xref: /openbmc/linux/fs/direct-io.c (revision bbde9fc1824aab58bc78c084163007dd6c03fe5b)
1 /*
2  * fs/direct-io.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * O_DIRECT
7  *
8  * 04Jul2002	Andrew Morton
9  *		Initial version
10  * 11Sep2002	janetinc@us.ibm.com
11  * 		added readv/writev support.
12  * 29Oct2002	Andrew Morton
13  *		rewrote bio_add_page() support.
14  * 30Oct2002	pbadari@us.ibm.com
15  *		added support for non-aligned IO.
16  * 06Nov2002	pbadari@us.ibm.com
17  *		added asynchronous IO support.
18  * 21Jul2003	nathans@sgi.com
19  *		added IO completion notifier.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <linux/atomic.h>
39 #include <linux/prefetch.h>
40 
41 /*
42  * How many user pages to map in one call to get_user_pages().  This determines
43  * the size of a structure in the slab cache
44  */
45 #define DIO_PAGES	64
46 
47 /*
48  * This code generally works in units of "dio_blocks".  A dio_block is
49  * somewhere between the hard sector size and the filesystem block size.  it
50  * is determined on a per-invocation basis.   When talking to the filesystem
51  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
52  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
53  * to bio_block quantities by shifting left by blkfactor.
54  *
55  * If blkfactor is zero then the user's request was aligned to the filesystem's
56  * blocksize.
57  */
58 
59 /* dio_state only used in the submission path */
60 
61 struct dio_submit {
62 	struct bio *bio;		/* bio under assembly */
63 	unsigned blkbits;		/* doesn't change */
64 	unsigned blkfactor;		/* When we're using an alignment which
65 					   is finer than the filesystem's soft
66 					   blocksize, this specifies how much
67 					   finer.  blkfactor=2 means 1/4-block
68 					   alignment.  Does not change */
69 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
70 					   been performed at the start of a
71 					   write */
72 	int pages_in_io;		/* approximate total IO pages */
73 	sector_t block_in_file;		/* Current offset into the underlying
74 					   file in dio_block units. */
75 	unsigned blocks_available;	/* At block_in_file.  changes */
76 	int reap_counter;		/* rate limit reaping */
77 	sector_t final_block_in_request;/* doesn't change */
78 	int boundary;			/* prev block is at a boundary */
79 	get_block_t *get_block;		/* block mapping function */
80 	dio_submit_t *submit_io;	/* IO submition function */
81 
82 	loff_t logical_offset_in_bio;	/* current first logical block in bio */
83 	sector_t final_block_in_bio;	/* current final block in bio + 1 */
84 	sector_t next_block_for_io;	/* next block to be put under IO,
85 					   in dio_blocks units */
86 
87 	/*
88 	 * Deferred addition of a page to the dio.  These variables are
89 	 * private to dio_send_cur_page(), submit_page_section() and
90 	 * dio_bio_add_page().
91 	 */
92 	struct page *cur_page;		/* The page */
93 	unsigned cur_page_offset;	/* Offset into it, in bytes */
94 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
95 	sector_t cur_page_block;	/* Where it starts */
96 	loff_t cur_page_fs_offset;	/* Offset in file */
97 
98 	struct iov_iter *iter;
99 	/*
100 	 * Page queue.  These variables belong to dio_refill_pages() and
101 	 * dio_get_page().
102 	 */
103 	unsigned head;			/* next page to process */
104 	unsigned tail;			/* last valid page + 1 */
105 	size_t from, to;
106 };
107 
108 /* dio_state communicated between submission path and end_io */
109 struct dio {
110 	int flags;			/* doesn't change */
111 	int rw;
112 	struct inode *inode;
113 	loff_t i_size;			/* i_size when submitted */
114 	dio_iodone_t *end_io;		/* IO completion function */
115 
116 	void *private;			/* copy from map_bh.b_private */
117 
118 	/* BIO completion state */
119 	spinlock_t bio_lock;		/* protects BIO fields below */
120 	int page_errors;		/* errno from get_user_pages() */
121 	int is_async;			/* is IO async ? */
122 	bool defer_completion;		/* defer AIO completion to workqueue? */
123 	int io_error;			/* IO error in completion path */
124 	unsigned long refcount;		/* direct_io_worker() and bios */
125 	struct bio *bio_list;		/* singly linked via bi_private */
126 	struct task_struct *waiter;	/* waiting task (NULL if none) */
127 
128 	/* AIO related stuff */
129 	struct kiocb *iocb;		/* kiocb */
130 	ssize_t result;                 /* IO result */
131 
132 	/*
133 	 * pages[] (and any fields placed after it) are not zeroed out at
134 	 * allocation time.  Don't add new fields after pages[] unless you
135 	 * wish that they not be zeroed.
136 	 */
137 	union {
138 		struct page *pages[DIO_PAGES];	/* page buffer */
139 		struct work_struct complete_work;/* deferred AIO completion */
140 	};
141 } ____cacheline_aligned_in_smp;
142 
143 static struct kmem_cache *dio_cache __read_mostly;
144 
145 /*
146  * How many pages are in the queue?
147  */
148 static inline unsigned dio_pages_present(struct dio_submit *sdio)
149 {
150 	return sdio->tail - sdio->head;
151 }
152 
153 /*
154  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
155  */
156 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
157 {
158 	ssize_t ret;
159 
160 	ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
161 				&sdio->from);
162 
163 	if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) {
164 		struct page *page = ZERO_PAGE(0);
165 		/*
166 		 * A memory fault, but the filesystem has some outstanding
167 		 * mapped blocks.  We need to use those blocks up to avoid
168 		 * leaking stale data in the file.
