xref: /openbmc/linux/fs/direct-io.c (revision bc5aa3a0)
1 /*
2  * fs/direct-io.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * O_DIRECT
7  *
8  * 04Jul2002	Andrew Morton
9  *		Initial version
10  * 11Sep2002	janetinc@us.ibm.com
11  * 		added readv/writev support.
12  * 29Oct2002	Andrew Morton
13  *		rewrote bio_add_page() support.
14  * 30Oct2002	pbadari@us.ibm.com
15  *		added support for non-aligned IO.
16  * 06Nov2002	pbadari@us.ibm.com
17  *		added asynchronous IO support.
18  * 21Jul2003	nathans@sgi.com
19  *		added IO completion notifier.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <linux/atomic.h>
39 #include <linux/prefetch.h>
40 
41 /*
42  * How many user pages to map in one call to get_user_pages().  This determines
43  * the size of a structure in the slab cache
44  */
45 #define DIO_PAGES	64
46 
47 /*
48  * This code generally works in units of "dio_blocks".  A dio_block is
49  * somewhere between the hard sector size and the filesystem block size.  it
50  * is determined on a per-invocation basis.   When talking to the filesystem
51  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
52  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
53  * to bio_block quantities by shifting left by blkfactor.
54  *
55  * If blkfactor is zero then the user's request was aligned to the filesystem's
56  * blocksize.
57  */
58 
59 /* dio_state only used in the submission path */
60 
61 struct dio_submit {
62 	struct bio *bio;		/* bio under assembly */
63 	unsigned blkbits;		/* doesn't change */
64 	unsigned blkfactor;		/* When we're using an alignment which
65 					   is finer than the filesystem's soft
66 					   blocksize, this specifies how much
67 					   finer.  blkfactor=2 means 1/4-block
68 					   alignment.  Does not change */
69 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
70 					   been performed at the start of a
71 					   write */
72 	int pages_in_io;		/* approximate total IO pages */
73 	sector_t block_in_file;		/* Current offset into the underlying
74 					   file in dio_block units. */
75 	unsigned blocks_available;	/* At block_in_file.  changes */
76 	int reap_counter;		/* rate limit reaping */
77 	sector_t final_block_in_request;/* doesn't change */
78 	int boundary;			/* prev block is at a boundary */
79 	get_block_t *get_block;		/* block mapping function */
80 	dio_submit_t *submit_io;	/* IO submition function */
81 
82 	loff_t logical_offset_in_bio;	/* current first logical block in bio */
83 	sector_t final_block_in_bio;	/* current final block in bio + 1 */
84 	sector_t next_block_for_io;	/* next block to be put under IO,
85 					   in dio_blocks units */
86 
87 	/*
88 	 * Deferred addition of a page to the dio.  These variables are
89 	 * private to dio_send_cur_page(), submit_page_section() and
90 	 * dio_bio_add_page().
91 	 */
92 	struct page *cur_page;		/* The page */
93 	unsigned cur_page_offset;	/* Offset into it, in bytes */
94 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
95 	sector_t cur_page_block;	/* Where it starts */
96 	loff_t cur_page_fs_offset;	/* Offset in file */
97 
98 	struct iov_iter *iter;
99 	/*
100 	 * Page queue.  These variables belong to dio_refill_pages() and
101 	 * dio_get_page().
102 	 */
103 	unsigned head;			/* next page to process */
104 	unsigned tail;			/* last valid page + 1 */
105 	size_t from, to;
106 };
107 
108 /* dio_state communicated between submission path and end_io */
109 struct dio {
110 	int flags;			/* doesn't change */
111 	int op;
112 	int op_flags;
113 	blk_qc_t bio_cookie;
114 	struct block_device *bio_bdev;
115 	struct inode *inode;
116 	loff_t i_size;			/* i_size when submitted */
117 	dio_iodone_t *end_io;		/* IO completion function */
118 
119 	void *private;			/* copy from map_bh.b_private */
120 
121 	/* BIO completion state */
122 	spinlock_t bio_lock;		/* protects BIO fields below */
123 	int page_errors;		/* errno from get_user_pages() */
124 	int is_async;			/* is IO async ? */
125 	bool defer_completion;		/* defer AIO completion to workqueue? */
126 	bool should_dirty;		/* if pages should be dirtied */
127 	int io_error;			/* IO error in completion path */
128 	unsigned long refcount;		/* direct_io_worker() and bios */
129 	struct bio *bio_list;		/* singly linked via bi_private */
130 	struct task_struct *waiter;	/* waiting task (NULL if none) */
131 
132 	/* AIO related stuff */
133 	struct kiocb *iocb;		/* kiocb */
134 	ssize_t result;                 /* IO result */
135 
136 	/*
137 	 * pages[] (and any fields placed after it) are not zeroed out at
138 	 * allocation time.  Don't add new fields after pages[] unless you
139 	 * wish that they not be zeroed.
140 	 */
141 	union {
142 		struct page *pages[DIO_PAGES];	/* page buffer */
143 		struct work_struct complete_work;/* deferred AIO completion */
144 	};
145 } ____cacheline_aligned_in_smp;
146 
147 static struct kmem_cache *dio_cache __read_mostly;
148 
149 /*
150  * How many pages are in the queue?
151  */
152 static inline unsigned dio_pages_present(struct dio_submit *sdio)
153 {
154 	return sdio->tail - sdio->head;
155 }
156 
157 /*
158  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
159  */
160 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
161 {
162 	ssize_t ret;
163 
164 	ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
165 				&sdio->from);
166 
167 	if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) {
168 		struct page *page = ZERO_PAGE(0);
169 		/*
170 		 * A memory fault, but the filesystem has some outstanding
171 		 * mapped blocks.  We need to use those blocks up to avoid
172 		 * leaking stale data in the file.
