, 913 int end, struct buffer_head *map_bh) 914 { 915 unsigned dio_blocks_per_fs_block; 916 unsigned this_chunk_blocks; /* In dio_blocks */ 917 unsigned this_chunk_bytes; 918 struct page *page; 919 920 sdio->start_zero_done = 1; 921 if (!sdio->blkfactor || !buffer_new(map_bh)) 922 return; 923 924 dio_blocks_per_fs_block = 1 << sdio->blkfactor; 925 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1); 926 927 if (!this_chunk_blocks) 928 return; 929 930 /* 931 * We need to zero out part of an fs block. It is either at the 932 * beginning or the end of the fs block. 933 */ 934 if (end) 935 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; 936 937 this_chunk_bytes = this_chunk_blocks << sdio->blkbits; 938 939 page = ZERO_PAGE(0); 940 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes, 941 sdio->next_block_for_io, map_bh)) 942 return; 943 944 sdio->next_block_for_io += this_chunk_blocks; 945 } 946 947 /* 948 * Walk the user pages, and the file, mapping blocks to disk and generating 949 * a sequence of (page,offset,len,block) mappings. These mappings are injected 950 * into submit_page_section(), which takes care of the next stage of submission 951 * 952 * Direct IO against a blockdev is different from a file. Because we can 953 * happily perform page-sized but 512-byte aligned IOs. It is important that 954 * blockdev IO be able to have fine alignment and large sizes. 955 * 956 * So what we do is to permit the ->get_block function to populate bh.b_size 957 * with the size of IO which is permitted at this offset and this i_blkbits. 958 * 959 * For best results, the blockdev should be set up with 512-byte i_blkbits and 960 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives 961 * fine alignment but still allows this function to work in PAGE_SIZE units. 962 */ 963 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio, 964 struct buffer_head *map_bh) 965 { 966 const unsigned blkbits = sdio->blkbits; 967 const unsigned i_blkbits = blkbits + sdio->blkfactor; 968 int ret = 0; 969 970 while (sdio->block_in_file < sdio->final_block_in_request) { 971 struct page *page; 972 size_t from, to; 973 974 page = dio_get_page(dio, sdio); 975 if (IS_ERR(page)) { 976 ret = PTR_ERR(page); 977 goto out; 978 } 979 from = sdio->head ? 0 : sdio->from; 980 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE; 981 sdio->head++; 982 983 while (from < to) { 984 unsigned this_chunk_bytes; /* # of bytes mapped */ 985 unsigned this_chunk_blocks; /* # of blocks */ 986 unsigned u; 987 988 if (sdio->blocks_available == 0) { 989 /* 990 * Need to go and map some more disk 991 */ 992 unsigned long blkmask; 993 unsigned long dio_remainder; 994 995 ret = get_more_blocks(dio, sdio, map_bh); 996 if (ret) { 997 put_page(page); 998 goto out; 999 } 1000 if (!buffer_mapped(map_bh)) 1001 goto do_holes; 1002 1003 sdio->blocks_available = 1004 map_bh->b_size >> blkbits; 1005 sdio->next_block_for_io = 1006 map_bh->b_blocknr << sdio->blkfactor; 1007 if (buffer_new(map_bh)) { 1008 clean_bdev_aliases( 1009 map_bh->b_bdev, 1010 map_bh->b_blocknr, 1011 map_bh->b_size >> i_blkbits); 1012 } 1013 1014 if (!sdio->blkfactor) 1015 goto do_holes; 1016 1017 blkmask = (1 << sdio->blkfactor) - 1; 1018 dio_remainder = (sdio->block_in_file & blkmask); 1019 1020 /* 1021 * If we are at the start of IO and that IO 1022 * starts partway into a fs-block, 1023 * dio_remainder will be non-zero. If the IO 1024 * is a read then we can simply advance the IO 1025 * cursor to the first block which is to be 1026 * read. But if the IO is a write and the 1027 * block was newly allocated we cannot do that; 1028 * the start of the fs block must be zeroed out 1029 * on-disk 1030 */ 1031 if (!buffer_new(map_bh)) 1032 sdio->next_block_for_io += dio_remainder; 1033 sdio->blocks_available -= dio_remainder; 1034 } 1035 do_holes: 1036 /* Handle holes */ 1037 if (!buffer_mapped(map_bh)) { 1038 loff_t i_size_aligned; 1039 1040 /* AKPM: eargh, -ENOTBLK is a hack */ 1041 if (dio->op == REQ_OP_WRITE) { 1042 put_page(page); 1043 