xref: /openbmc/linux/fs/direct-io.c (revision d2999e1b)
1 /*
2  * fs/direct-io.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * O_DIRECT
7  *
8  * 04Jul2002	Andrew Morton
9  *		Initial version
10  * 11Sep2002	janetinc@us.ibm.com
11  * 		added readv/writev support.
12  * 29Oct2002	Andrew Morton
13  *		rewrote bio_add_page() support.
14  * 30Oct2002	pbadari@us.ibm.com
15  *		added support for non-aligned IO.
16  * 06Nov2002	pbadari@us.ibm.com
17  *		added asynchronous IO support.
18  * 21Jul2003	nathans@sgi.com
19  *		added IO completion notifier.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <linux/atomic.h>
39 #include <linux/prefetch.h>
40 #include <linux/aio.h>
41 
42 /*
43  * How many user pages to map in one call to get_user_pages().  This determines
44  * the size of a structure in the slab cache
45  */
46 #define DIO_PAGES	64
47 
48 /*
49  * This code generally works in units of "dio_blocks".  A dio_block is
50  * somewhere between the hard sector size and the filesystem block size.  it
51  * is determined on a per-invocation basis.   When talking to the filesystem
52  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
53  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
54  * to bio_block quantities by shifting left by blkfactor.
55  *
56  * If blkfactor is zero then the user's request was aligned to the filesystem's
57  * blocksize.
58  */
59 
60 /* dio_state only used in the submission path */
61 
62 struct dio_submit {
63 	struct bio *bio;		/* bio under assembly */
64 	unsigned blkbits;		/* doesn't change */
65 	unsigned blkfactor;		/* When we're using an alignment which
66 					   is finer than the filesystem's soft
67 					   blocksize, this specifies how much
68 					   finer.  blkfactor=2 means 1/4-block
69 					   alignment.  Does not change */
70 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
71 					   been performed at the start of a
72 					   write */
73 	int pages_in_io;		/* approximate total IO pages */
74 	size_t	size;			/* total request size (doesn't change)*/
75 	sector_t block_in_file;		/* Current offset into the underlying
76 					   file in dio_block units. */
77 	unsigned blocks_available;	/* At block_in_file.  changes */
78 	int reap_counter;		/* rate limit reaping */
79 	sector_t final_block_in_request;/* doesn't change */
80 	int boundary;			/* prev block is at a boundary */
81 	get_block_t *get_block;		/* block mapping function */
82 	dio_submit_t *submit_io;	/* IO submition function */
83 
84 	loff_t logical_offset_in_bio;	/* current first logical block in bio */
85 	sector_t final_block_in_bio;	/* current final block in bio + 1 */
86 	sector_t next_block_for_io;	/* next block to be put under IO,
87 					   in dio_blocks units */
88 
89 	/*
90 	 * Deferred addition of a page to the dio.  These variables are
91 	 * private to dio_send_cur_page(), submit_page_section() and
92 	 * dio_bio_add_page().
93 	 */
94 	struct page *cur_page;		/* The page */
95 	unsigned cur_page_offset;	/* Offset into it, in bytes */
96 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
97 	sector_t cur_page_block;	/* Where it starts */
98 	loff_t cur_page_fs_offset;	/* Offset in file */
99 
100 	struct iov_iter *iter;
101 	/*
102 	 * Page queue.  These variables belong to dio_refill_pages() and
103 	 * dio_get_page().
104 	 */
105 	unsigned head;			/* next page to process */
106 	unsigned tail;			/* last valid page + 1 */
107 	size_t from, to;
108 };
109 
110 /* dio_state communicated between submission path and end_io */
111 struct dio {
112 	int flags;			/* doesn't change */
113 	int rw;
114 	struct inode *inode;
115 	loff_t i_size;			/* i_size when submitted */
116 	dio_iodone_t *end_io;		/* IO completion function */
117 
118 	void *private;			/* copy from map_bh.b_private */
119 
120 	/* BIO completion state */
121 	spinlock_t bio_lock;		/* protects BIO fields below */
122 	int page_errors;		/* errno from get_user_pages() */
123 	int is_async;			/* is IO async ? */
124 	bool defer_completion;		/* defer AIO completion to workqueue? */
125 	int io_error;			/* IO error in completion path */
126 	unsigned long refcount;		/* direct_io_worker() and bios */
127 	struct bio *bio_list;		/* singly linked via bi_private */
128 	struct task_struct *waiter;	/* waiting task (NULL if none) */
129 
130 	/* AIO related stuff */
131 	struct kiocb *iocb;		/* kiocb */
132 	ssize_t result;                 /* IO result */
133 
134 	/*
135 	 * pages[] (and any fields placed after it) are not zeroed out at
136 	 * allocation time.  Don't add new fields after pages[] unless you
137 	 * wish that they not be zeroed.
138 	 */
139 	union {
140 		struct page *pages[DIO_PAGES];	/* page buffer */
141 		struct work_struct complete_work;/* deferred AIO completion */
142 	};
143 } ____cacheline_aligned_in_smp;
144 
145 static struct kmem_cache *dio_cache __read_mostly;
146 
147 /*
148  * How many pages are in the queue?
149  */
150 static inline unsigned dio_pages_present(struct dio_submit *sdio)
151 {
152 	return sdio->tail - sdio->head;
153 }
154 
155 /*
156  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
157  */
158 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
159 {
160 	ssize_t ret;
161 
162 	ret = iov_iter_get_pages(sdio->iter, dio->pages, DIO_PAGES * PAGE_SIZE,
163 				&sdio->from);
164 
165 	if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) {
166 		struct page *page = ZERO_PAGE(0);
167 		/*
168 		 * A memory fault, but the filesystem has some outstanding
169 		 * mapped blocks.  We need to use those blocks up to avoid
170 		 * leaking stale data in the file.