173 		 */
174 		if (dio->page_errors == 0)
175 			dio->page_errors = ret;
176 		get_page(page);
177 		dio->pages[0] = page;
178 		sdio->head = 0;
179 		sdio->tail = 1;
180 		sdio->from = 0;
181 		sdio->to = PAGE_SIZE;
182 		return 0;
183 	}
184 
185 	if (ret >= 0) {
186 		iov_iter_advance(sdio->iter, ret);
187 		ret += sdio->from;
188 		sdio->head = 0;
189 		sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
190 		sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
191 		return 0;
192 	}
193 	return ret;
194 }
195 
196 /*
197  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
198  * buffered inside the dio so that we can call get_user_pages() against a
199  * decent number of pages, less frequently.  To provide nicer use of the
200  * L1 cache.
201  */
202 static inline struct page *dio_get_page(struct dio *dio,
203 					struct dio_submit *sdio)
204 {
205 	if (dio_pages_present(sdio) == 0) {
206 		int ret;
207 
208 		ret = dio_refill_pages(dio, sdio);
209 		if (ret)
210 			return ERR_PTR(ret);
211 		BUG_ON(dio_pages_present(sdio) == 0);
212 	}
213 	return dio->pages[sdio->head];
214 }
215 
216 /**
217  * dio_complete() - called when all DIO BIO I/O has been completed
218  * @offset: the byte offset in the file of the completed operation
219  *
220  * This drops i_dio_count, lets interested parties know that a DIO operation
221  * has completed, and calculates the resulting return code for the operation.
222  *
223  * It lets the filesystem know if it registered an interest earlier via
224  * get_block.  Pass the private field of the map buffer_head so that
225  * filesystems can use it to hold additional state between get_block calls and
226  * dio_complete.
227  */
228 static ssize_t dio_complete(struct dio *dio, ssize_t ret, bool is_async)
229 {
230 	loff_t offset = dio->iocb->ki_pos;
231 	ssize_t transferred = 0;
232 
233 	/*
234 	 * AIO submission can race with bio completion to get here while
235 	 * expecting to have the last io completed by bio completion.
236 	 * In that case -EIOCBQUEUED is in fact not an error we want
237 	 * to preserve through this call.
238 	 */
239 	if (ret == -EIOCBQUEUED)
240 		ret = 0;
241 
242 	if (dio->result) {
243 		transferred = dio->result;
244 
245 		/* Check for short read case */
246 		if ((dio->op == REQ_OP_READ) &&
247 		    ((offset + transferred) > dio->i_size))
248 			transferred = dio->i_size - offset;
249 	}
250 
251 	if (ret == 0)
252 		ret = dio->page_errors;
253 	if (ret == 0)
254 		ret = dio->io_error;
255 	if (ret == 0)
256 		ret = transferred;
257 
258 	if (dio->end_io) {
259 		int err;
260 
261 		// XXX: ki_pos??
262 		err = dio->end_io(dio->iocb, offset, ret, dio->private);
263 		if (err)
264 			ret = err;
265 	}
266 
267 	if (!(dio->flags & DIO_SKIP_DIO_COUNT))
268 		inode_dio_end(dio->inode);
269 
270 	if (is_async) {
271 		/*
272 		 * generic_write_sync expects ki_pos to have been updated
273 		 * already, but the submission path only does this for
274 		 * synchronous I/O.
275 		 */
276 		dio->iocb->ki_pos += transferred;
277 
278 		if (dio->op == REQ_OP_WRITE)
279 			ret = generic_write_sync(dio->iocb,  transferred);
280 		dio->iocb->ki_complete(dio->iocb, ret, 0);
281 	}
282 
283 	kmem_cache_free(dio_cache, dio);
284 	return ret;
285 }
286 
287 static void dio_aio_complete_work(struct work_struct *work)
288 {
289 	struct dio *dio = container_of(work, struct dio, complete_work);
290 
291 	dio_complete(dio, 0, true);
292 }
293 
294 static int dio_bio_complete(struct dio *dio, struct bio *bio);
295 
296 /*
297  * Asynchronous IO callback.
298  */
299 static void dio_bio_end_aio(struct bio *bio)
300 {
301 	struct dio *dio = bio->bi_private;
302 	unsigned long remaining;
303 	unsigned long flags;
304 
305 	/* cleanup the bio */
306 	dio_bio_complete(dio, bio);
307 
308 	spin_lock_irqsave(&dio->bio_lock, flags);
309 	remaining = --dio->refcount;
310 	if (remaining == 1 && dio->waiter)
311 		wake_up_process(dio->waiter);
312 	spin_unlock_irqrestore(&dio->bio_lock, flags);
313 
314 	if (remaining == 0) {
315 		if (dio->result && dio->defer_completion) {
316 			INIT_WORK(&dio->complete_work, dio_aio_complete_work);
317 			queue_work(dio->inode->i_sb->s_dio_done_wq,
318 				   &dio->complete_work);
319 		} else {
320 			dio_complete(dio, 0, true);
321 		}
322 	}
323 }
324 
325 /*
326  * The BIO completion handler simply queues the BIO up for the process-context
327  * handler.
328  *
329  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
330  * implement a singly-linked list of completed BIOs, at dio->bio_list.
331  */
332 static void dio_bio_end_io(struct bio *bio)
333 {
334 	struct dio *dio = bio->bi_private;
335 	unsigned long flags;
336 
337 	spin_lock_irqsave(&dio->bio_lock, flags);
338 	bio->bi_private = dio->bio_list;
339 	dio->bio_list = bio;
340 	if (--dio->refcount == 1 && dio->waiter)
341 		wake_up_process(dio->waiter);
342 	spin_unlock_irqrestore(&dio->bio_lock, flags);
343 }
344 
345 /**
346  * dio_end_io - handle the end io action for the given bio
347  * @bio: The direct io bio thats being completed
348  * @error: Error if there was one
349  *
350  * This is meant to be called by any filesystem that uses their own dio_submit_t
351  * so that the DIO specific endio actions are dealt with after the filesystem
352  * has done it's completion work.
