1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/direct-io.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * O_DIRECT 8 * 9 * 04Jul2002 Andrew Morton 10 * Initial version 11 * 11Sep2002 janetinc@us.ibm.com 12 * added readv/writev support. 13 * 29Oct2002 Andrew Morton 14 * rewrote bio_add_page() support. 15 * 30Oct2002 pbadari@us.ibm.com 16 * added support for non-aligned IO. 17 * 06Nov2002 pbadari@us.ibm.com 18 * added asynchronous IO support. 19 * 21Jul2003 nathans@sgi.com 20 * added IO completion notifier. 21 */ 22 23 #include <linux/kernel.h> 24 #include <linux/module.h> 25 #include <linux/types.h> 26 #include <linux/fs.h> 27 #include <linux/mm.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/pagemap.h> 31 #include <linux/task_io_accounting_ops.h> 32 #include <linux/bio.h> 33 #include <linux/wait.h> 34 #include <linux/err.h> 35 #include <linux/blkdev.h> 36 #include <linux/buffer_head.h> 37 #include <linux/rwsem.h> 38 #include <linux/uio.h> 39 #include <linux/atomic.h> 40 #include <linux/prefetch.h> 41 42 #include "internal.h" 43 44 /* 45 * How many user pages to map in one call to get_user_pages(). This determines 46 * the size of a structure in the slab cache 47 */ 48 #define DIO_PAGES 64 49 50 /* 51 * Flags for dio_complete() 52 */ 53 #define DIO_COMPLETE_ASYNC 0x01 /* This is async IO */ 54 #define DIO_COMPLETE_INVALIDATE 0x02 /* Can invalidate pages */ 55 56 /* 57 * This code generally works in units of "dio_blocks". A dio_block is 58 * somewhere between the hard sector size and the filesystem block size. it 59 * is determined on a per-invocation basis. When talking to the filesystem 60 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity 61 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted 62 * to bio_block quantities by shifting left by blkfactor. 63 * 64 * If blkfactor is zero then the user's request was aligned to the filesystem's 65 * blocksize. 66 */ 67 68 /* dio_state only used in the submission path */ 69 70 struct dio_submit { 71 struct bio *bio; /* bio under assembly */ 72 unsigned blkbits; /* doesn't change */ 73 unsigned blkfactor; /* When we're using an alignment which 74 is finer than the filesystem's soft 75 blocksize, this specifies how much 76 finer. blkfactor=2 means 1/4-block 77 alignment. Does not change */ 78 unsigned start_zero_done; /* flag: sub-blocksize zeroing has 79 been performed at the start of a 80 write */ 81 int pages_in_io; /* approximate total IO pages */ 82 sector_t block_in_file; /* Current offset into the underlying 83 file in dio_block units. */ 84 unsigned blocks_available; /* At block_in_file. changes */ 85 int reap_counter; /* rate limit reaping */ 86 sector_t final_block_in_request;/* doesn't change */ 87 int boundary; /* prev block is at a boundary */ 88 get_block_t *get_block; /* block mapping function */ 89 90 loff_t logical_offset_in_bio; /* current first logical block in bio */ 91 sector_t final_block_in_bio; /* current final block in bio + 1 */ 92 sector_t next_block_for_io; /* next block to be put under IO, 93 in dio_blocks units */ 94 95 /* 96 * Deferred addition of a page to the dio. These variables are 97 * private to dio_send_cur_page(), submit_page_section() and 98 * dio_bio_add_page(). 99 */ 100 struct page *cur_page; /* The page */ 101 unsigned cur_page_offset; /* Offset into it, in bytes */ 102 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ 103 sector_t cur_page_block; /* Where it starts */ 104 loff_t cur_page_fs_offset; /* Offset in file */ 105 106 struct iov_iter *iter; 107 /* 108 * Page queue. These variables belong to dio_refill_pages() and 109 * dio_get_page(). 110 */ 111 unsigned head; /* next page to process */ 112 unsigned tail; /* last valid page + 1 */ 113 size_t from, to; 114 }; 115 116 /* dio_state communicated between submission path and end_io */ 117 struct dio { 118 int flags; /* doesn't change */ 119 blk_opf_t opf; /* request operation type and flags */ 120 struct gendisk *bio_disk; 121 struct inode *inode; 122 loff_t i_size; /* i_size when submitted */ 123 dio_iodone_t *end_io; /* IO completion function */ 124 125 void *private; /* copy from map_bh.b_private */ 126 127 /* BIO completion state */ 128 spinlock_t bio_lock; /* protects BIO fields below */ 129 int page_errors; /* errno from get_user_pages() */ 130 int is_async; /* is IO async ? */ 131 bool defer_completion; /* defer AIO completion to workqueue? */ 132 bool should_dirty; /* if pages should be dirtied */ 133 int io_error; /* IO error in completion path */ 134 unsigned long refcount; /* direct_io_worker() and bios */ 135 struct bio *bio_list; /* singly linked via bi_private */ 136 struct task_struct *waiter; /* waiting task (NULL if none) */ 137 138 /* AIO related stuff */ 139 struct kiocb *iocb; /* kiocb */ 140 ssize_t result; /* IO result */ 141 142 /* 143 * pages[] (and any fields placed after it) are not zeroed out at 144 * allocation time. Don't add new fields after pages[] unless you 145 * wish that they not be zeroed. 146 */ 147 union { 148 struct page *pages[DIO_PAGES]; /* page buffer */ 149 struct work_struct complete_work;/* deferred AIO completion */ 150 }; 151 } ____cacheline_aligned_in_smp; 152 153 static struct kmem_cache *dio_cache __read_mostly; 154 155 /* 156 * How many pages are in the queue? 