171 		 */
172 		if (dio->page_errors == 0)
173 			dio->page_errors = ret;
174 		page_cache_get(page);
175 		dio->pages[0] = page;
176 		sdio->head = 0;
177 		sdio->tail = 1;
178 		sdio->from = 0;
179 		sdio->to = PAGE_SIZE;
180 		return 0;
181 	}
182 
183 	if (ret >= 0) {
184 		iov_iter_advance(sdio->iter, ret);
185 		ret += sdio->from;
186 		sdio->head = 0;
187 		sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
188 		sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
189 		return 0;
190 	}
191 	return ret;
192 }
193 
194 /*
195  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
196  * buffered inside the dio so that we can call get_user_pages() against a
197  * decent number of pages, less frequently.  To provide nicer use of the
198  * L1 cache.
199  */
200 static inline struct page *dio_get_page(struct dio *dio,
201 		struct dio_submit *sdio, size_t *from, size_t *to)
202 {
203 	int n;
204 	if (dio_pages_present(sdio) == 0) {
205 		int ret;
206 
207 		ret = dio_refill_pages(dio, sdio);
208 		if (ret)
209 			return ERR_PTR(ret);
210 		BUG_ON(dio_pages_present(sdio) == 0);
211 	}
212 	n = sdio->head++;
213 	*from = n ? 0 : sdio->from;
214 	*to = (n == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
215 	return dio->pages[n];
216 }
217 
218 /**
219  * dio_complete() - called when all DIO BIO I/O has been completed
220  * @offset: the byte offset in the file of the completed operation
221  *
222  * This drops i_dio_count, lets interested parties know that a DIO operation
223  * has completed, and calculates the resulting return code for the operation.
224  *
225  * It lets the filesystem know if it registered an interest earlier via
226  * get_block.  Pass the private field of the map buffer_head so that
227  * filesystems can use it to hold additional state between get_block calls and
228  * dio_complete.
229  */
230 static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret,
231 		bool is_async)
232 {
233 	ssize_t transferred = 0;
234 
235 	/*
236 	 * AIO submission can race with bio completion to get here while
237 	 * expecting to have the last io completed by bio completion.
238 	 * In that case -EIOCBQUEUED is in fact not an error we want
239 	 * to preserve through this call.
240 	 */
241 	if (ret == -EIOCBQUEUED)
242 		ret = 0;
243 
244 	if (dio->result) {
245 		transferred = dio->result;
246 
247 		/* Check for short read case */
248 		if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
249 			transferred = dio->i_size - offset;
250 	}
251 
252 	if (ret == 0)
253 		ret = dio->page_errors;
254 	if (ret == 0)
255 		ret = dio->io_error;
256 	if (ret == 0)
257 		ret = transferred;
258 
259 	if (dio->end_io && dio->result)
260 		dio->end_io(dio->iocb, offset, transferred, dio->private);
261 
262 	inode_dio_done(dio->inode);
263 	if (is_async) {
264 		if (dio->rw & WRITE) {
265 			int err;
266 
267 			err = generic_write_sync(dio->iocb->ki_filp, offset,
268 						 transferred);
269 			if (err < 0 && ret > 0)
270 				ret = err;
271 		}
272 
273 		aio_complete(dio->iocb, ret, 0);
274 	}
275 
276 	kmem_cache_free(dio_cache, dio);
277 	return ret;
278 }
279 
280 static void dio_aio_complete_work(struct work_struct *work)
281 {
282 	struct dio *dio = container_of(work, struct dio, complete_work);
283 
284 	dio_complete(dio, dio->iocb->ki_pos, 0, true);
285 }
286 
287 static int dio_bio_complete(struct dio *dio, struct bio *bio);
288 
289 /*
290  * Asynchronous IO callback.
291  */
292 static void dio_bio_end_aio(struct bio *bio, int error)
293 {
294 	struct dio *dio = bio->bi_private;
295 	unsigned long remaining;
296 	unsigned long flags;
297 
298 	/* cleanup the bio */
299 	dio_bio_complete(dio, bio);
300 
301 	spin_lock_irqsave(&dio->bio_lock, flags);
302 	remaining = --dio->refcount;
303 	if (remaining == 1 && dio->waiter)
304 		wake_up_process(dio->waiter);
305 	spin_unlock_irqrestore(&dio->bio_lock, flags);
306 
307 	if (remaining == 0) {
308 		if (dio->result && dio->defer_completion) {
309 			INIT_WORK(&dio->complete_work, dio_aio_complete_work);
310 			queue_work(dio->inode->i_sb->s_dio_done_wq,
311 				   &dio->complete_work);
312 		} else {
313 			dio_complete(dio, dio->iocb->ki_pos, 0, true);
314 		}
315 	}
316 }
317 
318 /*
319  * The BIO completion handler simply queues the BIO up for the process-context
320  * handler.
321  *
322  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
323  * implement a singly-linked list of completed BIOs, at dio->bio_list.
324  */
325 static void dio_bio_end_io(struct bio *bio, int error)
326 {
327 	struct dio *dio = bio->bi_private;
328 	unsigned long flags;
329 
330 	spin_lock_irqsave(&dio->bio_lock, flags);
331 	bio->bi_private = dio->bio_list;
332 	dio->bio_list = bio;
333 	if (--dio->refcount == 1 && dio->waiter)
334 		wake_up_process(dio->waiter);
335 	spin_unlock_irqrestore(&dio->bio_lock, flags);
336 }
337 
338 /**
339  * dio_end_io - handle the end io action for the given bio
340  * @bio: The direct io bio thats being completed
341  * @error: Error if there was one
342  *
343  * This is meant to be called by any filesystem that uses their own dio_submit_t
344  * so that the DIO specific endio actions are dealt with after the filesystem
345  * has done it's completion work.