353  */
354 void dio_end_io(struct bio *bio, int error)
355 {
356 	struct dio *dio = bio->bi_private;
357 
358 	if (dio->is_async)
359 		dio_bio_end_aio(bio);
360 	else
361 		dio_bio_end_io(bio);
362 }
363 EXPORT_SYMBOL_GPL(dio_end_io);
364 
365 static inline void
366 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
367 	      struct block_device *bdev,
368 	      sector_t first_sector, int nr_vecs)
369 {
370 	struct bio *bio;
371 
372 	/*
373 	 * bio_alloc() is guaranteed to return a bio when called with
374 	 * __GFP_RECLAIM and we request a valid number of vectors.
375 	 */
376 	bio = bio_alloc(GFP_KERNEL, nr_vecs);
377 
378 	bio->bi_bdev = bdev;
379 	bio->bi_iter.bi_sector = first_sector;
380 	bio_set_op_attrs(bio, dio->op, dio->op_flags);
381 	if (dio->is_async)
382 		bio->bi_end_io = dio_bio_end_aio;
383 	else
384 		bio->bi_end_io = dio_bio_end_io;
385 
386 	sdio->bio = bio;
387 	sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
388 }
389 
390 /*
391  * In the AIO read case we speculatively dirty the pages before starting IO.
392  * During IO completion, any of these pages which happen to have been written
393  * back will be redirtied by bio_check_pages_dirty().
394  *
395  * bios hold a dio reference between submit_bio and ->end_io.
396  */
397 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
398 {
399 	struct bio *bio = sdio->bio;
400 	unsigned long flags;
401 
402 	bio->bi_private = dio;
403 
404 	spin_lock_irqsave(&dio->bio_lock, flags);
405 	dio->refcount++;
406 	spin_unlock_irqrestore(&dio->bio_lock, flags);
407 
408 	if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty)
409 		bio_set_pages_dirty(bio);
410 
411 	dio->bio_bdev = bio->bi_bdev;
412 
413 	if (sdio->submit_io) {
414 		sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
415 		dio->bio_cookie = BLK_QC_T_NONE;
416 	} else
417 		dio->bio_cookie = submit_bio(bio);
418 
419 	sdio->bio = NULL;
420 	sdio->boundary = 0;
421 	sdio->logical_offset_in_bio = 0;
422 }
423 
424 /*
425  * Release any resources in case of a failure
426  */
427 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
428 {
429 	while (sdio->head < sdio->tail)
430 		put_page(dio->pages[sdio->head++]);
431 }
432 
433 /*
434  * Wait for the next BIO to complete.  Remove it and return it.  NULL is
435  * returned once all BIOs have been completed.  This must only be called once
436  * all bios have been issued so that dio->refcount can only decrease.  This
437  * requires that that the caller hold a reference on the dio.
438  */
439 static struct bio *dio_await_one(struct dio *dio)
440 {
441 	unsigned long flags;
442 	struct bio *bio = NULL;
443 
444 	spin_lock_irqsave(&dio->bio_lock, flags);
445 
446 	/*
447 	 * Wait as long as the list is empty and there are bios in flight.  bio
448 	 * completion drops the count, maybe adds to the list, and wakes while
449 	 * holding the bio_lock so we don't need set_current_state()'s barrier
450 	 * and can call it after testing our condition.
451 	 */
452 	while (dio->refcount > 1 && dio->bio_list == NULL) {
453 		__set_current_state(TASK_UNINTERRUPTIBLE);
454 		dio->waiter = current;
455 		spin_unlock_irqrestore(&dio->bio_lock, flags);
456 		if (!(dio->iocb->ki_flags & IOCB_HIPRI) ||
457 		    !blk_poll(bdev_get_queue(dio->bio_bdev), dio->bio_cookie))
458 			io_schedule();
459 		/* wake up sets us TASK_RUNNING */
460 		spin_lock_irqsave(&dio->bio_lock, flags);
461 		dio->waiter = NULL;
462 	}
463 	if (dio->bio_list) {
464 		bio = dio->bio_list;
465 		dio->bio_list = bio->bi_private;
466 	}
467 	spin_unlock_irqrestore(&dio->bio_lock, flags);
468 	return bio;
469 }
470 
471 /*
472  * Process one completed BIO.  No locks are held.
473  */
474 static int dio_bio_complete(struct dio *dio, struct bio *bio)
475 {
476 	struct bio_vec *bvec;
477 	unsigned i;
478 	int err;
479 
480 	if (bio->bi_error)
481 		dio->io_error = -EIO;
482 
483 	if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) {
484 		err = bio->bi_error;
485 		bio_check_pages_dirty(bio);	/* transfers ownership */
486 	} else {
487 		bio_for_each_segment_all(bvec, bio, i) {
488 			struct page *page = bvec->bv_page;
489 
490 			if (dio->op == REQ_OP_READ && !PageCompound(page) &&
491 					dio->should_dirty)
492 				set_page_dirty_lock(page);
493 			put_page(page);
494 		}
495 		err = bio->bi_error;
496 		bio_put(bio);
497 	}
498 	return err;
499 }
500 
501 /*
502  * Wait on and process all in-flight BIOs.  This must only be called once
503  * all bios have been issued so that the refcount can only decrease.
504  * This just waits for all bios to make it through dio_bio_complete.  IO
505  * errors are propagated through dio->io_error and should be propagated via
506  * dio_complete().
507  */
508 static void dio_await_completion(struct dio *dio)
509 {
510 	struct bio *bio;
511 	do {
512 		bio = dio_await_one(dio);
513 		if (bio)
514 			dio_bio_complete(dio, bio);
515 	} while (bio);
516 }
517 
518 /*
519  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
520  * to keep the memory consumption sane we periodically reap any completed BIOs
521  * during the BIO generation phase.
522  *
523  * This also helps to limit the peak amount of pinned userspace memory.
