1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/direct-io.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * O_DIRECT 8 * 9 * 04Jul2002 Andrew Morton 10 * Initial version 11 * 11Sep2002 janetinc@us.ibm.com 12 * added readv/writev support. 13 * 29Oct2002 Andrew Morton 14 * rewrote bio_add_page() support. 15 * 30Oct2002 pbadari@us.ibm.com 16 * added support for non-aligned IO. 17 * 06Nov2002 pbadari@us.ibm.com 18 * added asynchronous IO support. 19 * 21Jul2003 nathans@sgi.com 20 * added IO completion notifier. 21 */ 22 23 #include <linux/kernel.h> 24 #include <linux/module.h> 25 #include <linux/types.h> 26 #include <linux/fs.h> 27 #include <linux/mm.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/pagemap.h> 31 #include <linux/task_io_accounting_ops.h> 32 #include <linux/bio.h> 33 #include <linux/wait.h> 34 #include <linux/err.h> 35 #include <linux/blkdev.h> 36 #include <linux/buffer_head.h> 37 #include <linux/rwsem.h> 38 #include <linux/uio.h> 39 #include <linux/atomic.h> 40 #include <linux/prefetch.h> 41 42 /* 43 * How many user pages to map in one call to get_user_pages(). This determines 44 * the size of a structure in the slab cache 45 */ 46 #define DIO_PAGES 64 47 48 /* 49 * Flags for dio_complete() 50 */ 51 #define DIO_COMPLETE_ASYNC 0x01 /* This is async IO */ 52 #define DIO_COMPLETE_INVALIDATE 0x02 /* Can invalidate pages */ 53 54 /* 55 * This code generally works in units of "dio_blocks". A dio_block is 56 * somewhere between the hard sector size and the filesystem block size. it 57 * is determined on a per-invocation basis. When talking to the filesystem 58 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity 59 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted 60 * to bio_block quantities by shifting left by blkfactor. 61 * 62 * If blkfactor is zero then the user's request was aligned to the filesystem's 63 * blocksize. 64 */ 65 66 /* dio_state only used in the submission path */ 67 68 struct dio_submit { 69 struct bio *bio; /* bio under assembly */ 70 unsigned blkbits; /* doesn't change */ 71 unsigned blkfactor; /* When we're using an alignment which 72 is finer than the filesystem's soft 73 blocksize, this specifies how much 74 finer. blkfactor=2 means 1/4-block 75 alignment. Does not change */ 76 unsigned start_zero_done; /* flag: sub-blocksize zeroing has 77 been performed at the start of a 78 write */ 79 int pages_in_io; /* approximate total IO pages */ 80 sector_t block_in_file; /* Current offset into the underlying 81 file in dio_block units. */ 82 unsigned blocks_available; /* At block_in_file. changes */ 83 int reap_counter; /* rate limit reaping */ 84 sector_t final_block_in_request;/* doesn't change */ 85 int boundary; /* prev block is at a boundary */ 86 get_block_t *get_block; /* block mapping function */ 87 dio_submit_t *submit_io; /* IO submition function */ 88 89 loff_t logical_offset_in_bio; /* current first logical block in bio */ 90 sector_t final_block_in_bio; /* current final block in bio + 1 */ 91 sector_t next_block_for_io; /* next block to be put under IO, 92 in dio_blocks units */ 93 94 /* 95 * Deferred addition of a page to the dio. These variables are 96 * private to dio_send_cur_page(), submit_page_section() and 97 * dio_bio_add_page(). 98 */ 99 struct page *cur_page; /* The page */ 100 unsigned cur_page_offset; /* Offset into it, in bytes */ 101 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ 102 sector_t cur_page_block; /* Where it starts */ 103 loff_t cur_page_fs_offset; /* Offset in file */ 104 105 struct iov_iter *iter; 106 /* 107 * Page queue. These variables belong to dio_refill_pages() and 108 * dio_get_page(). 109 */ 110 unsigned head; /* next page to process */ 111 unsigned tail; /* last valid page + 1 */ 112 size_t from, to; 113 }; 114 115 /* dio_state communicated between submission path and end_io */ 116 struct dio { 117 int flags; /* doesn't change */ 118 int op; 119 int op_flags; 120 blk_qc_t bio_cookie; 121 struct gendisk *bio_disk; 122 struct inode *inode; 123 loff_t i_size; /* i_size when submitted */ 124 dio_iodone_t *end_io; /* IO completion function */ 125 126 void *private; /* copy from map_bh.b_private */ 127 128 /* BIO completion state */ 129 spinlock_t bio_lock; /* protects BIO fields below */ 130 int page_errors; /* errno from get_user_pages() */ 131 int is_async; /* is IO async ? */ 132 bool defer_completion; /* defer AIO completion to workqueue? */ 133 bool should_dirty; /* if pages should be dirtied */ 134 int io_error; /* IO error in completion path */ 135 unsigned long refcount; /* direct_io_worker() and bios */ 136 struct bio *bio_list; /* singly linked via bi_private */ 137 struct task_struct *waiter; /* waiting task (NULL if none) */ 138 139 /* AIO related stuff */ 140 struct kiocb *iocb; /* kiocb */ 141 ssize_t result; /* IO result */ 142 143 /* 144 * pages[] (and any fields placed after it) are not zeroed out at 145 * allocation time. Don't add new fields after pages[] unless you 146 * wish that they not be zeroed. 147 */ 148 union { 149 struct page *pages[DIO_PAGES]; /* page buffer */ 150 struct work_struct complete_work;/* deferred AIO completion */ 151 }; 152 } ____cacheline_aligned_in_smp; 153 154 static struct kmem_cache *dio_cache __read_mostly; 155 156 /* 157 * How many pages are in the queue? 