1 /* 2 * fs/direct-io.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * O_DIRECT 7 * 8 * 04Jul2002 Andrew Morton 9 * Initial version 10 * 11Sep2002 janetinc@us.ibm.com 11 * added readv/writev support. 12 * 29Oct2002 Andrew Morton 13 * rewrote bio_add_page() support. 14 * 30Oct2002 pbadari@us.ibm.com 15 * added support for non-aligned IO. 16 * 06Nov2002 pbadari@us.ibm.com 17 * added asynchronous IO support. 18 * 21Jul2003 nathans@sgi.com 19 * added IO completion notifier. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/types.h> 25 #include <linux/fs.h> 26 #include <linux/mm.h> 27 #include <linux/slab.h> 28 #include <linux/highmem.h> 29 #include <linux/pagemap.h> 30 #include <linux/task_io_accounting_ops.h> 31 #include <linux/bio.h> 32 #include <linux/wait.h> 33 #include <linux/err.h> 34 #include <linux/blkdev.h> 35 #include <linux/buffer_head.h> 36 #include <linux/rwsem.h> 37 #include <linux/uio.h> 38 #include <linux/atomic.h> 39 #include <linux/prefetch.h> 40 41 /* 42 * How many user pages to map in one call to get_user_pages(). This determines 43 * the size of a structure in the slab cache 44 */ 45 #define DIO_PAGES 64 46 47 /* 48 * Flags for dio_complete() 49 */ 50 #define DIO_COMPLETE_ASYNC 0x01 /* This is async IO */ 51 #define DIO_COMPLETE_INVALIDATE 0x02 /* Can invalidate pages */ 52 53 /* 54 * This code generally works in units of "dio_blocks". A dio_block is 55 * somewhere between the hard sector size and the filesystem block size. it 56 * is determined on a per-invocation basis. When talking to the filesystem 57 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity 58 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted 59 * to bio_block quantities by shifting left by blkfactor. 60 * 61 * If blkfactor is zero then the user's request was aligned to the filesystem's 62 * blocksize. 63 */ 64 65 /* dio_state only used in the submission path */ 66 67 struct dio_submit { 68 struct bio *bio; /* bio under assembly */ 69 unsigned blkbits; /* doesn't change */ 70 unsigned blkfactor; /* When we're using an alignment which 71 is finer than the filesystem's soft 72 blocksize, this specifies how much 73 finer. blkfactor=2 means 1/4-block 74 alignment. Does not change */ 75 unsigned start_zero_done; /* flag: sub-blocksize zeroing has 76 been performed at the start of a 77 write */ 78 int pages_in_io; /* approximate total IO pages */ 79 sector_t block_in_file; /* Current offset into the underlying 80 file in dio_block units. */ 81 unsigned blocks_available; /* At block_in_file. changes */ 82 int reap_counter; /* rate limit reaping */ 83 sector_t final_block_in_request;/* doesn't change */ 84 int boundary; /* prev block is at a boundary */ 85 get_block_t *get_block; /* block mapping function */ 86 dio_submit_t *submit_io; /* IO submition function */ 87 88 loff_t logical_offset_in_bio; /* current first logical block in bio */ 89 sector_t final_block_in_bio; /* current final block in bio + 1 */ 90 sector_t next_block_for_io; /* next block to be put under IO, 91 in dio_blocks units */ 92 93 /* 94 * Deferred addition of a page to the dio. These variables are 95 * private to dio_send_cur_page(), submit_page_section() and 96 * dio_bio_add_page(). 97 */ 98 struct page *cur_page; /* The page */ 99 unsigned cur_page_offset; /* Offset into it, in bytes */ 100 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ 101 sector_t cur_page_block; /* Where it starts */ 102 loff_t cur_page_fs_offset; /* Offset in file */ 103 104 struct iov_iter *iter; 105 /* 106 * Page queue. These variables belong to dio_refill_pages() and 107 * dio_get_page(). 108 */ 109 unsigned head; /* next page to process */ 110 unsigned tail; /* last valid page + 1 */ 111 size_t from, to; 112 }; 113 114 /* dio_state communicated between submission path and end_io */ 115 struct dio { 116 int flags; /* doesn't change */ 117 int op; 118 int op_flags; 119 blk_qc_t bio_cookie; 120 struct gendisk *bio_disk; 121 struct inode *inode; 122 loff_t i_size; /* i_size when submitted */ 123 dio_iodone_t *end_io; /* IO completion function */ 124 125 void *private; /* copy from map_bh.b_private */ 126 127 /* BIO completion state */ 128 spinlock_t bio_lock; /* protects BIO fields below */ 129 int page_errors; /* errno from get_user_pages() */ 130 int is_async; /* is IO async ? */ 131 bool defer_completion; /* defer AIO completion to workqueue? */ 132 bool should_dirty; /* if pages should be dirtied */ 133 int io_error; /* IO error in completion path */ 134 unsigned long refcount; /* direct_io_worker() and bios */ 135 struct bio *bio_list; /* singly linked via bi_private */ 136 struct task_struct *waiter; /* waiting task (NULL if none) */ 137 138 /* AIO related stuff */ 139 struct kiocb *iocb; /* kiocb */ 140 ssize_t result; /* IO result */ 141 142 /* 143 * pages[] (and any fields placed after it) are not zeroed out at 144 * allocation time. Don't add new fields after pages[] unless you 145 * wish that they not be zeroed. 146 */ 147 union { 148 struct page *pages[DIO_PAGES]; /* page buffer */ 149 struct work_struct complete_work;/* deferred AIO completion */ 150 }; 151 } ____cacheline_aligned_in_smp; 152 153 static struct kmem_cache *dio_cache __read_mostly; 154 155 /* 156 * How many pages are in the queue? 