157 */ 158 static inline unsigned dio_pages_present(struct dio_submit *sdio) 159 { 160 return sdio->tail - sdio->head; 161 } 162 163 /* 164 * Go grab and pin some userspace pages. Typically we'll get 64 at a time. 165 */ 166 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio) 167 { 168 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 169 ssize_t ret; 170 171 ret = iov_iter_get_pages2(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES, 172 &sdio->from); 173 174 if (ret < 0 && sdio->blocks_available && dio_op == REQ_OP_WRITE) { 175 struct page *page = ZERO_PAGE(0); 176 /* 177 * A memory fault, but the filesystem has some outstanding 178 * mapped blocks. We need to use those blocks up to avoid 179 * leaking stale data in the file. 180 */ 181 if (dio->page_errors == 0) 182 dio->page_errors = ret; 183 get_page(page); 184 dio->pages[0] = page; 185 sdio->head = 0; 186 sdio->tail = 1; 187 sdio->from = 0; 188 sdio->to = PAGE_SIZE; 189 return 0; 190 } 191 192 if (ret >= 0) { 193 ret += sdio->from; 194 sdio->head = 0; 195 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE; 196 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1; 197 return 0; 198 } 199 return ret; 200 } 201 202 /* 203 * Get another userspace page. Returns an ERR_PTR on error. Pages are 204 * buffered inside the dio so that we can call get_user_pages() against a 205 * decent number of pages, less frequently. To provide nicer use of the 206 * L1 cache. 207 */ 208 static inline struct page *dio_get_page(struct dio *dio, 209 struct dio_submit *sdio) 210 { 211 if (dio_pages_present(sdio) == 0) { 212 int ret; 213 214 ret = dio_refill_pages(dio, sdio); 215 if (ret) 216 return ERR_PTR(ret); 217 BUG_ON(dio_pages_present(sdio) == 0); 218 } 219 return dio->pages[sdio->head]; 220 } 221 222 /* 223 * dio_complete() - called when all DIO BIO I/O has been completed 224 * 225 * This drops i_dio_count, lets interested parties know that a DIO operation 226 * has completed, and calculates the resulting return code for the operation. 227 * 228 * It lets the filesystem know if it registered an interest earlier via 229 * get_block. Pass the private field of the map buffer_head so that 230 * filesystems can use it to hold additional state between get_block calls and 231 * dio_complete. 232 */ 233 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags) 234 { 235 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 236 loff_t offset = dio->iocb->ki_pos; 237 ssize_t transferred = 0; 238 int err; 239 240 /* 241 * AIO submission can race with bio completion to get here while 242 * expecting to have the last io completed by bio completion. 243 * In that case -EIOCBQUEUED is in fact not an error we want 244 * to preserve through this call. 245 */ 246 if (ret == -EIOCBQUEUED) 247 ret = 0; 248 249 if (dio->result) { 250 transferred = dio->result; 251 252 /* Check for short read case */ 253 if (dio_op == REQ_OP_READ && 254 ((offset + transferred) > dio->i_size)) 255 transferred = dio->i_size - offset; 256 /* ignore EFAULT if some IO has been done */ 257 if (unlikely(ret == -EFAULT) && transferred) 258 ret = 0; 259 } 260 261 if (ret == 0) 262 ret = dio->page_errors; 263 if (ret == 0) 264 ret = dio->io_error; 265 if (ret == 0) 266 ret = transferred; 267 268 if (dio->end_io) { 269 // XXX: ki_pos?? 270 err = dio->end_io(dio->iocb, offset, ret, dio->private); 271 if (err) 272 ret = err; 273 } 274 275 /* 276 * Try again to invalidate clean pages which might have been cached by 277 * non-direct readahead, or faulted in by get_user_pages() if the source 278 * of the write was an mmap'ed region of the file we're writing. Either 279 * one is a pretty crazy thing to do, so we don't support it 100%. If 280 * this invalidation fails, tough, the write still worked... 281 * 282 * And this page cache invalidation has to be after dio->end_io(), as 283 * some filesystems convert unwritten extents to real allocations in 284 * end_io() when necessary, otherwise a racing buffer read would cache 285 * zeros from unwritten extents. 286 */ 287 if (flags & DIO_COMPLETE_INVALIDATE && 288 ret > 0 && dio_op == REQ_OP_WRITE) 289 kiocb_invalidate_post_direct_write(dio->iocb, ret); 290 291 inode_dio_end(dio->inode); 292 293 if (flags & DIO_COMPLETE_ASYNC) { 294 /* 295 * generic_write_sync expects ki_pos to have been updated 296 * already, but the submission path only does this for 297 * synchronous I/O. 298 */ 299 dio->iocb->ki_pos += transferred; 300 301 if (ret > 0 && dio_op == REQ_OP_WRITE) 302 ret = generic_write_sync(dio->iocb, ret); 303 dio->iocb->ki_complete(dio->iocb, ret); 304 } 305 306 kmem_cache_free(dio_cache, dio); 307 return ret; 308 } 309 310 static void dio_aio_complete_work(struct work_struct *work) 311 { 312 struct dio *dio = container_of(work, struct dio, complete_work); 313 314 dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE); 315 } 316 317 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio); 318 319 /* 320 * Asynchronous IO callback. 