158 */ 159 static inline unsigned dio_pages_present(struct dio_submit *sdio) 160 { 161 return sdio->tail - sdio->head; 162 } 163 164 /* 165 * Go grab and pin some userspace pages. Typically we'll get 64 at a time. 166 */ 167 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio) 168 { 169 ssize_t ret; 170 171 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES, 172 &sdio->from); 173 174 if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) { 175 struct page *page = ZERO_PAGE(0); 176 /* 177 * A memory fault, but the filesystem has some outstanding 178 * mapped blocks. We need to use those blocks up to avoid 179 * leaking stale data in the file. 180 */ 181 if (dio->page_errors == 0) 182 dio->page_errors = ret; 183 get_page(page); 184 dio->pages[0] = page; 185 sdio->head = 0; 186 sdio->tail = 1; 187 sdio->from = 0; 188 sdio->to = PAGE_SIZE; 189 return 0; 190 } 191 192 if (ret >= 0) { 193 iov_iter_advance(sdio->iter, ret); 194 ret += sdio->from; 195 sdio->head = 0; 196 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE; 197 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1; 198 return 0; 199 } 200 return ret; 201 } 202 203 /* 204 * Get another userspace page. Returns an ERR_PTR on error. Pages are 205 * buffered inside the dio so that we can call get_user_pages() against a 206 * decent number of pages, less frequently. To provide nicer use of the 207 * L1 cache. 208 */ 209 static inline struct page *dio_get_page(struct dio *dio, 210 struct dio_submit *sdio) 211 { 212 if (dio_pages_present(sdio) == 0) { 213 int ret; 214 215 ret = dio_refill_pages(dio, sdio); 216 if (ret) 217 return ERR_PTR(ret); 218 BUG_ON(dio_pages_present(sdio) == 0); 219 } 220 return dio->pages[sdio->head]; 221 } 222 223 /* 224 * Warn about a page cache invalidation failure during a direct io write. 225 */ 226 void dio_warn_stale_pagecache(struct file *filp) 227 { 228 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 229 char pathname[128]; 230 struct inode *inode = file_inode(filp); 231 char *path; 232 233 errseq_set(&inode->i_mapping->wb_err, -EIO); 234 if (__ratelimit(&_rs)) { 235 path = file_path(filp, pathname, sizeof(pathname)); 236 if (IS_ERR(path)) 237 path = "(unknown)"; 238 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 239 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 240 current->comm); 241 } 242 } 243 244 /** 245 * dio_complete() - called when all DIO BIO I/O has been completed 246 * @offset: the byte offset in the file of the completed operation 247 * 248 * This drops i_dio_count, lets interested parties know that a DIO operation 249 * has completed, and calculates the resulting return code for the operation. 250 * 251 * It lets the filesystem know if it registered an interest earlier via 252 * get_block. Pass the private field of the map buffer_head so that 253 * filesystems can use it to hold additional state between get_block calls and 254 * dio_complete. 255 */ 256 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags) 257 { 258 loff_t offset = dio->iocb->ki_pos; 259 ssize_t transferred = 0; 260 int err; 261 262 /* 263 * AIO submission can race with bio completion to get here while 264 * expecting to have the last io completed by bio completion. 265 * In that case -EIOCBQUEUED is in fact not an error we want 266 * to preserve through this call. 267 */ 268 if (ret == -EIOCBQUEUED) 269 ret = 0; 270 271 if (dio->result) { 272 transferred = dio->result; 273 274 /* Check for short read case */ 275 if ((dio->op == REQ_OP_READ) && 276 ((offset + transferred) > dio->i_size)) 277 transferred = dio->i_size - offset; 278 /* ignore EFAULT if some IO has been done */ 279 if (unlikely(ret == -EFAULT) && transferred) 280 ret = 0; 281 } 282 283 if (ret == 0) 284 ret = dio->page_errors; 285 if (ret == 0) 286 ret = dio->io_error; 287 if (ret == 0) 288 ret = transferred; 289 290 if (dio->end_io) { 291 // XXX: ki_pos?? 292 err = dio->end_io(dio->iocb, offset, ret, dio->private); 293 if (err) 294 ret = err; 295 } 296 297 /* 298 * Try again to invalidate clean pages which might have been cached by 299 * non-direct readahead, or faulted in by get_user_pages() if the source 300 * of the write was an mmap'ed region of the file we're writing. Either 301 * one is a pretty crazy thing to do, so we don't support it 100%. If 302 * this invalidation fails, tough, the write still worked... 303 * 304 * And this page cache invalidation has to be after dio->end_io(), as 305 * some filesystems convert unwritten extents to real allocations in 306 * end_io() when necessary, otherwise a racing buffer read would cache 307 * zeros from unwritten extents. 308 */ 309 if (flags & DIO_COMPLETE_INVALIDATE && 310 ret > 0 && dio->op == REQ_OP_WRITE && 311 dio->inode->i_mapping->nrpages) { 312 err = invalidate_inode_pages2_range(dio->inode->i_mapping, 313 offset >> PAGE_SHIFT, 314 (offset + ret - 1) >> PAGE_SHIFT); 315 if (err) 316 dio_warn_stale_pagecache(dio->iocb->ki_filp); 317 } 318 319 inode_dio_end(dio->inode); 320 321 if (flags & DIO_COMPLETE_ASYNC) { 322 /* 323 * generic_write_sync expects ki_pos to have been updated 324 * already, but the submission path only does this for 325 * synchronous I/O. 326 */ 327 dio->iocb->ki_pos += transferred; 328 329 if (ret > 0 && dio->op == REQ_OP_WRITE) 330 ret = generic_write_sync(dio->iocb, ret); 331 dio->iocb->ki_complete(dio->iocb, ret, 0); 332 } 333 334 kmem_cache_free(dio_cache, dio); 335 return ret; 336 } 337 338 static void dio_aio_complete_work(struct work_struct *work) 339 { 340 struct dio *dio = container_of(work, struct dio, complete_work); 341 342 dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE); 343 } 344 345 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio); 346 347 /* 348 * Asynchronous IO callback. 