169 		 */
170 		if (dio->page_errors == 0)
171 			dio->page_errors = ret;
172 		page_cache_get(page);
173 		dio->pages[0] = page;
174 		sdio->head = 0;
175 		sdio->tail = 1;
176 		sdio->from = 0;
177 		sdio->to = PAGE_SIZE;
178 		return 0;
179 	}
180 
181 	if (ret >= 0) {
182 		iov_iter_advance(sdio->iter, ret);
183 		ret += sdio->from;
184 		sdio->head = 0;
185 		sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
186 		sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
187 		return 0;
188 	}
189 	return ret;
190 }
191 
192 /*
193  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
194  * buffered inside the dio so that we can call get_user_pages() against a
195  * decent number of pages, less frequently.  To provide nicer use of the
196  * L1 cache.
197  */
198 static inline struct page *dio_get_page(struct dio *dio,
199 					struct dio_submit *sdio)
200 {
201 	if (dio_pages_present(sdio) == 0) {
202 		int ret;
203 
204 		ret = dio_refill_pages(dio, sdio);
205 		if (ret)
206 			return ERR_PTR(ret);
207 		BUG_ON(dio_pages_present(sdio) == 0);
208 	}
209 	return dio->pages[sdio->head];
210 }
211 
212 /**
213  * dio_complete() - called when all DIO BIO I/O has been completed
214  * @offset: the byte offset in the file of the completed operation
215  *
216  * This drops i_dio_count, lets interested parties know that a DIO operation
217  * has completed, and calculates the resulting return code for the operation.
218  *
219  * It lets the filesystem know if it registered an interest earlier via
220  * get_block.  Pass the private field of the map buffer_head so that
221  * filesystems can use it to hold additional state between get_block calls and
222  * dio_complete.
223  */
224 static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret,
225 		bool is_async)
226 {
227 	ssize_t transferred = 0;
228 
229 	/*
230 	 * AIO submission can race with bio completion to get here while
231 	 * expecting to have the last io completed by bio completion.
232 	 * In that case -EIOCBQUEUED is in fact not an error we want
233 	 * to preserve through this call.
234 	 */
235 	if (ret == -EIOCBQUEUED)
236 		ret = 0;
237 
238 	if (dio->result) {
239 		transferred = dio->result;
240 
241 		/* Check for short read case */
242 		if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
243 			transferred = dio->i_size - offset;
244 	}
245 
246 	if (ret == 0)
247 		ret = dio->page_errors;
248 	if (ret == 0)
249 		ret = dio->io_error;
250 	if (ret == 0)
251 		ret = transferred;
252 
253 	if (dio->end_io && dio->result)
254 		dio->end_io(dio->iocb, offset, transferred, dio->private);
255 
256 	if (!(dio->flags & DIO_SKIP_DIO_COUNT))
257 		inode_dio_end(dio->inode);
258 
259 	if (is_async) {
260 		if (dio->rw & WRITE) {
261 			int err;
262 
263 			err = generic_write_sync(dio->iocb->ki_filp, offset,
264 						 transferred);
265 			if (err < 0 && ret > 0)
266 				ret = err;
267 		}
268 
269 		dio->iocb->ki_complete(dio->iocb, ret, 0);
270 	}
271 
272 	kmem_cache_free(dio_cache, dio);
273 	return ret;
274 }
275 
276 static void dio_aio_complete_work(struct work_struct *work)
277 {
278 	struct dio *dio = container_of(work, struct dio, complete_work);
279 
280 	dio_complete(dio, dio->iocb->ki_pos, 0, true);
281 }
282 
283 static int dio_bio_complete(struct dio *dio, struct bio *bio);
284 
285 /*
286  * Asynchronous IO callback.
287  */
288 static void dio_bio_end_aio(struct bio *bio, int error)
289 {
290 	struct dio *dio = bio->bi_private;
291 	unsigned long remaining;
292 	unsigned long flags;
293 
294 	/* cleanup the bio */
295 	dio_bio_complete(dio, bio);
296 
297 	spin_lock_irqsave(&dio->bio_lock, flags);
298 	remaining = --dio->refcount;
299 	if (remaining == 1 && dio->waiter)
300 		wake_up_process(dio->waiter);
301 	spin_unlock_irqrestore(&dio->bio_lock, flags);
302 
303 	if (remaining == 0) {
304 		if (dio->result && dio->defer_completion) {
305 			INIT_WORK(&dio->complete_work, dio_aio_complete_work);
306 			queue_work(dio->inode->i_sb->s_dio_done_wq,
307 				   &dio->complete_work);
308 		} else {
309 			dio_complete(dio, dio->iocb->ki_pos, 0, true);
310 		}
311 	}
312 }
313 
314 /*
315  * The BIO completion handler simply queues the BIO up for the process-context
316  * handler.
317  *
318  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
319  * implement a singly-linked list of completed BIOs, at dio->bio_list.
320  */
321 static void dio_bio_end_io(struct bio *bio, int error)
322 {
323 	struct dio *dio = bio->bi_private;
324 	unsigned long flags;
325 
326 	spin_lock_irqsave(&dio->bio_lock, flags);
327 	bio->bi_private = dio->bio_list;
328 	dio->bio_list = bio;
329 	if (--dio->refcount == 1 && dio->waiter)
330 		wake_up_process(dio->waiter);
331 	spin_unlock_irqrestore(&dio->bio_lock, flags);
332 }
333 
334 /**
335  * dio_end_io - handle the end io action for the given bio
336  * @bio: The direct io bio thats being completed
337  * @error: Error if there was one
338  *
339  * This is meant to be called by any filesystem that uses their own dio_submit_t
340  * so that the DIO specific endio actions are dealt with after the filesystem
341  * has done it's completion work.