321 */ 322 static void dio_bio_end_aio(struct bio *bio) 323 { 324 struct dio *dio = bio->bi_private; 325 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 326 unsigned long remaining; 327 unsigned long flags; 328 bool defer_completion = false; 329 330 /* cleanup the bio */ 331 dio_bio_complete(dio, bio); 332 333 spin_lock_irqsave(&dio->bio_lock, flags); 334 remaining = --dio->refcount; 335 if (remaining == 1 && dio->waiter) 336 wake_up_process(dio->waiter); 337 spin_unlock_irqrestore(&dio->bio_lock, flags); 338 339 if (remaining == 0) { 340 /* 341 * Defer completion when defer_completion is set or 342 * when the inode has pages mapped and this is AIO write. 343 * We need to invalidate those pages because there is a 344 * chance they contain stale data in the case buffered IO 345 * went in between AIO submission and completion into the 346 * same region. 347 */ 348 if (dio->result) 349 defer_completion = dio->defer_completion || 350 (dio_op == REQ_OP_WRITE && 351 dio->inode->i_mapping->nrpages); 352 if (defer_completion) { 353 INIT_WORK(&dio->complete_work, dio_aio_complete_work); 354 queue_work(dio->inode->i_sb->s_dio_done_wq, 355 &dio->complete_work); 356 } else { 357 dio_complete(dio, 0, DIO_COMPLETE_ASYNC); 358 } 359 } 360 } 361 362 /* 363 * The BIO completion handler simply queues the BIO up for the process-context 364 * handler. 365 * 366 * During I/O bi_private points at the dio. After I/O, bi_private is used to 367 * implement a singly-linked list of completed BIOs, at dio->bio_list. 368 */ 369 static void dio_bio_end_io(struct bio *bio) 370 { 371 struct dio *dio = bio->bi_private; 372 unsigned long flags; 373 374 spin_lock_irqsave(&dio->bio_lock, flags); 375 bio->bi_private = dio->bio_list; 376 dio->bio_list = bio; 377 if (--dio->refcount == 1 && dio->waiter) 378 wake_up_process(dio->waiter); 379 spin_unlock_irqrestore(&dio->bio_lock, flags); 380 } 381 382 static inline void 383 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio, 384 struct block_device *bdev, 385 sector_t first_sector, int nr_vecs) 386 { 387 struct bio *bio; 388 389 /* 390 * bio_alloc() is guaranteed to return a bio when allowed to sleep and 391 * we request a valid number of vectors. 392 */ 393 bio = bio_alloc(bdev, nr_vecs, dio->opf, GFP_KERNEL); 394 bio->bi_iter.bi_sector = first_sector; 395 if (dio->is_async) 396 bio->bi_end_io = dio_bio_end_aio; 397 else 398 bio->bi_end_io = dio_bio_end_io; 399 sdio->bio = bio; 400 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset; 401 } 402 403 /* 404 * In the AIO read case we speculatively dirty the pages before starting IO. 405 * During IO completion, any of these pages which happen to have been written 406 * back will be redirtied by bio_check_pages_dirty(). 407 * 408 * bios hold a dio reference between submit_bio and ->end_io. 409 */ 410 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio) 411 { 412 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 413 struct bio *bio = sdio->bio; 414 unsigned long flags; 415 416 bio->bi_private = dio; 417 418 spin_lock_irqsave(&dio->bio_lock, flags); 419 dio->refcount++; 420 spin_unlock_irqrestore(&dio->bio_lock, flags); 421 422 if (dio->is_async && dio_op == REQ_OP_READ && dio->should_dirty) 423 bio_set_pages_dirty(bio); 424 425 dio->bio_disk = bio->bi_bdev->bd_disk; 426 427 submit_bio(bio); 428 429 sdio->bio = NULL; 430 sdio->boundary = 0; 431 sdio->logical_offset_in_bio = 0; 432 } 433 434 /* 435 * Release any resources in case of a failure 436 */ 437 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio) 438 { 439 while (sdio->head < sdio->tail) 440 put_page(dio->pages[sdio->head++]); 441 } 442 443 /* 444 * Wait for the next BIO to complete. Remove it and return it. NULL is 445 * returned once all BIOs have been completed. This must only be called once 446 * all bios have been issued so that dio->refcount can only decrease. This 447 * requires that the caller hold a reference on the dio. 448 */ 449 static struct bio *dio_await_one(struct dio *dio) 450 { 451 unsigned long flags; 452 struct bio *bio = NULL; 453 454 spin_lock_irqsave(&dio->bio_lock, flags); 455 456 /* 457 * Wait as long as the list is empty and there are bios in flight. bio 458 * completion drops the count, maybe adds to the list, and wakes while 459 * holding the bio_lock so we don't need set_current_state()'s barrier 460 * and can call it after testing our condition. 461 */ 462 while (dio->refcount > 1 && dio->bio_list == NULL) { 463 __set_current_state(TASK_UNINTERRUPTIBLE); 464 dio->waiter = current; 465 spin_unlock_irqrestore(&dio->bio_lock, flags); 466 blk_io_schedule(); 467 /* wake up sets us TASK_RUNNING */ 468 spin_lock_irqsave(&dio->bio_lock, flags); 469 dio->waiter = NULL; 470 } 471 if (dio->bio_list) { 472 bio = dio->bio_list; 473 dio->bio_list = bio->bi_private; 474 } 475 spin_unlock_irqrestore(&dio->bio_lock, flags); 476 return bio; 477 } 478 479 /* 480 * Process one completed BIO. No locks are held. 481 */ 482 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio) 483 { 484 blk_status_t err = bio->bi_status; 485 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 486 bool should_dirty = dio_op == REQ_OP_READ && dio->should_dirty; 487 488 if (err) { 489 if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT)) 490 dio->io_error = -EAGAIN; 491 else 492 dio->io_error = -EIO; 493 } 494 495 if (dio->is_async && should_dirty) { 496 bio_check_pages_dirty(bio); /* transfers ownership */ 497 } else { 498 bio_release_pages(bio, should_dirty); 499 bio_put(bio); 500 } 501 return err; 502 } 503 504 /* 505 * Wait on and process all in-flight BIOs. This must only be called once 506 * all bios have been issued so that the refcount can only decrease. 