349 */ 350 static void dio_bio_end_aio(struct bio *bio) 351 { 352 struct dio *dio = bio->bi_private; 353 unsigned long remaining; 354 unsigned long flags; 355 bool defer_completion = false; 356 357 /* cleanup the bio */ 358 dio_bio_complete(dio, bio); 359 360 spin_lock_irqsave(&dio->bio_lock, flags); 361 remaining = --dio->refcount; 362 if (remaining == 1 && dio->waiter) 363 wake_up_process(dio->waiter); 364 spin_unlock_irqrestore(&dio->bio_lock, flags); 365 366 if (remaining == 0) { 367 /* 368 * Defer completion when defer_completion is set or 369 * when the inode has pages mapped and this is AIO write. 370 * We need to invalidate those pages because there is a 371 * chance they contain stale data in the case buffered IO 372 * went in between AIO submission and completion into the 373 * same region. 374 */ 375 if (dio->result) 376 defer_completion = dio->defer_completion || 377 (dio->op == REQ_OP_WRITE && 378 dio->inode->i_mapping->nrpages); 379 if (defer_completion) { 380 INIT_WORK(&dio->complete_work, dio_aio_complete_work); 381 queue_work(dio->inode->i_sb->s_dio_done_wq, 382 &dio->complete_work); 383 } else { 384 dio_complete(dio, 0, DIO_COMPLETE_ASYNC); 385 } 386 } 387 } 388 389 /* 390 * The BIO completion handler simply queues the BIO up for the process-context 391 * handler. 392 * 393 * During I/O bi_private points at the dio. After I/O, bi_private is used to 394 * implement a singly-linked list of completed BIOs, at dio->bio_list. 395 */ 396 static void dio_bio_end_io(struct bio *bio) 397 { 398 struct dio *dio = bio->bi_private; 399 unsigned long flags; 400 401 spin_lock_irqsave(&dio->bio_lock, flags); 402 bio->bi_private = dio->bio_list; 403 dio->bio_list = bio; 404 if (--dio->refcount == 1 && dio->waiter) 405 wake_up_process(dio->waiter); 406 spin_unlock_irqrestore(&dio->bio_lock, flags); 407 } 408 409 /** 410 * dio_end_io - handle the end io action for the given bio 411 * @bio: The direct io bio thats being completed 412 * 413 * This is meant to be called by any filesystem that uses their own dio_submit_t 414 * so that the DIO specific endio actions are dealt with after the filesystem 415 * has done it's completion work. 416 */ 417 void dio_end_io(struct bio *bio) 418 { 419 struct dio *dio = bio->bi_private; 420 421 if (dio->is_async) 422 dio_bio_end_aio(bio); 423 else 424 dio_bio_end_io(bio); 425 } 426 EXPORT_SYMBOL_GPL(dio_end_io); 427 428 static inline void 429 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio, 430 struct block_device *bdev, 431 sector_t first_sector, int nr_vecs) 432 { 433 struct bio *bio; 434 435 /* 436 * bio_alloc() is guaranteed to return a bio when allowed to sleep and 437 * we request a valid number of vectors. 438 */ 439 bio = bio_alloc(GFP_KERNEL, nr_vecs); 440 441 bio_set_dev(bio, bdev); 442 bio->bi_iter.bi_sector = first_sector; 443 bio_set_op_attrs(bio, dio->op, dio->op_flags); 444 if (dio->is_async) 445 bio->bi_end_io = dio_bio_end_aio; 446 else 447 bio->bi_end_io = dio_bio_end_io; 448 449 bio->bi_write_hint = dio->iocb->ki_hint; 450 451 sdio->bio = bio; 452 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset; 453 } 454 455 /* 456 * In the AIO read case we speculatively dirty the pages before starting IO. 457 * During IO completion, any of these pages which happen to have been written 458 * back will be redirtied by bio_check_pages_dirty(). 459 * 460 * bios hold a dio reference between submit_bio and ->end_io. 461 */ 462 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio) 463 { 464 struct bio *bio = sdio->bio; 465 unsigned long flags; 466 467 bio->bi_private = dio; 468 469 spin_lock_irqsave(&dio->bio_lock, flags); 470 dio->refcount++; 471 spin_unlock_irqrestore(&dio->bio_lock, flags); 472 473 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) 474 bio_set_pages_dirty(bio); 475 476 dio->bio_disk = bio->bi_disk; 477 478 if (sdio->submit_io) { 479 sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio); 480 dio->bio_cookie = BLK_QC_T_NONE; 481 } else 482 dio->bio_cookie = submit_bio(bio); 483 484 sdio->bio = NULL; 485 sdio->boundary = 0; 486 sdio->logical_offset_in_bio = 0; 487 } 488 489 /* 490 * Release any resources in case of a failure 491 */ 492 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio) 493 { 494 while (sdio->head < sdio->tail) 495 put_page(dio->pages[sdio->head++]); 496 } 497 498 /* 499 * Wait for the next BIO to complete. Remove it and return it. NULL is 500 * returned once all BIOs have been completed. This must only be called once 501 * all bios have been issued so that dio->refcount can only decrease. This 502 * requires that that the caller hold a reference on the dio. 503 */ 504 static struct bio *dio_await_one(struct dio *dio) 505 { 506 unsigned long flags; 507 struct bio *bio = NULL; 508 509 spin_lock_irqsave(&dio->bio_lock, flags); 510 511 /* 512 * Wait as long as the list is empty and there are bios in flight. bio 513 * completion drops the count, maybe adds to the list, and wakes while 514 * holding the bio_lock so we don't need set_current_state()'s barrier 515 * and can call it after testing our condition. 516 */ 517 while (dio->refcount > 1 && dio->bio_list == NULL) { 518 __set_current_state(TASK_UNINTERRUPTIBLE); 519 dio->waiter = current; 520 spin_unlock_irqrestore(&dio->bio_lock, flags); 521 if (!