346  */
347 void dio_end_io(struct bio *bio, int error)
348 {
349 	struct dio *dio = bio->bi_private;
350 
351 	if (dio->is_async)
352 		dio_bio_end_aio(bio, error);
353 	else
354 		dio_bio_end_io(bio, error);
355 }
356 EXPORT_SYMBOL_GPL(dio_end_io);
357 
358 static inline void
359 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
360 	      struct block_device *bdev,
361 	      sector_t first_sector, int nr_vecs)
362 {
363 	struct bio *bio;
364 
365 	/*
366 	 * bio_alloc() is guaranteed to return a bio when called with
367 	 * __GFP_WAIT and we request a valid number of vectors.
368 	 */
369 	bio = bio_alloc(GFP_KERNEL, nr_vecs);
370 
371 	bio->bi_bdev = bdev;
372 	bio->bi_iter.bi_sector = first_sector;
373 	if (dio->is_async)
374 		bio->bi_end_io = dio_bio_end_aio;
375 	else
376 		bio->bi_end_io = dio_bio_end_io;
377 
378 	sdio->bio = bio;
379 	sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
380 }
381 
382 /*
383  * In the AIO read case we speculatively dirty the pages before starting IO.
384  * During IO completion, any of these pages which happen to have been written
385  * back will be redirtied by bio_check_pages_dirty().
386  *
387  * bios hold a dio reference between submit_bio and ->end_io.
388  */
389 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
390 {
391 	struct bio *bio = sdio->bio;
392 	unsigned long flags;
393 
394 	bio->bi_private = dio;
395 
396 	spin_lock_irqsave(&dio->bio_lock, flags);
397 	dio->refcount++;
398 	spin_unlock_irqrestore(&dio->bio_lock, flags);
399 
400 	if (dio->is_async && dio->rw == READ)
401 		bio_set_pages_dirty(bio);
402 
403 	if (sdio->submit_io)
404 		sdio->submit_io(dio->rw, bio, dio->inode,
405 			       sdio->logical_offset_in_bio);
406 	else
407 		submit_bio(dio->rw, bio);
408 
409 	sdio->bio = NULL;
410 	sdio->boundary = 0;
411 	sdio->logical_offset_in_bio = 0;
412 }
413 
414 /*
415  * Release any resources in case of a failure
416  */
417 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
418 {
419 	while (sdio->head < sdio->tail)
420 		page_cache_release(dio->pages[sdio->head++]);
421 }
422 
423 /*
424  * Wait for the next BIO to complete.  Remove it and return it.  NULL is
425  * returned once all BIOs have been completed.  This must only be called once
426  * all bios have been issued so that dio->refcount can only decrease.  This
427  * requires that that the caller hold a reference on the dio.
428  */
429 static struct bio *dio_await_one(struct dio *dio)
430 {
431 	unsigned long flags;
432 	struct bio *bio = NULL;
433 
434 	spin_lock_irqsave(&dio->bio_lock, flags);
435 
436 	/*
437 	 * Wait as long as the list is empty and there are bios in flight.  bio
438 	 * completion drops the count, maybe adds to the list, and wakes while
439 	 * holding the bio_lock so we don't need set_current_state()'s barrier
440 	 * and can call it after testing our condition.
441 	 */
442 	while (dio->refcount > 1 && dio->bio_list == NULL) {
443 		__set_current_state(TASK_UNINTERRUPTIBLE);
444 		dio->waiter = current;
445 		spin_unlock_irqrestore(&dio->bio_lock, flags);
446 		io_schedule();
447 		/* wake up sets us TASK_RUNNING */
448 		spin_lock_irqsave(&dio->bio_lock, flags);
449 		dio->waiter = NULL;
450 	}
451 	if (dio->bio_list) {
452 		bio = dio->bio_list;
453 		dio->bio_list = bio->bi_private;
454 	}
455 	spin_unlock_irqrestore(&dio->bio_lock, flags);
456 	return bio;
457 }
458 
459 /*
460  * Process one completed BIO.  No locks are held.
461  */
462 static int dio_bio_complete(struct dio *dio, struct bio *bio)
463 {
464 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
465 	struct bio_vec *bvec;
466 	unsigned i;
467 
468 	if (!uptodate)
469 		dio->io_error = -EIO;
470 
471 	if (dio->is_async && dio->rw == READ) {
472 		bio_check_pages_dirty(bio);	/* transfers ownership */
473 	} else {
474 		bio_for_each_segment_all(bvec, bio, i) {
475 			struct page *page = bvec->bv_page;
476 
477 			if (dio->rw == READ && !PageCompound(page))
478 				set_page_dirty_lock(page);
479 			page_cache_release(page);
480 		}
481 		bio_put(bio);
482 	}
483 	return uptodate ? 0 : -EIO;
484 }
485 
486 /*
487  * Wait on and process all in-flight BIOs.  This must only be called once
488  * all bios have been issued so that the refcount can only decrease.
489  * This just waits for all bios to make it through dio_bio_complete.  IO
490  * errors are propagated through dio->io_error and should be propagated via
491  * dio_complete().
492  */
493 static void dio_await_completion(struct dio *dio)
494 {
495 	struct bio *bio;
496 	do {
497 		bio = dio_await_one(dio);
498 		if (bio)
499 			dio_bio_complete(dio, bio);
500 	} while (bio);
501 }
502 
503 /*
504  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
505  * to keep the memory consumption sane we periodically reap any completed BIOs
506  * during the BIO generation phase.
507  *
508  * This also helps to limit the peak amount of pinned userspace memory.