507 * This just waits for all bios to make it through dio_bio_complete. IO 508 * errors are propagated through dio->io_error and should be propagated via 509 * dio_complete(). 510 */ 511 static void dio_await_completion(struct dio *dio) 512 { 513 struct bio *bio; 514 do { 515 bio = dio_await_one(dio); 516 if (bio) 517 dio_bio_complete(dio, bio); 518 } while (bio); 519 } 520 521 /* 522 * A really large O_DIRECT read or write can generate a lot of BIOs. So 523 * to keep the memory consumption sane we periodically reap any completed BIOs 524 * during the BIO generation phase. 525 * 526 * This also helps to limit the peak amount of pinned userspace memory. 527 */ 528 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio) 529 { 530 int ret = 0; 531 532 if (sdio->reap_counter++ >= 64) { 533 while (dio->bio_list) { 534 unsigned long flags; 535 struct bio *bio; 536 int ret2; 537 538 spin_lock_irqsave(&dio->bio_lock, flags); 539 bio = dio->bio_list; 540 dio->bio_list = bio->bi_private; 541 spin_unlock_irqrestore(&dio->bio_lock, flags); 542 ret2 = blk_status_to_errno(dio_bio_complete(dio, bio)); 543 if (ret == 0) 544 ret = ret2; 545 } 546 sdio->reap_counter = 0; 547 } 548 return ret; 549 } 550 551 static int dio_set_defer_completion(struct dio *dio) 552 { 553 struct super_block *sb = dio->inode->i_sb; 554 555 if (dio->defer_completion) 556 return 0; 557 dio->defer_completion = true; 558 if (!sb->s_dio_done_wq) 559 return sb_init_dio_done_wq(sb); 560 return 0; 561 } 562 563 /* 564 * Call into the fs to map some more disk blocks. We record the current number 565 * of available blocks at sdio->blocks_available. These are in units of the 566 * fs blocksize, i_blocksize(inode). 567 * 568 * The fs is allowed to map lots of blocks at once. If it wants to do that, 569 * it uses the passed inode-relative block number as the file offset, as usual. 570 * 571 * get_block() is passed the number of i_blkbits-sized blocks which direct_io 572 * has remaining to do. The fs should not map more than this number of blocks. 573 * 574 * If the fs has mapped a lot of blocks, it should populate bh->b_size to 575 * indicate how much contiguous disk space has been made available at 576 * bh->b_blocknr. 577 * 578 * If *any* of the mapped blocks are new, then the fs must set buffer_new(). 579 * This isn't very efficient... 580 * 581 * In the case of filesystem holes: the fs may return an arbitrarily-large 582 * hole by returning an appropriate value in b_size and by clearing 583 * buffer_mapped(). However the direct-io code will only process holes one 584 * block at a time - it will repeatedly call get_block() as it walks the hole. 585 */ 586 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio, 587 struct buffer_head *map_bh) 588 { 589 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 590 int ret; 591 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ 592 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */ 593 unsigned long fs_count; /* Number of filesystem-sized blocks */ 594 int create; 595 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor; 596 loff_t i_size; 597 598 /* 599 * If there was a memory error and we've overwritten all the 600 * mapped blocks then we can now return that memory error 601 */ 602 ret = dio->page_errors; 603 if (ret == 0) { 604 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request); 605 fs_startblk = sdio->block_in_file >> sdio->blkfactor; 606 fs_endblk = (sdio->final_block_in_request - 1) >> 607 sdio->blkfactor; 608 fs_count = fs_endblk - fs_startblk + 1; 609 610 map_bh->b_state = 0; 611 map_bh->b_size = fs_count << i_blkbits; 612 613 /* 614 * For writes that could fill holes inside i_size on a 615 * DIO_SKIP_HOLES filesystem we forbid block creations: only 616 * overwrites are permitted. We will return early to the caller 617 * once we see an unmapped buffer head returned, and the caller 618 * will fall back to buffered I/O. 619 * 620 * Otherwise the decision is left to the get_blocks method, 621 * which may decide to handle it or also return an unmapped 622 * buffer head. 623 */ 624 create = dio_op == REQ_OP_WRITE; 625 if (dio->flags & DIO_SKIP_HOLES) { 626 i_size = i_size_read(dio->inode); 627 if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits) 628 create = 0; 629 } 630 631 ret = (*sdio->get_block)(dio->inode, fs_startblk, 632 map_bh, create); 633 634 /* Store for completion */ 635 dio->private = map_bh->b_private; 636 637 if (ret == 0 && buffer_defer_completion(map_bh)) 638 ret = dio_set_defer_completion(dio); 639 } 640 return ret; 641 } 642 643 /* 644 * There is no bio. Make one now. 645 */ 646 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio, 647 sector_t start_sector, struct buffer_head *map_bh) 648 { 649 sector_t sector; 650 int