(dio->iocb->ki_flags & IOCB_HIPRI) || 522 !blk_poll(dio->bio_disk->queue, dio->bio_cookie, true)) 523 io_schedule(); 524 /* wake up sets us TASK_RUNNING */ 525 spin_lock_irqsave(&dio->bio_lock, flags); 526 dio->waiter = NULL; 527 } 528 if (dio->bio_list) { 529 bio = dio->bio_list; 530 dio->bio_list = bio->bi_private; 531 } 532 spin_unlock_irqrestore(&dio->bio_lock, flags); 533 return bio; 534 } 535 536 /* 537 * Process one completed BIO. No locks are held. 538 */ 539 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio) 540 { 541 struct bio_vec *bvec; 542 blk_status_t err = bio->bi_status; 543 544 if (err) { 545 if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT)) 546 dio->io_error = -EAGAIN; 547 else 548 dio->io_error = -EIO; 549 } 550 551 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) { 552 bio_check_pages_dirty(bio); /* transfers ownership */ 553 } else { 554 struct bvec_iter_all iter_all; 555 556 bio_for_each_segment_all(bvec, bio, iter_all) { 557 struct page *page = bvec->bv_page; 558 559 if (dio->op == REQ_OP_READ && !PageCompound(page) && 560 dio->should_dirty) 561 set_page_dirty_lock(page); 562 put_page(page); 563 } 564 bio_put(bio); 565 } 566 return err; 567 } 568 569 /* 570 * Wait on and process all in-flight BIOs. This must only be called once 571 * all bios have been issued so that the refcount can only decrease. 572 * This just waits for all bios to make it through dio_bio_complete. IO 573 * errors are propagated through dio->io_error and should be propagated via 574 * dio_complete(). 575 */ 576 static void dio_await_completion(struct dio *dio) 577 { 578 struct bio *bio; 579 do { 580 bio = dio_await_one(dio); 581 if (bio) 582 dio_bio_complete(dio, bio); 583 } while (bio); 584 } 585 586 /* 587 * A really large O_DIRECT read or write can generate a lot of BIOs. So 588 * to keep the memory consumption sane we periodically reap any completed BIOs 589 * during the BIO generation phase. 590 * 591 * This also helps to limit the peak amount of pinned userspace memory. 592 */ 593 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio) 594 { 595 int ret = 0; 596 597 if (sdio->reap_counter++ >= 64) { 598 while (dio->bio_list) { 599 unsigned long flags; 600 struct bio *bio; 601 int ret2; 602 603 spin_lock_irqsave(&dio->bio_lock, flags); 604 bio = dio->bio_list; 605 dio->bio_list = bio->bi_private; 606 spin_unlock_irqrestore(&dio->bio_lock, flags); 607 ret2 = blk_status_to_errno(dio_bio_complete(dio, bio)); 608 if (ret == 0) 609 ret = ret2; 610 } 611 sdio->reap_counter = 0; 612 } 613 return ret; 614 } 615 616 /* 617 * Create workqueue for deferred direct IO completions. We allocate the 618 * workqueue when it's first needed. This avoids creating workqueue for 619 * filesystems that don't need it and also allows us to create the workqueue 620 * late enough so the we can include s_id in the name of the workqueue. 621 */ 622 int sb_init_dio_done_wq(struct super_block *sb) 623 { 624 struct workqueue_struct *old; 625 struct workqueue_struct *wq = alloc_workqueue("dio/%s", 626 WQ_MEM_RECLAIM, 0, 627 sb->s_id); 628 if (!wq) 629 return -ENOMEM; 630 /* 631 * This has to be atomic as more DIOs can race to create the workqueue 632 */ 633 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq); 634 /* Someone created workqueue before us? Free ours... */ 635 if (old) 636 destroy_workqueue(wq); 637 return 0; 638 } 639 640 static int dio_set_defer_completion(struct dio *dio) 641 { 642 struct super_block *sb = dio->inode->i_sb; 643 644 if (dio->defer_completion) 645 return 0; 646 dio->defer_completion = true; 647 if (!sb->s_dio_done_wq) 648 return sb_init_dio_done_wq(sb); 649 return 0; 650 } 651 652 /* 653 * Call into the fs to map some more disk blocks. We record the current number 654 * of available blocks at sdio->blocks_available. These are in units of the 655 * fs blocksize, i_blocksize(inode). 656 * 657 * The fs is allowed to map lots of blocks at once. If it wants to do that, 658 * it uses the passed inode-relative block number as the file offset, as usual. 659 * 660 * get_block() is passed the number of i_blkbits-sized blocks which direct_io 661 * has remaining to do. The fs should not map more than this number of blocks. 662 * 663 * If the fs has mapped a lot of blocks, it should populate bh->b_size to 664 * indicate how much contiguous disk space has been made available at 665 * bh->b_blocknr. 666 * 667 * If *any* of the mapped blocks are new, then the fs must set buffer_new(). 668 * This isn't very efficient... 669 * 670 * In the case of filesystem holes: the fs may return an arbitrarily-large 671 * hole by returning an appropriate value in b_size and by clearing 672 * buffer_mapped(). However the direct-io code will only process holes one 673 * block at a time - it will repeatedly call get_block() as it walks the hole. 674 */ 675 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio, 676 struct buffer_head *map_bh) 677 { 678 int ret; 679 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ 680 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */ 681 unsigned long fs_count; /* Number of filesystem-sized blocks */ 682 int create; 683 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor; 684 loff_t i_size; 685 686 /* 687 * If there was a memory error and we've overwritten all the 688 * mapped blocks then we can now return that memory error 689 */ 690 ret = dio->page_errors; 691 if (ret == 0) { 692 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request); 693 fs_startblk = sdio->block_in_file >> sdio->blkfactor; 694 fs_endblk = (sdio->final_block_in_request - 1) >> 695 sdio->blkfactor; 696 fs_count = fs_endblk - fs_startblk + 1; 697 698 map_bh->b_state = 0; 699 map_bh->b_size = fs_count << i_blkbits; 700 701 /* 702 * For writes that could fill holes inside i_size on a 703 * DIO_SKIP_HOLES filesystem we forbid block creations: only 704 * overwrites are permitted. We will return early to the caller 705 * once we see an unmapped buffer head returned, and the caller 706 * will fall back to buffered I/O. 707 * 708 * Otherwise the decision is left to the get_blocks method, 709 * which may decide to handle it or also return an unmapped 710 * buffer head. 711 */ 712 create = dio->op == REQ_OP_WRITE; 713 if (dio->flags & DIO_SKIP_HOLES) { 714 i_size = i_size_read(dio->inode); 715 if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits) 716 create = 0; 717 } 718 719 ret = (*sdio->get_block)(dio->inode, fs_startblk, 720 map_bh, create); 721 722 /* Store for completion */ 723 dio->private = map_bh->b_private; 724 725 if (ret == 0 && buffer_defer_completion(map_bh)) 726 ret = dio_set_defer_completion(dio); 727 } 728 return ret; 729 } 730 731 /* 732 * There is no bio. Make one now. 733 */ 734 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio, 735 sector_t start_sector, struct buffer_head *map_bh) 736 { 737 sector_t sector; 738 int ret, nr_pages; 739 740 ret = dio_bio_reap(dio, sdio); 741 if (ret) 742 goto out; 743 sector = start_sector << (sdio->blkbits - 9); 744 nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES); 745 BUG_ON(nr_pages <= 0); 746 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages); 747 sdio->boundary = 0; 748 out: 749 return ret; 750 } 751 752 /* 753 * Attempt to put the current chunk of 'cur_page' into the current BIO. If 754 * that was successful then update final_block_in_bio and take a ref against 755 * the just-added page. 756 * 757 * Return zero on success. Non-zero means the caller needs to start a new BIO. 758 */ 759 static inline int dio_bio_add_page(struct dio_submit *sdio) 760 { 761 int ret; 762 763 ret = bio_add_page(sdio->bio, sdio->cur_page, 764 sdio->cur_page_len, sdio->cur_page_offset); 765 if (ret == sdio->cur_page_len) { 766 /* 767 * Decrement count only, if we are done with this page 768 */ 769 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE) 770 sdio->pages_in_io--; 771 get_page(sdio->cur_page); 772 sdio->final_block_in_bio = sdio->cur_page_block + 773 (sdio->cur_page_len >> sdio->blkbits); 774 ret = 0; 775 } else { 776 ret = 1; 777 } 778 return ret; 779 } 780 781 /* 782 * Put cur_page under IO. The section of cur_page which is described by 783 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page 784 * starts on-disk at cur_page_block. 785 * 786 * We take a ref against the page here (on behalf of its presence in the bio). 787 * 788 * The caller of this function is responsible for removing cur_page from the 789 * dio, and for dropping the refcount which came from that presence. 790 */ 791 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio, 792 struct buffer_head *map_bh) 793 { 794 int ret = 0; 795 796 if (sdio->bio) { 797 loff_t cur_offset = sdio->cur_page_fs_offset; 798 loff_t bio_next_offset = sdio->logical_offset_in_bio + 799 sdio->bio->bi_iter.bi_size; 800 801 /* 802 * See whether this new request is contiguous with the old. 803 * 804 * Btrfs cannot handle having logically non-contiguous requests 805 * submitted. For example if you have 806 * 807 * Logical: [0-4095][HOLE][8192-12287] 808 * Physical: [0-4095] [4096-8191] 809 * 810 * We cannot submit those pages together as one BIO. So if our 811 * current logical offset in the file does not equal what would 812 * be the next logical offset in the bio, submit the bio we 813 * have. 814 */ 815 if (sdio->final_block_in_bio != sdio->cur_page_block || 816 cur_offset != bio_next_offset) 817 dio_bio_submit(dio, sdio); 818 } 819 820 if (sdio->bio == NULL) { 821 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 822 if (ret) 823 goto out; 824 } 825 826 if (dio_bio_add_page(sdio) != 0) { 827 dio_bio_submit(dio, sdio); 828 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 829 if (ret == 0) { 830 ret = dio_bio_add_page(sdio); 831 BUG_ON(ret != 0); 832 } 833 } 834 out: 835 return ret; 836 } 837 838 /* 839 * An autonomous function to put a chunk of a page under deferred IO. 840 * 841 * The caller doesn't actually know (or care) whether this piece of page is in 842 * a BIO, or is under IO or whatever. We just take care of all possible 843 * situations here. The separation between the logic of do_direct_IO() and 844 * that of submit_page_section() is important for clarity. Please don't break. 845 * 846 * The chunk of page starts on-disk at blocknr. 847 * 848 * We perform deferred IO, by recording the last-submitted page inside our 849 * private part of the dio structure. If possible, we just expand the IO 850 * across that page here. 851 * 852 * If that doesn't work out then we put the old page into the bio and add this 853 * page to the dio instead. 854 */ 855 static inline int 856 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page, 857 unsigned offset, unsigned len, sector_t blocknr, 858 struct buffer_head *map_bh) 859 { 860 int ret = 0; 861 862 if (dio->op == REQ_OP_WRITE) { 863 /* 864 * Read accounting is performed in submit_bio() 865 */ 866 task_io_account_write(len); 867 } 868 869 /* 870 * Can we just grow the current page's presence in the dio? 871 */ 872 if (sdio->cur_page == page && 873 sdio->cur_page_offset + sdio->cur_page_len == offset && 874 sdio->cur_page_block + 875 (sdio->cur_page_len >> sdio->blkbits) == blocknr) { 876 sdio->cur_page_len += len; 877 goto out; 878 } 879 880 /* 881 * If there's a deferred page already there then send it. 882 */ 883 if (sdio->cur_page) { 884 ret = dio_send_cur_page(dio, sdio, map_bh); 885 put_page(sdio->cur_page); 886 sdio->cur_page = NULL; 887 if (ret) 888 return ret; 889 } 890 891 get_page(page); /* It is in dio */ 892 sdio->cur_page = page; 893 sdio->cur_page_offset = offset; 894 sdio->cur_page_len = len; 895 sdio->cur_page_block = blocknr; 896 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits; 897 out: 898 /* 899 * If sdio->boundary then we want to schedule the IO now to 900 * avoid metadata seeks. 