157 */ 158 static inline unsigned dio_pages_present(struct dio_submit *sdio) 159 { 160 return sdio->tail - sdio->head; 161 } 162 163 /* 164 * Go grab and pin some userspace pages. Typically we'll get 64 at a time. 165 */ 166 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio) 167 { 168 ssize_t ret; 169 170 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES, 171 &sdio->from); 172 173 if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) { 174 struct page *page = ZERO_PAGE(0); 175 /* 176 * A memory fault, but the filesystem has some outstanding 177 * mapped blocks. We need to use those blocks up to avoid 178 * leaking stale data in the file. 179 */ 180 if (dio->page_errors == 0) 181 dio->page_errors = ret; 182 get_page(page); 183 dio->pages[0] = page; 184 sdio->head = 0; 185 sdio->tail = 1; 186 sdio->from = 0; 187 sdio->to = PAGE_SIZE; 188 return 0; 189 } 190 191 if (ret >= 0) { 192 iov_iter_advance(sdio->iter, ret); 193 ret += sdio->from; 194 sdio->head = 0; 195 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE; 196 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1; 197 return 0; 198 } 199 return ret; 200 } 201 202 /* 203 * Get another userspace page. Returns an ERR_PTR on error. Pages are 204 * buffered inside the dio so that we can call get_user_pages() against a 205 * decent number of pages, less frequently. To provide nicer use of the 206 * L1 cache. 207 */ 208 static inline struct page *dio_get_page(struct dio *dio, 209 struct dio_submit *sdio) 210 { 211 if (dio_pages_present(sdio) == 0) { 212 int ret; 213 214 ret = dio_refill_pages(dio, sdio); 215 if (ret) 216 return ERR_PTR(ret); 217 BUG_ON(dio_pages_present(sdio) == 0); 218 } 219 return dio->pages[sdio->head]; 220 } 221 222 /* 223 * Warn about a page cache invalidation failure during a direct io write. 224 */ 225 void dio_warn_stale_pagecache(struct file *filp) 226 { 227 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 228 char pathname[128]; 229 struct inode *inode = file_inode(filp); 230 char *path; 231 232 errseq_set(&inode->i_mapping->wb_err, -EIO); 233 if (__ratelimit(&_rs)) { 234 path = file_path(filp, pathname, sizeof(pathname)); 235 if (IS_ERR(path)) 236 path = "(unknown)"; 237 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 238 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 239 current->comm); 240 } 241 } 242 243 /** 244 * dio_complete() - called when all DIO BIO I/O has been completed 245 * @offset: the byte offset in the file of the completed operation 246 * 247 * This drops i_dio_count, lets interested parties know that a DIO operation 248 * has completed, and calculates the resulting return code for the operation. 249 * 250 * It lets the filesystem know if it registered an interest earlier via 251 * get_block. Pass the private field of the map buffer_head so that 252 * filesystems can use it to hold additional state between get_block calls and 253 * dio_complete. 254 */ 255 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags) 256 { 257 loff_t offset = dio->iocb->ki_pos; 258 ssize_t transferred = 0; 259 int err; 260 261 /* 262 * AIO submission can race with bio completion to get here while 263 * expecting to have the last io completed by bio completion. 264 * In that case -EIOCBQUEUED is in fact not an error we want 265 * to preserve through this call. 266 */ 267 if (ret == -EIOCBQUEUED) 268 ret = 0; 269 270 if (dio->result) { 271 transferred = dio->result; 272 273 /* Check for short read case */ 274 if ((dio->op == REQ_OP_READ) && 275 ((offset + transferred) > dio->i_size)) 276 transferred = dio->i_size - offset; 277 /* ignore EFAULT if some IO has been done */ 278 if (unlikely(ret == -EFAULT) && transferred) 279 ret = 0; 280 } 281 282 if (ret == 0) 283 ret = dio->page_errors; 284 if (ret == 0) 285 ret = dio->io_error; 286 if (ret == 0) 287 ret = transferred; 288 289 if (dio->end_io) { 290 // XXX: ki_pos?? 291 err = dio->end_io(dio->iocb, offset, ret, dio->private); 292 if (err) 293 ret = err; 294 } 295 296 /* 297 * Try again to invalidate clean pages which might have been cached by 298 * non-direct readahead, or faulted in by get_user_pages() if the source 299 * of the write was an mmap'ed region of the file we're writing. Either 300 * one is a pretty crazy thing to do, so we don't support it 100%. If 301 * this invalidation fails, tough, the write still worked... 302 * 303 * And this page cache invalidation has to be after dio->end_io(), as 304 * some filesystems convert unwritten extents to real allocations in 305 * end_io() when necessary, otherwise a racing buffer read would cache 306 * zeros from unwritten extents. 307 */ 308 if (flags & DIO_COMPLETE_INVALIDATE && 309 ret > 0 && dio->op == REQ_OP_WRITE && 310 dio->inode->i_mapping->nrpages) { 311 err = invalidate_inode_pages2_range(dio->inode->i_mapping, 312 offset >> PAGE_SHIFT, 313 (offset + ret - 1) >> PAGE_SHIFT); 314 if (err) 315 dio_warn_stale_pagecache(dio->iocb->ki_filp); 316 } 317 318 inode_dio_end(dio->inode); 319 320 if (flags & DIO_COMPLETE_ASYNC) { 321 /* 322 * generic_write_sync expects ki_pos to have been updated 323 * already, but the submission path only does this for 324 * synchronous I/O. 325 */ 326 dio->iocb->ki_pos += transferred; 327 328 if (ret > 0 && dio->op == REQ_OP_WRITE) 329 ret = generic_write_sync(dio->iocb, ret); 330 dio->iocb->ki_complete(dio->iocb, ret, 0); 331 } 332 333 kmem_cache_free(dio_cache, dio); 334 return ret; 335 } 336 337 static void dio_aio_complete_work(struct work_struct *work) 338 { 339 struct dio *dio = container_of(work, struct dio, complete_work); 340 341 dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE); 342 } 343 344 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio); 345 346 /* 347 * Asynchronous IO callback. 