509  */
510 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
511 {
512 	int ret = 0;
513 
514 	if (sdio->reap_counter++ >= 64) {
515 		while (dio->bio_list) {
516 			unsigned long flags;
517 			struct bio *bio;
518 			int ret2;
519 
520 			spin_lock_irqsave(&dio->bio_lock, flags);
521 			bio = dio->bio_list;
522 			dio->bio_list = bio->bi_private;
523 			spin_unlock_irqrestore(&dio->bio_lock, flags);
524 			ret2 = dio_bio_complete(dio, bio);
525 			if (ret == 0)
526 				ret = ret2;
527 		}
528 		sdio->reap_counter = 0;
529 	}
530 	return ret;
531 }
532 
533 /*
534  * Create workqueue for deferred direct IO completions. We allocate the
535  * workqueue when it's first needed. This avoids creating workqueue for
536  * filesystems that don't need it and also allows us to create the workqueue
537  * late enough so the we can include s_id in the name of the workqueue.
538  */
539 static int sb_init_dio_done_wq(struct super_block *sb)
540 {
541 	struct workqueue_struct *old;
542 	struct workqueue_struct *wq = alloc_workqueue("dio/%s",
543 						      WQ_MEM_RECLAIM, 0,
544 						      sb->s_id);
545 	if (!wq)
546 		return -ENOMEM;
547 	/*
548 	 * This has to be atomic as more DIOs can race to create the workqueue
549 	 */
550 	old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
551 	/* Someone created workqueue before us? Free ours... */
552 	if (old)
553 		destroy_workqueue(wq);
554 	return 0;
555 }
556 
557 static int dio_set_defer_completion(struct dio *dio)
558 {
559 	struct super_block *sb = dio->inode->i_sb;
560 
561 	if (dio->defer_completion)
562 		return 0;
563 	dio->defer_completion = true;
564 	if (!sb->s_dio_done_wq)
565 		return sb_init_dio_done_wq(sb);
566 	return 0;
567 }
568 
569 /*
570  * Call into the fs to map some more disk blocks.  We record the current number
571  * of available blocks at sdio->blocks_available.  These are in units of the
572  * fs blocksize, (1 << inode->i_blkbits).
573  *
574  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
575  * it uses the passed inode-relative block number as the file offset, as usual.
576  *
577  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
578  * has remaining to do.  The fs should not map more than this number of blocks.
579  *
580  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
581  * indicate how much contiguous disk space has been made available at
582  * bh->b_blocknr.
583  *
584  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
585  * This isn't very efficient...
586  *
587  * In the case of filesystem holes: the fs may return an arbitrarily-large
588  * hole by returning an appropriate value in b_size and by clearing
589  * buffer_mapped().  However the direct-io code will only process holes one
590  * block at a time - it will repeatedly call get_block() as it walks the hole.
591  */
592 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
593 			   struct buffer_head *map_bh)
594 {
595 	int ret;
596 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
597 	sector_t fs_endblk;	/* Into file, in filesystem-sized blocks */
598 	unsigned long fs_count;	/* Number of filesystem-sized blocks */
599 	int create;
600 	unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
601 
602 	/*
603 	 * If there was a memory error and we've overwritten all the
604 	 * mapped blocks then we can now return that memory error
605 	 */
606 	ret = dio->page_errors;
607 	if (ret == 0) {
608 		BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
609 		fs_startblk = sdio->block_in_file >> sdio->blkfactor;
610 		fs_endblk = (sdio->final_block_in_request - 1) >>
611 					sdio->blkfactor;
612 		fs_count = fs_endblk - fs_startblk + 1;
613 
614 		map_bh->b_state = 0;
615 		map_bh->b_size = fs_count << i_blkbits;
616 
617 		/*
618 		 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
619 		 * forbid block creations: only overwrites are permitted.
620 		 * We will return early to the caller once we see an
621 		 * unmapped buffer head returned, and the caller will fall
622 		 * back to buffered I/O.
623 		 *
624 		 * Otherwise the decision is left to the get_blocks method,
625 		 * which may decide to handle it or also return an unmapped
626 		 * buffer head.
627 		 */
628 		create = dio->rw & WRITE;
629 		if (dio->flags & DIO_SKIP_HOLES) {
630 			if (sdio->block_in_file < (i_size_read(dio->inode) >>
631 							sdio->blkbits))
632 				create = 0;
633 		}
634 
635 		ret = (*sdio->get_block)(dio->inode, fs_startblk,
636 						map_bh, create);
637 
638 		/* Store for completion */
639 		dio->private = map_bh->b_private;
640 
641 		if (ret == 0 && buffer_defer_completion(map_bh))
642 			ret = dio_set_defer_completion(dio);
643 	}
644 	return ret;
645 }
646 
647 /*
648  * There is no bio.  Make one now.
649  */
650 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
651 		sector_t start_sector, struct buffer_head *map_bh)
652 {
653 	sector_t sector;
654 	int ret, nr_pages;
655 
656 	ret = dio_bio_reap(dio, sdio);
657 	if (ret)
658 		goto out;
659 	sector = start_sector << (sdio->blkbits - 9);
660 	nr_pages = min(sdio->pages_in_io, bio_get_nr_vecs(map_bh->b_bdev));
661 	BUG_ON(nr_pages <= 0);
662 	dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
663 	sdio->boundary = 0;
664 out:
665 	return ret;
666 }
667 
668 /*
669  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
670  * that was successful then update final_block_in_bio and take a ref against
671  * the just-added page.
672  *
673  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
674  */
675 static inline int dio_bio_add_page(struct dio_submit *sdio)
676 {
677 	int ret;
678 
679 	ret = bio_add_page(sdio->bio, sdio->cur_page,
680 			sdio->cur_page_len, sdio->cur_page_offset);
681 	if (ret == sdio->cur_page_len) {
682 		/*
683 		 * Decrement count only, if we are done with this page
684 		 */
685 		if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
686 			sdio->pages_in_io--;
687 		page_cache_get(sdio->cur_page);
688 		sdio->final_block_in_bio = sdio->cur_page_block +
689 			(sdio->cur_page_len >> sdio->blkbits);
690 		ret = 0;
691 	} else {
692 		ret = 1;
693 	}
694 	return ret;
695 }
696 
697 /*
698  * Put cur_page under IO.  The section of cur_page which is described by
699  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
700  * starts on-disk at cur_page_block.
