1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/direct-io.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * O_DIRECT 8 * 9 * 04Jul2002 Andrew Morton 10 * Initial version 11 * 11Sep2002 janetinc@us.ibm.com 12 * added readv/writev support. 13 * 29Oct2002 Andrew Morton 14 * rewrote bio_add_page() support. 15 * 30Oct2002 pbadari@us.ibm.com 16 * added support for non-aligned IO. 17 * 06Nov2002 pbadari@us.ibm.com 18 * added asynchronous IO support. 19 * 21Jul2003 nathans@sgi.com 20 * added IO completion notifier. 21 */ 22 23 #include <linux/kernel.h> 24 #include <linux/module.h> 25 #include <linux/types.h> 26 #include <linux/fs.h> 27 #include <linux/mm.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/pagemap.h> 31 #include <linux/task_io_accounting_ops.h> 32 #include <linux/bio.h> 33 #include <linux/wait.h> 34 #include <linux/err.h> 35 #include <linux/blkdev.h> 36 #include <linux/buffer_head.h> 37 #include <linux/rwsem.h> 38 #include <linux/uio.h> 39 #include <linux/atomic.h> 40 #include <linux/prefetch.h> 41 42 #include "internal.h" 43 44 /* 45 * How many user pages to map in one call to get_user_pages(). This determines 46 * the size of a structure in the slab cache 47 */ 48 #define DIO_PAGES 64 49 50 /* 51 * Flags for dio_complete() 52 */ 53 #define DIO_COMPLETE_ASYNC 0x01 /* This is async IO */ 54 #define DIO_COMPLETE_INVALIDATE 0x02 /* Can invalidate pages */ 55 56 /* 57 * This code generally works in units of "dio_blocks". A dio_block is 58 * somewhere between the hard sector size and the filesystem block size. it 59 * is determined on a per-invocation basis. When talking to the filesystem 60 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity 61 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted 62 * to bio_block quantities by shifting left by blkfactor. 63 * 64 * If blkfactor is zero then the user's request was aligned to the filesystem's 65 * blocksize. 66 */ 67 68 /* dio_state only used in the submission path */ 69 70 struct dio_submit { 71 struct bio *bio; /* bio under assembly */ 72 unsigned blkbits; /* doesn't change */ 73 unsigned blkfactor; /* When we're using an alignment which 74 is finer than the filesystem's soft 75 blocksize, this specifies how much 76 finer. blkfactor=2 means 1/4-block 77 alignment. Does not change */ 78 unsigned start_zero_done; /* flag: sub-blocksize zeroing has 79 been performed at the start of a 80 write */ 81 int pages_in_io; /* approximate total IO pages */ 82 sector_t block_in_file; /* Current offset into the underlying 83 file in dio_block units. */ 84 unsigned blocks_available; /* At block_in_file. changes */ 85 int reap_counter; /* rate limit reaping */ 86 sector_t final_block_in_request;/* doesn't change */ 87 int boundary; /* prev block is at a boundary */ 88 get_block_t *get_block; /* block mapping function */ 89 dio_submit_t *submit_io; /* IO submition function */ 90 91 loff_t logical_offset_in_bio; /* current first logical block in bio */ 92 sector_t final_block_in_bio; /* current final block in bio + 1 */ 93 sector_t next_block_for_io; /* next block to be put under IO, 94 in dio_blocks units */ 95 96 /* 97 * Deferred addition of a page to the dio. These variables are 98 * private to dio_send_cur_page(), submit_page_section() and 99 * dio_bio_add_page(). 100 */ 101 struct page *cur_page; /* The page */ 102 unsigned cur_page_offset; /* Offset into it, in bytes */ 103 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ 104 sector_t cur_page_block; /* Where it starts */ 105 loff_t cur_page_fs_offset; /* Offset in file */ 106 107 struct iov_iter *iter; 108 /* 109 * Page queue. These variables belong to dio_refill_pages() and 110 * dio_get_page(). 