348 */ 349 static void dio_bio_end_aio(struct bio *bio) 350 { 351 struct dio *dio = bio->bi_private; 352 unsigned long remaining; 353 unsigned long flags; 354 bool defer_completion = false; 355 356 /* cleanup the bio */ 357 dio_bio_complete(dio, bio); 358 359 spin_lock_irqsave(&dio->bio_lock, flags); 360 remaining = --dio->refcount; 361 if (remaining == 1 && dio->waiter) 362 wake_up_process(dio->waiter); 363 spin_unlock_irqrestore(&dio->bio_lock, flags); 364 365 if (remaining == 0) { 366 /* 367 * Defer completion when defer_completion is set or 368 * when the inode has pages mapped and this is AIO write. 369 * We need to invalidate those pages because there is a 370 * chance they contain stale data in the case buffered IO 371 * went in between AIO submission and completion into the 372 * same region. 373 */ 374 if (dio->result) 375 defer_completion = dio->defer_completion || 376 (dio->op == REQ_OP_WRITE && 377 dio->inode->i_mapping->nrpages); 378 if (defer_completion) { 379 INIT_WORK(&dio->complete_work, dio_aio_complete_work); 380 queue_work(dio->inode->i_sb->s_dio_done_wq, 381 &dio->complete_work); 382 } else { 383 dio_complete(dio, 0, DIO_COMPLETE_ASYNC); 384 } 385 } 386 } 387 388 /* 389 * The BIO completion handler simply queues the BIO up for the process-context 390 * handler. 391 * 392 * During I/O bi_private points at the dio. After I/O, bi_private is used to 393 * implement a singly-linked list of completed BIOs, at dio->bio_list. 394 */ 395 static void dio_bio_end_io(struct bio *bio) 396 { 397 struct dio *dio = bio->bi_private; 398 unsigned long flags; 399 400 spin_lock_irqsave(&dio->bio_lock, flags); 401 bio->bi_private = dio->bio_list; 402 dio->bio_list = bio; 403 if (--dio->refcount == 1 && dio->waiter) 404 wake_up_process(dio->waiter); 405 spin_unlock_irqrestore(&dio->bio_lock, flags); 406 } 407 408 /** 409 * dio_end_io - handle the end io action for the given bio 410 * @bio: The direct io bio thats being completed 411 * 412 * This is meant to be called by any filesystem that uses their own dio_submit_t 413 * so that the DIO specific endio actions are dealt with after the filesystem 414 * has done it's completion work. 415 */ 416 void dio_end_io(struct bio *bio) 417 { 418 struct dio *dio = bio->bi_private; 419 420 if (dio->is_async) 421 dio_bio_end_aio(bio); 422 else 423 dio_bio_end_io(bio); 424 } 425 EXPORT_SYMBOL_GPL(dio_end_io); 426 427 static inline void 428 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio, 429 struct block_device *bdev, 430 sector_t first_sector, int nr_vecs) 431 { 432 struct bio *bio; 433 434 /* 435 * bio_alloc() is guaranteed to return a bio when allowed to sleep and 436 * we request a valid number of vectors. 437 */ 438 bio = bio_alloc(GFP_KERNEL, nr_vecs); 439 440 bio_set_dev(bio, bdev); 441 bio->bi_iter.bi_sector = first_sector; 442 bio_set_op_attrs(bio, dio->op, dio->op_flags); 443 if (dio->is_async) 444 bio->bi_end_io = dio_bio_end_aio; 445 else 446 bio->bi_end_io = dio_bio_end_io; 447 448 bio->bi_write_hint = dio->iocb->ki_hint; 449 450 sdio->bio = bio; 451 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset; 452 } 453 454 /* 455 * In the AIO read case we speculatively dirty the pages before starting IO. 456 * During IO completion, any of these pages which happen to have been written 457 * back will be redirtied by bio_check_pages_dirty(). 458 * 459 * bios hold a dio reference between submit_bio and ->end_io. 460 */ 461 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio) 462 { 463 struct bio *bio = sdio->bio; 464 unsigned long flags; 465 466 bio->bi_private = dio; 467 468 spin_lock_irqsave(&dio->bio_lock, flags); 469 dio->refcount++; 470 spin_unlock_irqrestore(&dio->bio_lock, flags); 471 472 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) 473 bio_set_pages_dirty(bio); 474 475 dio->bio_disk = bio->bi_disk; 476 477 if (sdio->submit_io) { 478 sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio); 479 dio->bio_cookie = BLK_QC_T_NONE; 480 } else 481 dio->bio_cookie = submit_bio(bio); 482 483 sdio->bio = NULL; 484 sdio->boundary = 0; 485 sdio->logical_offset_in_bio = 0; 486 } 487 488 /* 489 * Release any resources in case of a failure 490 */ 491 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio) 492 { 493 while (sdio->head < sdio->tail) 494 put_page(dio->pages[sdio->head++]); 495 } 496 497 /* 498 * Wait for the next BIO to complete. Remove it and return it. NULL is 499 * returned once all BIOs have been completed. This must only be called once 500 * all bios have been issued so that dio->refcount can only decrease. This 501 * requires that that the caller hold a reference on the dio. 502 */ 503 static struct bio *dio_await_one(struct dio *dio) 504 { 505 unsigned long flags; 506 struct bio *bio = NULL; 507 508 spin_lock_irqsave(&dio->bio_lock, flags); 509 510 /* 511 * Wait as long as the list is empty and there are bios in flight. bio 512 * completion drops the count, maybe adds to the list, and wakes while 513 * holding the bio_lock so we don't need set_current_state()'s barrier 514 * and can call it after testing our condition. 515 */ 516 while (dio->refcount > 1 && dio->bio_list == NULL) { 517 __set_current_state(TASK_UNINTERRUPTIBLE); 518 dio->waiter = current; 519 spin_unlock_irqrestore(&dio->bio_lock, flags); 520 if (!