701  *
702  * We take a ref against the page here (on behalf of its presence in the bio).
703  *
704  * The caller of this function is responsible for removing cur_page from the
705  * dio, and for dropping the refcount which came from that presence.
706  */
707 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
708 		struct buffer_head *map_bh)
709 {
710 	int ret = 0;
711 
712 	if (sdio->bio) {
713 		loff_t cur_offset = sdio->cur_page_fs_offset;
714 		loff_t bio_next_offset = sdio->logical_offset_in_bio +
715 			sdio->bio->bi_iter.bi_size;
716 
717 		/*
718 		 * See whether this new request is contiguous with the old.
719 		 *
720 		 * Btrfs cannot handle having logically non-contiguous requests
721 		 * submitted.  For example if you have
722 		 *
723 		 * Logical:  [0-4095][HOLE][8192-12287]
724 		 * Physical: [0-4095]      [4096-8191]
725 		 *
726 		 * We cannot submit those pages together as one BIO.  So if our
727 		 * current logical offset in the file does not equal what would
728 		 * be the next logical offset in the bio, submit the bio we
729 		 * have.
730 		 */
731 		if (sdio->final_block_in_bio != sdio->cur_page_block ||
732 		    cur_offset != bio_next_offset)
733 			dio_bio_submit(dio, sdio);
734 	}
735 
736 	if (sdio->bio == NULL) {
737 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
738 		if (ret)
739 			goto out;
740 	}
741 
742 	if (dio_bio_add_page(sdio) != 0) {
743 		dio_bio_submit(dio, sdio);
744 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
745 		if (ret == 0) {
746 			ret = dio_bio_add_page(sdio);
747 			BUG_ON(ret != 0);
748 		}
749 	}
750 out:
751 	return ret;
752 }
753 
754 /*
755  * An autonomous function to put a chunk of a page under deferred IO.
756  *
757  * The caller doesn't actually know (or care) whether this piece of page is in
758  * a BIO, or is under IO or whatever.  We just take care of all possible
759  * situations here.  The separation between the logic of do_direct_IO() and
760  * that of submit_page_section() is important for clarity.  Please don't break.
761  *
762  * The chunk of page starts on-disk at blocknr.
763  *
764  * We perform deferred IO, by recording the last-submitted page inside our
765  * private part of the dio structure.  If possible, we just expand the IO
766  * across that page here.
767  *
768  * If that doesn't work out then we put the old page into the bio and add this
769  * page to the dio instead.
770  */
771 static inline int
772 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
773 		    unsigned offset, unsigned len, sector_t blocknr,
774 		    struct buffer_head *map_bh)
775 {
776 	int ret = 0;
777 
778 	if (dio->rw & WRITE) {
779 		/*
780 		 * Read accounting is performed in submit_bio()
781 		 */
782 		task_io_account_write(len);
783 	}
784 
785 	/*
786 	 * Can we just grow the current page's presence in the dio?
787 	 */
788 	if (sdio->cur_page == page &&
789 	    sdio->cur_page_offset + sdio->cur_page_len == offset &&
790 	    sdio->cur_page_block +
791 	    (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
792 		sdio->cur_page_len += len;
793 		goto out;
794 	}
795 
796 	/*
797 	 * If there's a deferred page already there then send it.
798 	 */
799 	if (sdio->cur_page) {
800 		ret = dio_send_cur_page(dio, sdio, map_bh);
801 		page_cache_release(sdio->cur_page);
802 		sdio->cur_page = NULL;
803 		if (ret)
804 			return ret;
805 	}
806 
807 	page_cache_get(page);		/* It is in dio */
808 	sdio->cur_page = page;
809 	sdio->cur_page_offset = offset;
810 	sdio->cur_page_len = len;
811 	sdio->cur_page_block = blocknr;
812 	sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
813 out:
814 	/*
815 	 * If sdio->boundary then we want to schedule the IO now to
816 	 * avoid metadata seeks.
817 	 */
818 	if (sdio->boundary) {
819 		ret = dio_send_cur_page(dio, sdio, map_bh);
820 		dio_bio_submit(dio, sdio);
821 		page_cache_release(sdio->cur_page);
822 		sdio->cur_page = NULL;
823 	}
824 	return ret;
825 }
826 
827 /*
828  * Clean any dirty buffers in the blockdev mapping which alias newly-created
829  * file blocks.  Only called for S_ISREG files - blockdevs do not set
830  * buffer_new
831  */
832 static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh)
833 {
834 	unsigned i;
835 	unsigned nblocks;
836 
837 	nblocks = map_bh->b_size >> dio->inode->i_blkbits;
838 
839 	for (i = 0; i < nblocks; i++) {
840 		unmap_underlying_metadata(map_bh->b_bdev,
841 					  map_bh->b_blocknr + i);
842 	}
843 }
844 
845 /*
846  * If we are not writing the entire block and get_block() allocated
847  * the block for us, we need to fill-in the unused portion of the
848  * block with zeros. This happens only if user-buffer, fileoffset or
849  * io length is not filesystem block-size multiple.
850  *
851  * `end' is zero if we're doing the start of the IO, 1 at the end of the
852  * IO.