524  */
525 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
526 {
527 	int ret = 0;
528 
529 	if (sdio->reap_counter++ >= 64) {
530 		while (dio->bio_list) {
531 			unsigned long flags;
532 			struct bio *bio;
533 			int ret2;
534 
535 			spin_lock_irqsave(&dio->bio_lock, flags);
536 			bio = dio->bio_list;
537 			dio->bio_list = bio->bi_private;
538 			spin_unlock_irqrestore(&dio->bio_lock, flags);
539 			ret2 = dio_bio_complete(dio, bio);
540 			if (ret == 0)
541 				ret = ret2;
542 		}
543 		sdio->reap_counter = 0;
544 	}
545 	return ret;
546 }
547 
548 /*
549  * Create workqueue for deferred direct IO completions. We allocate the
550  * workqueue when it's first needed. This avoids creating workqueue for
551  * filesystems that don't need it and also allows us to create the workqueue
552  * late enough so the we can include s_id in the name of the workqueue.
553  */
554 static int sb_init_dio_done_wq(struct super_block *sb)
555 {
556 	struct workqueue_struct *old;
557 	struct workqueue_struct *wq = alloc_workqueue("dio/%s",
558 						      WQ_MEM_RECLAIM, 0,
559 						      sb->s_id);
560 	if (!wq)
561 		return -ENOMEM;
562 	/*
563 	 * This has to be atomic as more DIOs can race to create the workqueue
564 	 */
565 	old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
566 	/* Someone created workqueue before us? Free ours... */
567 	if (old)
568 		destroy_workqueue(wq);
569 	return 0;
570 }
571 
572 static int dio_set_defer_completion(struct dio *dio)
573 {
574 	struct super_block *sb = dio->inode->i_sb;
575 
576 	if (dio->defer_completion)
577 		return 0;
578 	dio->defer_completion = true;
579 	if (!sb->s_dio_done_wq)
580 		return sb_init_dio_done_wq(sb);
581 	return 0;
582 }
583 
584 /*
585  * Call into the fs to map some more disk blocks.  We record the current number
586  * of available blocks at sdio->blocks_available.  These are in units of the
587  * fs blocksize, (1 << inode->i_blkbits).
588  *
589  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
590  * it uses the passed inode-relative block number as the file offset, as usual.
591  *
592  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
593  * has remaining to do.  The fs should not map more than this number of blocks.
594  *
595  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
596  * indicate how much contiguous disk space has been made available at
597  * bh->b_blocknr.
598  *
599  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
600  * This isn't very efficient...
601  *
602  * In the case of filesystem holes: the fs may return an arbitrarily-large
603  * hole by returning an appropriate value in b_size and by clearing
604  * buffer_mapped().  However the direct-io code will only process holes one
605  * block at a time - it will repeatedly call get_block() as it walks the hole.
606  */
607 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
608 			   struct buffer_head *map_bh)
609 {
610 	int ret;
611 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
612 	sector_t fs_endblk;	/* Into file, in filesystem-sized blocks */
613 	unsigned long fs_count;	/* Number of filesystem-sized blocks */
614 	int create;
615 	unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
616 
617 	/*
618 	 * If there was a memory error and we've overwritten all the
619 	 * mapped blocks then we can now return that memory error
620 	 */
621 	ret = dio->page_errors;
622 	if (ret == 0) {
623 		BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
624 		fs_startblk = sdio->block_in_file >> sdio->blkfactor;
625 		fs_endblk = (sdio->final_block_in_request - 1) >>
626 					sdio->blkfactor;
627 		fs_count = fs_endblk - fs_startblk + 1;
628 
629 		map_bh->b_state = 0;
630 		map_bh->b_size = fs_count << i_blkbits;
631 
632 		/*
633 		 * For writes that could fill holes inside i_size on a
634 		 * DIO_SKIP_HOLES filesystem we forbid block creations: only
635 		 * overwrites are permitted. We will return early to the caller
636 		 * once we see an unmapped buffer head returned, and the caller
637 		 * will fall back to buffered I/O.
638 		 *
639 		 * Otherwise the decision is left to the get_blocks method,
640 		 * which may decide to handle it or also return an unmapped
641 		 * buffer head.
642 		 */
643 		create = dio->op == REQ_OP_WRITE;
644 		if (dio->flags & DIO_SKIP_HOLES) {
645 			if (fs_startblk <= ((i_size_read(dio->inode) - 1) >>
646 							i_blkbits))
647 				create = 0;
648 		}
649 
650 		ret = (*sdio->get_block)(dio->inode, fs_startblk,
651 						map_bh, create);
652 
653 		/* Store for completion */
654 		dio->private = map_bh->b_private;
655 
656 		if (ret == 0 && buffer_defer_completion(map_bh))
657 			ret = dio_set_defer_completion(dio);
658 	}
659 	return ret;
660 }
661 
662 /*
663  * There is no bio.  Make one now.
664  */
665 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
666 		sector_t start_sector, struct buffer_head *map_bh)
667 {
668 	sector_t sector;
669 	int ret, nr_pages;
670 
671 	ret = dio_bio_reap(dio, sdio);
672 	if (ret)
673 		goto out;
674 	sector = start_sector << (sdio->blkbits - 9);
675 	nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
676 	BUG_ON(nr_pages <= 0);
677 	dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
678 	sdio->boundary = 0;
679 out:
680 	return ret;
681 }
682 
683 /*
684  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
685  * that was successful then update final_block_in_bio and take a ref against
686  * the just-added page.
687  *
688  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
689  */
690 static inline int dio_bio_add_page(struct dio_submit *sdio)
691 {
692 	int ret;
693 
694 	ret = bio_add_page(sdio->bio, sdio->cur_page,
695 			sdio->cur_page_len, sdio->cur_page_offset);
696 	if (ret == sdio->cur_page_len) {
697 		/*
698 		 * Decrement count only, if we are done with this page
699 		 */
700 		if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
701 			sdio->pages_in_io--;
702 		get_page(sdio->cur_page);
703 		sdio->final_block_in_bio = sdio->cur_page_block +
704 			(sdio->cur_page_len >> sdio->blkbits);
705 		ret = 0;
706 	} else {
707 		ret = 1;
708 	}
709 	return ret;
710 }
711 
712 /*
713  * Put cur_page under IO.  The section of cur_page which is described by
714  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
715  * starts on-disk at cur_page_block.