return -ENOTBLK; 1044 } 1045 1046 /* 1047 * Be sure to account for a partial block as the 1048 * last block in the file 1049 */ 1050 i_size_aligned = ALIGN(i_size_read(dio->inode), 1051 1 << blkbits); 1052 if (sdio->block_in_file >= 1053 i_size_aligned >> blkbits) { 1054 /* We hit eof */ 1055 put_page(page); 1056 goto out; 1057 } 1058 zero_user(page, from, 1 << blkbits); 1059 sdio->block_in_file++; 1060 from += 1 << blkbits; 1061 dio->result += 1 << blkbits; 1062 goto next_block; 1063 } 1064 1065 /* 1066 * If we're performing IO which has an alignment which 1067 * is finer than the underlying fs, go check to see if 1068 * we must zero out the start of this block. 1069 */ 1070 if (unlikely(sdio->blkfactor && !sdio->start_zero_done)) 1071 dio_zero_block(dio, sdio, 0, map_bh); 1072 1073 /* 1074 * Work out, in this_chunk_blocks, how much disk we 1075 * can add to this page 1076 */ 1077 this_chunk_blocks = sdio->blocks_available; 1078 u = (to - from) >> blkbits; 1079 if (this_chunk_blocks > u) 1080 this_chunk_blocks = u; 1081 u = sdio->final_block_in_request - sdio->block_in_file; 1082 if (this_chunk_blocks > u) 1083 this_chunk_blocks = u; 1084 this_chunk_bytes = this_chunk_blocks << blkbits; 1085 BUG_ON(this_chunk_bytes == 0); 1086 1087 if (this_chunk_blocks == sdio->blocks_available) 1088 sdio->boundary = buffer_boundary(map_bh); 1089 ret = submit_page_section(dio, sdio, page, 1090 from, 1091 this_chunk_bytes, 1092 sdio->next_block_for_io, 1093 map_bh); 1094 if (ret) { 1095 put_page(page); 1096 goto out; 1097 } 1098 sdio->next_block_for_io += this_chunk_blocks; 1099 1100 sdio->block_in_file += this_chunk_blocks; 1101 from += this_chunk_bytes; 1102 dio->result += this_chunk_bytes; 1103 sdio->blocks_available -= this_chunk_blocks; 1104 next_block: 1105 BUG_ON(sdio->block_in_file > sdio->final_block_in_request); 1106 if (sdio->block_in_file == sdio->final_block_in_request) 1107 break; 1108 } 1109 1110 /* Drop the ref which was taken in get_user_pages() */ 1111 put_page(page); 1112 } 1113 out: 1114 return ret; 1115 } 1116 1117 static inline int drop_refcount(struct dio *dio) 1118 { 1119 int ret2; 1120 unsigned long flags; 1121 1122 /* 1123 * Sync will always be dropping the final ref and completing the 1124 * operation. AIO can if it was a broken operation described above or 1125 * in fact if all the bios race to complete before we get here. In 1126 * that case dio_complete() translates the EIOCBQUEUED into the proper 1127 * return code that the caller will hand to ->complete(). 1128 * 1129 * This is managed by the bio_lock instead of being an atomic_t so that 1130 * completion paths can drop their ref and use the remaining count to 1131 * decide to wake the submission path atomically. 1132 */ 1133 spin_lock_irqsave(&dio->bio_lock, flags); 1134 ret2 = --dio->refcount; 1135 spin_unlock_irqrestore(&dio->bio_lock, flags); 1136 return ret2; 1137 } 1138 1139 /* 1140 * This is a library function for use by filesystem drivers. 1141 * 1142 * The locking rules are governed by the flags parameter: 1143 * - if the flags value contains DIO_LOCKING we use a fancy locking 1144 * scheme for dumb filesystems. 1145 * For writes this function is called under i_mutex and returns with 1146 * i_mutex held, for reads, i_mutex is not held on entry, but it is 1147 * taken and dropped again before returning. 1148 * - if the flags value does NOT contain DIO_LOCKING we don't use any 1149 * internal locking but rather rely on the filesystem to synchronize 1150 * direct I/O reads/writes versus each other and truncate. 