853  */
854 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
855 		int end, struct buffer_head *map_bh)
856 {
857 	unsigned dio_blocks_per_fs_block;
858 	unsigned this_chunk_blocks;	/* In dio_blocks */
859 	unsigned this_chunk_bytes;
860 	struct page *page;
861 
862 	sdio->start_zero_done = 1;
863 	if (!sdio->blkfactor || !buffer_new(map_bh))
864 		return;
865 
866 	dio_blocks_per_fs_block = 1 << sdio->blkfactor;
867 	this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
868 
869 	if (!this_chunk_blocks)
870 		return;
871 
872 	/*
873 	 * We need to zero out part of an fs block.  It is either at the
874 	 * beginning or the end of the fs block.
875 	 */
876 	if (end)
877 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
878 
879 	this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
880 
881 	page = ZERO_PAGE(0);
882 	if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
883 				sdio->next_block_for_io, map_bh))
884 		return;
885 
886 	sdio->next_block_for_io += this_chunk_blocks;
887 }
888 
889 /*
890  * Walk the user pages, and the file, mapping blocks to disk and generating
891  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
892  * into submit_page_section(), which takes care of the next stage of submission
893  *
894  * Direct IO against a blockdev is different from a file.  Because we can
895  * happily perform page-sized but 512-byte aligned IOs.  It is important that
896  * blockdev IO be able to have fine alignment and large sizes.
897  *
898  * So what we do is to permit the ->get_block function to populate bh.b_size
899  * with the size of IO which is permitted at this offset and this i_blkbits.
900  *
901  * For best results, the blockdev should be set up with 512-byte i_blkbits and
902  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
903  * fine alignment but still allows this function to work in PAGE_SIZE units.
904  */
905 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
906 			struct buffer_head *map_bh)
907 {
908 	const unsigned blkbits = sdio->blkbits;
909 	int ret = 0;
910 
911 	while (sdio->block_in_file < sdio->final_block_in_request) {
912 		struct page *page;
913 		size_t from, to;
914 		page = dio_get_page(dio, sdio, &from, &to);
915 		if (IS_ERR(page)) {
916 			ret = PTR_ERR(page);
917 			goto out;
918 		}
919 
920 		while (from < to) {
921 			unsigned this_chunk_bytes;	/* # of bytes mapped */
922 			unsigned this_chunk_blocks;	/* # of blocks */
923 			unsigned u;
924 
925 			if (sdio->blocks_available == 0) {
926 				/*
927 				 * Need to go and map some more disk
928 				 */
929 				unsigned long blkmask;
930 				unsigned long dio_remainder;
931 
932 				ret = get_more_blocks(dio, sdio, map_bh);
933 				if (ret) {
934 					page_cache_release(page);
935 					goto out;
936 				}
937 				if (!buffer_mapped(map_bh))
938 					goto do_holes;
939 
940 				sdio->blocks_available =
941 						map_bh->b_size >> sdio->blkbits;
942 				sdio->next_block_for_io =
943 					map_bh->b_blocknr << sdio->blkfactor;
944 				if (buffer_new(map_bh))
945 					clean_blockdev_aliases(dio, map_bh);
946 
947 				if (!sdio->blkfactor)
948 					goto do_holes;
949 
950 				blkmask = (1 << sdio->blkfactor) - 1;
951 				dio_remainder = (sdio->block_in_file & blkmask);
952 
953 				/*
954 				 * If we are at the start of IO and that IO
955 				 * starts partway into a fs-block,
956 				 * dio_remainder will be non-zero.  If the IO
957 				 * is a read then we can simply advance the IO
958 				 * cursor to the first block which is to be
959 				 * read.  But if the IO is a write and the
960 				 * block was newly allocated we cannot do that;
961 				 * the start of the fs block must be zeroed out
962 				 * on-disk
963 				 */
964 				if (!buffer_new(map_bh))
965 					sdio->next_block_for_io += dio_remainder;
966 				sdio->blocks_available -= dio_remainder;
967 			}
968 do_holes:
969 			/* Handle holes */
970 			if (!buffer_mapped(map_bh)) {
971 				loff_t i_size_aligned;
972 
973 				/* AKPM: eargh, -ENOTBLK is a hack */
974 				if (dio->rw & WRITE) {
975 					page_cache_release(page);
976 					return -ENOTBLK;
977 				}
978 
979 				/*
980 				 * Be sure to account for a partial block as the
981 				 * last block in the file
982 				 */
983 				i_size_aligned = ALIGN(i_size_read(dio->inode),
984 							1 << blkbits);
985 				if (sdio->block_in_file >=
986 						i_size_aligned >> blkbits) {
987 					/* We hit eof */
988 					page_cache_release(page);
989 					goto out;
990 				}
991 				zero_user(page, from, 1 << blkbits);
992 				sdio->block_in_file++;
993 				from += 1 << blkbits;
994 				dio->result += 1 << blkbits;
995 				goto next_block;
996 			}
997 
998 			/*
999 			 * If we're performing IO which has an alignment which
1000 			 * is finer than the underlying fs, go check to see if
1001 			 * we must zero out the start of this block.