716  *
717  * We take a ref against the page here (on behalf of its presence in the bio).
718  *
719  * The caller of this function is responsible for removing cur_page from the
720  * dio, and for dropping the refcount which came from that presence.
721  */
722 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
723 		struct buffer_head *map_bh)
724 {
725 	int ret = 0;
726 
727 	if (sdio->bio) {
728 		loff_t cur_offset = sdio->cur_page_fs_offset;
729 		loff_t bio_next_offset = sdio->logical_offset_in_bio +
730 			sdio->bio->bi_iter.bi_size;
731 
732 		/*
733 		 * See whether this new request is contiguous with the old.
734 		 *
735 		 * Btrfs cannot handle having logically non-contiguous requests
736 		 * submitted.  For example if you have
737 		 *
738 		 * Logical:  [0-4095][HOLE][8192-12287]
739 		 * Physical: [0-4095]      [4096-8191]
740 		 *
741 		 * We cannot submit those pages together as one BIO.  So if our
742 		 * current logical offset in the file does not equal what would
743 		 * be the next logical offset in the bio, submit the bio we
744 		 * have.
745 		 */
746 		if (sdio->final_block_in_bio != sdio->cur_page_block ||
747 		    cur_offset != bio_next_offset)
748 			dio_bio_submit(dio, sdio);
749 	}
750 
751 	if (sdio->bio == NULL) {
752 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
753 		if (ret)
754 			goto out;
755 	}
756 
757 	if (dio_bio_add_page(sdio) != 0) {
758 		dio_bio_submit(dio, sdio);
759 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
760 		if (ret == 0) {
761 			ret = dio_bio_add_page(sdio);
762 			BUG_ON(ret != 0);
763 		}
764 	}
765 out:
766 	return ret;
767 }
768 
769 /*
770  * An autonomous function to put a chunk of a page under deferred IO.
771  *
772  * The caller doesn't actually know (or care) whether this piece of page is in
773  * a BIO, or is under IO or whatever.  We just take care of all possible
774  * situations here.  The separation between the logic of do_direct_IO() and
775  * that of submit_page_section() is important for clarity.  Please don't break.
776  *
777  * The chunk of page starts on-disk at blocknr.
778  *
779  * We perform deferred IO, by recording the last-submitted page inside our
780  * private part of the dio structure.  If possible, we just expand the IO
781  * across that page here.
782  *
783  * If that doesn't work out then we put the old page into the bio and add this
784  * page to the dio instead.
785  */
786 static inline int
787 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
788 		    unsigned offset, unsigned len, sector_t blocknr,
789 		    struct buffer_head *map_bh)
790 {
791 	int ret = 0;
792 
793 	if (dio->op == REQ_OP_WRITE) {
794 		/*
795 		 * Read accounting is performed in submit_bio()
796 		 */
797 		task_io_account_write(len);
798 	}
799 
800 	/*
801 	 * Can we just grow the current page's presence in the dio?
802 	 */
803 	if (sdio->cur_page == page &&
804 	    sdio->cur_page_offset + sdio->cur_page_len == offset &&
805 	    sdio->cur_page_block +
806 	    (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
807 		sdio->cur_page_len += len;
808 		goto out;
809 	}
810 
811 	/*
812 	 * If there's a deferred page already there then send it.
813 	 */
814 	if (sdio->cur_page) {
815 		ret = dio_send_cur_page(dio, sdio, map_bh);
816 		put_page(sdio->cur_page);
817 		sdio->cur_page = NULL;
818 		if (ret)
819 			return ret;
820 	}
821 
822 	get_page(page);		/* It is in dio */
823 	sdio->cur_page = page;
824 	sdio->cur_page_offset = offset;
825 	sdio->cur_page_len = len;
826 	sdio->cur_page_block = blocknr;
827 	sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
828 out:
829 	/*
830 	 * If sdio->boundary then we want to schedule the IO now to
831 	 * avoid metadata seeks.
832 	 */
833 	if (sdio->boundary) {
834 		ret = dio_send_cur_page(dio, sdio, map_bh);
835 		dio_bio_submit(dio, sdio);
836 		put_page(sdio->cur_page);
837 		sdio->cur_page = NULL;
838 	}
839 	return ret;
840 }
841 
842 /*
843  * Clean any dirty buffers in the blockdev mapping which alias newly-created
844  * file blocks.  Only called for S_ISREG files - blockdevs do not set
845  * buffer_new
846  */
847 static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh)
848 {
849 	unsigned i;
850 	unsigned nblocks;
851 
852 	nblocks = map_bh->b_size >> dio->inode->i_blkbits;
853 
854 	for (i = 0; i < nblocks; i++) {
855 		unmap_underlying_metadata(map_bh->b_bdev,
856 					  map_bh->b_blocknr + i);
857 	}
858 }
859 
860 /*
861  * If we are not writing the entire block and get_block() allocated
862  * the block for us, we need to fill-in the unused portion of the
863  * block with zeros. This happens only if user-buffer, fileoffset or
864  * io length is not filesystem block-size multiple.
865  *
866  * `end' is zero if we're doing the start of the IO, 1 at the end of the
867  * IO.
868  */
869 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
870 		int end, struct buffer_head *map_bh)
871 {
872 	unsigned dio_blocks_per_fs_block;
873 	unsigned this_chunk_blocks;	/* In dio_blocks */
874 	unsigned this_chunk_bytes;
875 	struct page *page;
876 
877 	sdio->start_zero_done = 1;
878 	if (!sdio->blkfactor || !buffer_new(map_bh))
879 		return;
880 
881 	dio_blocks_per_fs_block = 1 << sdio->blkfactor;
882 	this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
883 
884 	if (!this_chunk_blocks)
885 		return;
886 
887 	/*
888 	 * We need to zero out part of an fs block.  It is either at the
889 	 * beginning or the end of the fs block.