ret, nr_pages; 651 652 ret = dio_bio_reap(dio, sdio); 653 if (ret) 654 goto out; 655 sector = start_sector << (sdio->blkbits - 9); 656 nr_pages = bio_max_segs(sdio->pages_in_io); 657 BUG_ON(nr_pages <= 0); 658 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages); 659 sdio->boundary = 0; 660 out: 661 return ret; 662 } 663 664 /* 665 * Attempt to put the current chunk of 'cur_page' into the current BIO. If 666 * that was successful then update final_block_in_bio and take a ref against 667 * the just-added page. 668 * 669 * Return zero on success. Non-zero means the caller needs to start a new BIO. 670 */ 671 static inline int dio_bio_add_page(struct dio_submit *sdio) 672 { 673 int ret; 674 675 ret = bio_add_page(sdio->bio, sdio->cur_page, 676 sdio->cur_page_len, sdio->cur_page_offset); 677 if (ret == sdio->cur_page_len) { 678 /* 679 * Decrement count only, if we are done with this page 680 */ 681 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE) 682 sdio->pages_in_io--; 683 get_page(sdio->cur_page); 684 sdio->final_block_in_bio = sdio->cur_page_block + 685 (sdio->cur_page_len >> sdio->blkbits); 686 ret = 0; 687 } else { 688 ret = 1; 689 } 690 return ret; 691 } 692 693 /* 694 * Put cur_page under IO. The section of cur_page which is described by 695 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page 696 * starts on-disk at cur_page_block. 697 * 698 * We take a ref against the page here (on behalf of its presence in the bio). 699 * 700 * The caller of this function is responsible for removing cur_page from the 701 * dio, and for dropping the refcount which came from that presence. 702 */ 703 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio, 704 struct buffer_head *map_bh) 705 { 706 int ret = 0; 707 708 if (sdio->bio) { 709 loff_t cur_offset = sdio->cur_page_fs_offset; 710 loff_t bio_next_offset = sdio->logical_offset_in_bio + 711 sdio->bio->bi_iter.bi_size; 712 713 /* 714 * See whether this new request is contiguous with the old. 715 * 716 * Btrfs cannot handle having logically non-contiguous requests 717 * submitted. For example if you have 718 * 719 * Logical: [0-4095][HOLE][8192-12287] 720 * Physical: [0-4095] [4096-8191] 721 * 722 * We cannot submit those pages together as one BIO. So if our 723 * current logical offset in the file does not equal what would 724 * be the next logical offset in the bio, submit the bio we 725 * have. 726 */ 727 if (sdio->final_block_in_bio != sdio->cur_page_block || 728 cur_offset != bio_next_offset) 729 dio_bio_submit(dio, sdio); 730 } 731 732 if (sdio->bio == NULL) { 733 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 734 if (ret) 735 goto out; 736 } 737 738 if (dio_bio_add_page(sdio) != 0) { 739 dio_bio_submit(dio, sdio); 740 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 741 if (ret == 0) { 742 ret = dio_bio_add_page(sdio); 743 BUG_ON(ret != 0); 744 } 745 } 746 out: 747 return ret; 748 } 749 750 /* 751 * An autonomous function to put a chunk of a page under deferred IO. 752 * 753 * The caller doesn't actually know (or care) whether this piece of page is in 754 * a BIO, or is under IO or whatever. We just take care of all possible 755 * situations here. The separation between the logic of do_direct_IO() and 756 * that of submit_page_section() is important for clarity. Please don't break. 757 * 758 * The chunk of page starts on-disk at blocknr. 759 * 760 * We perform deferred IO, by recording the last-submitted page inside our 761 * private part of the dio structure. If possible, we just expand the IO 762 * across that page here. 763 * 764 * If that doesn't work out then we put the old page into the bio and add this 765 * page to the dio instead. 766 */ 767 static inline int 768 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page, 769 unsigned offset, unsigned len, sector_t blocknr, 770 struct buffer_head *map_bh) 771 { 772 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 773 int ret = 0; 774 int boundary = sdio->boundary; /* dio_send_cur_page may clear it */ 775 776 if (dio_op == REQ_OP_WRITE) { 777 /* 778 * Read accounting is performed in submit_bio() 779 */ 780 task_io_account_write(len); 781 } 782 783 /* 784 * Can we just grow the current page's presence in the dio? 785 */ 786 if (sdio->cur_page == page && 787 sdio->cur_page_offset + sdio->cur_page_len == offset && 788 sdio->cur_page_block + 789 (sdio->cur_page_len >> sdio->blkbits) == blocknr) { 790 sdio->cur_page_len += len; 791 goto out; 792 } 793 794 /* 795 * If there's a deferred page already there then send it. 796 */ 797 if (sdio->cur_page) { 798 ret = dio_send_cur_page(dio, sdio, map_bh); 799 put_page(sdio->cur_page); 800 sdio->cur_page = NULL; 801 if (ret) 802 return ret; 803 } 804 805 get_page(page); /* It is in dio */ 806 sdio->cur_page = page; 807 sdio->cur_page_offset = offset; 808 sdio->cur_page_len = len; 809 sdio->cur_page_block = blocknr; 810 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits; 811 out: 812 /* 813 * If boundary then we want to schedule the IO now to 814 * avoid metadata seeks. 