xref: /openbmc/linux/fs/direct-io.c (revision ca79522c)
1 /*
2  * fs/direct-io.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * O_DIRECT
7  *
8  * 04Jul2002	Andrew Morton
9  *		Initial version
10  * 11Sep2002	janetinc@us.ibm.com
11  * 		added readv/writev support.
12  * 29Oct2002	Andrew Morton
13  *		rewrote bio_add_page() support.
14  * 30Oct2002	pbadari@us.ibm.com
15  *		added support for non-aligned IO.
16  * 06Nov2002	pbadari@us.ibm.com
17  *		added asynchronous IO support.
18  * 21Jul2003	nathans@sgi.com
19  *		added IO completion notifier.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <linux/atomic.h>
39 #include <linux/prefetch.h>
40 #include <linux/aio.h>
41 
42 /*
43  * How many user pages to map in one call to get_user_pages().  This determines
44  * the size of a structure in the slab cache
45  */
46 #define DIO_PAGES	64
47 
48 /*
49  * This code generally works in units of "dio_blocks".  A dio_block is
50  * somewhere between the hard sector size and the filesystem block size.  it
51  * is determined on a per-invocation basis.   When talking to the filesystem
52  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
53  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
54  * to bio_block quantities by shifting left by blkfactor.
55  *
56  * If blkfactor is zero then the user's request was aligned to the filesystem's
57  * blocksize.
58  */
59 
60 /* dio_state only used in the submission path */
61 
62 struct dio_submit {
63 	struct bio *bio;		/* bio under assembly */
64 	unsigned blkbits;		/* doesn't change */
65 	unsigned blkfactor;		/* When we're using an alignment which
66 					   is finer than the filesystem's soft
67 					   blocksize, this specifies how much
68 					   finer.  blkfactor=2 means 1/4-block
69 					   alignment.  Does not change */
70 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
71 					   been performed at the start of a
72 					   write */
73 	int pages_in_io;		/* approximate total IO pages */
74 	size_t	size;			/* total request size (doesn't change)*/
75 	sector_t block_in_file;		/* Current offset into the underlying
76 					   file in dio_block units. */
77 	unsigned blocks_available;	/* At block_in_file.  changes */
78 	int reap_counter;		/* rate limit reaping */
79 	sector_t final_block_in_request;/* doesn't change */
80 	unsigned first_block_in_page;	/* doesn't change, Used only once */
81 	int boundary;			/* prev block is at a boundary */
82 	get_block_t *get_block;		/* block mapping function */
83 	dio_submit_t *submit_io;	/* IO submition function */
84 
85 	loff_t logical_offset_in_bio;	/* current first logical block in bio */
86 	sector_t final_block_in_bio;	/* current final block in bio + 1 */
87 	sector_t next_block_for_io;	/* next block to be put under IO,
88 					   in dio_blocks units */
89 
90 	/*
91 	 * Deferred addition of a page to the dio.  These variables are
92 	 * private to dio_send_cur_page(), submit_page_section() and
93 	 * dio_bio_add_page().
94 	 */
95 	struct page *cur_page;		/* The page */
96 	unsigned cur_page_offset;	/* Offset into it, in bytes */
97 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
98 	sector_t cur_page_block;	/* Where it starts */
99 	loff_t cur_page_fs_offset;	/* Offset in file */
100 
101 	/*
102 	 * Page fetching state. These variables belong to dio_refill_pages().
103 	 */
104 	int curr_page;			/* changes */
105 	int total_pages;		/* doesn't change */
106 	unsigned long curr_user_address;/* changes */
107 
108 	/*
109 	 * Page queue.  These variables belong to dio_refill_pages() and
110 	 * dio_get_page().
111 	 */
112 	unsigned head;			/* next page to process */
113 	unsigned tail;			/* last valid page + 1 */
114 };
115 
116 /* dio_state communicated between submission path and end_io */
117 struct dio {
118 	int flags;			/* doesn't change */
119 	int rw;
120 	struct inode *inode;
121 	loff_t i_size;			/* i_size when submitted */
122 	dio_iodone_t *end_io;		/* IO completion function */
123 
124 	void *private;			/* copy from map_bh.b_private */
125 
126 	/* BIO completion state */
127 	spinlock_t bio_lock;		/* protects BIO fields below */
128 	int page_errors;		/* errno from get_user_pages() */
129 	int is_async;			/* is IO async ? */
130 	int io_error;			/* IO error in completion path */
131 	unsigned long refcount;		/* direct_io_worker() and bios */
132 	struct bio *bio_list;		/* singly linked via bi_private */
133 	struct task_struct *waiter;	/* waiting task (NULL if none) */
134 
135 	/* AIO related stuff */
136 	struct kiocb *iocb;		/* kiocb */
137 	ssize_t result;                 /* IO result */
138 
139 	/*
140 	 * pages[] (and any fields placed after it) are not zeroed out at
141 	 * allocation time.  Don't add new fields after pages[] unless you
142 	 * wish that they not be zeroed.
143 	 */
144 	struct page *pages[DIO_PAGES];	/* page buffer */
145 } ____cacheline_aligned_in_smp;
146 
147 static struct kmem_cache *dio_cache __read_mostly;
148 
149 /*
150  * How many pages are in the queue?
151  */
152 static inline unsigned dio_pages_present(struct dio_submit *sdio)
153 {
154 	return sdio->tail - sdio->head;
155 }
156 
157 /*
158  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
159  */
160 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
161 {
162 	int ret;
163 	int nr_pages;
164 
165 	nr_pages = min(sdio->total_pages - sdio->curr_page, DIO_PAGES);
166 	ret = get_user_pages_fast(
167 		sdio->curr_user_address,		/* Where from? */
168 		nr_pages,			/* How many pages? */
169 		dio->rw == READ,		/* Write to memory? */
170 		&dio->pages[0]);		/* Put results here */
171 
172 	if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) {
173 		struct page *page = ZERO_PAGE(0);
174 		/*
175 		 * A memory fault, but the filesystem has some outstanding
176 		 * mapped blocks.  We need to use those blocks up to avoid
177 		 * leaking stale data in the file.