(dio->iocb->ki_flags & IOCB_HIPRI) || 521 !blk_poll(dio->bio_disk->queue, dio->bio_cookie, true)) 522 io_schedule(); 523 /* wake up sets us TASK_RUNNING */ 524 spin_lock_irqsave(&dio->bio_lock, flags); 525 dio->waiter = NULL; 526 } 527 if (dio->bio_list) { 528 bio = dio->bio_list; 529 dio->bio_list = bio->bi_private; 530 } 531 spin_unlock_irqrestore(&dio->bio_lock, flags); 532 return bio; 533 } 534 535 /* 536 * Process one completed BIO. No locks are held. 537 */ 538 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio) 539 { 540 struct bio_vec *bvec; 541 blk_status_t err = bio->bi_status; 542 543 if (err) { 544 if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT)) 545 dio->io_error = -EAGAIN; 546 else 547 dio->io_error = -EIO; 548 } 549 550 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) { 551 bio_check_pages_dirty(bio); /* transfers ownership */ 552 } else { 553 struct bvec_iter_all iter_all; 554 555 bio_for_each_segment_all(bvec, bio, iter_all) { 556 struct page *page = bvec->bv_page; 557 558 if (dio->op == REQ_OP_READ && !PageCompound(page) && 559 dio->should_dirty) 560 set_page_dirty_lock(page); 561 put_page(page); 562 } 563 bio_put(bio); 564 } 565 return err; 566 } 567 568 /* 569 * Wait on and process all in-flight BIOs. This must only be called once 570 * all bios have been issued so that the refcount can only decrease. 571 * This just waits for all bios to make it through dio_bio_complete. IO 572 * errors are propagated through dio->io_error and should be propagated via 573 * dio_complete(). 574 */ 575 static void dio_await_completion(struct dio *dio) 576 { 577 struct bio *bio; 578 do { 579 bio = dio_await_one(dio); 580 if (bio) 581 dio_bio_complete(dio, bio); 582 } while (bio); 583 } 584 585 /* 586 * A really large O_DIRECT read or write can generate a lot of BIOs. So 587 * to keep the memory consumption sane we periodically reap any completed BIOs 588 * during the BIO generation phase. 589 * 590 * This also helps to limit the peak amount of pinned userspace memory. 591 */ 592 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio) 593 { 594 int ret = 0; 595 596 if (sdio->reap_counter++ >= 64) { 597 while (dio->bio_list) { 598 unsigned long flags; 599 struct bio *bio; 600 int ret2; 601 602 spin_lock_irqsave(&dio->bio_lock, flags); 603 bio = dio->bio_list; 604 dio->bio_list = bio->bi_private; 605 spin_unlock_irqrestore(&dio->bio_lock, flags); 606 ret2 = blk_status_to_errno(dio_bio_complete(dio, bio)); 607 if (ret == 0) 608 ret = ret2; 609 } 610 sdio->reap_counter = 0; 611 } 612 return ret; 613 } 614 615 /* 616 * Create workqueue for deferred direct IO completions. We allocate the 617 * workqueue when it's first needed. This avoids creating workqueue for 618 * filesystems that don't need it and also allows us to create the workqueue 619 * late enough so the we can include s_id in the name of the workqueue. 620 */ 621 int sb_init_dio_done_wq(struct super_block *sb) 622 { 623 struct workqueue_struct *old; 624 struct workqueue_struct *wq = alloc_workqueue("dio/%s", 625 WQ_MEM_RECLAIM, 0, 626 sb->s_id); 627 if (!wq) 628 return -ENOMEM; 629 /* 630 * This has to be atomic as more DIOs can race to create the workqueue 631 */ 632 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq); 633 /* Someone created workqueue before us? Free ours... */ 634 if (old) 635 destroy_workqueue(wq); 636 return 0; 637 } 638 639 static int dio_set_defer_completion(struct dio *dio) 640 { 641 struct super_block *sb = dio->inode->i_sb; 642 643 if (dio->defer_completion) 644 return 0; 645 dio->defer_completion = true; 646 if (!sb->s_dio_done_wq) 647 return sb_init_dio_done_wq(sb); 648 return 0; 649 } 650 651 /* 652 * Call into the fs to map some more disk blocks. We record the current number 653 * of available blocks at sdio->blocks_available. These are in units of the 654 * fs blocksize, i_blocksize(inode). 655 * 656 * The fs is allowed to map lots of blocks at once. If it wants to do that, 657 * it uses the passed inode-relative block number as the file offset, as usual. 658 * 659 * get_block() is passed the number of i_blkbits-sized blocks which direct_io 660 * has remaining to do. The fs should not map more than this number of blocks. 661 * 662 * If the fs has mapped a lot of blocks, it should populate bh->b_size to 663 * indicate how much contiguous disk space has been made available at 664 * bh->b_blocknr. 665 * 666 * If *any* of the mapped blocks are new, then the fs must set buffer_new(). 667 * This isn't very efficient... 668 * 669 * In the case of filesystem holes: the fs may return an arbitrarily-large 670 * hole by returning an appropriate value in b_size and by clearing 671 * buffer_mapped(). However the direct-io code will only process holes one 672 * block at a time - it will repeatedly call get_block() as it walks the hole. 673 */ 674 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio, 675 struct buffer_head *map_bh) 676 { 677 int ret; 678 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ 679 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */ 680 unsigned long fs_count; /* Number of filesystem-sized blocks */ 681 int create; 682 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor; 683 loff_t i_size; 684 685 /* 686 * If there was a memory error and we've overwritten all the 687 * mapped blocks then we can now return that memory error 688 */ 689 ret = dio->page_errors; 690 if (ret == 0) { 691 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request); 692 fs_startblk = sdio->block_in_file >> sdio->blkfactor; 693 fs_endblk = (sdio->final_block_in_request - 1) >> 694 sdio->blkfactor; 695 fs_count = fs_endblk - fs_startblk + 1; 696 697 map_bh->b_state = 0; 698 map_bh->b_size = fs_count << i_blkbits; 699 700 /* 701 * For writes that could fill holes inside i_size on a 702 * DIO_SKIP_HOLES filesystem we forbid block creations: only 703 * overwrites are permitted. We will return early to the caller 704 * once we see an unmapped buffer head returned, and the caller 705 * will fall back to buffered I/O. 706 * 707 * Otherwise the decision is left to the get_blocks method, 708 * which may decide to