1151 * 1152 * To help with locking against truncate we incremented the i_dio_count 1153 * counter before starting direct I/O, and decrement it once we are done. 1154 * Truncate can wait for it to reach zero to provide exclusion. It is 1155 * expected that filesystem provide exclusion between new direct I/O 1156 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex, 1157 * but other filesystems need to take care of this on their own. 1158 * 1159 * NOTE: if you pass "sdio" to anything by pointer make sure that function 1160 * is always inlined. Otherwise gcc is unable to split the structure into 1161 * individual fields and will generate much worse code. This is important 1162 * for the whole file. 1163 */ 1164 static inline ssize_t 1165 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1166 struct block_device *bdev, struct iov_iter *iter, 1167 get_block_t get_block, dio_iodone_t end_io, 1168 dio_submit_t submit_io, int flags) 1169 { 1170 unsigned i_blkbits = READ_ONCE(inode->i_blkbits); 1171 unsigned blkbits = i_blkbits; 1172 unsigned blocksize_mask = (1 << blkbits) - 1; 1173 ssize_t retval = -EINVAL; 1174 const size_t count = iov_iter_count(iter); 1175 loff_t offset = iocb->ki_pos; 1176 const loff_t end = offset + count; 1177 struct dio *dio; 1178 struct dio_submit sdio = { 0, }; 1179 struct buffer_head map_bh = { 0, }; 1180 struct blk_plug plug; 1181 unsigned long align = offset | iov_iter_alignment(iter); 1182 1183 /* 1184 * Avoid references to bdev if not absolutely needed to give 1185 * the early prefetch in the caller enough time. 1186 */ 1187 1188 if (align & blocksize_mask) { 1189 if (bdev) 1190 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 1191 blocksize_mask = (1 << blkbits) - 1; 1192 if (align & blocksize_mask) 1193 goto out; 1194 } 1195 1196 /* watch out for a 0 len io from a tricksy fs */ 1197 if (iov_iter_rw(iter) == READ && !count) 1198 return 0; 1199 1200 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL); 1201 retval = -ENOMEM; 1202 if (!dio) 1203 goto out; 1204 /* 1205 * Believe it or not, zeroing out the page array caused a .5% 1206 * performance regression in a database benchmark. So, we take 1207 * care to only zero out what's needed. 1208 */ 1209 memset(dio, 0, offsetof(struct dio, pages)); 1210 1211 dio->flags = flags; 1212 if (dio->flags & DIO_LOCKING) { 1213 if (iov_iter_rw(iter) == READ) { 1214 struct address_space *mapping = 1215 iocb->ki_filp->f_mapping; 1216 1217 /* will be released by direct_io_worker */ 1218 inode_lock(inode); 1219 1220 retval = filemap_write_and_wait_range(mapping, offset, 1221 end - 1); 1222 if (retval) { 1223 inode_unlock(inode); 1224 kmem_cache_free(dio_cache, dio); 1225 goto out; 1226 } 1227 } 1228 } 1229 1230 /* Once we sampled i_size check for reads beyond EOF */ 1231 dio->i_size = i_size_read(inode); 1232 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) { 1233 if (dio->flags & DIO_LOCKING) 1234 inode_unlock(inode); 1235 kmem_cache_free(dio_cache, dio); 1236 retval = 0; 1237 goto out; 1238 } 1239 1240 /* 1241 * For file extending writes updating i_size before data writeouts 1242 * complete can expose uninitialized blocks in dumb filesystems. 1243 * In that case we need to wait for I/O completion even if asked 1244 * for an asynchronous write. 1245 */ 1246 if (is_sync_kiocb(iocb)) 1247 dio->is_async = false; 1248 else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode)) 1249 dio->is_async = false; 1250 else 1251 dio->is_async = true; 1252 1253 dio->inode = inode; 1254 if (iov_iter_rw(iter) == WRITE) { 1255 dio->op = REQ_OP_WRITE; 1256 dio->op_flags = REQ_SYNC | REQ_IDLE; 1257 if (iocb->ki_flags & IOCB_NOWAIT) 1258 dio->op_flags |= REQ_NOWAIT; 1259 } else { 1260 dio->op = REQ_OP_READ; 1261 } 1262 if (iocb->ki_flags & IOCB_HIPRI) 1263 dio->op_flags |= REQ_HIPRI; 1264 1265 /* 1266 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue 1267 * so that we can call ->fsync. 