178 		 */
179 		if (dio->page_errors == 0)
180 			dio->page_errors = ret;
181 		page_cache_get(page);
182 		dio->pages[0] = page;
183 		sdio->head = 0;
184 		sdio->tail = 1;
185 		ret = 0;
186 		goto out;
187 	}
188 
189 	if (ret >= 0) {
190 		sdio->curr_user_address += ret * PAGE_SIZE;
191 		sdio->curr_page += ret;
192 		sdio->head = 0;
193 		sdio->tail = ret;
194 		ret = 0;
195 	}
196 out:
197 	return ret;
198 }
199 
200 /*
201  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
202  * buffered inside the dio so that we can call get_user_pages() against a
203  * decent number of pages, less frequently.  To provide nicer use of the
204  * L1 cache.
205  */
206 static inline struct page *dio_get_page(struct dio *dio,
207 		struct dio_submit *sdio)
208 {
209 	if (dio_pages_present(sdio) == 0) {
210 		int ret;
211 
212 		ret = dio_refill_pages(dio, sdio);
213 		if (ret)
214 			return ERR_PTR(ret);
215 		BUG_ON(dio_pages_present(sdio) == 0);
216 	}
217 	return dio->pages[sdio->head++];
218 }
219 
220 /**
221  * dio_complete() - called when all DIO BIO I/O has been completed
222  * @offset: the byte offset in the file of the completed operation
223  *
224  * This releases locks as dictated by the locking type, lets interested parties
225  * know that a DIO operation has completed, and calculates the resulting return
226  * code for the operation.
227  *
228  * It lets the filesystem know if it registered an interest earlier via
229  * get_block.  Pass the private field of the map buffer_head so that
230  * filesystems can use it to hold additional state between get_block calls and
231  * dio_complete.
232  */
233 static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret, bool is_async)
234 {
235 	ssize_t transferred = 0;
236 
237 	/*
238 	 * AIO submission can race with bio completion to get here while
239 	 * expecting to have the last io completed by bio completion.
240 	 * In that case -EIOCBQUEUED is in fact not an error we want
241 	 * to preserve through this call.
242 	 */
243 	if (ret == -EIOCBQUEUED)
244 		ret = 0;
245 
246 	if (dio->result) {
247 		transferred = dio->result;
248 
249 		/* Check for short read case */
250 		if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
251 			transferred = dio->i_size - offset;
252 	}
253 
254 	if (ret == 0)
255 		ret = dio->page_errors;
256 	if (ret == 0)
257 		ret = dio->io_error;
258 	if (ret == 0)
259 		ret = transferred;
260 
261 	if (dio->end_io && dio->result) {
262 		dio->end_io(dio->iocb, offset, transferred,
263 			    dio->private, ret, is_async);
264 	} else {
265 		inode_dio_done(dio->inode);
266 		if (is_async)
267 			aio_complete(dio->iocb, ret, 0);
268 	}
269 
270 	return ret;
271 }
272 
273 static int dio_bio_complete(struct dio *dio, struct bio *bio);
274 /*
275  * Asynchronous IO callback.
276  */
277 static void dio_bio_end_aio(struct bio *bio, int error)
278 {
279 	struct dio *dio = bio->bi_private;
280 	unsigned long remaining;
281 	unsigned long flags;
282 
283 	/* cleanup the bio */
284 	dio_bio_complete(dio, bio);
285 
286 	spin_lock_irqsave(&dio->bio_lock, flags);
287 	remaining = --dio->refcount;
288 	if (remaining == 1 && dio->waiter)
289 		wake_up_process(dio->waiter);
290 	spin_unlock_irqrestore(&dio->bio_lock, flags);
291 
292 	if (remaining == 0) {
293 		dio_complete(dio, dio->iocb->ki_pos, 0, true);
294 		kmem_cache_free(dio_cache, dio);
295 	}
296 }
297 
298 /*
299  * The BIO completion handler simply queues the BIO up for the process-context
300  * handler.
301  *
302  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
303  * implement a singly-linked list of completed BIOs, at dio->bio_list.
304  */
305 static void dio_bio_end_io(struct bio *bio, int error)
306 {
307 	struct dio *dio = bio->bi_private;
308 	unsigned long flags;
309 
310 	spin_lock_irqsave(&dio->bio_lock, flags);
311 	bio->bi_private = dio->bio_list;
312 	dio->bio_list = bio;
313 	if (--dio->refcount == 1 && dio->waiter)
314 		wake_up_process(dio->waiter);
315 	spin_unlock_irqrestore(&dio->bio_lock, flags);
316 }
317 
318 /**
319  * dio_end_io - handle the end io action for the given bio
320  * @bio: The direct io bio thats being completed
321  * @error: Error if there was one
322  *
323  * This is meant to be called by any filesystem that uses their own dio_submit_t
324  * so that the DIO specific endio actions are dealt with after the filesystem
325  * has done it's completion work.
326  */
327 void dio_end_io(struct bio *bio, int error)
328 {
329 	struct dio *dio = bio->bi_private;
330 
331 	if (dio->is_async)
332 		dio_bio_end_aio(bio, error);
333 	else
334 		dio_bio_end_io(bio, error);
335 }
336 EXPORT_SYMBOL_GPL(dio_end_io);
337 
338 static inline void
339 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
340 	      struct block_device *bdev,
341 	      sector_t first_sector, int nr_vecs)
342 {
343 	struct bio *bio;
344 
345 	/*
346 	 * bio_alloc() is guaranteed to return a bio when called with
347 	 * __GFP_WAIT and we request a valid number of vectors.