1002 			 */
1003 			if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1004 				dio_zero_block(dio, sdio, 0, map_bh);
1005 
1006 			/*
1007 			 * Work out, in this_chunk_blocks, how much disk we
1008 			 * can add to this page
1009 			 */
1010 			this_chunk_blocks = sdio->blocks_available;
1011 			u = (to - from) >> blkbits;
1012 			if (this_chunk_blocks > u)
1013 				this_chunk_blocks = u;
1014 			u = sdio->final_block_in_request - sdio->block_in_file;
1015 			if (this_chunk_blocks > u)
1016 				this_chunk_blocks = u;
1017 			this_chunk_bytes = this_chunk_blocks << blkbits;
1018 			BUG_ON(this_chunk_bytes == 0);
1019 
1020 			if (this_chunk_blocks == sdio->blocks_available)
1021 				sdio->boundary = buffer_boundary(map_bh);
1022 			ret = submit_page_section(dio, sdio, page,
1023 						  from,
1024 						  this_chunk_bytes,
1025 						  sdio->next_block_for_io,
1026 						  map_bh);
1027 			if (ret) {
1028 				page_cache_release(page);
1029 				goto out;
1030 			}
1031 			sdio->next_block_for_io += this_chunk_blocks;
1032 
1033 			sdio->block_in_file += this_chunk_blocks;
1034 			from += this_chunk_bytes;
1035 			dio->result += this_chunk_bytes;
1036 			sdio->blocks_available -= this_chunk_blocks;
1037 next_block:
1038 			BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1039 			if (sdio->block_in_file == sdio->final_block_in_request)
1040 				break;
1041 		}
1042 
1043 		/* Drop the ref which was taken in get_user_pages() */
1044 		page_cache_release(page);
1045 	}
1046 out:
1047 	return ret;
1048 }
1049 
1050 static inline int drop_refcount(struct dio *dio)
1051 {
1052 	int ret2;
1053 	unsigned long flags;
1054 
1055 	/*
1056 	 * Sync will always be dropping the final ref and completing the
1057 	 * operation.  AIO can if it was a broken operation described above or
1058 	 * in fact if all the bios race to complete before we get here.  In
1059 	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1060 	 * return code that the caller will hand to aio_complete().
1061 	 *
1062 	 * This is managed by the bio_lock instead of being an atomic_t so that
1063 	 * completion paths can drop their ref and use the remaining count to
1064 	 * decide to wake the submission path atomically.
1065 	 */
1066 	spin_lock_irqsave(&dio->bio_lock, flags);
1067 	ret2 = --dio->refcount;
1068 	spin_unlock_irqrestore(&dio->bio_lock, flags);
1069 	return ret2;
1070 }
1071 
1072 /*
1073  * This is a library function for use by filesystem drivers.
1074  *
1075  * The locking rules are governed by the flags parameter:
1076  *  - if the flags value contains DIO_LOCKING we use a fancy locking
1077  *    scheme for dumb filesystems.
1078  *    For writes this function is called under i_mutex and returns with
1079  *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1080  *    taken and dropped again before returning.
1081  *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1082  *    internal locking but rather rely on the filesystem to synchronize
1083  *    direct I/O reads/writes versus each other and truncate.
1084  *
1085  * To help with locking against truncate we incremented the i_dio_count
1086  * counter before starting direct I/O, and decrement it once we are done.
1087  * Truncate can wait for it to reach zero to provide exclusion.  It is
1088  * expected that filesystem provide exclusion between new direct I/O
1089  * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1090  * but other filesystems need to take care of this on their own.
1091  *
1092  * NOTE: if you pass "sdio" to anything by pointer make sure that function
1093  * is always inlined. Otherwise gcc is unable to split the structure into
1094  * individual fields and will generate much worse code. This is important
1095  * for the whole file.
1096  */
1097 static inline ssize_t
1098 do_blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1099 	struct block_device *bdev, struct iov_iter *iter, loff_t offset,
1100 	get_block_t get_block, dio_iodone_t end_io,
1101 	dio_submit_t submit_io,	int flags)
1102 {
1103 	unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits);
1104 	unsigned blkbits = i_blkbits;
1105 	unsigned blocksize_mask = (1 << blkbits) - 1;
1106 	ssize_t retval = -EINVAL;
1107 	loff_t end = offset + iov_iter_count(iter);
1108 	struct dio *dio;
1109 	struct dio_submit sdio = { 0, };
1110 	struct buffer_head map_bh = { 0, };
1111 	struct blk_plug plug;
1112 	unsigned long align = offset | iov_iter_alignment(iter);
1113 
1114 	if (rw & WRITE)
1115 		rw = WRITE_ODIRECT;
1116 
1117 	/*
1118 	 * Avoid references to bdev if not absolutely needed to give
1119 	 * the early prefetch in the caller enough time.
1120 	 */
1121 
1122 	if (align & blocksize_mask) {
1123 		if (bdev)
1124 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
1125 		blocksize_mask = (1 << blkbits) - 1;
1126 		if (align & blocksize_mask)
1127 			goto out;
1128 	}
1129 
1130 	/* watch out for a 0 len io from a tricksy fs */
1131 	if (rw == READ && !iov_iter_count(iter))
1132 		return 0;
1133 
1134 	dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1135 	retval = -ENOMEM;
1136 	if (!dio)
1137 		goto out;
1138 	/*
1139 	 * Believe it or not, zeroing out the page array caused a .5%
1140 	 * performance regression in a database benchmark.  So, we take
1141 	 * care to only zero out what's needed.
1142 	 */
1143 	memset(dio, 0, offsetof(struct dio, pages));
1144 
1145 	dio->flags = flags;
1146 	if (dio->flags & DIO_LOCKING) {
1147 		if (rw == READ) {
1148 			struct address_space *mapping =
1149 					iocb->ki_filp->f_mapping;
1150 
1151 			/* will be released by direct_io_worker */
1152 			mutex_lock(&inode->i_mutex);
1153 
1154 			retval = filemap_write_and_wait_range(mapping, offset,
1155 							      end - 1);
1156 			if (retval) {
1157 				mutex_unlock(&inode->i_mutex);
1158 				kmem_cache_free(dio_cache, dio);
1159 				goto out;
1160 			}
1161 		}
1162 	}
1163 
1164 	/*
1165 	 * For file extending writes updating i_size before data writeouts
1166 	 * complete can expose uninitialized blocks in dumb filesystems.
1167 	 * In that case we need to wait for I/O completion even if asked
1168 	 * for an asynchronous write.
1169 	 */
1170 	if (is_sync_kiocb(iocb))
1171 		dio->is_async = false;
1172 	else if (!(dio->flags & DIO_ASYNC_EXTEND) &&
1173             (rw & WRITE) && end > i_size_read(inode))
1174 		dio->is_async = false;
1175 	else
1176 		dio->is_async = true;
1177 
1178 	dio->inode = inode;
1179 	dio->rw = rw;
1180 
1181 	/*
1182 	 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1183 	 * so that we can call ->fsync.