handle it or also return an unmapped 709 * buffer head. 710 */ 711 create = dio->op == REQ_OP_WRITE; 712 if (dio->flags & DIO_SKIP_HOLES) { 713 i_size = i_size_read(dio->inode); 714 if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits) 715 create = 0; 716 } 717 718 ret = (*sdio->get_block)(dio->inode, fs_startblk, 719 map_bh, create); 720 721 /* Store for completion */ 722 dio->private = map_bh->b_private; 723 724 if (ret == 0 && buffer_defer_completion(map_bh)) 725 ret = dio_set_defer_completion(dio); 726 } 727 return ret; 728 } 729 730 /* 731 * There is no bio. Make one now. 732 */ 733 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio, 734 sector_t start_sector, struct buffer_head *map_bh) 735 { 736 sector_t sector; 737 int ret, nr_pages; 738 739 ret = dio_bio_reap(dio, sdio); 740 if (ret) 741 goto out; 742 sector = start_sector << (sdio->blkbits - 9); 743 nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES); 744 BUG_ON(nr_pages <= 0); 745 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages); 746 sdio->boundary = 0; 747 out: 748 return ret; 749 } 750 751 /* 752 * Attempt to put the current chunk of 'cur_page' into the current BIO. If 753 * that was successful then update final_block_in_bio and take a ref against 754 * the just-added page. 755 * 756 * Return zero on success. Non-zero means the caller needs to start a new BIO. 757 */ 758 static inline int dio_bio_add_page(struct dio_submit *sdio) 759 { 760 int ret; 761 762 ret = bio_add_page(sdio->bio, sdio->cur_page, 763 sdio->cur_page_len, sdio->cur_page_offset); 764 if (ret == sdio->cur_page_len) { 765 /* 766 * Decrement count only, if we are done with this page 767 */ 768 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE) 769 sdio->pages_in_io--; 770 get_page(sdio->cur_page); 771 sdio->final_block_in_bio = sdio->cur_page_block + 772 (sdio->cur_page_len >> sdio->blkbits); 773 ret = 0; 774 } else { 775 ret = 1; 776 } 777 return ret; 778 } 779 780 /* 781 * Put cur_page under IO. The section of cur_page which is described by 782 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page 783 * starts on-disk at cur_page_block. 784 * 785 * We take a ref against the page here (on behalf of its presence in the bio). 786 * 787 * The caller of this function is responsible for removing cur_page from the 788 * dio, and for dropping the refcount which came from that presence. 789 */ 790 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio, 791 struct buffer_head *map_bh) 792 { 793 int ret = 0; 794 795 if (sdio->bio) { 796 loff_t cur_offset = sdio->cur_page_fs_offset; 797 loff_t bio_next_offset = sdio->logical_offset_in_bio + 798 sdio->bio->bi_iter.bi_size; 799 800 /* 801 * See whether this new request is contiguous with the old. 802 * 803 * Btrfs cannot handle having logically non-contiguous requests 804 * submitted. For example if you have 805 * 806 * Logical: [0-4095][HOLE][8192-12287] 807 * Physical: [0-4095] [4096-8191] 808 * 809 * We cannot submit those pages together as one BIO. So if our 810 * current logical offset in the file does not equal what would 811 * be the next logical offset in the bio, submit the bio we 812 * have. 813 */ 814 if (sdio->final_block_in_bio != sdio->cur_page_block || 815 cur_offset != bio_next_offset) 816 dio_bio_submit(dio, sdio); 817 } 818 819 if (sdio->bio == NULL) { 820 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 821 if (ret) 822 goto out; 823 } 824 825 if (dio_bio_add_page(sdio) != 0) { 826 dio_bio_submit(dio, sdio); 827 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 828 if (ret == 0) { 829 ret = dio_bio_add_page(sdio); 830 BUG_ON(ret != 0); 831 } 832 } 833 out: 834 return ret; 835 } 836 837 /* 838 * An autonomous function to put a chunk of a page under deferred IO. 839 * 840 * The caller doesn't actually know (or care) whether this piece of page is in 841 * a BIO, or is under IO or whatever. We just take care of all possible 842 * situations here. The separation between the logic of do_direct_IO() and 843 * that of submit_page_section() is important for clarity. Please don't break. 844 * 845 * The chunk of page starts on-disk at blocknr. 846 * 847 * We perform deferred IO, by recording the last-submitted page inside our 848 * private part of the dio structure. If possible, we just expand the IO 849 * across that page here. 850 * 851 * If that doesn't work out then we put the old page into the bio and add this 852 * page to the dio instead. 853 */ 854 static inline int 855 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page, 856 unsigned offset, unsigned len, sector_t blocknr, 857 struct buffer_head *map_bh) 858 { 859 int ret = 0; 860 861 if (dio->op == REQ_OP_WRITE) { 862 /* 863 * Read accounting is performed in submit_bio() 864 */ 865 task_io_account_write(len); 866 } 867 868 /* 869 * Can we just grow the current page's presence in the dio? 870 */ 871 if (sdio->cur_page == page && 872 sdio->cur_page_offset + sdio->cur_page_len == offset && 873 sdio->cur_page_block + 874 (sdio->cur_page_len >> sdio->blkbits) == blocknr) { 875 sdio->cur_page_len += len; 876 goto out; 877 } 878 879 /* 880 * If there's a deferred page already there then send it. 881 */ 882 if (sdio->cur_page) { 883 ret = dio_send_cur_page(dio, sdio, map_bh); 884 put_page(sdio->cur_page); 885 sdio->cur_page = NULL; 886 if (ret) 887 return ret; 888 } 889 890 get_page(page); /* It is in dio */ 891 sdio->cur_page = page; 892 sdio->cur_page_offset = offset; 893 sdio->cur_page_len = len; 894 sdio->cur_page_block = blocknr; 895 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits; 896 out: 897 /* 898 * If sdio->boundary then we want to schedule the IO now to 899 * avoid metadata seeks. 