342  */
343 void dio_end_io(struct bio *bio, int error)
344 {
345 	struct dio *dio = bio->bi_private;
346 
347 	if (dio->is_async)
348 		dio_bio_end_aio(bio, error);
349 	else
350 		dio_bio_end_io(bio, error);
351 }
352 EXPORT_SYMBOL_GPL(dio_end_io);
353 
354 static inline void
355 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
356 	      struct block_device *bdev,
357 	      sector_t first_sector, int nr_vecs)
358 {
359 	struct bio *bio;
360 
361 	/*
362 	 * bio_alloc() is guaranteed to return a bio when called with
363 	 * __GFP_WAIT and we request a valid number of vectors.
364 	 */
365 	bio = bio_alloc(GFP_KERNEL, nr_vecs);
366 
367 	bio->bi_bdev = bdev;
368 	bio->bi_iter.bi_sector = first_sector;
369 	if (dio->is_async)
370 		bio->bi_end_io = dio_bio_end_aio;
371 	else
372 		bio->bi_end_io = dio_bio_end_io;
373 
374 	sdio->bio = bio;
375 	sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
376 }
377 
378 /*
379  * In the AIO read case we speculatively dirty the pages before starting IO.
380  * During IO completion, any of these pages which happen to have been written
381  * back will be redirtied by bio_check_pages_dirty().
382  *
383  * bios hold a dio reference between submit_bio and ->end_io.
384  */
385 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
386 {
387 	struct bio *bio = sdio->bio;
388 	unsigned long flags;
389 
390 	bio->bi_private = dio;
391 
392 	spin_lock_irqsave(&dio->bio_lock, flags);
393 	dio->refcount++;
394 	spin_unlock_irqrestore(&dio->bio_lock, flags);
395 
396 	if (dio->is_async && dio->rw == READ)
397 		bio_set_pages_dirty(bio);
398 
399 	if (sdio->submit_io)
400 		sdio->submit_io(dio->rw, bio, dio->inode,
401 			       sdio->logical_offset_in_bio);
402 	else
403 		submit_bio(dio->rw, bio);
404 
405 	sdio->bio = NULL;
406 	sdio->boundary = 0;
407 	sdio->logical_offset_in_bio = 0;
408 }
409 
410 /*
411  * Release any resources in case of a failure
412  */
413 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
414 {
415 	while (sdio->head < sdio->tail)
416 		page_cache_release(dio->pages[sdio->head++]);
417 }
418 
419 /*
420  * Wait for the next BIO to complete.  Remove it and return it.  NULL is
421  * returned once all BIOs have been completed.  This must only be called once
422  * all bios have been issued so that dio->refcount can only decrease.  This
423  * requires that that the caller hold a reference on the dio.
424  */
425 static struct bio *dio_await_one(struct dio *dio)
426 {
427 	unsigned long flags;
428 	struct bio *bio = NULL;
429 
430 	spin_lock_irqsave(&dio->bio_lock, flags);
431 
432 	/*
433 	 * Wait as long as the list is empty and there are bios in flight.  bio
434 	 * completion drops the count, maybe adds to the list, and wakes while
435 	 * holding the bio_lock so we don't need set_current_state()'s barrier
436 	 * and can call it after testing our condition.
437 	 */
438 	while (dio->refcount > 1 && dio->bio_list == NULL) {
439 		__set_current_state(TASK_UNINTERRUPTIBLE);
440 		dio->waiter = current;
441 		spin_unlock_irqrestore(&dio->bio_lock, flags);
442 		io_schedule();
443 		/* wake up sets us TASK_RUNNING */
444 		spin_lock_irqsave(&dio->bio_lock, flags);
445 		dio->waiter = NULL;
446 	}
447 	if (dio->bio_list) {
448 		bio = dio->bio_list;
449 		dio->bio_list = bio->bi_private;
450 	}
451 	spin_unlock_irqrestore(&dio->bio_lock, flags);
452 	return bio;
453 }
454 
455 /*
456  * Process one completed BIO.  No locks are held.
457  */
458 static int dio_bio_complete(struct dio *dio, struct bio *bio)
459 {
460 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
461 	struct bio_vec *bvec;
462 	unsigned i;
463 
464 	if (!uptodate)
465 		dio->io_error = -EIO;
466 
467 	if (dio->is_async && dio->rw == READ) {
468 		bio_check_pages_dirty(bio);	/* transfers ownership */
469 	} else {
470 		bio_for_each_segment_all(bvec, bio, i) {
471 			struct page *page = bvec->bv_page;
472 
473 			if (dio->rw == READ && !PageCompound(page))
474 				set_page_dirty_lock(page);
475 			page_cache_release(page);
476 		}
477 		bio_put(bio);
478 	}
479 	return uptodate ? 0 : -EIO;
480 }
481 
482 /*
483  * Wait on and process all in-flight BIOs.  This must only be called once
484  * all bios have been issued so that the refcount can only decrease.
485  * This just waits for all bios to make it through dio_bio_complete.  IO
486  * errors are propagated through dio->io_error and should be propagated via
487  * dio_complete().
488  */
489 static void dio_await_completion(struct dio *dio)
490 {
491 	struct bio *bio;
492 	do {
493 		bio = dio_await_one(dio);
494 		if (bio)
495 			dio_bio_complete(dio, bio);
496 	} while (bio);
497 }
498 
499 /*
500  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
501  * to keep the memory consumption sane we periodically reap any completed BIOs
502  * during the BIO generation phase.
503  *
504  * This also helps to limit the peak amount of pinned userspace memory.