1184 	 */
1185 	if (dio->is_async && (rw & WRITE) &&
1186 	    ((iocb->ki_filp->f_flags & O_DSYNC) ||
1187 	     IS_SYNC(iocb->ki_filp->f_mapping->host))) {
1188 		retval = dio_set_defer_completion(dio);
1189 		if (retval) {
1190 			/*
1191 			 * We grab i_mutex only for reads so we don't have
1192 			 * to release it here
1193 			 */
1194 			kmem_cache_free(dio_cache, dio);
1195 			goto out;
1196 		}
1197 	}
1198 
1199 	/*
1200 	 * Will be decremented at I/O completion time.
1201 	 */
1202 	atomic_inc(&inode->i_dio_count);
1203 
1204 	retval = 0;
1205 	sdio.blkbits = blkbits;
1206 	sdio.blkfactor = i_blkbits - blkbits;
1207 	sdio.block_in_file = offset >> blkbits;
1208 
1209 	sdio.get_block = get_block;
1210 	dio->end_io = end_io;
1211 	sdio.submit_io = submit_io;
1212 	sdio.final_block_in_bio = -1;
1213 	sdio.next_block_for_io = -1;
1214 
1215 	dio->iocb = iocb;
1216 	dio->i_size = i_size_read(inode);
1217 
1218 	spin_lock_init(&dio->bio_lock);
1219 	dio->refcount = 1;
1220 
1221 	sdio.iter = iter;
1222 	sdio.final_block_in_request =
1223 		(offset + iov_iter_count(iter)) >> blkbits;
1224 
1225 	/*
1226 	 * In case of non-aligned buffers, we may need 2 more
1227 	 * pages since we need to zero out first and last block.
1228 	 */
1229 	if (unlikely(sdio.blkfactor))
1230 		sdio.pages_in_io = 2;
1231 
1232 	sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1233 
1234 	blk_start_plug(&plug);
1235 
1236 	retval = do_direct_IO(dio, &sdio, &map_bh);
1237 	if (retval)
1238 		dio_cleanup(dio, &sdio);
1239 
1240 	if (retval == -ENOTBLK) {
1241 		/*
1242 		 * The remaining part of the request will be
1243 		 * be handled by buffered I/O when we return
1244 		 */
1245 		retval = 0;
1246 	}
1247 	/*
1248 	 * There may be some unwritten disk at the end of a part-written
1249 	 * fs-block-sized block.  Go zero that now.
1250 	 */
1251 	dio_zero_block(dio, &sdio, 1, &map_bh);
1252 
1253 	if (sdio.cur_page) {
1254 		ssize_t ret2;
1255 
1256 		ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1257 		if (retval == 0)
1258 			retval = ret2;
1259 		page_cache_release(sdio.cur_page);
1260 		sdio.cur_page = NULL;
1261 	}
1262 	if (sdio.bio)
1263 		dio_bio_submit(dio, &sdio);
1264 
1265 	blk_finish_plug(&plug);
1266 
1267 	/*
1268 	 * It is possible that, we return short IO due to end of file.
1269 	 * In that case, we need to release all the pages we got hold on.
1270 	 */
1271 	dio_cleanup(dio, &sdio);
1272 
1273 	/*
1274 	 * All block lookups have been performed. For READ requests
1275 	 * we can let i_mutex go now that its achieved its purpose
1276 	 * of protecting us from looking up uninitialized blocks.
1277 	 */
1278 	if (rw == READ && (dio->flags & DIO_LOCKING))
1279 		mutex_unlock(&dio->inode->i_mutex);
1280 
1281 	/*
1282 	 * The only time we want to leave bios in flight is when a successful
1283 	 * partial aio read or full aio write have been setup.  In that case
1284 	 * bio completion will call aio_complete.  The only time it's safe to
1285 	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1286 	 * This had *better* be the only place that raises -EIOCBQUEUED.
1287 	 */
1288 	BUG_ON(retval == -EIOCBQUEUED);
1289 	if (dio->is_async && retval == 0 && dio->result &&
1290 	    ((rw == READ) || (dio->result == sdio.size)))
1291 		retval = -EIOCBQUEUED;
1292 
1293 	if (retval != -EIOCBQUEUED)
1294 		dio_await_completion(dio);
1295 
1296 	if (drop_refcount(dio) == 0) {
1297 		retval = dio_complete(dio, offset, retval, false);
1298 	} else
1299 		BUG_ON(retval != -EIOCBQUEUED);
1300 
1301 out:
1302 	return retval;
1303 }
1304 
1305 ssize_t
1306 __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1307 	struct block_device *bdev, struct iov_iter *iter, loff_t offset,
1308 	get_block_t get_block, dio_iodone_t end_io,
1309 	dio_submit_t submit_io,	int flags)
1310 {
1311 	/*
1312 	 * The block device state is needed in the end to finally
1313 	 * submit everything.  Since it's likely to be cache cold
1314 	 * prefetch it here as first thing to hide some of the
1315 	 * latency.
1316 	 *
1317 	 * Attempt to prefetch the pieces we likely need later.
1318 	 */
1319 	prefetch(&bdev->bd_disk->part_tbl);
1320 	prefetch(bdev->bd_queue);
1321 	prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1322 
1323 	return do_blockdev_direct_IO(rw, iocb, inode, bdev, iter, offset,
1324 				     get_block, end_io, submit_io, flags);
1325 }
1326 
1327 EXPORT_SYMBOL(__blockdev_direct_IO);
1328 
1329 static __init int dio_init(void)
1330 {
1331 	dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1332 	return 0;
1333 }
1334 module_init(dio_init)
1335