901 */ 902 if (sdio->boundary) { 903 ret = dio_send_cur_page(dio, sdio, map_bh); 904 if (sdio->bio) 905 dio_bio_submit(dio, sdio); 906 put_page(sdio->cur_page); 907 sdio->cur_page = NULL; 908 } 909 return ret; 910 } 911 912 /* 913 * If we are not writing the entire block and get_block() allocated 914 * the block for us, we need to fill-in the unused portion of the 915 * block with zeros. This happens only if user-buffer, fileoffset or 916 * io length is not filesystem block-size multiple. 917 * 918 * `end' is zero if we're doing the start of the IO, 1 at the end of the 919 * IO. 920 */ 921 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio, 922 int end, struct buffer_head *map_bh) 923 { 924 unsigned dio_blocks_per_fs_block; 925 unsigned this_chunk_blocks; /* In dio_blocks */ 926 unsigned this_chunk_bytes; 927 struct page *page; 928 929 sdio->start_zero_done = 1; 930 if (!sdio->blkfactor || !buffer_new(map_bh)) 931 return; 932 933 dio_blocks_per_fs_block = 1 << sdio->blkfactor; 934 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1); 935 936 if (!this_chunk_blocks) 937 return; 938 939 /* 940 * We need to zero out part of an fs block. It is either at the 941 * beginning or the end of the fs block. 942 */ 943 if (end) 944 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; 945 946 this_chunk_bytes = this_chunk_blocks << sdio->blkbits; 947 948 page = ZERO_PAGE(0); 949 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes, 950 sdio->next_block_for_io, map_bh)) 951 return; 952 953 sdio->next_block_for_io += this_chunk_blocks; 954 } 955 956 /* 957 * Walk the user pages, and the file, mapping blocks to disk and generating 958 * a sequence of (page,offset,len,block) mappings. These mappings are injected 959 * into submit_page_section(), which takes care of the next stage of submission 960 * 961 * Direct IO against a blockdev is different from a file. Because we can 962 * happily perform page-sized but 512-byte aligned IOs. It is important that 963 * blockdev IO be able to have fine alignment and large sizes. 964 * 965 * So what we do is to permit the ->get_block function to populate bh.b_size 966 * with the size of IO which is permitted at this offset and this i_blkbits. 967 * 968 * For best results, the blockdev should be set up with 512-byte i_blkbits and 969 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives 970 * fine alignment but still allows this function to work in PAGE_SIZE units. 971 */ 972 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio, 973 struct buffer_head *map_bh) 974 { 975 const unsigned blkbits = sdio->blkbits; 976 const unsigned i_blkbits = blkbits + sdio->blkfactor; 977 int ret = 0; 978 979 while (sdio->block_in_file < sdio->final_block_in_request) { 980 struct page *page; 981 size_t from, to; 982 983 page = dio_get_page(dio, sdio); 984 if (IS_ERR(page)) { 985 ret = PTR_ERR(page); 986 goto out; 987 } 988 from = sdio->head ? 0 : sdio->from; 989 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE; 990 sdio->head++; 991 992 while (from < to) { 993 unsigned this_chunk_bytes; /* # of bytes mapped */ 994 unsigned this_chunk_blocks; /* # of blocks */ 995 unsigned u; 996 997 if (sdio->blocks_available == 0) { 998 /* 999 * Need to go and map some more disk 1000 */ 1001 unsigned long blkmask; 1002 unsigned long dio_remainder; 1003 1004 ret = get_more_blocks(dio, sdio, map_bh); 1005 if (ret) { 1006 put_page(page); 1007 goto out; 1008 } 1009 if (!buffer_mapped(map_bh)) 1010 goto do_holes; 1011 1012 sdio->blocks_available = 1013 map_bh->b_size >> blkbits; 1014 sdio->next_block_for_io = 1015 map_bh->b_blocknr << sdio->blkfactor; 1016 if (buffer_new(map_bh)) { 1017 clean_bdev_aliases( 1018 map_bh->b_bdev, 1019 map_bh->b_blocknr, 1020 map_bh->b_size >> i_blkbits); 1021 } 1022 1023 if (!sdio->blkfactor) 1024 goto do_holes; 1025 1026 blkmask = (1 << sdio->blkfactor) - 1; 1027 dio_remainder = (sdio->block_in_file & blkmask); 1028 1029 /* 1030 * If we are at the start of IO and that IO 1031 * starts partway into a fs-block, 1032 * dio_remainder will be non-zero. If the IO 1033 * is a read then we can simply advance the IO 1034 * cursor to the first block which is to be 1035 * read. But if the IO is a write and the 1036 * block was newly allocated we cannot do that; 1037 * the start of the fs block must be zeroed out 1038 * on-disk 1039 */ 1040 if (!buffer_new(map_bh)) 1041 sdio->next_block_for_io += dio_remainder; 1042 sdio->blocks_available -= dio_remainder; 1043 } 1044 do_holes: 1045 /* Handle holes */ 1046 if (!buffer_mapped(map_bh)) { 1047 loff_t i_size_aligned; 1048 1049 /* AKPM: eargh, -ENOTBLK is a hack */ 1050 if (dio->op == REQ_OP_WRITE) { 1051 put_page(page); 1052 return -ENOTBLK; 1053 } 1054 1055 /* 1056 * Be sure to account for a partial block as the 1057 * last block in the file 1058 */ 1059 i_size_aligned = ALIGN(i_size_read(dio->inode), 1060 1 << blkbits); 1061 if (sdio->block_in_file >= 1062 i_size_aligned >> blkbits) { 1063 /* We hit eof */ 1064 put_page(page); 1065 goto out; 1066 } 1067 zero_user(page, from, 1 << blkbits); 1068 sdio->block_in_file++; 1069 from += 1 << blkbits; 1070 dio->result += 1 << blkbits; 1071 goto next_block; 1072 } 1073 1074 /* 1075 * If we're performing IO which has an alignment which 1076 * is finer than the underlying fs, go check to see if 1077 * we must zero out the start of this block. 