900 */ 901 if (sdio->boundary) { 902 ret = dio_send_cur_page(dio, sdio, map_bh); 903 if (sdio->bio) 904 dio_bio_submit(dio, sdio); 905 put_page(sdio->cur_page); 906 sdio->cur_page = NULL; 907 } 908 return ret; 909 } 910 911 /* 912 * If we are not writing the entire block and get_block() allocated 913 * the block for us, we need to fill-in the unused portion of the 914 * block with zeros. This happens only if user-buffer, fileoffset or 915 * io length is not filesystem block-size multiple. 916 * 917 * `end' is zero if we're doing the start of the IO, 1 at the end of the 918 * IO. 919 */ 920 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio, 921 int end, struct buffer_head *map_bh) 922 { 923 unsigned dio_blocks_per_fs_block; 924 unsigned this_chunk_blocks; /* In dio_blocks */ 925 unsigned this_chunk_bytes; 926 struct page *page; 927 928 sdio->start_zero_done = 1; 929 if (!sdio->blkfactor || !buffer_new(map_bh)) 930 return; 931 932 dio_blocks_per_fs_block = 1 << sdio->blkfactor; 933 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1); 934 935 if (!this_chunk_blocks) 936 return; 937 938 /* 939 * We need to zero out part of an fs block. It is either at the 940 * beginning or the end of the fs block. 941 */ 942 if (end) 943 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; 944 945 this_chunk_bytes = this_chunk_blocks << sdio->blkbits; 946 947 page = ZERO_PAGE(0); 948 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes, 949 sdio->next_block_for_io, map_bh)) 950 return; 951 952 sdio->next_block_for_io += this_chunk_blocks; 953 } 954 955 /* 956 * Walk the user pages, and the file, mapping blocks to disk and generating 957 * a sequence of (page,offset,len,block) mappings. These mappings are injected 958 * into submit_page_section(), which takes care of the next stage of submission 959 * 960 * Direct IO against a blockdev is different from a file. Because we can 961 * happily perform page-sized but 512-byte aligned IOs. It is important that 962 * blockdev IO be able to have fine alignment and large sizes. 963 * 964 * So what we do is to permit the ->get_block function to populate bh.b_size 965 * with the size of IO which is permitted at this offset and this i_blkbits. 966 * 967 * For best results, the blockdev should be set up with 512-byte i_blkbits and 968 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives 969 * fine alignment but still allows this function to work in PAGE_SIZE units. 970 */ 971 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio, 972 struct buffer_head *map_bh) 973 { 974 const unsigned blkbits = sdio->blkbits; 975 const unsigned i_blkbits = blkbits + sdio->blkfactor; 976 int ret = 0; 977 978 while (sdio->block_in_file < sdio->final_block_in_request) { 979 struct page *page; 980 size_t from, to; 981 982 page = dio_get_page(dio, sdio); 983 if (IS_ERR(page)) { 984 ret = PTR_ERR(page); 985 goto out; 986 } 987 from = sdio->head ? 0 : sdio->from; 988 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE; 989 sdio->head++; 990 991 while (from < to) { 992 unsigned this_chunk_bytes; /* # of bytes mapped */ 993 unsigned this_chunk_blocks; /* # of blocks */ 994 unsigned u; 995 996 if (sdio->blocks_available == 0) { 997 /* 998 * Need to go and map some more disk 999 */ 1000 unsigned long blkmask; 1001 unsigned long dio_remainder; 1002 1003 ret = get_more_blocks(dio, sdio, map_bh); 1004 if (ret) { 1005 put_page(page); 1006 goto out; 1007 } 1008 if (!buffer_mapped(map_bh)) 1009 goto do_holes; 1010 1011 sdio->blocks_available = 1012 map_bh->b_size >> blkbits; 1013 sdio->next_block_for_io = 1014 map_bh->b_blocknr << sdio->blkfactor; 1015 if (buffer_new(map_bh)) { 1016 clean_bdev_aliases( 1017 map_bh->b_bdev, 1018 map_bh->b_blocknr, 1019 map_bh->b_size >> i_blkbits); 1020 } 1021 1022 if (!sdio->blkfactor) 1023 goto do_holes; 1024 1025 blkmask = (1 << sdio->blkfactor) - 1; 1026 dio_remainder = (sdio->block_in_file & blkmask); 1027 1028 /* 1029 * If we are at the start of IO and that IO 1030 * starts partway into a fs-block, 1031 * dio_remainder will be non-zero. If the IO 1032 * is a read then we can simply advance the IO 1033 * cursor to the first block which is to be 1034 * read. But if the IO is a write and the 1035 * block was newly allocated we cannot do that; 1036 * the start of the fs block must be zeroed out 1037 * on-disk 1038 */ 1039 if (!buffer_new(map_bh)) 1040 sdio->next_block_for_io += dio_remainder; 1041 sdio->blocks_available -= dio_remainder; 1042 } 1043 do_holes: 1044 /* Handle holes */ 1045 if (!buffer_mapped(map_bh)) { 1046 loff_t i_size_aligned; 1047 1048 /* AKPM: eargh, -ENOTBLK is a hack */ 1049 if (dio->op == REQ_OP_WRITE) { 1050 put_page(page); 1051 return -ENOTBLK; 1052 } 1053 1054 /* 1055 * Be sure to account for a partial block as the 1056 * last block in the file 1057 */ 1058 i_size_aligned = ALIGN(i_size_read(dio->inode), 1059 1 << blkbits); 1060 if (sdio->block_in_file >= 1061 i_size_aligned >> blkbits) { 1062 /* We hit eof */ 1063 put_page(page); 1064 goto out; 1065 } 1066 zero_user(page, from, 1 << blkbits); 1067 sdio->block_in_file++; 1068 from += 1 << blkbits; 1069 dio->result += 1 << blkbits; 1070 goto next_block; 1071 } 1072 1073 /* 1074 * If we're performing IO which has an alignment which 1075 * is finer than the underlying fs, go check to see if 1076 * we must zero out the start of this block. 