815 */ 816 if (boundary) { 817 ret = dio_send_cur_page(dio, sdio, map_bh); 818 if (sdio->bio) 819 dio_bio_submit(dio, sdio); 820 put_page(sdio->cur_page); 821 sdio->cur_page = NULL; 822 } 823 return ret; 824 } 825 826 /* 827 * If we are not writing the entire block and get_block() allocated 828 * the block for us, we need to fill-in the unused portion of the 829 * block with zeros. This happens only if user-buffer, fileoffset or 830 * io length is not filesystem block-size multiple. 831 * 832 * `end' is zero if we're doing the start of the IO, 1 at the end of the 833 * IO. 834 */ 835 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio, 836 int end, struct buffer_head *map_bh) 837 { 838 unsigned dio_blocks_per_fs_block; 839 unsigned this_chunk_blocks; /* In dio_blocks */ 840 unsigned this_chunk_bytes; 841 struct page *page; 842 843 sdio->start_zero_done = 1; 844 if (!sdio->blkfactor || !buffer_new(map_bh)) 845 return; 846 847 dio_blocks_per_fs_block = 1 << sdio->blkfactor; 848 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1); 849 850 if (!this_chunk_blocks) 851 return; 852 853 /* 854 * We need to zero out part of an fs block. It is either at the 855 * beginning or the end of the fs block. 856 */ 857 if (end) 858 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; 859 860 this_chunk_bytes = this_chunk_blocks << sdio->blkbits; 861 862 page = ZERO_PAGE(0); 863 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes, 864 sdio->next_block_for_io, map_bh)) 865 return; 866 867 sdio->next_block_for_io += this_chunk_blocks; 868 } 869 870 /* 871 * Walk the user pages, and the file, mapping blocks to disk and generating 872 * a sequence of (page,offset,len,block) mappings. These mappings are injected 873 * into submit_page_section(), which takes care of the next stage of submission 874 * 875 * Direct IO against a blockdev is different from a file. Because we can 876 * happily perform page-sized but 512-byte aligned IOs. It is important that 877 * blockdev IO be able to have fine alignment and large sizes. 878 * 879 * So what we do is to permit the ->get_block function to populate bh.b_size 880 * with the size of IO which is permitted at this offset and this i_blkbits. 881 * 882 * For best results, the blockdev should be set up with 512-byte i_blkbits and 883 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives 884 * fine alignment but still allows this function to work in PAGE_SIZE units. 885 */ 886 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio, 887 struct buffer_head *map_bh) 888 { 889 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 890 const unsigned blkbits = sdio->blkbits; 891 const unsigned i_blkbits = blkbits + sdio->blkfactor; 892 int ret = 0; 893 894 while (sdio->block_in_file < sdio->final_block_in_request) { 895 struct page *page; 896 size_t from, to; 897 898 page = dio_get_page(dio, sdio); 899 if (IS_ERR(page)) { 900 ret = PTR_ERR(page); 901 goto out; 902 } 903 from = sdio->head ? 0 : sdio->from; 904 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE; 905 sdio->head++; 906 907 while (from < to) { 908 unsigned this_chunk_bytes; /* # of bytes mapped */ 909 unsigned this_chunk_blocks; /* # of blocks */ 910 unsigned u; 911 912 if (sdio->blocks_available == 0) { 913 /* 914 * Need to go and map some more disk 915 */ 916 unsigned long blkmask; 917 unsigned long dio_remainder; 918 919 ret = get_more_blocks(dio, sdio, map_bh); 920 if (ret) { 921 put_page(page); 922 goto out; 923 } 924 if (!buffer_mapped(map_bh)) 925 goto do_holes; 926 927 sdio->blocks_available = 928 map_bh->b_size >> blkbits; 929 sdio->next_block_for_io = 930 map_bh->b_blocknr << sdio->blkfactor; 931 if (buffer_new(map_bh)) { 932 clean_bdev_aliases( 933 map_bh->b_bdev, 934 map_bh->b_blocknr, 935 map_bh->b_size >> i_blkbits); 936 } 937 938 if (!sdio->blkfactor) 939 goto do_holes; 940 941 blkmask = (1 << sdio->blkfactor) - 1; 942 dio_remainder = (sdio->block_in_file & blkmask); 943 944 /* 945 * If we are at the start of IO and that IO 946 * starts partway into a fs-block, 947 * dio_remainder will be non-zero. If the IO 948 * is a read then we can simply advance the IO 949 * cursor to the first block which is to be 950 * read. But if the IO is a write and the 951 * block was newly allocated we cannot do that; 952 * the start of the fs block must be zeroed out 953 * on-disk 954 */ 955 if (!buffer_new(map_bh)) 956 sdio->next_block_for_io += dio_remainder; 957 sdio->blocks_available -= dio_remainder; 958 } 959 do_holes: 960 /* Handle holes */ 961 if (!buffer_mapped(map_bh)) { 962 loff_t i_size_aligned; 963 964 /* AKPM: eargh, -ENOTBLK is a hack */ 965 if (dio_op == REQ_OP_WRITE) { 966 put_page(page); 967 return -ENOTBLK; 968 } 969 970 /* 971 * Be sure to account for a partial block as the 972 * last block in the file 973 */ 974 i_size_aligned = ALIGN(i_size_read(dio->inode), 975 1 << blkbits); 976 if (sdio->block_in_file >= 977 i_size_aligned >> blkbits) { 978 /* We hit eof */ 979 put_page(page); 980 goto out; 981 } 982 zero_user(page, from, 1 << blkbits); 983 sdio->block_in_file++; 984 from += 1 << blkbits; 985 dio->result += 1 << blkbits; 986 goto next_block; 987 } 988 989 /* 990 * If we're performing IO which has an alignment which 991 * is finer than the underlying fs, go check to see if 992 * we must zero out the start of this block. 