348 	 */
349 	bio = bio_alloc(GFP_KERNEL, nr_vecs);
350 
351 	bio->bi_bdev = bdev;
352 	bio->bi_sector = first_sector;
353 	if (dio->is_async)
354 		bio->bi_end_io = dio_bio_end_aio;
355 	else
356 		bio->bi_end_io = dio_bio_end_io;
357 
358 	sdio->bio = bio;
359 	sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
360 }
361 
362 /*
363  * In the AIO read case we speculatively dirty the pages before starting IO.
364  * During IO completion, any of these pages which happen to have been written
365  * back will be redirtied by bio_check_pages_dirty().
366  *
367  * bios hold a dio reference between submit_bio and ->end_io.
368  */
369 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
370 {
371 	struct bio *bio = sdio->bio;
372 	unsigned long flags;
373 
374 	bio->bi_private = dio;
375 
376 	spin_lock_irqsave(&dio->bio_lock, flags);
377 	dio->refcount++;
378 	spin_unlock_irqrestore(&dio->bio_lock, flags);
379 
380 	if (dio->is_async && dio->rw == READ)
381 		bio_set_pages_dirty(bio);
382 
383 	if (sdio->submit_io)
384 		sdio->submit_io(dio->rw, bio, dio->inode,
385 			       sdio->logical_offset_in_bio);
386 	else
387 		submit_bio(dio->rw, bio);
388 
389 	sdio->bio = NULL;
390 	sdio->boundary = 0;
391 	sdio->logical_offset_in_bio = 0;
392 }
393 
394 /*
395  * Release any resources in case of a failure
396  */
397 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
398 {
399 	while (dio_pages_present(sdio))
400 		page_cache_release(dio_get_page(dio, sdio));
401 }
402 
403 /*
404  * Wait for the next BIO to complete.  Remove it and return it.  NULL is
405  * returned once all BIOs have been completed.  This must only be called once
406  * all bios have been issued so that dio->refcount can only decrease.  This
407  * requires that that the caller hold a reference on the dio.
408  */
409 static struct bio *dio_await_one(struct dio *dio)
410 {
411 	unsigned long flags;
412 	struct bio *bio = NULL;
413 
414 	spin_lock_irqsave(&dio->bio_lock, flags);
415 
416 	/*
417 	 * Wait as long as the list is empty and there are bios in flight.  bio
418 	 * completion drops the count, maybe adds to the list, and wakes while
419 	 * holding the bio_lock so we don't need set_current_state()'s barrier
420 	 * and can call it after testing our condition.
421 	 */
422 	while (dio->refcount > 1 && dio->bio_list == NULL) {
423 		__set_current_state(TASK_UNINTERRUPTIBLE);
424 		dio->waiter = current;
425 		spin_unlock_irqrestore(&dio->bio_lock, flags);
426 		io_schedule();
427 		/* wake up sets us TASK_RUNNING */
428 		spin_lock_irqsave(&dio->bio_lock, flags);
429 		dio->waiter = NULL;
430 	}
431 	if (dio->bio_list) {
432 		bio = dio->bio_list;
433 		dio->bio_list = bio->bi_private;
434 	}
435 	spin_unlock_irqrestore(&dio->bio_lock, flags);
436 	return bio;
437 }
438 
439 /*
440  * Process one completed BIO.  No locks are held.
441  */
442 static int dio_bio_complete(struct dio *dio, struct bio *bio)
443 {
444 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
445 	struct bio_vec *bvec;
446 	unsigned i;
447 
448 	if (!uptodate)
449 		dio->io_error = -EIO;
450 
451 	if (dio->is_async && dio->rw == READ) {
452 		bio_check_pages_dirty(bio);	/* transfers ownership */
453 	} else {
454 		bio_for_each_segment_all(bvec, bio, i) {
455 			struct page *page = bvec->bv_page;
456 
457 			if (dio->rw == READ && !PageCompound(page))
458 				set_page_dirty_lock(page);
459 			page_cache_release(page);
460 		}
461 		bio_put(bio);
462 	}
463 	return uptodate ? 0 : -EIO;
464 }
465 
466 /*
467  * Wait on and process all in-flight BIOs.  This must only be called once
468  * all bios have been issued so that the refcount can only decrease.
469  * This just waits for all bios to make it through dio_bio_complete.  IO
470  * errors are propagated through dio->io_error and should be propagated via
471  * dio_complete().
472  */
473 static void dio_await_completion(struct dio *dio)
474 {
475 	struct bio *bio;
476 	do {
477 		bio = dio_await_one(dio);
478 		if (bio)
479 			dio_bio_complete(dio, bio);
480 	} while (bio);
481 }
482 
483 /*
484  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
485  * to keep the memory consumption sane we periodically reap any completed BIOs
486  * during the BIO generation phase.
487  *
488  * This also helps to limit the peak amount of pinned userspace memory.
489  */
490 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
491 {
492 	int ret = 0;
493 
494 	if (sdio->reap_counter++ >= 64) {
495 		while (dio->bio_list) {
496 			unsigned long flags;
497 			struct bio *bio;
498 			int ret2;
499 
500 			spin_lock_irqsave(&dio->bio_lock, flags);
501 			bio = dio->bio_list;
502 			dio->bio_list = bio->bi_private;
503 			spin_unlock_irqrestore(&dio->bio_lock, flags);
504 			ret2 = dio_bio_complete(dio, bio);
505 			if (ret == 0)
506 				ret = ret2;
507 		}
508 		sdio->reap_counter = 0;
509 	}
510 	return ret;
511 }
512 
513 /*
514  * Call into the fs to map some more disk blocks.  We record the current number
515  * of available blocks at sdio->blocks_available.  These are in units of the
516  * fs blocksize, (1 << inode->i_blkbits).