1077 */ 1078 if (unlikely(sdio->blkfactor && !sdio->start_zero_done)) 1079 dio_zero_block(dio, sdio, 0, map_bh); 1080 1081 /* 1082 * Work out, in this_chunk_blocks, how much disk we 1083 * can add to this page 1084 */ 1085 this_chunk_blocks = sdio->blocks_available; 1086 u = (to - from) >> blkbits; 1087 if (this_chunk_blocks > u) 1088 this_chunk_blocks = u; 1089 u = sdio->final_block_in_request - sdio->block_in_file; 1090 if (this_chunk_blocks > u) 1091 this_chunk_blocks = u; 1092 this_chunk_bytes = this_chunk_blocks << blkbits; 1093 BUG_ON(this_chunk_bytes == 0); 1094 1095 if (this_chunk_blocks == sdio->blocks_available) 1096 sdio->boundary = buffer_boundary(map_bh); 1097 ret = submit_page_section(dio, sdio, page, 1098 from, 1099 this_chunk_bytes, 1100 sdio->next_block_for_io, 1101 map_bh); 1102 if (ret) { 1103 put_page(page); 1104 goto out; 1105 } 1106 sdio->next_block_for_io += this_chunk_blocks; 1107 1108 sdio->block_in_file += this_chunk_blocks; 1109 from += this_chunk_bytes; 1110 dio->result += this_chunk_bytes; 1111 sdio->blocks_available -= this_chunk_blocks; 1112 next_block: 1113 BUG_ON(sdio->block_in_file > sdio->final_block_in_request); 1114 if (sdio->block_in_file == sdio->final_block_in_request) 1115 break; 1116 } 1117 1118 /* Drop the ref which was taken in get_user_pages() */ 1119 put_page(page); 1120 } 1121 out: 1122 return ret; 1123 } 1124 1125 static inline int drop_refcount(struct dio *dio) 1126 { 1127 int ret2; 1128 unsigned long flags; 1129 1130 /* 1131 * Sync will always be dropping the final ref and completing the 1132 * operation. AIO can if it was a broken operation described above or 1133 * in fact if all the bios race to complete before we get here. In 1134 * that case dio_complete() translates the EIOCBQUEUED into the proper 1135 * return code that the caller will hand to ->complete(). 1136 * 1137 * This is managed by the bio_lock instead of being an atomic_t so that 1138 * completion paths can drop their ref and use the remaining count to 1139 * decide to wake the submission path atomically. 1140 */ 1141 spin_lock_irqsave(&dio->bio_lock, flags); 1142 ret2 = --dio->refcount; 1143 spin_unlock_irqrestore(&dio->bio_lock, flags); 1144 return ret2; 1145 } 1146 1147 /* 1148 * This is a library function for use by filesystem drivers. 1149 * 1150 * The locking rules are governed by the flags parameter: 1151 * - if the flags value contains DIO_LOCKING we use a fancy locking 1152 * scheme for dumb filesystems. 1153 * For writes this function is called under i_mutex and returns with 1154 * i_mutex held, for reads, i_mutex is not held on entry, but it is 1155 * taken and dropped again before returning. 1156 * - if the flags value does NOT contain DIO_LOCKING we don't use any 1157 * internal locking but rather rely on the filesystem to synchronize 1158 * direct I/O reads/writes versus each other and truncate. 1159 * 1160 * To help with locking against truncate we incremented the i_dio_count 1161 * counter before starting direct I/O, and decrement it once we are done. 1162 * Truncate can wait for it to reach zero to provide exclusion. It is 1163 * expected that filesystem provide exclusion between new direct I/O 1164 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex, 1165 * but other filesystems need to take care of this on their own. 1166 * 1167 * NOTE: if you pass "sdio" to anything by pointer make sure that function 1168 * is always inlined. Otherwise gcc is unable to split the structure into 1169 * individual fields and will generate much worse code. This is important 1170 * for the whole file. 1171 */ 1172 static inline ssize_t 1173 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1174 struct block_device *bdev, struct iov_iter *iter, 1175 get_block_t get_block, dio_iodone_t end_io, 1176 dio_submit_t submit_io, int flags) 1177 { 1178 unsigned i_blkbits = READ_ONCE(inode->i_blkbits); 1179 unsigned blkbits = i_blkbits; 1180 unsigned blocksize_mask = (1 << blkbits) - 1; 1181 ssize_t retval = -EINVAL; 1182 const size_t count = iov_iter_count(iter); 1183 loff_t offset = iocb->ki_pos; 1184 const loff_t end = offset + count; 1185 struct dio *dio; 1186 struct dio_submit sdio = { 0, }; 1187 struct buffer_head map_bh = { 0, }; 1188 struct blk_plug plug; 1189 unsigned long align = offset | iov_iter_alignment(iter); 1190 1191 /* 1192 * Avoid references to bdev if not absolutely needed to give 1193 * the early prefetch in the caller enough time. 1194 */ 1195 1196 if (align & blocksize_mask) { 1197 if (bdev) 1198 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 1199 blocksize_mask = (1 << blkbits) - 1; 1200 if (align & blocksize_mask) 1201 goto out; 1202 } 1203 1204 /* watch out for a 0 len io from a tricksy fs */ 1205 if (iov_iter_rw(iter) == READ && !count) 1206 return 0; 1207 1208 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL); 1209 retval = -ENOMEM; 1210 if (!dio) 1211 goto out; 1212 /* 1213 * Believe it or not, zeroing out the page array caused a .5% 1214 * performance regression in a database benchmark. So, we take 1215 * care to only zero out what's needed. 1216 */ 1217 memset(dio, 0, offsetof(struct dio, pages)); 1218 1219 dio->flags = flags; 1220 if (dio->flags & DIO_LOCKING) { 1221 if (iov_iter_rw(iter) == READ) { 1222 struct address_space *mapping = 1223 iocb->ki_filp->f_mapping; 1224 1225 /* will be released by direct_io_worker */ 1226 inode_lock(inode); 1227 1228 retval = filemap_write_and_wait_range(mapping, offset, 1229 end - 1); 1230 if (retval) { 1231 inode_unlock(inode); 1232 kmem_cache_free(dio_cache, dio); 1233 goto out; 1234 } 1235 } 1236 } 1237 1238 /* Once we sampled i_size check for reads beyond EOF */ 1239 dio->i_size = i_size_read(inode); 1240 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) { 1241 if (dio->flags & DIO_LOCKING) 1242 inode_unlock(inode); 1243 kmem_cache_free(dio_cache, dio); 1244 retval = 0; 1245 goto out; 1246 } 1247 1248 /* 1249 * For file extending writes updating i_size before data writeouts 1250 * complete can expose uninitialized blocks in dumb filesystems. 