505  */
506 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
507 {
508 	int ret = 0;
509 
510 	if (sdio->reap_counter++ >= 64) {
511 		while (dio->bio_list) {
512 			unsigned long flags;
513 			struct bio *bio;
514 			int ret2;
515 
516 			spin_lock_irqsave(&dio->bio_lock, flags);
517 			bio = dio->bio_list;
518 			dio->bio_list = bio->bi_private;
519 			spin_unlock_irqrestore(&dio->bio_lock, flags);
520 			ret2 = dio_bio_complete(dio, bio);
521 			if (ret == 0)
522 				ret = ret2;
523 		}
524 		sdio->reap_counter = 0;
525 	}
526 	return ret;
527 }
528 
529 /*
530  * Create workqueue for deferred direct IO completions. We allocate the
531  * workqueue when it's first needed. This avoids creating workqueue for
532  * filesystems that don't need it and also allows us to create the workqueue
533  * late enough so the we can include s_id in the name of the workqueue.
534  */
535 static int sb_init_dio_done_wq(struct super_block *sb)
536 {
537 	struct workqueue_struct *old;
538 	struct workqueue_struct *wq = alloc_workqueue("dio/%s",
539 						      WQ_MEM_RECLAIM, 0,
540 						      sb->s_id);
541 	if (!wq)
542 		return -ENOMEM;
543 	/*
544 	 * This has to be atomic as more DIOs can race to create the workqueue
545 	 */
546 	old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
547 	/* Someone created workqueue before us? Free ours... */
548 	if (old)
549 		destroy_workqueue(wq);
550 	return 0;
551 }
552 
553 static int dio_set_defer_completion(struct dio *dio)
554 {
555 	struct super_block *sb = dio->inode->i_sb;
556 
557 	if (dio->defer_completion)
558 		return 0;
559 	dio->defer_completion = true;
560 	if (!sb->s_dio_done_wq)
561 		return sb_init_dio_done_wq(sb);
562 	return 0;
563 }
564 
565 /*
566  * Call into the fs to map some more disk blocks.  We record the current number
567  * of available blocks at sdio->blocks_available.  These are in units of the
568  * fs blocksize, (1 << inode->i_blkbits).
569  *
570  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
571  * it uses the passed inode-relative block number as the file offset, as usual.
572  *
573  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
574  * has remaining to do.  The fs should not map more than this number of blocks.
575  *
576  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
577  * indicate how much contiguous disk space has been made available at
578  * bh->b_blocknr.
579  *
580  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
581  * This isn't very efficient...
582  *
583  * In the case of filesystem holes: the fs may return an arbitrarily-large
584  * hole by returning an appropriate value in b_size and by clearing
585  * buffer_mapped().  However the direct-io code will only process holes one
586  * block at a time - it will repeatedly call get_block() as it walks the hole.
587  */
588 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
589 			   struct buffer_head *map_bh)
590 {
591 	int ret;
592 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
593 	sector_t fs_endblk;	/* Into file, in filesystem-sized blocks */
594 	unsigned long fs_count;	/* Number of filesystem-sized blocks */
595 	int create;
596 	unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
597 
598 	/*
599 	 * If there was a memory error and we've overwritten all the
600 	 * mapped blocks then we can now return that memory error
601 	 */
602 	ret = dio->page_errors;
603 	if (ret == 0) {
604 		BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
605 		fs_startblk = sdio->block_in_file >> sdio->blkfactor;
606 		fs_endblk = (sdio->final_block_in_request - 1) >>
607 					sdio->blkfactor;
608 		fs_count = fs_endblk - fs_startblk + 1;
609 
610 		map_bh->b_state = 0;
611 		map_bh->b_size = fs_count << i_blkbits;
612 
613 		/*
614 		 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
615 		 * forbid block creations: only overwrites are permitted.
616 		 * We will return early to the caller once we see an
617 		 * unmapped buffer head returned, and the caller will fall
618 		 * back to buffered I/O.
619 		 *
620 		 * Otherwise the decision is left to the get_blocks method,
621 		 * which may decide to handle it or also return an unmapped
622 		 * buffer head.
623 		 */
624 		create = dio->rw & WRITE;
625 		if (dio->flags & DIO_SKIP_HOLES) {
626 			if (sdio->block_in_file < (i_size_read(dio->inode) >>
627 							sdio->blkbits))
628 				create = 0;
629 		}
630 
631 		ret = (*sdio->get_block)(dio->inode, fs_startblk,
632 						map_bh, create);
633 
634 		/* Store for completion */
635 		dio->private = map_bh->b_private;
636 
637 		if (ret == 0 && buffer_defer_completion(map_bh))
638 			ret = dio_set_defer_completion(dio);
639 	}
640 	return ret;
641 }
642 
643 /*
644  * There is no bio.  Make one now.
645  */
646 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
647 		sector_t start_sector, struct buffer_head *map_bh)
648 {
649 	sector_t sector;
650 	int ret, nr_pages;
651 
652 	ret = dio_bio_reap(dio, sdio);
653 	if (ret)
654 		goto out;
655 	sector = start_sector << (sdio->blkbits - 9);
656 	nr_pages = min(sdio->pages_in_io, bio_get_nr_vecs(map_bh->b_bdev));
657 	BUG_ON(nr_pages <= 0);
658 	dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
659 	sdio->boundary = 0;
660 out:
661 	return ret;
662 }
663 
664 /*
665  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
666  * that was successful then update final_block_in_bio and take a ref against
667  * the just-added page.
668  *
669  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
670  */
671 static inline int dio_bio_add_page(struct dio_submit *sdio)
672 {
673 	int ret;
674 
675 	ret = bio_add_page(sdio->bio, sdio->cur_page,
676 			sdio->cur_page_len, sdio->cur_page_offset);
677 	if (ret == sdio->cur_page_len) {
678 		/*
679 		 * Decrement count only, if we are done with this page
680 		 */
681 		if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
682 			sdio->pages_in_io--;
683 		page_cache_get(sdio->cur_page);
684 		sdio->final_block_in_bio = sdio->cur_page_block +
685 			(sdio->cur_page_len >> sdio->blkbits);
686 		ret = 0;
687 	} else {
688 		ret = 1;
689 	}
690 	return ret;
691 }
692 
693 /*
694  * Put cur_page under IO.  The section of cur_page which is described by
695  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
696  * starts on-disk at cur_page_block.