890 	 */
891 	if (end)
892 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
893 
894 	this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
895 
896 	page = ZERO_PAGE(0);
897 	if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
898 				sdio->next_block_for_io, map_bh))
899 		return;
900 
901 	sdio->next_block_for_io += this_chunk_blocks;
902 }
903 
904 /*
905  * Walk the user pages, and the file, mapping blocks to disk and generating
906  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
907  * into submit_page_section(), which takes care of the next stage of submission
908  *
909  * Direct IO against a blockdev is different from a file.  Because we can
910  * happily perform page-sized but 512-byte aligned IOs.  It is important that
911  * blockdev IO be able to have fine alignment and large sizes.
912  *
913  * So what we do is to permit the ->get_block function to populate bh.b_size
914  * with the size of IO which is permitted at this offset and this i_blkbits.
915  *
916  * For best results, the blockdev should be set up with 512-byte i_blkbits and
917  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
918  * fine alignment but still allows this function to work in PAGE_SIZE units.
919  */
920 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
921 			struct buffer_head *map_bh)
922 {
923 	const unsigned blkbits = sdio->blkbits;
924 	int ret = 0;
925 
926 	while (sdio->block_in_file < sdio->final_block_in_request) {
927 		struct page *page;
928 		size_t from, to;
929 
930 		page = dio_get_page(dio, sdio);
931 		if (IS_ERR(page)) {
932 			ret = PTR_ERR(page);
933 			goto out;
934 		}
935 		from = sdio->head ? 0 : sdio->from;
936 		to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
937 		sdio->head++;
938 
939 		while (from < to) {
940 			unsigned this_chunk_bytes;	/* # of bytes mapped */
941 			unsigned this_chunk_blocks;	/* # of blocks */
942 			unsigned u;
943 
944 			if (sdio->blocks_available == 0) {
945 				/*
946 				 * Need to go and map some more disk
947 				 */
948 				unsigned long blkmask;
949 				unsigned long dio_remainder;
950 
951 				ret = get_more_blocks(dio, sdio, map_bh);
952 				if (ret) {
953 					put_page(page);
954 					goto out;
955 				}
956 				if (!buffer_mapped(map_bh))
957 					goto do_holes;
958 
959 				sdio->blocks_available =
960 						map_bh->b_size >> sdio->blkbits;
961 				sdio->next_block_for_io =
962 					map_bh->b_blocknr << sdio->blkfactor;
963 				if (buffer_new(map_bh))
964 					clean_blockdev_aliases(dio, map_bh);
965 
966 				if (!sdio->blkfactor)
967 					goto do_holes;
968 
969 				blkmask = (1 << sdio->blkfactor) - 1;
970 				dio_remainder = (sdio->block_in_file & blkmask);
971 
972 				/*
973 				 * If we are at the start of IO and that IO
974 				 * starts partway into a fs-block,
975 				 * dio_remainder will be non-zero.  If the IO
976 				 * is a read then we can simply advance the IO
977 				 * cursor to the first block which is to be
978 				 * read.  But if the IO is a write and the
979 				 * block was newly allocated we cannot do that;
980 				 * the start of the fs block must be zeroed out
981 				 * on-disk
982 				 */
983 				if (!buffer_new(map_bh))
984 					sdio->next_block_for_io += dio_remainder;
985 				sdio->blocks_available -= dio_remainder;
986 			}
987 do_holes:
988 			/* Handle holes */
989 			if (!buffer_mapped(map_bh)) {
990 				loff_t i_size_aligned;
991 
992 				/* AKPM: eargh, -ENOTBLK is a hack */
993 				if (dio->op == REQ_OP_WRITE) {
994 					put_page(page);
995 					return -ENOTBLK;
996 				}
997 
998 				/*
999 				 * Be sure to account for a partial block as the
1000 				 * last block in the file
1001 				 */
1002 				i_size_aligned = ALIGN(i_size_read(dio->inode),
1003 							1 << blkbits);
1004 				if (sdio->block_in_file >=
1005 						i_size_aligned >> blkbits) {
1006 					/* We hit eof */
1007 					put_page(page);
1008 					goto out;
1009 				}
1010 				zero_user(page, from, 1 << blkbits);
1011 				sdio->block_in_file++;
1012 				from += 1 << blkbits;
1013 				dio->result += 1 << blkbits;
1014 				goto next_block;
1015 			}
1016 
1017 			/*
1018 			 * If we're performing IO which has an alignment which
1019 			 * is finer than the underlying fs, go check to see if
1020 			 * we must zero out the start of this block.
1021 			 */
1022 			if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1023 				dio_zero_block(dio, sdio, 0, map_bh);
1024 
1025 			/*
1026 			 * Work out, in this_chunk_blocks, how much disk we
1027 			 * can add to this page
1028 			 */
1029 			this_chunk_blocks = sdio->blocks_available;
1030 			u = (to - from) >> blkbits;
1031 			if (this_chunk_blocks > u)
1032 				this_chunk_blocks = u;
1033 			u = sdio->final_block_in_request - sdio->block_in_file;
1034 			if (this_chunk_blocks > u)
1035 				this_chunk_blocks = u;
1036 			this_chunk_bytes = this_chunk_blocks << blkbits;
1037 			BUG_ON(this_chunk_bytes == 0);
1038 
1039 			if (this_chunk_blocks == sdio->blocks_available)
1040 				sdio->boundary = buffer_boundary(map_bh);
1041 			ret = submit_page_section(dio, sdio, page,
1042 						  from,
1043 						  this_chunk_bytes,
1044 						  sdio->next_block_for_io,
1045 						  map_bh);
1046 			if (ret) {
1047 				put_page(page);
1048 				goto out;
1049 			}
1050 			sdio->next_block_for_io += this_chunk_blocks;
1051 
1052 			sdio->block_in_file += this_chunk_blocks;
1053 			from += this_chunk_bytes;
1054 			dio->result += this_chunk_bytes;
1055 			sdio->blocks_available -= this_chunk_blocks;
1056 next_block:
1057 			BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1058 			if (sdio->block_in_file == sdio->final_block_in_request)
1059 				break;
1060 		}
1061 
1062 		/* Drop the ref which was taken in get_user_pages() */
1063 		put_page(page);
1064 	}
1065 out:
1066 	return ret;
1067 }
1068 
1069 static inline int drop_refcount(struct dio *dio)
1070 {
1071 	int ret2;
1072 	unsigned long flags;
1073 
1074 	/*
1075 	 * Sync will always be dropping the final ref and completing the
1076 	 * operation.  AIO can if it was a broken operation described above or
1077 	 * in fact if all the bios race to complete before we get here.  In
1078 	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1079 	 * return code that the caller will hand to ->complete().