111 */ 112 unsigned head; /* next page to process */ 113 unsigned tail; /* last valid page + 1 */ 114 size_t from, to; 115 }; 116 117 /* dio_state communicated between submission path and end_io */ 118 struct dio { 119 int flags; /* doesn't change */ 120 blk_opf_t opf; /* request operation type and flags */ 121 struct gendisk *bio_disk; 122 struct inode *inode; 123 loff_t i_size; /* i_size when submitted */ 124 dio_iodone_t *end_io; /* IO completion function */ 125 126 void *private; /* copy from map_bh.b_private */ 127 128 /* BIO completion state */ 129 spinlock_t bio_lock; /* protects BIO fields below */ 130 int page_errors; /* errno from get_user_pages() */ 131 int is_async; /* is IO async ? */ 132 bool defer_completion; /* defer AIO completion to workqueue? */ 133 bool should_dirty; /* if pages should be dirtied */ 134 int io_error; /* IO error in completion path */ 135 unsigned long refcount; /* direct_io_worker() and bios */ 136 struct bio *bio_list; /* singly linked via bi_private */ 137 struct task_struct *waiter; /* waiting task (NULL if none) */ 138 139 /* AIO related stuff */ 140 struct kiocb *iocb; /* kiocb */ 141 ssize_t result; /* IO result */ 142 143 /* 144 * pages[] (and any fields placed after it) are not zeroed out at 145 * allocation time. Don't add new fields after pages[] unless you 146 * wish that they not be zeroed. 147 */ 148 union { 149 struct page *pages[DIO_PAGES]; /* page buffer */ 150 struct work_struct complete_work;/* deferred AIO completion */ 151 }; 152 } ____cacheline_aligned_in_smp; 153 154 static struct kmem_cache *dio_cache __read_mostly; 155 156 /* 157 * How many pages are in the queue? 158 */ 159 static inline unsigned dio_pages_present(struct dio_submit *sdio) 160 { 161 return sdio->tail - sdio->head; 162 } 163 164 /* 165 * Go grab and pin some userspace pages. Typically we'll get 64 at a time. 166 */ 167 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio) 168 { 169 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 170 ssize_t ret; 171 172 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES, 173 &sdio->from); 174 175 if (ret < 0 && sdio->blocks_available && dio_op == REQ_OP_WRITE) { 176 struct page *page = ZERO_PAGE(0); 177 /* 178 * A memory fault, but the filesystem has some outstanding 179 * mapped blocks. We need to use those blocks up to avoid 180 * leaking stale data in the file. 181 */ 182 if (dio->page_errors == 0) 183 dio->page_errors = ret; 184 get_page(page); 185 dio->pages[0] = page; 186 sdio->head = 0; 187 sdio->tail = 1; 188 sdio->from = 0; 189 sdio->to = PAGE_SIZE; 190 return 0; 191 } 192 193 if (ret >= 0) { 194 iov_iter_advance(sdio->iter, ret); 195 ret += sdio->from; 196 sdio->head = 0; 197 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE; 198 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1; 199 return 0; 200 } 201 return ret; 202 } 203 204 /* 205 * Get another userspace page. Returns an ERR_PTR on error. Pages are 206 * buffered inside the dio so that we can call get_user_pages() against a 207 * decent number of pages, less frequently. To provide nicer use of the 208 * L1 cache. 209 */ 210 static inline struct page *dio_get_page(struct dio *dio, 211 struct dio_submit *sdio) 212 { 213 if (dio_pages_present(sdio) == 0) { 214 int ret; 215 216 ret = dio_refill_pages(dio, sdio); 217 if (ret) 218 return ERR_PTR(ret); 219 BUG_ON(dio_pages_present(sdio) == 0); 220 } 221 return dio->pages[sdio->head]; 222 } 223 224 /* 225 * dio_complete() - called when all DIO BIO I/O has been completed 226 * 227 * This drops i_dio_count, lets interested parties know that a DIO operation 228 * has completed, and calculates the resulting return code for the operation. 229 * 230 * It lets the filesystem know if it registered an interest earlier via 231 * get_block. Pass the private field of the map buffer_head so that 232 * filesystems can use it to hold additional state between get_block calls and 233 * dio_complete. 