697  *
698  * We take a ref against the page here (on behalf of its presence in the bio).
699  *
700  * The caller of this function is responsible for removing cur_page from the
701  * dio, and for dropping the refcount which came from that presence.
702  */
703 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
704 		struct buffer_head *map_bh)
705 {
706 	int ret = 0;
707 
708 	if (sdio->bio) {
709 		loff_t cur_offset = sdio->cur_page_fs_offset;
710 		loff_t bio_next_offset = sdio->logical_offset_in_bio +
711 			sdio->bio->bi_iter.bi_size;
712 
713 		/*
714 		 * See whether this new request is contiguous with the old.
715 		 *
716 		 * Btrfs cannot handle having logically non-contiguous requests
717 		 * submitted.  For example if you have
718 		 *
719 		 * Logical:  [0-4095][HOLE][8192-12287]
720 		 * Physical: [0-4095]      [4096-8191]
721 		 *
722 		 * We cannot submit those pages together as one BIO.  So if our
723 		 * current logical offset in the file does not equal what would
724 		 * be the next logical offset in the bio, submit the bio we
725 		 * have.
726 		 */
727 		if (sdio->final_block_in_bio != sdio->cur_page_block ||
728 		    cur_offset != bio_next_offset)
729 			dio_bio_submit(dio, sdio);
730 	}
731 
732 	if (sdio->bio == NULL) {
733 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
734 		if (ret)
735 			goto out;
736 	}
737 
738 	if (dio_bio_add_page(sdio) != 0) {
739 		dio_bio_submit(dio, sdio);
740 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
741 		if (ret == 0) {
742 			ret = dio_bio_add_page(sdio);
743 			BUG_ON(ret != 0);
744 		}
745 	}
746 out:
747 	return ret;
748 }
749 
750 /*
751  * An autonomous function to put a chunk of a page under deferred IO.
752  *
753  * The caller doesn't actually know (or care) whether this piece of page is in
754  * a BIO, or is under IO or whatever.  We just take care of all possible
755  * situations here.  The separation between the logic of do_direct_IO() and
756  * that of submit_page_section() is important for clarity.  Please don't break.
757  *
758  * The chunk of page starts on-disk at blocknr.
759  *
760  * We perform deferred IO, by recording the last-submitted page inside our
761  * private part of the dio structure.  If possible, we just expand the IO
762  * across that page here.
763  *
764  * If that doesn't work out then we put the old page into the bio and add this
765  * page to the dio instead.
766  */
767 static inline int
768 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
769 		    unsigned offset, unsigned len, sector_t blocknr,
770 		    struct buffer_head *map_bh)
771 {
772 	int ret = 0;
773 
774 	if (dio->rw & WRITE) {
775 		/*
776 		 * Read accounting is performed in submit_bio()
777 		 */
778 		task_io_account_write(len);
779 	}
780 
781 	/*
782 	 * Can we just grow the current page's presence in the dio?
783 	 */
784 	if (sdio->cur_page == page &&
785 	    sdio->cur_page_offset + sdio->cur_page_len == offset &&
786 	    sdio->cur_page_block +
787 	    (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
788 		sdio->cur_page_len += len;
789 		goto out;
790 	}
791 
792 	/*
793 	 * If there's a deferred page already there then send it.
794 	 */
795 	if (sdio->cur_page) {
796 		ret = dio_send_cur_page(dio, sdio, map_bh);
797 		page_cache_release(sdio->cur_page);
798 		sdio->cur_page = NULL;
799 		if (ret)
800 			return ret;
801 	}
802 
803 	page_cache_get(page);		/* It is in dio */
804 	sdio->cur_page = page;
805 	sdio->cur_page_offset = offset;
806 	sdio->cur_page_len = len;
807 	sdio->cur_page_block = blocknr;
808 	sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
809 out:
810 	/*
811 	 * If sdio->boundary then we want to schedule the IO now to
812 	 * avoid metadata seeks.
813 	 */
814 	if (sdio->boundary) {
815 		ret = dio_send_cur_page(dio, sdio, map_bh);
816 		dio_bio_submit(dio, sdio);
817 		page_cache_release(sdio->cur_page);
818 		sdio->cur_page = NULL;
819 	}
820 	return ret;
821 }
822 
823 /*
824  * Clean any dirty buffers in the blockdev mapping which alias newly-created
825  * file blocks.  Only called for S_ISREG files - blockdevs do not set
826  * buffer_new
827  */
828 static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh)
829 {
830 	unsigned i;
831 	unsigned nblocks;
832 
833 	nblocks = map_bh->b_size >> dio->inode->i_blkbits;
834 
835 	for (i = 0; i < nblocks; i++) {
836 		unmap_underlying_metadata(map_bh->b_bdev,
837 					  map_bh->b_blocknr + i);
838 	}
839 }
840 
841 /*
842  * If we are not writing the entire block and get_block() allocated
843  * the block for us, we need to fill-in the unused portion of the
844  * block with zeros. This happens only if user-buffer, fileoffset or
845  * io length is not filesystem block-size multiple.
846  *
847  * `end' is zero if we're doing the start of the IO, 1 at the end of the
848  * IO.
849  */
850 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
851 		int end, struct buffer_head *map_bh)
852 {
853 	unsigned dio_blocks_per_fs_block;
854 	unsigned this_chunk_blocks;	/* In dio_blocks */
855 	unsigned this_chunk_bytes;
856 	struct page *page;
857 
858 	sdio->start_zero_done = 1;
859 	if (!sdio->blkfactor || !buffer_new(map_bh))
860 		return;
861 
862 	dio_blocks_per_fs_block = 1 << sdio->blkfactor;
863 	this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
864 
865 	if (!this_chunk_blocks)
866 		return;
867 
868 	/*
869 	 * We need to zero out part of an fs block.  It is either at the
870 	 * beginning or the end of the fs block.