1078 */ 1079 if (unlikely(sdio->blkfactor && !sdio->start_zero_done)) 1080 dio_zero_block(dio, sdio, 0, map_bh); 1081 1082 /* 1083 * Work out, in this_chunk_blocks, how much disk we 1084 * can add to this page 1085 */ 1086 this_chunk_blocks = sdio->blocks_available; 1087 u = (to - from) >> blkbits; 1088 if (this_chunk_blocks > u) 1089 this_chunk_blocks = u; 1090 u = sdio->final_block_in_request - sdio->block_in_file; 1091 if (this_chunk_blocks > u) 1092 this_chunk_blocks = u; 1093 this_chunk_bytes = this_chunk_blocks << blkbits; 1094 BUG_ON(this_chunk_bytes == 0); 1095 1096 if (this_chunk_blocks == sdio->blocks_available) 1097 sdio->boundary = buffer_boundary(map_bh); 1098 ret = submit_page_section(dio, sdio, page, 1099 from, 1100 this_chunk_bytes, 1101 sdio->next_block_for_io, 1102 map_bh); 1103 if (ret) { 1104 put_page(page); 1105 goto out; 1106 } 1107 sdio->next_block_for_io += this_chunk_blocks; 1108 1109 sdio->block_in_file += this_chunk_blocks; 1110 from += this_chunk_bytes; 1111 dio->result += this_chunk_bytes; 1112 sdio->blocks_available -= this_chunk_blocks; 1113 next_block: 1114 BUG_ON(sdio->block_in_file > sdio->final_block_in_request); 1115 if (sdio->block_in_file == sdio->final_block_in_request) 1116 break; 1117 } 1118 1119 /* Drop the ref which was taken in get_user_pages() */ 1120 put_page(page); 1121 } 1122 out: 1123 return ret; 1124 } 1125 1126 static inline int drop_refcount(struct dio *dio) 1127 { 1128 int ret2; 1129 unsigned long flags; 1130 1131 /* 1132 * Sync will always be dropping the final ref and completing the 1133 * operation. AIO can if it was a broken operation described above or 1134 * in fact if all the bios race to complete before we get here. In 1135 * that case dio_complete() translates the EIOCBQUEUED into the proper 1136 * return code that the caller will hand to ->complete(). 1137 * 1138 * This is managed by the bio_lock instead of being an atomic_t so that 1139 * completion paths can drop their ref and use the remaining count to 1140 * decide to wake the submission path atomically. 1141 */ 1142 spin_lock_irqsave(&dio->bio_lock, flags); 1143 ret2 = --dio->refcount; 1144 spin_unlock_irqrestore(&dio->bio_lock, flags); 1145 return ret2; 1146 } 1147 1148 /* 1149 * This is a library function for use by filesystem drivers. 1150 * 1151 * The locking rules are governed by the flags parameter: 1152 * - if the flags value contains DIO_LOCKING we use a fancy locking 1153 * scheme for dumb filesystems. 1154 * For writes this function is called under i_mutex and returns with 1155 * i_mutex held, for reads, i_mutex is not held on entry, but it is 1156 * taken and dropped again before returning. 1157 * - if the flags value does NOT contain DIO_LOCKING we don't use any 1158 * internal locking but rather rely on the filesystem to synchronize 1159 * direct I/O reads/writes versus each other and truncate. 1160 * 1161 * To help with locking against truncate we incremented the i_dio_count 1162 * counter before starting direct I/O, and decrement it once we are done. 1163 * Truncate can wait for it to reach zero to provide exclusion. It is 1164 * expected that filesystem provide exclusion between new direct I/O 1165 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex, 1166 * but other filesystems need to take care of this on their own. 1167 * 1168 * NOTE: if you pass "sdio" to anything by pointer make sure that function 1169 * is always inlined. Otherwise gcc is unable to split the structure into 1170 * individual fields and will generate much worse code. This is important 1171 * for the whole file. 1172 */ 1173 static inline ssize_t 1174 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1175 struct block_device *bdev, struct iov_iter *iter, 1176 get_block_t get_block, dio_iodone_t end_io, 1177 dio_submit_t submit_io, int flags) 1178 { 1179 unsigned i_blkbits = READ_ONCE(inode->i_blkbits); 1180 unsigned blkbits = i_blkbits; 1181 unsigned blocksize_mask = (1 << blkbits) - 1; 1182 ssize_t retval = -EINVAL; 1183 const size_t count = iov_iter_count(iter); 1184 loff_t offset = iocb->ki_pos; 1185 const loff_t end = offset + count; 1186 struct dio *dio; 1187 struct dio_submit sdio = { 0, }; 1188 struct buffer_head map_bh = { 0, }; 1189 struct blk_plug plug; 1190 unsigned long align = offset | iov_iter_alignment(iter); 1191 1192 /* 1193 * Avoid references to bdev if not absolutely needed to give 1194 * the early prefetch in the caller enough time. 1195 */ 1196 1197 if (align & blocksize_mask) { 1198 if (bdev) 1199 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 1200 blocksize_mask = (1 << blkbits) - 1; 1201 if (align & blocksize_mask) 1202 goto out; 1203 } 1204 1205 /* watch out for a 0 len io from a tricksy fs */ 1206 if (iov_iter_rw(iter) == READ && !count) 1207 return 0; 1208 1209 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL); 1210 retval = -ENOMEM; 1211 if (!dio) 1212 goto out; 1213 /* 1214 * Believe it or not, zeroing out the page array caused a .5% 1215 * performance regression in a database benchmark. So, we take 1216 * care to only zero out what's needed. 1217 */ 1218 memset(dio, 0, offsetof(struct dio, pages)); 1219 1220 dio->flags = flags; 1221 if (dio->flags & DIO_LOCKING) { 1222 if (iov_iter_rw(iter) == READ) { 1223 struct address_space *mapping = 1224 iocb->ki_filp->f_mapping; 1225 1226 /* will be released by direct_io_worker */ 1227 inode_lock(inode); 1228 1229 retval = filemap_write_and_wait_range(mapping, offset, 1230 end - 1); 1231 if (retval) { 1232 inode_unlock(inode); 1233 kmem_cache_free(dio_cache, dio); 1234 goto out; 1235 } 1236 } 1237 } 1238 1239 /* Once we sampled i_size check for reads beyond EOF */ 1240 dio->i_size = i_size_read(inode); 1241 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) { 1242 if (dio->flags & DIO_LOCKING) 1243 inode_unlock(inode); 1244 kmem_cache_free(dio_cache, dio); 1245 retval = 0; 1246 goto out; 1247 } 1248 1249 /* 1250 * For file extending writes updating i_size before data writeouts 1251 * complete can expose uninitialized blocks in dumb filesystems. 