517  *
518  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
519  * it uses the passed inode-relative block number as the file offset, as usual.
520  *
521  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
522  * has remaining to do.  The fs should not map more than this number of blocks.
523  *
524  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
525  * indicate how much contiguous disk space has been made available at
526  * bh->b_blocknr.
527  *
528  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
529  * This isn't very efficient...
530  *
531  * In the case of filesystem holes: the fs may return an arbitrarily-large
532  * hole by returning an appropriate value in b_size and by clearing
533  * buffer_mapped().  However the direct-io code will only process holes one
534  * block at a time - it will repeatedly call get_block() as it walks the hole.
535  */
536 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
537 			   struct buffer_head *map_bh)
538 {
539 	int ret;
540 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
541 	sector_t fs_endblk;	/* Into file, in filesystem-sized blocks */
542 	unsigned long fs_count;	/* Number of filesystem-sized blocks */
543 	int create;
544 	unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
545 
546 	/*
547 	 * If there was a memory error and we've overwritten all the
548 	 * mapped blocks then we can now return that memory error
549 	 */
550 	ret = dio->page_errors;
551 	if (ret == 0) {
552 		BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
553 		fs_startblk = sdio->block_in_file >> sdio->blkfactor;
554 		fs_endblk = (sdio->final_block_in_request - 1) >>
555 					sdio->blkfactor;
556 		fs_count = fs_endblk - fs_startblk + 1;
557 
558 		map_bh->b_state = 0;
559 		map_bh->b_size = fs_count << i_blkbits;
560 
561 		/*
562 		 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
563 		 * forbid block creations: only overwrites are permitted.
564 		 * We will return early to the caller once we see an
565 		 * unmapped buffer head returned, and the caller will fall
566 		 * back to buffered I/O.
567 		 *
568 		 * Otherwise the decision is left to the get_blocks method,
569 		 * which may decide to handle it or also return an unmapped
570 		 * buffer head.
571 		 */
572 		create = dio->rw & WRITE;
573 		if (dio->flags & DIO_SKIP_HOLES) {
574 			if (sdio->block_in_file < (i_size_read(dio->inode) >>
575 							sdio->blkbits))
576 				create = 0;
577 		}
578 
579 		ret = (*sdio->get_block)(dio->inode, fs_startblk,
580 						map_bh, create);
581 
582 		/* Store for completion */
583 		dio->private = map_bh->b_private;
584 	}
585 	return ret;
586 }
587 
588 /*
589  * There is no bio.  Make one now.
590  */
591 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
592 		sector_t start_sector, struct buffer_head *map_bh)
593 {
594 	sector_t sector;
595 	int ret, nr_pages;
596 
597 	ret = dio_bio_reap(dio, sdio);
598 	if (ret)
599 		goto out;
600 	sector = start_sector << (sdio->blkbits - 9);
601 	nr_pages = min(sdio->pages_in_io, bio_get_nr_vecs(map_bh->b_bdev));
602 	nr_pages = min(nr_pages, BIO_MAX_PAGES);
603 	BUG_ON(nr_pages <= 0);
604 	dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
605 	sdio->boundary = 0;
606 out:
607 	return ret;
608 }
609 
610 /*
611  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
612  * that was successful then update final_block_in_bio and take a ref against
613  * the just-added page.
614  *
615  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
616  */
617 static inline int dio_bio_add_page(struct dio_submit *sdio)
618 {
619 	int ret;
620 
621 	ret = bio_add_page(sdio->bio, sdio->cur_page,
622 			sdio->cur_page_len, sdio->cur_page_offset);
623 	if (ret == sdio->cur_page_len) {
624 		/*
625 		 * Decrement count only, if we are done with this page
626 		 */
627 		if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
628 			sdio->pages_in_io--;
629 		page_cache_get(sdio->cur_page);
630 		sdio->final_block_in_bio = sdio->cur_page_block +
631 			(sdio->cur_page_len >> sdio->blkbits);
632 		ret = 0;
633 	} else {
634 		ret = 1;
635 	}
636 	return ret;
637 }
638 
639 /*
640  * Put cur_page under IO.  The section of cur_page which is described by
641  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
642  * starts on-disk at cur_page_block.
643  *
644  * We take a ref against the page here (on behalf of its presence in the bio).
645  *
646  * The caller of this function is responsible for removing cur_page from the
647  * dio, and for dropping the refcount which came from that presence.
648  */
649 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
650 		struct buffer_head *map_bh)
651 {
652 	int ret = 0;
653 
654 	if (sdio->bio) {
655 		loff_t cur_offset = sdio->cur_page_fs_offset;
656 		loff_t bio_next_offset = sdio->logical_offset_in_bio +
657 			sdio->bio->bi_size;
658 
659 		/*
660 		 * See whether this new request is contiguous with the old.
661 		 *
662 		 * Btrfs cannot handle having logically non-contiguous requests
663 		 * submitted.  For example if you have
664 		 *
665 		 * Logical:  [0-4095][HOLE][8192-12287]
666 		 * Physical: [0-4095]      [4096-8191]
667 		 *
668 		 * We cannot submit those pages together as one BIO.  So if our
669 		 * current logical offset in the file does not equal what would
670 		 * be the next logical offset in the bio, submit the bio we
671 		 * have.