871 	 */
872 	if (end)
873 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
874 
875 	this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
876 
877 	page = ZERO_PAGE(0);
878 	if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
879 				sdio->next_block_for_io, map_bh))
880 		return;
881 
882 	sdio->next_block_for_io += this_chunk_blocks;
883 }
884 
885 /*
886  * Walk the user pages, and the file, mapping blocks to disk and generating
887  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
888  * into submit_page_section(), which takes care of the next stage of submission
889  *
890  * Direct IO against a blockdev is different from a file.  Because we can
891  * happily perform page-sized but 512-byte aligned IOs.  It is important that
892  * blockdev IO be able to have fine alignment and large sizes.
893  *
894  * So what we do is to permit the ->get_block function to populate bh.b_size
895  * with the size of IO which is permitted at this offset and this i_blkbits.
896  *
897  * For best results, the blockdev should be set up with 512-byte i_blkbits and
898  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
899  * fine alignment but still allows this function to work in PAGE_SIZE units.
900  */
901 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
902 			struct buffer_head *map_bh)
903 {
904 	const unsigned blkbits = sdio->blkbits;
905 	int ret = 0;
906 
907 	while (sdio->block_in_file < sdio->final_block_in_request) {
908 		struct page *page;
909 		size_t from, to;
910 
911 		page = dio_get_page(dio, sdio);
912 		if (IS_ERR(page)) {
913 			ret = PTR_ERR(page);
914 			goto out;
915 		}
916 		from = sdio->head ? 0 : sdio->from;
917 		to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
918 		sdio->head++;
919 
920 		while (from < to) {
921 			unsigned this_chunk_bytes;	/* # of bytes mapped */
922 			unsigned this_chunk_blocks;	/* # of blocks */
923 			unsigned u;
924 
925 			if (sdio->blocks_available == 0) {
926 				/*
927 				 * Need to go and map some more disk
928 				 */
929 				unsigned long blkmask;
930 				unsigned long dio_remainder;
931 
932 				ret = get_more_blocks(dio, sdio, map_bh);
933 				if (ret) {
934 					page_cache_release(page);
935 					goto out;
936 				}
937 				if (!buffer_mapped(map_bh))
938 					goto do_holes;
939 
940 				sdio->blocks_available =
941 						map_bh->b_size >> sdio->blkbits;
942 				sdio->next_block_for_io =
943 					map_bh->b_blocknr << sdio->blkfactor;
944 				if (buffer_new(map_bh))
945 					clean_blockdev_aliases(dio, map_bh);
946 
947 				if (!sdio->blkfactor)
948 					goto do_holes;
949 
950 				blkmask = (1 << sdio->blkfactor) - 1;
951 				dio_remainder = (sdio->block_in_file & blkmask);
952 
953 				/*
954 				 * If we are at the start of IO and that IO
955 				 * starts partway into a fs-block,
956 				 * dio_remainder will be non-zero.  If the IO
957 				 * is a read then we can simply advance the IO
958 				 * cursor to the first block which is to be
959 				 * read.  But if the IO is a write and the
960 				 * block was newly allocated we cannot do that;
961 				 * the start of the fs block must be zeroed out
962 				 * on-disk
963 				 */
964 				if (!buffer_new(map_bh))
965 					sdio->next_block_for_io += dio_remainder;
966 				sdio->blocks_available -= dio_remainder;
967 			}
968 do_holes:
969 			/* Handle holes */
970 			if (!buffer_mapped(map_bh)) {
971 				loff_t i_size_aligned;
972 
973 				/* AKPM: eargh, -ENOTBLK is a hack */
974 				if (dio->rw & WRITE) {
975 					page_cache_release(page);
976 					return -ENOTBLK;
977 				}
978 
979 				/*
980 				 * Be sure to account for a partial block as the
981 				 * last block in the file
982 				 */
983 				i_size_aligned = ALIGN(i_size_read(dio->inode),
984 							1 << blkbits);
985 				if (sdio->block_in_file >=
986 						i_size_aligned >> blkbits) {
987 					/* We hit eof */
988 					page_cache_release(page);
989 					goto out;
990 				}
991 				zero_user(page, from, 1 << blkbits);
992 				sdio->block_in_file++;
993 				from += 1 << blkbits;
994 				dio->result += 1 << blkbits;
995 				goto next_block;
996 			}
997 
998 			/*
999 			 * If we're performing IO which has an alignment which
1000 			 * is finer than the underlying fs, go check to see if
1001 			 * we must zero out the start of this block.