1080 	 *
1081 	 * This is managed by the bio_lock instead of being an atomic_t so that
1082 	 * completion paths can drop their ref and use the remaining count to
1083 	 * decide to wake the submission path atomically.
1084 	 */
1085 	spin_lock_irqsave(&dio->bio_lock, flags);
1086 	ret2 = --dio->refcount;
1087 	spin_unlock_irqrestore(&dio->bio_lock, flags);
1088 	return ret2;
1089 }
1090 
1091 /*
1092  * This is a library function for use by filesystem drivers.
1093  *
1094  * The locking rules are governed by the flags parameter:
1095  *  - if the flags value contains DIO_LOCKING we use a fancy locking
1096  *    scheme for dumb filesystems.
1097  *    For writes this function is called under i_mutex and returns with
1098  *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1099  *    taken and dropped again before returning.
1100  *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1101  *    internal locking but rather rely on the filesystem to synchronize
1102  *    direct I/O reads/writes versus each other and truncate.
1103  *
1104  * To help with locking against truncate we incremented the i_dio_count
1105  * counter before starting direct I/O, and decrement it once we are done.
1106  * Truncate can wait for it to reach zero to provide exclusion.  It is
1107  * expected that filesystem provide exclusion between new direct I/O
1108  * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1109  * but other filesystems need to take care of this on their own.
1110  *
1111  * NOTE: if you pass "sdio" to anything by pointer make sure that function
1112  * is always inlined. Otherwise gcc is unable to split the structure into
1113  * individual fields and will generate much worse code. This is important
1114  * for the whole file.
1115  */
1116 static inline ssize_t
1117 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1118 		      struct block_device *bdev, struct iov_iter *iter,
1119 		      get_block_t get_block, dio_iodone_t end_io,
1120 		      dio_submit_t submit_io, int flags)
1121 {
1122 	unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits);
1123 	unsigned blkbits = i_blkbits;
1124 	unsigned blocksize_mask = (1 << blkbits) - 1;
1125 	ssize_t retval = -EINVAL;
1126 	size_t count = iov_iter_count(iter);
1127 	loff_t offset = iocb->ki_pos;
1128 	loff_t end = offset + count;
1129 	struct dio *dio;
1130 	struct dio_submit sdio = { 0, };
1131 	struct buffer_head map_bh = { 0, };
1132 	struct blk_plug plug;
1133 	unsigned long align = offset | iov_iter_alignment(iter);
1134 
1135 	/*
1136 	 * Avoid references to bdev if not absolutely needed to give
1137 	 * the early prefetch in the caller enough time.
1138 	 */
1139 
1140 	if (align & blocksize_mask) {
1141 		if (bdev)
1142 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
1143 		blocksize_mask = (1 << blkbits) - 1;
1144 		if (align & blocksize_mask)
1145 			goto out;
1146 	}
1147 
1148 	/* watch out for a 0 len io from a tricksy fs */
1149 	if (iov_iter_rw(iter) == READ && !iov_iter_count(iter))
1150 		return 0;
1151 
1152 	dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1153 	retval = -ENOMEM;
1154 	if (!dio)
1155 		goto out;
1156 	/*
1157 	 * Believe it or not, zeroing out the page array caused a .5%
1158 	 * performance regression in a database benchmark.  So, we take
1159 	 * care to only zero out what's needed.
1160 	 */
1161 	memset(dio, 0, offsetof(struct dio, pages));
1162 
1163 	dio->flags = flags;
1164 	if (dio->flags & DIO_LOCKING) {
1165 		if (iov_iter_rw(iter) == READ) {
1166 			struct address_space *mapping =
1167 					iocb->ki_filp->f_mapping;
1168 
1169 			/* will be released by direct_io_worker */
1170 			inode_lock(inode);
1171 
1172 			retval = filemap_write_and_wait_range(mapping, offset,
1173 							      end - 1);
1174 			if (retval) {
1175 				inode_unlock(inode);
1176 				kmem_cache_free(dio_cache, dio);
1177 				goto out;
1178 			}
1179 		}
1180 	}
1181 
1182 	/* Once we sampled i_size check for reads beyond EOF */
1183 	dio->i_size = i_size_read(inode);
1184 	if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1185 		if (dio->flags & DIO_LOCKING)
1186 			inode_unlock(inode);
1187 		kmem_cache_free(dio_cache, dio);
1188 		retval = 0;
1189 		goto out;
1190 	}
1191 
1192 	/*
1193 	 * For file extending writes updating i_size before data writeouts
1194 	 * complete can expose uninitialized blocks in dumb filesystems.
1195 	 * In that case we need to wait for I/O completion even if asked
1196 	 * for an asynchronous write.