234 */ 235 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags) 236 { 237 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 238 loff_t offset = dio->iocb->ki_pos; 239 ssize_t transferred = 0; 240 int err; 241 242 /* 243 * AIO submission can race with bio completion to get here while 244 * expecting to have the last io completed by bio completion. 245 * In that case -EIOCBQUEUED is in fact not an error we want 246 * to preserve through this call. 247 */ 248 if (ret == -EIOCBQUEUED) 249 ret = 0; 250 251 if (dio->result) { 252 transferred = dio->result; 253 254 /* Check for short read case */ 255 if (dio_op == REQ_OP_READ && 256 ((offset + transferred) > dio->i_size)) 257 transferred = dio->i_size - offset; 258 /* ignore EFAULT if some IO has been done */ 259 if (unlikely(ret == -EFAULT) && transferred) 260 ret = 0; 261 } 262 263 if (ret == 0) 264 ret = dio->page_errors; 265 if (ret == 0) 266 ret = dio->io_error; 267 if (ret == 0) 268 ret = transferred; 269 270 if (dio->end_io) { 271 // XXX: ki_pos?? 272 err = dio->end_io(dio->iocb, offset, ret, dio->private); 273 if (err) 274 ret = err; 275 } 276 277 /* 278 * Try again to invalidate clean pages which might have been cached by 279 * non-direct readahead, or faulted in by get_user_pages() if the source 280 * of the write was an mmap'ed region of the file we're writing. Either 281 * one is a pretty crazy thing to do, so we don't support it 100%. If 282 * this invalidation fails, tough, the write still worked... 283 * 284 * And this page cache invalidation has to be after dio->end_io(), as 285 * some filesystems convert unwritten extents to real allocations in 286 * end_io() when necessary, otherwise a racing buffer read would cache 287 * zeros from unwritten extents. 288 */ 289 if (flags & DIO_COMPLETE_INVALIDATE && 290 ret > 0 && dio_op == REQ_OP_WRITE && 291 dio->inode->i_mapping->nrpages) { 292 err = invalidate_inode_pages2_range(dio->inode->i_mapping, 293 offset >> PAGE_SHIFT, 294 (offset + ret - 1) >> PAGE_SHIFT); 295 if (err) 296 dio_warn_stale_pagecache(dio->iocb->ki_filp); 297 } 298 299 inode_dio_end(dio->inode); 300 301 if (flags & DIO_COMPLETE_ASYNC) { 302 /* 303 * generic_write_sync expects ki_pos to have been updated 304 * already, but the submission path only does this for 305 * synchronous I/O. 306 */ 307 dio->iocb->ki_pos += transferred; 308 309 if (ret > 0 && dio_op == REQ_OP_WRITE) 310 ret = generic_write_sync(dio->iocb, ret); 311 dio->iocb->ki_complete(dio->iocb, ret); 312 } 313 314 kmem_cache_free(dio_cache, dio); 315 return ret; 316 } 317 318 static void dio_aio_complete_work(struct work_struct *work) 319 { 320 struct dio *dio = container_of(work, struct dio, complete_work); 321 322 dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE); 323 } 324 325 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio); 326 327 /* 328 * Asynchronous IO callback. 329 */ 330 static void dio_bio_end_aio(struct bio *bio) 331 { 332 struct dio *dio = bio->bi_private; 333 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 334 unsigned long remaining; 335 unsigned long flags; 336 bool defer_completion = false; 337 338 /* cleanup the bio */ 339 dio_bio_complete(dio, bio); 340 341 spin_lock_irqsave(&dio->bio_lock, flags); 342 remaining = --dio->refcount; 343 if (remaining == 1 && dio->waiter) 344 wake_up_process(dio->waiter); 345 spin_unlock_irqrestore(&dio->bio_lock, flags); 346 347 if (remaining == 0) { 348 /* 349 * Defer completion when defer_completion is set or 350 * when the inode has pages mapped and this is AIO write. 351 * We need to invalidate those pages because there is a 352 * chance they contain stale data in the case buffered IO 353 * went in between AIO submission and completion into the 354 * same region. 355 */ 356 if (dio->result) 357 defer_completion = dio->defer_completion || 358 (dio_op == REQ_OP_WRITE && 359 dio->inode->i_mapping->nrpages); 360 if (defer_completion) { 361 INIT_WORK(&dio->complete_work, dio_aio_complete_work); 362 queue_work(dio->inode->i_sb->s_dio_done_wq, 363 &dio->complete_work); 364 } else { 365 dio_complete(dio, 0, DIO_COMPLETE_ASYNC); 366 } 367 } 368 } 369 370 /* 371 * The BIO completion handler simply queues the BIO up for the process-context 372 * handler. 