993 */ 994 if (unlikely(sdio->blkfactor && !sdio->start_zero_done)) 995 dio_zero_block(dio, sdio, 0, map_bh); 996 997 /* 998 * Work out, in this_chunk_blocks, how much disk we 999 * can add to this page 1000 */ 1001 this_chunk_blocks = sdio->blocks_available; 1002 u = (to - from) >> blkbits; 1003 if (this_chunk_blocks > u) 1004 this_chunk_blocks = u; 1005 u = sdio->final_block_in_request - sdio->block_in_file; 1006 if (this_chunk_blocks > u) 1007 this_chunk_blocks = u; 1008 this_chunk_bytes = this_chunk_blocks << blkbits; 1009 BUG_ON(this_chunk_bytes == 0); 1010 1011 if (this_chunk_blocks == sdio->blocks_available) 1012 sdio->boundary = buffer_boundary(map_bh); 1013 ret = submit_page_section(dio, sdio, page, 1014 from, 1015 this_chunk_bytes, 1016 sdio->next_block_for_io, 1017 map_bh); 1018 if (ret) { 1019 put_page(page); 1020 goto out; 1021 } 1022 sdio->next_block_for_io += this_chunk_blocks; 1023 1024 sdio->block_in_file += this_chunk_blocks; 1025 from += this_chunk_bytes; 1026 dio->result += this_chunk_bytes; 1027 sdio->blocks_available -= this_chunk_blocks; 1028 next_block: 1029 BUG_ON(sdio->block_in_file > sdio->final_block_in_request); 1030 if (sdio->block_in_file == sdio->final_block_in_request) 1031 break; 1032 } 1033 1034 /* Drop the ref which was taken in get_user_pages() */ 1035 put_page(page); 1036 } 1037 out: 1038 return ret; 1039 } 1040 1041 static inline int drop_refcount(struct dio *dio) 1042 { 1043 int ret2; 1044 unsigned long flags; 1045 1046 /* 1047 * Sync will always be dropping the final ref and completing the 1048 * operation. AIO can if it was a broken operation described above or 1049 * in fact if all the bios race to complete before we get here. In 1050 * that case dio_complete() translates the EIOCBQUEUED into the proper 1051 * return code that the caller will hand to ->complete(). 1052 * 1053 * This is managed by the bio_lock instead of being an atomic_t so that 1054 * completion paths can drop their ref and use the remaining count to 1055 * decide to wake the submission path atomically. 1056 */ 1057 spin_lock_irqsave(&dio->bio_lock, flags); 1058 ret2 = --dio->refcount; 1059 spin_unlock_irqrestore(&dio->bio_lock, flags); 1060 return ret2; 1061 } 1062 1063 /* 1064 * This is a library function for use by filesystem drivers. 1065 * 1066 * The locking rules are governed by the flags parameter: 1067 * - if the flags value contains DIO_LOCKING we use a fancy locking 1068 * scheme for dumb filesystems. 1069 * For writes this function is called under i_mutex and returns with 1070 * i_mutex held, for reads, i_mutex is not held on entry, but it is 1071 * taken and dropped again before returning. 1072 * - if the flags value does NOT contain DIO_LOCKING we don't use any 1073 * internal locking but rather rely on the filesystem to synchronize 1074 * direct I/O reads/writes versus each other and truncate. 1075 * 1076 * To help with locking against truncate we incremented the i_dio_count 1077 * counter before starting direct I/O, and decrement it once we are done. 1078 * Truncate can wait for it to reach zero to provide exclusion. It is 1079 * expected that filesystem provide exclusion between new direct I/O 1080 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex, 1081 * but other filesystems need to take care of this on their own. 1082 * 1083 * NOTE: if you pass "sdio" to anything by pointer make sure that function 1084 * is always inlined. Otherwise gcc is unable to split the structure into 1085 * individual fields and will generate much worse code. This is important 1086 * for the whole file. 1087 */ 1088 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1089 struct block_device *bdev, struct iov_iter *iter, 1090 get_block_t get_block, dio_iodone_t end_io, 1091 int flags) 1092 { 1093 unsigned i_blkbits = READ_ONCE(inode->i_blkbits); 1094 unsigned blkbits = i_blkbits; 1095 unsigned blocksize_mask = (1 << blkbits) - 1; 1096 ssize_t retval = -EINVAL; 1097 const size_t count = iov_iter_count(iter); 1098 loff_t offset = iocb->ki_pos; 1099 const loff_t end = offset + count; 1100 struct dio *dio; 1101 struct dio_submit sdio = { 0, }; 1102 struct buffer_head map_bh = { 0, }; 1103 struct blk_plug plug; 1104 unsigned long align = offset | iov_iter_alignment(iter); 1105 1106 /* 1107 * Avoid references to bdev if not absolutely needed to give 1108 * the early prefetch in the caller enough time. 1109 */ 1110 1111 /* watch out for a 0 len io from a tricksy fs */ 1112 if (iov_iter_rw(iter) == READ && !count) 1113 return 0; 1114 1115 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL); 1116 if (!dio) 1117 return -ENOMEM; 1118 /* 1119 * Believe it or not, zeroing out the page array caused a .5% 1120 * performance regression in a database benchmark. So, we take 1121 * care to only zero out what's needed. 