1268 */ 1269 if (dio->is_async && iov_iter_rw(iter) == WRITE) { 1270 retval = 0; 1271 if (iocb->ki_flags & IOCB_DSYNC) 1272 retval = dio_set_defer_completion(dio); 1273 else if (!dio->inode->i_sb->s_dio_done_wq) { 1274 /* 1275 * In case of AIO write racing with buffered read we 1276 * need to defer completion. We can't decide this now, 1277 * however the workqueue needs to be initialized here. 1278 */ 1279 retval = sb_init_dio_done_wq(dio->inode->i_sb); 1280 } 1281 if (retval) { 1282 /* 1283 * We grab i_mutex only for reads so we don't have 1284 * to release it here 1285 */ 1286 kmem_cache_free(dio_cache, dio); 1287 goto out; 1288 } 1289 } 1290 1291 /* 1292 * Will be decremented at I/O completion time. 1293 */ 1294 inode_dio_begin(inode); 1295 1296 retval = 0; 1297 sdio.blkbits = blkbits; 1298 sdio.blkfactor = i_blkbits - blkbits; 1299 sdio.block_in_file = offset >> blkbits; 1300 1301 sdio.get_block = get_block; 1302 dio->end_io = end_io; 1303 sdio.submit_io = submit_io; 1304 sdio.final_block_in_bio = -1; 1305 sdio.next_block_for_io = -1; 1306 1307 dio->iocb = iocb; 1308 1309 spin_lock_init(&dio->bio_lock); 1310 dio->refcount = 1; 1311 1312 dio->should_dirty = iter_is_iovec(iter) && iov_iter_rw(iter) == READ; 1313 sdio.iter = iter; 1314 sdio.final_block_in_request = end >> blkbits; 1315 1316 /* 1317 * In case of non-aligned buffers, we may need 2 more 1318 * pages since we need to zero out first and last block. 1319 */ 1320 if (unlikely(sdio.blkfactor)) 1321 sdio.pages_in_io = 2; 1322 1323 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX); 1324 1325 blk_start_plug(&plug); 1326 1327 retval = do_direct_IO(dio, &sdio, &map_bh); 1328 if (retval) 1329 dio_cleanup(dio, &sdio); 1330 1331 if (retval == -ENOTBLK) { 1332 /* 1333 * The remaining part of the request will be 1334 * be handled by buffered I/O when we return 1335 */ 1336 retval = 0; 1337 } 1338 /* 1339 * There may be some unwritten disk at the end of a part-written 1340 * fs-block-sized block. Go zero that now. 1341 */ 1342 dio_zero_block(dio, &sdio, 1, &map_bh); 1343 1344 if (sdio.cur_page) { 1345 ssize_t ret2; 1346 1347 ret2 = dio_send_cur_page(dio, &sdio, &map_bh); 1348 if (retval == 0) 1349 retval = ret2; 1350 put_page(sdio.cur_page); 1351 sdio.cur_page = NULL; 1352 } 1353 if (sdio.bio) 1354 dio_bio_submit(dio, &sdio); 1355 1356 blk_finish_plug(&plug); 1357 1358 /* 1359 * It is possible that, we return short IO due to end of file. 1360 * In that case, we need to release all the pages we got hold on. 1361 */ 1362 dio_cleanup(dio, &sdio); 1363 1364 /* 1365 * All block lookups have been performed. For READ requests 1366 * we can let i_mutex go now that its achieved its purpose 1367 * of protecting us from looking up uninitialized blocks. 1368 */ 1369 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING)) 1370 inode_unlock(dio->inode); 1371 1372 /* 1373 * The only time we want to leave bios in flight is when a successful 1374 * partial aio read or full aio write have been setup. In that case 1375 * bio completion will call aio_complete. The only time it's safe to 1376 * call aio_complete is when we return -EIOCBQUEUED, so we key on that. 1377 * This had *better* be the only place that raises -EIOCBQUEUED. 1378 */ 1379 BUG_ON(retval == -EIOCBQUEUED); 1380 if (dio->is_async && retval == 0 && dio->result && 1381 (iov_iter_rw(iter) == READ || dio->result == count)) 1382 retval = -EIOCBQUEUED; 1383 else 1384 dio_await_completion(dio); 1385 1386 if (drop_refcount(dio) == 0) { 1387 retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE); 1388 } else 1389 BUG_ON(retval != -EIOCBQUEUED); 1390 1391 out: 1392 return retval; 1393 } 1394 1395 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1396 struct block_device *bdev, struct iov_iter *iter, 1397 get_block_t get_block, 1398 dio_iodone_t end_io, dio_submit_t submit_io, 1399 int flags) 1400 { 1401 /* 1402 * The block device state is needed in the end to finally 1403 * submit everything. Since it's likely to be cache cold 1404 * prefetch it here as first thing to hide some of the 1405 * latency. 1406 * 1407 * Attempt to prefetch the pieces we likely need later. 1408 */ 1409 prefetch(&bdev->bd_disk->part_tbl); 1410 prefetch(bdev->bd_queue); 1411 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES); 1412 1413 return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block, 1414 end_io, submit_io, flags); 1415 } 1416 1417 EXPORT_SYMBOL(__blockdev_direct_IO); 1418 1419 static __init int dio_init(void) 1420 { 1421 dio_cache = KMEM_CACHE(dio, SLAB_PANIC); 1422 return 0; 1423 } 1424 module_init(dio_init) 1425