672 		 */
673 		if (sdio->final_block_in_bio != sdio->cur_page_block ||
674 		    cur_offset != bio_next_offset)
675 			dio_bio_submit(dio, sdio);
676 	}
677 
678 	if (sdio->bio == NULL) {
679 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
680 		if (ret)
681 			goto out;
682 	}
683 
684 	if (dio_bio_add_page(sdio) != 0) {
685 		dio_bio_submit(dio, sdio);
686 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
687 		if (ret == 0) {
688 			ret = dio_bio_add_page(sdio);
689 			BUG_ON(ret != 0);
690 		}
691 	}
692 out:
693 	return ret;
694 }
695 
696 /*
697  * An autonomous function to put a chunk of a page under deferred IO.
698  *
699  * The caller doesn't actually know (or care) whether this piece of page is in
700  * a BIO, or is under IO or whatever.  We just take care of all possible
701  * situations here.  The separation between the logic of do_direct_IO() and
702  * that of submit_page_section() is important for clarity.  Please don't break.
703  *
704  * The chunk of page starts on-disk at blocknr.
705  *
706  * We perform deferred IO, by recording the last-submitted page inside our
707  * private part of the dio structure.  If possible, we just expand the IO
708  * across that page here.
709  *
710  * If that doesn't work out then we put the old page into the bio and add this
711  * page to the dio instead.
712  */
713 static inline int
714 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
715 		    unsigned offset, unsigned len, sector_t blocknr,
716 		    struct buffer_head *map_bh)
717 {
718 	int ret = 0;
719 
720 	if (dio->rw & WRITE) {
721 		/*
722 		 * Read accounting is performed in submit_bio()
723 		 */
724 		task_io_account_write(len);
725 	}
726 
727 	/*
728 	 * Can we just grow the current page's presence in the dio?
729 	 */
730 	if (sdio->cur_page == page &&
731 	    sdio->cur_page_offset + sdio->cur_page_len == offset &&
732 	    sdio->cur_page_block +
733 	    (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
734 		sdio->cur_page_len += len;
735 		goto out;
736 	}
737 
738 	/*
739 	 * If there's a deferred page already there then send it.
740 	 */
741 	if (sdio->cur_page) {
742 		ret = dio_send_cur_page(dio, sdio, map_bh);
743 		page_cache_release(sdio->cur_page);
744 		sdio->cur_page = NULL;
745 		if (ret)
746 			return ret;
747 	}
748 
749 	page_cache_get(page);		/* It is in dio */
750 	sdio->cur_page = page;
751 	sdio->cur_page_offset = offset;
752 	sdio->cur_page_len = len;
753 	sdio->cur_page_block = blocknr;
754 	sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
755 out:
756 	/*
757 	 * If sdio->boundary then we want to schedule the IO now to
758 	 * avoid metadata seeks.
759 	 */
760 	if (sdio->boundary) {
761 		ret = dio_send_cur_page(dio, sdio, map_bh);
762 		dio_bio_submit(dio, sdio);
763 		page_cache_release(sdio->cur_page);
764 		sdio->cur_page = NULL;
765 	}
766 	return ret;
767 }
768 
769 /*
770  * Clean any dirty buffers in the blockdev mapping which alias newly-created
771  * file blocks.  Only called for S_ISREG files - blockdevs do not set
772  * buffer_new
773  */
774 static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh)
775 {
776 	unsigned i;
777 	unsigned nblocks;
778 
779 	nblocks = map_bh->b_size >> dio->inode->i_blkbits;
780 
781 	for (i = 0; i < nblocks; i++) {
782 		unmap_underlying_metadata(map_bh->b_bdev,
783 					  map_bh->b_blocknr + i);
784 	}
785 }
786 
787 /*
788  * If we are not writing the entire block and get_block() allocated
789  * the block for us, we need to fill-in the unused portion of the
790  * block with zeros. This happens only if user-buffer, fileoffset or
791  * io length is not filesystem block-size multiple.
792  *
793  * `end' is zero if we're doing the start of the IO, 1 at the end of the
794  * IO.
795  */
796 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
797 		int end, struct buffer_head *map_bh)
798 {
799 	unsigned dio_blocks_per_fs_block;
800 	unsigned this_chunk_blocks;	/* In dio_blocks */
801 	unsigned this_chunk_bytes;
802 	struct page *page;
803 
804 	sdio->start_zero_done = 1;
805 	if (!sdio->blkfactor || !buffer_new(map_bh))
806 		return;
807 
808 	dio_blocks_per_fs_block = 1 << sdio->blkfactor;
809 	this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
810 
811 	if (!this_chunk_blocks)
812 		return;
813 
814 	/*
815 	 * We need to zero out part of an fs block.  It is either at the
816 	 * beginning or the end of the fs block.
817 	 */
818 	if (end)
819 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
820 
821 	this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
822 
823 	page = ZERO_PAGE(0);
824 	if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
825 				sdio->next_block_for_io, map_bh))
826 		return;
827 
828 	sdio->next_block_for_io += this_chunk_blocks;
829 }
830 
831 /*
832  * Walk the user pages, and the file, mapping blocks to disk and generating
833  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
834  * into submit_page_section(), which takes care of the next stage of submission
835  *
836  * Direct IO against a blockdev is different from a file.  Because we can
837  * happily perform page-sized but 512-byte aligned IOs.  It is important that
838  * blockdev IO be able to have fine alignment and large sizes.
839  *
840  * So what we do is to permit the ->get_block function to populate bh.b_size
841  * with the size of IO which is permitted at this offset and this i_blkbits.
842  *
843  * For best results, the blockdev should be set up with 512-byte i_blkbits and
844  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
845  * fine alignment but still allows this function to work in PAGE_SIZE units.