1251 * In that case we need to wait for I/O completion even if asked 1252 * for an asynchronous write. 1253 */ 1254 if (is_sync_kiocb(iocb)) 1255 dio->is_async = false; 1256 else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode)) 1257 dio->is_async = false; 1258 else 1259 dio->is_async = true; 1260 1261 dio->inode = inode; 1262 if (iov_iter_rw(iter) == WRITE) { 1263 dio->op = REQ_OP_WRITE; 1264 dio->op_flags = REQ_SYNC | REQ_IDLE; 1265 if (iocb->ki_flags & IOCB_NOWAIT) 1266 dio->op_flags |= REQ_NOWAIT; 1267 } else { 1268 dio->op = REQ_OP_READ; 1269 } 1270 if (iocb->ki_flags & IOCB_HIPRI) 1271 dio->op_flags |= REQ_HIPRI; 1272 1273 /* 1274 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue 1275 * so that we can call ->fsync. 1276 */ 1277 if (dio->is_async && iov_iter_rw(iter) == WRITE) { 1278 retval = 0; 1279 if (iocb->ki_flags & IOCB_DSYNC) 1280 retval = dio_set_defer_completion(dio); 1281 else if (!dio->inode->i_sb->s_dio_done_wq) { 1282 /* 1283 * In case of AIO write racing with buffered read we 1284 * need to defer completion. We can't decide this now, 1285 * however the workqueue needs to be initialized here. 1286 */ 1287 retval = sb_init_dio_done_wq(dio->inode->i_sb); 1288 } 1289 if (retval) { 1290 /* 1291 * We grab i_mutex only for reads so we don't have 1292 * to release it here 1293 */ 1294 kmem_cache_free(dio_cache, dio); 1295 goto out; 1296 } 1297 } 1298 1299 /* 1300 * Will be decremented at I/O completion time. 1301 */ 1302 inode_dio_begin(inode); 1303 1304 retval = 0; 1305 sdio.blkbits = blkbits; 1306 sdio.blkfactor = i_blkbits - blkbits; 1307 sdio.block_in_file = offset >> blkbits; 1308 1309 sdio.get_block = get_block; 1310 dio->end_io = end_io; 1311 sdio.submit_io = submit_io; 1312 sdio.final_block_in_bio = -1; 1313 sdio.next_block_for_io = -1; 1314 1315 dio->iocb = iocb; 1316 1317 spin_lock_init(&dio->bio_lock); 1318 dio->refcount = 1; 1319 1320 dio->should_dirty = iter_is_iovec(iter) && iov_iter_rw(iter) == READ; 1321 sdio.iter = iter; 1322 sdio.final_block_in_request = end >> blkbits; 1323 1324 /* 1325 * In case of non-aligned buffers, we may need 2 more 1326 * pages since we need to zero out first and last block. 1327 */ 1328 if (unlikely(sdio.blkfactor)) 1329 sdio.pages_in_io = 2; 1330 1331 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX); 1332 1333 blk_start_plug(&plug); 1334 1335 retval = do_direct_IO(dio, &sdio, &map_bh); 1336 if (retval) 1337 dio_cleanup(dio, &sdio); 1338 1339 if (retval == -ENOTBLK) { 1340 /* 1341 * The remaining part of the request will be 1342 * be handled by buffered I/O when we return 1343 */ 1344 retval = 0; 1345 } 1346 /* 1347 * There may be some unwritten disk at the end of a part-written 1348 * fs-block-sized block. Go zero that now. 1349 */ 1350 dio_zero_block(dio, &sdio, 1, &map_bh); 1351 1352 if (sdio.cur_page) { 1353 ssize_t ret2; 1354 1355 ret2 = dio_send_cur_page(dio, &sdio, &map_bh); 1356 if (retval == 0) 1357 retval = ret2; 1358 put_page(sdio.cur_page); 1359 sdio.cur_page = NULL; 1360 } 1361 if (sdio.bio) 1362 dio_bio_submit(dio, &sdio); 1363 1364 blk_finish_plug(&plug); 1365 1366 /* 1367 * It is possible that, we return short IO due to end of file. 1368 * In that case, we need to release all the pages we got hold on. 1369 */ 1370 dio_cleanup(dio, &sdio); 1371 1372 /* 1373 * All block lookups have been performed. For READ requests 1374 * we can let i_mutex go now that its achieved its purpose 1375 * of protecting us from looking up uninitialized blocks. 1376 */ 1377 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING)) 1378 inode_unlock(dio->inode); 1379 1380 /* 1381 * The only time we want to leave bios in flight is when a successful 1382 * partial aio read or full aio write have been setup. In that case 1383 * bio completion will call aio_complete. The only time it's safe to 1384 * call aio_complete is when we return -EIOCBQUEUED, so we key on that. 1385 * This had *better* be the only place that raises -EIOCBQUEUED. 1386 */ 1387 BUG_ON(retval == -EIOCBQUEUED); 1388 if (dio->is_async && retval == 0 && dio->result && 1389 (iov_iter_rw(iter) == READ || dio->result == count)) 1390 retval = -EIOCBQUEUED; 1391 else 1392 dio_await_completion(dio); 1393 1394 if (drop_refcount(dio) == 0) { 1395 retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE); 1396 } else 1397 BUG_ON(retval != -EIOCBQUEUED); 1398 1399 out: 1400 return retval; 1401 } 1402 1403 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1404 struct block_device *bdev, struct iov_iter *iter, 1405 get_block_t get_block, 1406 dio_iodone_t end_io, dio_submit_t submit_io, 1407 int flags) 1408 { 1409 /* 1410 * The block device state is needed in the end to finally 1411 * submit everything. Since it's likely to be cache cold 1412 * prefetch it here as first thing to hide some of the 1413 * latency. 1414 * 1415 * Attempt to prefetch the pieces we likely need later. 1416 */ 1417 prefetch(&bdev->bd_disk->part_tbl); 1418 prefetch(bdev->bd_queue); 1419 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES); 1420 1421 return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block, 1422 end_io, submit_io, flags); 1423 } 1424 1425 EXPORT_SYMBOL(__blockdev_direct_IO); 1426 1427 static __init int dio_init(void) 1428 { 1429 dio_cache = KMEM_CACHE(dio, SLAB_PANIC); 1430 return 0; 1431 } 1432 module_init(dio_init) 1433