373 * 374 * During I/O bi_private points at the dio. After I/O, bi_private is used to 375 * implement a singly-linked list of completed BIOs, at dio->bio_list. 376 */ 377 static void dio_bio_end_io(struct bio *bio) 378 { 379 struct dio *dio = bio->bi_private; 380 unsigned long flags; 381 382 spin_lock_irqsave(&dio->bio_lock, flags); 383 bio->bi_private = dio->bio_list; 384 dio->bio_list = bio; 385 if (--dio->refcount == 1 && dio->waiter) 386 wake_up_process(dio->waiter); 387 spin_unlock_irqrestore(&dio->bio_lock, flags); 388 } 389 390 static inline void 391 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio, 392 struct block_device *bdev, 393 sector_t first_sector, int nr_vecs) 394 { 395 struct bio *bio; 396 397 /* 398 * bio_alloc() is guaranteed to return a bio when allowed to sleep and 399 * we request a valid number of vectors. 400 */ 401 bio = bio_alloc(bdev, nr_vecs, dio->opf, GFP_KERNEL); 402 bio->bi_iter.bi_sector = first_sector; 403 if (dio->is_async) 404 bio->bi_end_io = dio_bio_end_aio; 405 else 406 bio->bi_end_io = dio_bio_end_io; 407 sdio->bio = bio; 408 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset; 409 } 410 411 /* 412 * In the AIO read case we speculatively dirty the pages before starting IO. 413 * During IO completion, any of these pages which happen to have been written 414 * back will be redirtied by bio_check_pages_dirty(). 415 * 416 * bios hold a dio reference between submit_bio and ->end_io. 417 */ 418 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio) 419 { 420 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 421 struct bio *bio = sdio->bio; 422 unsigned long flags; 423 424 bio->bi_private = dio; 425 /* don't account direct I/O as memory stall */ 426 bio_clear_flag(bio, BIO_WORKINGSET); 427 428 spin_lock_irqsave(&dio->bio_lock, flags); 429 dio->refcount++; 430 spin_unlock_irqrestore(&dio->bio_lock, flags); 431 432 if (dio->is_async && dio_op == REQ_OP_READ && dio->should_dirty) 433 bio_set_pages_dirty(bio); 434 435 dio->bio_disk = bio->bi_bdev->bd_disk; 436 437 if (sdio->submit_io) 438 sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio); 439 else 440 submit_bio(bio); 441 442 sdio->bio = NULL; 443 sdio->boundary = 0; 444 sdio->logical_offset_in_bio = 0; 445 } 446 447 /* 448 * Release any resources in case of a failure 449 */ 450 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio) 451 { 452 while (sdio->head < sdio->tail) 453 put_page(dio->pages[sdio->head++]); 454 } 455 456 /* 457 * Wait for the next BIO to complete. Remove it and return it. NULL is 458 * returned once all BIOs have been completed. This must only be called once 459 * all bios have been issued so that dio->refcount can only decrease. This 460 * requires that the caller hold a reference on the dio. 461 */ 462 static struct bio *dio_await_one(struct dio *dio) 463 { 464 unsigned long flags; 465 struct bio *bio = NULL; 466 467 spin_lock_irqsave(&dio->bio_lock, flags); 468 469 /* 470 * Wait as long as the list is empty and there are bios in flight. bio 471 * completion drops the count, maybe adds to the list, and wakes while 472 * holding the bio_lock so we don't need set_current_state()'s barrier 473 * and can call it after testing our condition. 