846  */
847 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
848 			struct buffer_head *map_bh)
849 {
850 	const unsigned blkbits = sdio->blkbits;
851 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
852 	struct page *page;
853 	unsigned block_in_page;
854 	int ret = 0;
855 
856 	/* The I/O can start at any block offset within the first page */
857 	block_in_page = sdio->first_block_in_page;
858 
859 	while (sdio->block_in_file < sdio->final_block_in_request) {
860 		page = dio_get_page(dio, sdio);
861 		if (IS_ERR(page)) {
862 			ret = PTR_ERR(page);
863 			goto out;
864 		}
865 
866 		while (block_in_page < blocks_per_page) {
867 			unsigned offset_in_page = block_in_page << blkbits;
868 			unsigned this_chunk_bytes;	/* # of bytes mapped */
869 			unsigned this_chunk_blocks;	/* # of blocks */
870 			unsigned u;
871 
872 			if (sdio->blocks_available == 0) {
873 				/*
874 				 * Need to go and map some more disk
875 				 */
876 				unsigned long blkmask;
877 				unsigned long dio_remainder;
878 
879 				ret = get_more_blocks(dio, sdio, map_bh);
880 				if (ret) {
881 					page_cache_release(page);
882 					goto out;
883 				}
884 				if (!buffer_mapped(map_bh))
885 					goto do_holes;
886 
887 				sdio->blocks_available =
888 						map_bh->b_size >> sdio->blkbits;
889 				sdio->next_block_for_io =
890 					map_bh->b_blocknr << sdio->blkfactor;
891 				if (buffer_new(map_bh))
892 					clean_blockdev_aliases(dio, map_bh);
893 
894 				if (!sdio->blkfactor)
895 					goto do_holes;
896 
897 				blkmask = (1 << sdio->blkfactor) - 1;
898 				dio_remainder = (sdio->block_in_file & blkmask);
899 
900 				/*
901 				 * If we are at the start of IO and that IO
902 				 * starts partway into a fs-block,
903 				 * dio_remainder will be non-zero.  If the IO
904 				 * is a read then we can simply advance the IO
905 				 * cursor to the first block which is to be
906 				 * read.  But if the IO is a write and the
907 				 * block was newly allocated we cannot do that;
908 				 * the start of the fs block must be zeroed out
909 				 * on-disk
910 				 */
911 				if (!buffer_new(map_bh))
912 					sdio->next_block_for_io += dio_remainder;
913 				sdio->blocks_available -= dio_remainder;
914 			}
915 do_holes:
916 			/* Handle holes */
917 			if (!buffer_mapped(map_bh)) {
918 				loff_t i_size_aligned;
919 
920 				/* AKPM: eargh, -ENOTBLK is a hack */
921 				if (dio->rw & WRITE) {
922 					page_cache_release(page);
923 					return -ENOTBLK;
924 				}
925 
926 				/*
927 				 * Be sure to account for a partial block as the
928 				 * last block in the file
929 				 */
930 				i_size_aligned = ALIGN(i_size_read(dio->inode),
931 							1 << blkbits);
932 				if (sdio->block_in_file >=
933 						i_size_aligned >> blkbits) {
934 					/* We hit eof */
935 					page_cache_release(page);
936 					goto out;
937 				}
938 				zero_user(page, block_in_page << blkbits,
939 						1 << blkbits);
940 				sdio->block_in_file++;
941 				block_in_page++;
942 				goto next_block;
943 			}
944 
945 			/*
946 			 * If we're performing IO which has an alignment which
947 			 * is finer than the underlying fs, go check to see if
948 			 * we must zero out the start of this block.
949 			 */
950 			if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
951 				dio_zero_block(dio, sdio, 0, map_bh);
952 
953 			/*
954 			 * Work out, in this_chunk_blocks, how much disk we
955 			 * can add to this page
956 			 */
957 			this_chunk_blocks = sdio->blocks_available;
958 			u = (PAGE_SIZE - offset_in_page) >> blkbits;
959 			if (this_chunk_blocks > u)
960 				this_chunk_blocks = u;
961 			u = sdio->final_block_in_request - sdio->block_in_file;
962 			if (this_chunk_blocks > u)
963 				this_chunk_blocks = u;
964 			this_chunk_bytes = this_chunk_blocks << blkbits;
965 			BUG_ON(this_chunk_bytes == 0);
966 
967 			if (this_chunk_blocks == sdio->blocks_available)
968 				sdio->boundary = buffer_boundary(map_bh);
969 			ret = submit_page_section(dio, sdio, page,
970 						  offset_in_page,
971 						  this_chunk_bytes,
972 						  sdio->next_block_for_io,
973 						  map_bh);
974 			if (ret) {
975 				page_cache_release(page);
976 				goto out;
977 			}
978 			sdio->next_block_for_io += this_chunk_blocks;
979 
980 			sdio->block_in_file += this_chunk_blocks;
981 			block_in_page += this_chunk_blocks;
982 			sdio->blocks_available -= this_chunk_blocks;
983 next_block:
984 			BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
985 			if (sdio->block_in_file == sdio->final_block_in_request)
986 				break;
987 		}
988 
989 		/* Drop the ref which was taken in get_user_pages() */
990 		page_cache_release(page);
991 		block_in_page = 0;
992 	}
993 out:
994 	return ret;
995 }
996 
997 static inline int drop_refcount(struct dio *dio)
998 {
999 	int ret2;
1000 	unsigned long flags;
1001 
1002 	/*
1003 	 * Sync will always be dropping the final ref and completing the
1004 	 * operation.  AIO can if it was a broken operation described above or
1005 	 * in fact if all the bios race to complete before we get here.  In
1006 	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1007 	 * return code that the caller will hand to aio_complete().