1002 			 */
1003 			if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1004 				dio_zero_block(dio, sdio, 0, map_bh);
1005 
1006 			/*
1007 			 * Work out, in this_chunk_blocks, how much disk we
1008 			 * can add to this page
1009 			 */
1010 			this_chunk_blocks = sdio->blocks_available;
1011 			u = (to - from) >> blkbits;
1012 			if (this_chunk_blocks > u)
1013 				this_chunk_blocks = u;
1014 			u = sdio->final_block_in_request - sdio->block_in_file;
1015 			if (this_chunk_blocks > u)
1016 				this_chunk_blocks = u;
1017 			this_chunk_bytes = this_chunk_blocks << blkbits;
1018 			BUG_ON(this_chunk_bytes == 0);
1019 
1020 			if (this_chunk_blocks == sdio->blocks_available)
1021 				sdio->boundary = buffer_boundary(map_bh);
1022 			ret = submit_page_section(dio, sdio, page,
1023 						  from,
1024 						  this_chunk_bytes,
1025 						  sdio->next_block_for_io,
1026 						  map_bh);
1027 			if (ret) {
1028 				page_cache_release(page);
1029 				goto out;
1030 			}
1031 			sdio->next_block_for_io += this_chunk_blocks;
1032 
1033 			sdio->block_in_file += this_chunk_blocks;
1034 			from += this_chunk_bytes;
1035 			dio->result += this_chunk_bytes;
1036 			sdio->blocks_available -= this_chunk_blocks;
1037 next_block:
1038 			BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1039 			if (sdio->block_in_file == sdio->final_block_in_request)
1040 				break;
1041 		}
1042 
1043 		/* Drop the ref which was taken in get_user_pages() */
1044 		page_cache_release(page);
1045 	}
1046 out:
1047 	return ret;
1048 }
1049 
1050 static inline int drop_refcount(struct dio *dio)
1051 {
1052 	int ret2;
1053 	unsigned long flags;
1054 
1055 	/*
1056 	 * Sync will always be dropping the final ref and completing the
1057 	 * operation.  AIO can if it was a broken operation described above or
1058 	 * in fact if all the bios race to complete before we get here.  In
1059 	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1060 	 * return code that the caller will hand to ->complete().
1061 	 *
1062 	 * This is managed by the bio_lock instead of being an atomic_t so that
1063 	 * completion paths can drop their ref and use the remaining count to
1064 	 * decide to wake the submission path atomically.
1065 	 */
1066 	spin_lock_irqsave(&dio->bio_lock, flags);
1067 	ret2 = --dio->refcount;
1068 	spin_unlock_irqrestore(&dio->bio_lock, flags);
1069 	return ret2;
1070 }
1071 
1072 /*
1073  * This is a library function for use by filesystem drivers.
1074  *
1075  * The locking rules are governed by the flags parameter:
1076  *  - if the flags value contains DIO_LOCKING we use a fancy locking
1077  *    scheme for dumb filesystems.
1078  *    For writes this function is called under i_mutex and returns with
1079  *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1080  *    taken and dropped again before returning.
1081  *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1082  *    internal locking but rather rely on the filesystem to synchronize
1083  *    direct I/O reads/writes versus each other and truncate.
1084  *
1085  * To help with locking against truncate we incremented the i_dio_count
1086  * counter before starting direct I/O, and decrement it once we are done.
1087  * Truncate can wait for it to reach zero to provide exclusion.  It is
1088  * expected that filesystem provide exclusion between new direct I/O
1089  * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1090  * but other filesystems need to take care of this on their own.
1091  *
1092  * NOTE: if you pass "sdio" to anything by pointer make sure that function
1093  * is always inlined. Otherwise gcc is unable to split the structure into
1094  * individual fields and will generate much worse code. This is important
1095  * for the whole file.
1096  */
1097 static inline ssize_t
1098 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1099 		      struct block_device *bdev, struct iov_iter *iter,
1100 		      loff_t offset, get_block_t get_block, dio_iodone_t end_io,
1101 		      dio_submit_t submit_io, int flags)
1102 {
1103 	unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits);
1104 	unsigned blkbits = i_blkbits;
1105 	unsigned blocksize_mask = (1 << blkbits) - 1;
1106 	ssize_t retval = -EINVAL;
1107 	size_t count = iov_iter_count(iter);
1108 	loff_t end = offset + count;
1109 	struct dio *dio;
1110 	struct dio_submit sdio = { 0, };
1111 	struct buffer_head map_bh = { 0, };
1112 	struct blk_plug plug;
1113 	unsigned long align = offset | iov_iter_alignment(iter);
1114 
1115 	/*
1116 	 * Avoid references to bdev if not absolutely needed to give
1117 	 * the early prefetch in the caller enough time.
1118 	 */
1119 
1120 	if (align & blocksize_mask) {
1121 		if (bdev)
1122 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
1123 		blocksize_mask = (1 << blkbits) - 1;
1124 		if (align & blocksize_mask)
1125 			goto out;
1126 	}
1127 
1128 	/* watch out for a 0 len io from a tricksy fs */
1129 	if (iov_iter_rw(iter) == READ && !iov_iter_count(iter))
1130 		return 0;
1131 
1132 	dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1133 	retval = -ENOMEM;
1134 	if (!dio)
1135 		goto out;
1136 	/*
1137 	 * Believe it or not, zeroing out the page array caused a .5%
1138 	 * performance regression in a database benchmark.  So, we take
1139 	 * care to only zero out what's needed.
1140 	 */
1141 	memset(dio, 0, offsetof(struct dio, pages));
1142 
1143 	dio->flags = flags;
1144 	if (dio->flags & DIO_LOCKING) {
1145 		if (iov_iter_rw(iter) == READ) {
1146 			struct address_space *mapping =
1147 					iocb->ki_filp->f_mapping;
1148 
1149 			/* will be released by direct_io_worker */
1150 			mutex_lock(&inode->i_mutex);
1151 
1152 			retval = filemap_write_and_wait_range(mapping, offset,
1153 							      end - 1);
1154 			if (retval) {
1155 				mutex_unlock(&inode->i_mutex);
1156 				kmem_cache_free(dio_cache, dio);
1157 				goto out;
1158 			}
1159 		}
1160 	}
1161 
1162 	/*
1163 	 * For file extending writes updating i_size before data writeouts
1164 	 * complete can expose uninitialized blocks in dumb filesystems.
1165 	 * In that case we need to wait for I/O completion even if asked
1166 	 * for an asynchronous write.
1167 	 */
1168 	if (is_sync_kiocb(iocb))
1169 		dio->is_async = false;
1170 	else if (!(dio->flags & DIO_ASYNC_EXTEND) &&
1171 		 iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1172 		dio->is_async = false;
1173 	else
1174 		dio->is_async = true;
1175 
1176 	dio->inode = inode;
1177 	dio->rw = iov_iter_rw(iter) == WRITE ? WRITE_ODIRECT : READ;
1178 
1179 	/*
1180 	 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1181 	 * so that we can call ->fsync.