1252 * In that case we need to wait for I/O completion even if asked 1253 * for an asynchronous write. 1254 */ 1255 if (is_sync_kiocb(iocb)) 1256 dio->is_async = false; 1257 else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode)) 1258 dio->is_async = false; 1259 else 1260 dio->is_async = true; 1261 1262 dio->inode = inode; 1263 if (iov_iter_rw(iter) == WRITE) { 1264 dio->op = REQ_OP_WRITE; 1265 dio->op_flags = REQ_SYNC | REQ_IDLE; 1266 if (iocb->ki_flags & IOCB_NOWAIT) 1267 dio->op_flags |= REQ_NOWAIT; 1268 } else { 1269 dio->op = REQ_OP_READ; 1270 } 1271 if (iocb->ki_flags & IOCB_HIPRI) 1272 dio->op_flags |= REQ_HIPRI; 1273 1274 /* 1275 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue 1276 * so that we can call ->fsync. 1277 */ 1278 if (dio->is_async && iov_iter_rw(iter) == WRITE) { 1279 retval = 0; 1280 if (iocb->ki_flags & IOCB_DSYNC) 1281 retval = dio_set_defer_completion(dio); 1282 else if (!dio->inode->i_sb->s_dio_done_wq) { 1283 /* 1284 * In case of AIO write racing with buffered read we 1285 * need to defer completion. We can't decide this now, 1286 * however the workqueue needs to be initialized here. 1287 */ 1288 retval = sb_init_dio_done_wq(dio->inode->i_sb); 1289 } 1290 if (retval) { 1291 /* 1292 * We grab i_mutex only for reads so we don't have 1293 * to release it here 1294 */ 1295 kmem_cache_free(dio_cache, dio); 1296 goto out; 1297 } 1298 } 1299 1300 /* 1301 * Will be decremented at I/O completion time. 1302 */ 1303 inode_dio_begin(inode); 1304 1305 retval = 0; 1306 sdio.blkbits = blkbits; 1307 sdio.blkfactor = i_blkbits - blkbits; 1308 sdio.block_in_file = offset >> blkbits; 1309 1310 sdio.get_block = get_block; 1311 dio->end_io = end_io; 1312 sdio.submit_io = submit_io; 1313 sdio.final_block_in_bio = -1; 1314 sdio.next_block_for_io = -1; 1315 1316 dio->iocb = iocb; 1317 1318 spin_lock_init(&dio->bio_lock); 1319 dio->refcount = 1; 1320 1321 dio->should_dirty = iter_is_iovec(iter) && iov_iter_rw(iter) == READ; 1322 sdio.iter = iter; 1323 sdio.final_block_in_request = end >> blkbits; 1324 1325 /* 1326 * In case of non-aligned buffers, we may need 2 more 1327 * pages since we need to zero out first and last block. 1328 */ 1329 if (unlikely(sdio.blkfactor)) 1330 sdio.pages_in_io = 2; 1331 1332 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX); 1333 1334 blk_start_plug(&plug); 1335 1336 retval = do_direct_IO(dio, &sdio, &map_bh); 1337 if (retval) 1338 dio_cleanup(dio, &sdio); 1339 1340 if (retval == -ENOTBLK) { 1341 /* 1342 * The remaining part of the request will be 1343 * be handled by buffered I/O when we return 1344 */ 1345 retval = 0; 1346 } 1347 /* 1348 * There may be some unwritten disk at the end of a part-written 1349 * fs-block-sized block. Go zero that now. 1350 */ 1351 dio_zero_block(dio, &sdio, 1, &map_bh); 1352 1353 if (sdio.cur_page) { 1354 ssize_t ret2; 1355 1356 ret2 = dio_send_cur_page(dio, &sdio, &map_bh); 1357 if (retval == 0) 1358 retval = ret2; 1359 put_page(sdio.cur_page); 1360 sdio.cur_page = NULL; 1361 } 1362 if (sdio.bio) 1363 dio_bio_submit(dio, &sdio); 1364 1365 blk_finish_plug(&plug); 1366 1367 /* 1368 * It is possible that, we return short IO due to end of file. 1369 * In that case, we need to release all the pages we got hold on. 1370 */ 1371 dio_cleanup(dio, &sdio); 1372 1373 /* 1374 * All block lookups have been performed. For READ requests 1375 * we can let i_mutex go now that its achieved its purpose 1376 * of protecting us from looking up uninitialized blocks. 1377 */ 1378 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING)) 1379 inode_unlock(dio->inode); 1380 1381 /* 1382 * The only time we want to leave bios in flight is when a successful 1383 * partial aio read or full aio write have been setup. In that case 1384 * bio completion will call aio_complete. The only time it's safe to 1385 * call aio_complete is when we return -EIOCBQUEUED, so we key on that. 1386 * This had *better* be the only place that raises -EIOCBQUEUED. 1387 */ 1388 BUG_ON(retval == -EIOCBQUEUED); 1389 if (dio->is_async && retval == 0 && dio->result && 1390 (iov_iter_rw(iter) == READ || dio->result == count)) 1391 retval = -EIOCBQUEUED; 1392 else 1393 dio_await_completion(dio); 1394 1395 if (drop_refcount(dio) == 0) { 1396 retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE); 1397 } else 1398 BUG_ON(retval != -EIOCBQUEUED); 1399 1400 out: 1401 return retval; 1402 } 1403 1404 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1405 struct block_device *bdev, struct iov_iter *iter, 1406 get_block_t get_block, 1407 dio_iodone_t end_io, dio_submit_t submit_io, 1408 int flags) 1409 { 1410 /* 1411 * The block device state is needed in the end to finally 1412 * submit everything. Since it's likely to be cache cold 1413 * prefetch it here as first thing to hide some of the 1414 * latency. 1415 * 1416 * Attempt to prefetch the pieces we likely need later. 1417 */ 1418 prefetch(&bdev->bd_disk->part_tbl); 1419 prefetch(bdev->bd_queue); 1420 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES); 1421 1422 return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block, 1423 end_io, submit_io, flags); 1424 } 1425 1426 EXPORT_SYMBOL(__blockdev_direct_IO); 1427 1428 static __init int dio_init(void) 1429 { 1430 dio_cache = KMEM_CACHE(dio, SLAB_PANIC); 1431 return 0; 1432 } 1433 module_init(dio_init) 1434