1008 	 *
1009 	 * This is managed by the bio_lock instead of being an atomic_t so that
1010 	 * completion paths can drop their ref and use the remaining count to
1011 	 * decide to wake the submission path atomically.
1012 	 */
1013 	spin_lock_irqsave(&dio->bio_lock, flags);
1014 	ret2 = --dio->refcount;
1015 	spin_unlock_irqrestore(&dio->bio_lock, flags);
1016 	return ret2;
1017 }
1018 
1019 /*
1020  * This is a library function for use by filesystem drivers.
1021  *
1022  * The locking rules are governed by the flags parameter:
1023  *  - if the flags value contains DIO_LOCKING we use a fancy locking
1024  *    scheme for dumb filesystems.
1025  *    For writes this function is called under i_mutex and returns with
1026  *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1027  *    taken and dropped again before returning.
1028  *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1029  *    internal locking but rather rely on the filesystem to synchronize
1030  *    direct I/O reads/writes versus each other and truncate.
1031  *
1032  * To help with locking against truncate we incremented the i_dio_count
1033  * counter before starting direct I/O, and decrement it once we are done.
1034  * Truncate can wait for it to reach zero to provide exclusion.  It is
1035  * expected that filesystem provide exclusion between new direct I/O
1036  * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1037  * but other filesystems need to take care of this on their own.
1038  *
1039  * NOTE: if you pass "sdio" to anything by pointer make sure that function
1040  * is always inlined. Otherwise gcc is unable to split the structure into
1041  * individual fields and will generate much worse code. This is important
1042  * for the whole file.
1043  */
1044 static inline ssize_t
1045 do_blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1046 	struct block_device *bdev, const struct iovec *iov, loff_t offset,
1047 	unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1048 	dio_submit_t submit_io,	int flags)
1049 {
1050 	int seg;
1051 	size_t size;
1052 	unsigned long addr;
1053 	unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits);
1054 	unsigned blkbits = i_blkbits;
1055 	unsigned blocksize_mask = (1 << blkbits) - 1;
1056 	ssize_t retval = -EINVAL;
1057 	loff_t end = offset;
1058 	struct dio *dio;
1059 	struct dio_submit sdio = { 0, };
1060 	unsigned long user_addr;
1061 	size_t bytes;
1062 	struct buffer_head map_bh = { 0, };
1063 	struct blk_plug plug;
1064 
1065 	if (rw & WRITE)
1066 		rw = WRITE_ODIRECT;
1067 
1068 	/*
1069 	 * Avoid references to bdev if not absolutely needed to give
1070 	 * the early prefetch in the caller enough time.
1071 	 */
1072 
1073 	if (offset & blocksize_mask) {
1074 		if (bdev)
1075 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
1076 		blocksize_mask = (1 << blkbits) - 1;
1077 		if (offset & blocksize_mask)
1078 			goto out;
1079 	}
1080 
1081 	/* Check the memory alignment.  Blocks cannot straddle pages */
1082 	for (seg = 0; seg < nr_segs; seg++) {
1083 		addr = (unsigned long)iov[seg].iov_base;
1084 		size = iov[seg].iov_len;
1085 		end += size;
1086 		if (unlikely((addr & blocksize_mask) ||
1087 			     (size & blocksize_mask))) {
1088 			if (bdev)
1089 				blkbits = blksize_bits(
1090 					 bdev_logical_block_size(bdev));
1091 			blocksize_mask = (1 << blkbits) - 1;
1092 			if ((addr & blocksize_mask) || (size & blocksize_mask))
1093 				goto out;
1094 		}
1095 	}
1096 
1097 	/* watch out for a 0 len io from a tricksy fs */
1098 	if (rw == READ && end == offset)
1099 		return 0;
1100 
1101 	dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1102 	retval = -ENOMEM;
1103 	if (!dio)
1104 		goto out;
1105 	/*
1106 	 * Believe it or not, zeroing out the page array caused a .5%
1107 	 * performance regression in a database benchmark.  So, we take
1108 	 * care to only zero out what's needed.
1109 	 */
1110 	memset(dio, 0, offsetof(struct dio, pages));
1111 
1112 	dio->flags = flags;
1113 	if (dio->flags & DIO_LOCKING) {
1114 		if (rw == READ) {
1115 			struct address_space *mapping =
1116 					iocb->ki_filp->f_mapping;
1117 
1118 			/* will be released by direct_io_worker */
1119 			mutex_lock(&inode->i_mutex);
1120 
1121 			retval = filemap_write_and_wait_range(mapping, offset,
1122 							      end - 1);
1123 			if (retval) {
1124 				mutex_unlock(&inode->i_mutex);
1125 				kmem_cache_free(dio_cache, dio);
1126 				goto out;
1127 			}
1128 		}
1129 	}
1130 
1131 	/*
1132 	 * Will be decremented at I/O completion time.
1133 	 */
1134 	atomic_inc(&inode->i_dio_count);
1135 
1136 	/*
1137 	 * For file extending writes updating i_size before data
1138 	 * writeouts complete can expose uninitialized blocks. So
1139 	 * even for AIO, we need to wait for i/o to complete before
1140 	 * returning in this case.
1141 	 */
1142 	dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) &&
1143 		(end > i_size_read(inode)));
1144 
1145 	retval = 0;
1146 
1147 	dio->inode = inode;
1148 	dio->rw = rw;
1149 	sdio.blkbits = blkbits;
1150 	sdio.blkfactor = i_blkbits - blkbits;
1151 	sdio.block_in_file = offset >> blkbits;
1152 
1153 	sdio.get_block = get_block;
1154 	dio->end_io = end_io;
1155 	sdio.submit_io = submit_io;
1156 	sdio.final_block_in_bio = -1;
1157 	sdio.next_block_for_io = -1;
1158 
1159 	dio->iocb = iocb;
1160 	dio->i_size = i_size_read(inode);
1161 
1162 	spin_lock_init(&dio->bio_lock);
1163 	dio->refcount = 1;
1164 
1165 	/*
1166 	 * In case of non-aligned buffers, we may need 2 more
1167 	 * pages since we need to zero out first and last block.