1182 	 */
1183 	if (dio->is_async && iov_iter_rw(iter) == WRITE &&
1184 	    ((iocb->ki_filp->f_flags & O_DSYNC) ||
1185 	     IS_SYNC(iocb->ki_filp->f_mapping->host))) {
1186 		retval = dio_set_defer_completion(dio);
1187 		if (retval) {
1188 			/*
1189 			 * We grab i_mutex only for reads so we don't have
1190 			 * to release it here
1191 			 */
1192 			kmem_cache_free(dio_cache, dio);
1193 			goto out;
1194 		}
1195 	}
1196 
1197 	/*
1198 	 * Will be decremented at I/O completion time.
1199 	 */
1200 	if (!(dio->flags & DIO_SKIP_DIO_COUNT))
1201 		inode_dio_begin(inode);
1202 
1203 	retval = 0;
1204 	sdio.blkbits = blkbits;
1205 	sdio.blkfactor = i_blkbits - blkbits;
1206 	sdio.block_in_file = offset >> blkbits;
1207 
1208 	sdio.get_block = get_block;
1209 	dio->end_io = end_io;
1210 	sdio.submit_io = submit_io;
1211 	sdio.final_block_in_bio = -1;
1212 	sdio.next_block_for_io = -1;
1213 
1214 	dio->iocb = iocb;
1215 	dio->i_size = i_size_read(inode);
1216 
1217 	spin_lock_init(&dio->bio_lock);
1218 	dio->refcount = 1;
1219 
1220 	sdio.iter = iter;
1221 	sdio.final_block_in_request =
1222 		(offset + iov_iter_count(iter)) >> blkbits;
1223 
1224 	/*
1225 	 * In case of non-aligned buffers, we may need 2 more
1226 	 * pages since we need to zero out first and last block.
1227 	 */
1228 	if (unlikely(sdio.blkfactor))
1229 		sdio.pages_in_io = 2;
1230 
1231 	sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1232 
1233 	blk_start_plug(&plug);
1234 
1235 	retval = do_direct_IO(dio, &sdio, &map_bh);
1236 	if (retval)
1237 		dio_cleanup(dio, &sdio);
1238 
1239 	if (retval == -ENOTBLK) {
1240 		/*
1241 		 * The remaining part of the request will be
1242 		 * be handled by buffered I/O when we return
1243 		 */
1244 		retval = 0;
1245 	}
1246 	/*
1247 	 * There may be some unwritten disk at the end of a part-written
1248 	 * fs-block-sized block.  Go zero that now.
1249 	 */
1250 	dio_zero_block(dio, &sdio, 1, &map_bh);
1251 
1252 	if (sdio.cur_page) {
1253 		ssize_t ret2;
1254 
1255 		ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1256 		if (retval == 0)
1257 			retval = ret2;
1258 		page_cache_release(sdio.cur_page);
1259 		sdio.cur_page = NULL;
1260 	}
1261 	if (sdio.bio)
1262 		dio_bio_submit(dio, &sdio);
1263 
1264 	blk_finish_plug(&plug);
1265 
1266 	/*
1267 	 * It is possible that, we return short IO due to end of file.
1268 	 * In that case, we need to release all the pages we got hold on.
1269 	 */
1270 	dio_cleanup(dio, &sdio);
1271 
1272 	/*
1273 	 * All block lookups have been performed. For READ requests
1274 	 * we can let i_mutex go now that its achieved its purpose
1275 	 * of protecting us from looking up uninitialized blocks.
1276 	 */
1277 	if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1278 		mutex_unlock(&dio->inode->i_mutex);
1279 
1280 	/*
1281 	 * The only time we want to leave bios in flight is when a successful
1282 	 * partial aio read or full aio write have been setup.  In that case
1283 	 * bio completion will call aio_complete.  The only time it's safe to
1284 	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1285 	 * This had *better* be the only place that raises -EIOCBQUEUED.
1286 	 */
1287 	BUG_ON(retval == -EIOCBQUEUED);
1288 	if (dio->is_async && retval == 0 && dio->result &&
1289 	    (iov_iter_rw(iter) == READ || dio->result == count))
1290 		retval = -EIOCBQUEUED;
1291 	else
1292 		dio_await_completion(dio);
1293 
1294 	if (drop_refcount(dio) == 0) {
1295 		retval = dio_complete(dio, offset, retval, false);
1296 	} else
1297 		BUG_ON(retval != -EIOCBQUEUED);
1298 
1299 out:
1300 	return retval;
1301 }
1302 
1303 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1304 			     struct block_device *bdev, struct iov_iter *iter,
1305 			     loff_t offset, get_block_t get_block,
1306 			     dio_iodone_t end_io, dio_submit_t submit_io,
1307 			     int flags)
1308 {
1309 	/*
1310 	 * The block device state is needed in the end to finally
1311 	 * submit everything.  Since it's likely to be cache cold
1312 	 * prefetch it here as first thing to hide some of the
1313 	 * latency.
1314 	 *
1315 	 * Attempt to prefetch the pieces we likely need later.
1316 	 */
1317 	prefetch(&bdev->bd_disk->part_tbl);
1318 	prefetch(bdev->bd_queue);
1319 	prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1320 
1321 	return do_blockdev_direct_IO(iocb, inode, bdev, iter, offset, get_block,
1322 				     end_io, submit_io, flags);
1323 }
1324 
1325 EXPORT_SYMBOL(__blockdev_direct_IO);
1326 
1327 static __init int dio_init(void)
1328 {
1329 	dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1330 	return 0;
1331 }
1332 module_init(dio_init)
1333