1197 	 */
1198 	if (is_sync_kiocb(iocb))
1199 		dio->is_async = false;
1200 	else if (!(dio->flags & DIO_ASYNC_EXTEND) &&
1201 		 iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1202 		dio->is_async = false;
1203 	else
1204 		dio->is_async = true;
1205 
1206 	dio->inode = inode;
1207 	if (iov_iter_rw(iter) == WRITE) {
1208 		dio->op = REQ_OP_WRITE;
1209 		dio->op_flags = WRITE_ODIRECT;
1210 	} else {
1211 		dio->op = REQ_OP_READ;
1212 	}
1213 
1214 	/*
1215 	 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1216 	 * so that we can call ->fsync.
1217 	 */
1218 	if (dio->is_async && iov_iter_rw(iter) == WRITE &&
1219 	    ((iocb->ki_filp->f_flags & O_DSYNC) ||
1220 	     IS_SYNC(iocb->ki_filp->f_mapping->host))) {
1221 		retval = dio_set_defer_completion(dio);
1222 		if (retval) {
1223 			/*
1224 			 * We grab i_mutex only for reads so we don't have
1225 			 * to release it here
1226 			 */
1227 			kmem_cache_free(dio_cache, dio);
1228 			goto out;
1229 		}
1230 	}
1231 
1232 	/*
1233 	 * Will be decremented at I/O completion time.
1234 	 */
1235 	if (!(dio->flags & DIO_SKIP_DIO_COUNT))
1236 		inode_dio_begin(inode);
1237 
1238 	retval = 0;
1239 	sdio.blkbits = blkbits;
1240 	sdio.blkfactor = i_blkbits - blkbits;
1241 	sdio.block_in_file = offset >> blkbits;
1242 
1243 	sdio.get_block = get_block;
1244 	dio->end_io = end_io;
1245 	sdio.submit_io = submit_io;
1246 	sdio.final_block_in_bio = -1;
1247 	sdio.next_block_for_io = -1;
1248 
1249 	dio->iocb = iocb;
1250 
1251 	spin_lock_init(&dio->bio_lock);
1252 	dio->refcount = 1;
1253 
1254 	dio->should_dirty = (iter->type == ITER_IOVEC);
1255 	sdio.iter = iter;
1256 	sdio.final_block_in_request =
1257 		(offset + iov_iter_count(iter)) >> blkbits;
1258 
1259 	/*
1260 	 * In case of non-aligned buffers, we may need 2 more
1261 	 * pages since we need to zero out first and last block.
1262 	 */
1263 	if (unlikely(sdio.blkfactor))
1264 		sdio.pages_in_io = 2;
1265 
1266 	sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1267 
1268 	blk_start_plug(&plug);
1269 
1270 	retval = do_direct_IO(dio, &sdio, &map_bh);
1271 	if (retval)
1272 		dio_cleanup(dio, &sdio);
1273 
1274 	if (retval == -ENOTBLK) {
1275 		/*
1276 		 * The remaining part of the request will be
1277 		 * be handled by buffered I/O when we return
1278 		 */
1279 		retval = 0;
1280 	}
1281 	/*
1282 	 * There may be some unwritten disk at the end of a part-written
1283 	 * fs-block-sized block.  Go zero that now.
1284 	 */
1285 	dio_zero_block(dio, &sdio, 1, &map_bh);
1286 
1287 	if (sdio.cur_page) {
1288 		ssize_t ret2;
1289 
1290 		ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1291 		if (retval == 0)
1292 			retval = ret2;
1293 		put_page(sdio.cur_page);
1294 		sdio.cur_page = NULL;
1295 	}
1296 	if (sdio.bio)
1297 		dio_bio_submit(dio, &sdio);
1298 
1299 	blk_finish_plug(&plug);
1300 
1301 	/*
1302 	 * It is possible that, we return short IO due to end of file.
1303 	 * In that case, we need to release all the pages we got hold on.
1304 	 */
1305 	dio_cleanup(dio, &sdio);
1306 
1307 	/*
1308 	 * All block lookups have been performed. For READ requests
1309 	 * we can let i_mutex go now that its achieved its purpose
1310 	 * of protecting us from looking up uninitialized blocks.
1311 	 */
1312 	if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1313 		inode_unlock(dio->inode);
1314 
1315 	/*
1316 	 * The only time we want to leave bios in flight is when a successful
1317 	 * partial aio read or full aio write have been setup.  In that case
1318 	 * bio completion will call aio_complete.  The only time it's safe to
1319 	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1320 	 * This had *better* be the only place that raises -EIOCBQUEUED.
1321 	 */
1322 	BUG_ON(retval == -EIOCBQUEUED);
1323 	if (dio->is_async && retval == 0 && dio->result &&
1324 	    (iov_iter_rw(iter) == READ || dio->result == count))
1325 		retval = -EIOCBQUEUED;
1326 	else
1327 		dio_await_completion(dio);
1328 
1329 	if (drop_refcount(dio) == 0) {
1330 		retval = dio_complete(dio, retval, false);
1331 	} else
1332 		BUG_ON(retval != -EIOCBQUEUED);
1333 
1334 out:
1335 	return retval;
1336 }
1337 
1338 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1339 			     struct block_device *bdev, struct iov_iter *iter,
1340 			     get_block_t get_block,
1341 			     dio_iodone_t end_io, dio_submit_t submit_io,
1342 			     int flags)
1343 {
1344 	/*
1345 	 * The block device state is needed in the end to finally
1346 	 * submit everything.  Since it's likely to be cache cold
1347 	 * prefetch it here as first thing to hide some of the
1348 	 * latency.
1349 	 *
1350 	 * Attempt to prefetch the pieces we likely need later.
1351 	 */
1352 	prefetch(&bdev->bd_disk->part_tbl);
1353 	prefetch(bdev->bd_queue);
1354 	prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1355 
1356 	return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block,
1357 				     end_io, submit_io, flags);
1358 }
1359 
1360 EXPORT_SYMBOL(__blockdev_direct_IO);
1361 
1362 static __init int dio_init(void)
1363 {
1364 	dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1365 	return 0;
1366 }
1367 module_init(dio_init)
1368