1168 	 */
1169 	if (unlikely(sdio.blkfactor))
1170 		sdio.pages_in_io = 2;
1171 
1172 	for (seg = 0; seg < nr_segs; seg++) {
1173 		user_addr = (unsigned long)iov[seg].iov_base;
1174 		sdio.pages_in_io +=
1175 			((user_addr + iov[seg].iov_len + PAGE_SIZE-1) /
1176 				PAGE_SIZE - user_addr / PAGE_SIZE);
1177 	}
1178 
1179 	blk_start_plug(&plug);
1180 
1181 	for (seg = 0; seg < nr_segs; seg++) {
1182 		user_addr = (unsigned long)iov[seg].iov_base;
1183 		sdio.size += bytes = iov[seg].iov_len;
1184 
1185 		/* Index into the first page of the first block */
1186 		sdio.first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
1187 		sdio.final_block_in_request = sdio.block_in_file +
1188 						(bytes >> blkbits);
1189 		/* Page fetching state */
1190 		sdio.head = 0;
1191 		sdio.tail = 0;
1192 		sdio.curr_page = 0;
1193 
1194 		sdio.total_pages = 0;
1195 		if (user_addr & (PAGE_SIZE-1)) {
1196 			sdio.total_pages++;
1197 			bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
1198 		}
1199 		sdio.total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1200 		sdio.curr_user_address = user_addr;
1201 
1202 		retval = do_direct_IO(dio, &sdio, &map_bh);
1203 
1204 		dio->result += iov[seg].iov_len -
1205 			((sdio.final_block_in_request - sdio.block_in_file) <<
1206 					blkbits);
1207 
1208 		if (retval) {
1209 			dio_cleanup(dio, &sdio);
1210 			break;
1211 		}
1212 	} /* end iovec loop */
1213 
1214 	if (retval == -ENOTBLK) {
1215 		/*
1216 		 * The remaining part of the request will be
1217 		 * be handled by buffered I/O when we return
1218 		 */
1219 		retval = 0;
1220 	}
1221 	/*
1222 	 * There may be some unwritten disk at the end of a part-written
1223 	 * fs-block-sized block.  Go zero that now.
1224 	 */
1225 	dio_zero_block(dio, &sdio, 1, &map_bh);
1226 
1227 	if (sdio.cur_page) {
1228 		ssize_t ret2;
1229 
1230 		ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1231 		if (retval == 0)
1232 			retval = ret2;
1233 		page_cache_release(sdio.cur_page);
1234 		sdio.cur_page = NULL;
1235 	}
1236 	if (sdio.bio)
1237 		dio_bio_submit(dio, &sdio);
1238 
1239 	blk_finish_plug(&plug);
1240 
1241 	/*
1242 	 * It is possible that, we return short IO due to end of file.
1243 	 * In that case, we need to release all the pages we got hold on.
1244 	 */
1245 	dio_cleanup(dio, &sdio);
1246 
1247 	/*
1248 	 * All block lookups have been performed. For READ requests
1249 	 * we can let i_mutex go now that its achieved its purpose
1250 	 * of protecting us from looking up uninitialized blocks.
1251 	 */
1252 	if (rw == READ && (dio->flags & DIO_LOCKING))
1253 		mutex_unlock(&dio->inode->i_mutex);
1254 
1255 	/*
1256 	 * The only time we want to leave bios in flight is when a successful
1257 	 * partial aio read or full aio write have been setup.  In that case
1258 	 * bio completion will call aio_complete.  The only time it's safe to
1259 	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1260 	 * This had *better* be the only place that raises -EIOCBQUEUED.
1261 	 */
1262 	BUG_ON(retval == -EIOCBQUEUED);
1263 	if (dio->is_async && retval == 0 && dio->result &&
1264 	    ((rw == READ) || (dio->result == sdio.size)))
1265 		retval = -EIOCBQUEUED;
1266 
1267 	if (retval != -EIOCBQUEUED)
1268 		dio_await_completion(dio);
1269 
1270 	if (drop_refcount(dio) == 0) {
1271 		retval = dio_complete(dio, offset, retval, false);
1272 		kmem_cache_free(dio_cache, dio);
1273 	} else
1274 		BUG_ON(retval != -EIOCBQUEUED);
1275 
1276 out:
1277 	return retval;
1278 }
1279 
1280 ssize_t
1281 __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1282 	struct block_device *bdev, const struct iovec *iov, loff_t offset,
1283 	unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1284 	dio_submit_t submit_io,	int flags)
1285 {
1286 	/*
1287 	 * The block device state is needed in the end to finally
1288 	 * submit everything.  Since it's likely to be cache cold
1289 	 * prefetch it here as first thing to hide some of the
1290 	 * latency.
1291 	 *
1292 	 * Attempt to prefetch the pieces we likely need later.
1293 	 */
1294 	prefetch(&bdev->bd_disk->part_tbl);
1295 	prefetch(bdev->bd_queue);
1296 	prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1297 
1298 	return do_blockdev_direct_IO(rw, iocb, inode, bdev, iov, offset,
1299 				     nr_segs, get_block, end_io,
1300 				     submit_io, flags);
1301 }
1302 
1303 EXPORT_SYMBOL(__blockdev_direct_IO);
1304 
1305 static __init int dio_init(void)
1306 {
1307 	dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1308 	return 0;
1309 }
1310 module_init(dio_init)
1311