1122 */ 1123 memset(dio, 0, offsetof(struct dio, pages)); 1124 1125 dio->flags = flags; 1126 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) { 1127 /* will be released by direct_io_worker */ 1128 inode_lock(inode); 1129 } 1130 1131 /* Once we sampled i_size check for reads beyond EOF */ 1132 dio->i_size = i_size_read(inode); 1133 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) { 1134 retval = 0; 1135 goto fail_dio; 1136 } 1137 1138 if (align & blocksize_mask) { 1139 if (bdev) 1140 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 1141 blocksize_mask = (1 << blkbits) - 1; 1142 if (align & blocksize_mask) 1143 goto fail_dio; 1144 } 1145 1146 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) { 1147 struct address_space *mapping = iocb->ki_filp->f_mapping; 1148 1149 retval = filemap_write_and_wait_range(mapping, offset, end - 1); 1150 if (retval) 1151 goto fail_dio; 1152 } 1153 1154 /* 1155 * For file extending writes updating i_size before data writeouts 1156 * complete can expose uninitialized blocks in dumb filesystems. 1157 * In that case we need to wait for I/O completion even if asked 1158 * for an asynchronous write. 1159 */ 1160 if (is_sync_kiocb(iocb)) 1161 dio->is_async = false; 1162 else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode)) 1163 dio->is_async = false; 1164 else 1165 dio->is_async = true; 1166 1167 dio->inode = inode; 1168 if (iov_iter_rw(iter) == WRITE) { 1169 dio->opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE; 1170 if (iocb->ki_flags & IOCB_NOWAIT) 1171 dio->opf |= REQ_NOWAIT; 1172 } else { 1173 dio->opf = REQ_OP_READ; 1174 } 1175 1176 /* 1177 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue 1178 * so that we can call ->fsync. 1179 */ 1180 if (dio->is_async && iov_iter_rw(iter) == WRITE) { 1181 retval = 0; 1182 if (iocb_is_dsync(iocb)) 1183 retval = dio_set_defer_completion(dio); 1184 else if (!dio->inode->i_sb->s_dio_done_wq) { 1185 /* 1186 * In case of AIO write racing with buffered read we 1187 * need to defer completion. We can't decide this now, 1188 * however the workqueue needs to be initialized here. 1189 */ 1190 retval = sb_init_dio_done_wq(dio->inode->i_sb); 1191 } 1192 if (retval) 1193 goto fail_dio; 1194 } 1195 1196 /* 1197 * Will be decremented at I/O completion time. 1198 */ 1199 inode_dio_begin(inode); 1200 1201 retval = 0; 1202 sdio.blkbits = blkbits; 1203 sdio.blkfactor = i_blkbits - blkbits; 1204 sdio.block_in_file = offset >> blkbits; 1205 1206 sdio.get_block = get_block; 1207 dio->end_io = end_io; 1208 sdio.final_block_in_bio = -1; 1209 sdio.next_block_for_io = -1; 1210 1211 dio->iocb = iocb; 1212 1213 spin_lock_init(&dio->bio_lock); 1214 dio->refcount = 1; 1215 1216 dio->should_dirty = user_backed_iter(iter) && iov_iter_rw(iter) == READ; 1217 sdio.iter = iter; 1218 sdio.final_block_in_request = end >> blkbits; 1219 1220 /* 1221 * In case of non-aligned buffers, we may need 2 more 1222 * pages since we need to zero out first and last block. 1223 */ 1224 if (unlikely(sdio.blkfactor)) 1225 sdio.pages_in_io = 2; 1226 1227 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX); 1228 1229 blk_start_plug(&plug); 1230 1231 retval = do_direct_IO(dio, &sdio, &map_bh); 1232 if (retval) 1233 dio_cleanup(dio, &sdio); 1234 1235 if (retval == -ENOTBLK) { 1236 /* 1237 * The remaining part of the request will be 1238 * handled by buffered I/O when we return 1239 */ 1240 retval = 0; 1241 } 1242 /* 1243 * There may be some unwritten disk at the end of a part-written 1244 * fs-block-sized block. Go zero that now. 1245 */ 1246 dio_zero_block(dio, &sdio, 1, &map_bh); 1247 1248 if (sdio.cur_page) { 1249 ssize_t ret2; 1250 1251 ret2 = dio_send_cur_page(dio, &sdio, &map_bh); 1252 if (retval == 0) 1253 retval = ret2; 1254 put_page(sdio.cur_page); 1255 sdio.cur_page = NULL; 1256 } 1257 if (sdio.bio) 1258 dio_bio_submit(dio, &sdio); 1259 1260 blk_finish_plug(&plug); 1261 1262 /* 1263 * It is possible that, we return short IO due to end of file. 1264 * In that case, we need to release all the pages we got hold on. 1265 */ 1266 dio_cleanup(dio, &sdio); 1267 1268 /* 1269 * All block lookups have been performed. For READ requests 1270 * we can let i_mutex go now that its achieved its purpose 1271 * of protecting us from looking up uninitialized blocks. 1272 */ 1273 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING)) 1274 inode_unlock(dio->inode); 1275 1276 /* 1277 * The only time we want to leave bios in flight is when a successful 1278 * partial aio read or full aio write have been setup. In that case 1279 * bio completion will call aio_complete. The only time it's safe to 1280 * call aio_complete is when we return -EIOCBQUEUED, so we key on that. 1281 * This had *better* be the only place that raises -EIOCBQUEUED. 1282 */ 1283 BUG_ON(retval == -EIOCBQUEUED); 1284 if (dio->is_async && retval == 0 && dio->result && 1285 (iov_iter_rw(iter) == READ || dio->result == count)) 1286 retval = -EIOCBQUEUED; 1287 else 1288 dio_await_completion(dio); 1289 1290 if (drop_refcount(dio) == 0) { 1291 retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE); 1292 } else 1293 BUG_ON(retval != -EIOCBQUEUED); 1294 1295 return retval; 1296 1297 fail_dio: 1298 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) 1299 inode_unlock(inode); 1300 1301 kmem_cache_free(dio_cache, dio); 1302 return retval; 1303 } 1304 EXPORT_SYMBOL(__blockdev_direct_IO); 1305 1306 static __init int dio_init(void) 1307 { 1308 dio_cache = KMEM_CACHE(dio, SLAB_PANIC); 1309 return 0; 1310 } 1311 module_init(dio_init) 1312