474 */ 475 while (dio->refcount > 1 && dio->bio_list == NULL) { 476 __set_current_state(TASK_UNINTERRUPTIBLE); 477 dio->waiter = current; 478 spin_unlock_irqrestore(&dio->bio_lock, flags); 479 blk_io_schedule(); 480 /* wake up sets us TASK_RUNNING */ 481 spin_lock_irqsave(&dio->bio_lock, flags); 482 dio->waiter = NULL; 483 } 484 if (dio->bio_list) { 485 bio = dio->bio_list; 486 dio->bio_list = bio->bi_private; 487 } 488 spin_unlock_irqrestore(&dio->bio_lock, flags); 489 return bio; 490 } 491 492 /* 493 * Process one completed BIO. No locks are held. 494 */ 495 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio) 496 { 497 blk_status_t err = bio->bi_status; 498 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 499 bool should_dirty = dio_op == REQ_OP_READ && dio->should_dirty; 500 501 if (err) { 502 if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT)) 503 dio->io_error = -EAGAIN; 504 else 505 dio->io_error = -EIO; 506 } 507 508 if (dio->is_async && should_dirty) { 509 bio_check_pages_dirty(bio); /* transfers ownership */ 510 } else { 511 bio_release_pages(bio, should_dirty); 512 bio_put(bio); 513 } 514 return err; 515 } 516 517 /* 518 * Wait on and process all in-flight BIOs. This must only be called once 519 * all bios have been issued so that the refcount can only decrease. 520 * This just waits for all bios to make it through dio_bio_complete. IO 521 * errors are propagated through dio->io_error and should be propagated via 522 * dio_complete(). 523 */ 524 static void dio_await_completion(struct dio *dio) 525 { 526 struct bio *bio; 527 do { 528 bio = dio_await_one(dio); 529 if (bio) 530 dio_bio_complete(dio, bio); 531 } while (bio); 532 } 533 534 /* 535 * A really large O_DIRECT read or write can generate a lot of BIOs. So 536 * to keep the memory consumption sane we periodically reap any completed BIOs 537 * during the BIO generation phase. 538 * 539 * This also helps to limit the peak amount of pinned userspace memory. 540 */ 541 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio) 542 { 543 int ret = 0; 544 545 if (sdio->reap_counter++ >= 64) { 546 while (dio->bio_list) { 547 unsigned long flags; 548 struct bio *bio; 549 int ret2; 550 551 spin_lock_irqsave(&dio->bio_lock, flags); 552 bio = dio->bio_list; 553 dio->bio_list = bio->bi_private; 554 spin_unlock_irqrestore(&dio->bio_lock, flags); 555 ret2 = blk_status_to_errno(dio_bio_complete(dio, bio)); 556 if (ret == 0) 557 ret = ret2; 558 } 559 sdio->reap_counter = 0; 560 } 561 return ret; 562 } 563 564 /* 565 * Create workqueue for deferred direct IO completions. We allocate the 566 * workqueue when it's first needed. This avoids creating workqueue for 567 * filesystems that don't need it and also allows us to create the workqueue 568 * late enough so the we can include s_id in the name of the workqueue. 569 */ 570 int sb_init_dio_done_wq(struct super_block *sb) 571 { 572 struct workqueue_struct *old; 573 struct workqueue_struct *wq = alloc_workqueue("dio/%s", 574 WQ_MEM_RECLAIM, 0, 575 sb->s_id); 576 if (!wq) 577 return -ENOMEM; 578 /* 579 * This has to be atomic as more DIOs can race to create the workqueue 580 */ 581 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq); 582 /* Someone created workqueue before us? Free ours... */ 583 if (old) 584 destroy_workqueue(wq); 585 return 0; 586 } 587 588 static int dio_set_defer_completion(struct dio *dio) 589 { 590 struct super_block *sb = dio->inode->i_sb; 591 592 if (dio->defer_completion) 593 return 0; 594 dio->defer_completion = true; 595 if (!sb->s_dio_done_wq) 596 return sb_init_dio_done_wq(sb); 597 return 0; 598 } 599 600 /* 601 * Call into the fs to map some more disk blocks. We record the current number 602 * of available blocks at sdio->blocks_available. These are in units of the 603 * fs blocksize, i_blocksize(inode). 604 * 605 * The fs is allowed to map lots of blocks at once. If it wants to do that, 606 * it uses the passed inode-relative block number as the file offset, as usual. 607 * 608 * get_block() is passed the number of i_blkbits-sized blocks which direct_io 609 * has remaining to do. The fs should not map more than this number of blocks. 610 * 611 * If the fs has mapped a lot of blocks, it should populate bh->b_size to 612 * indicate how much contiguous disk space has been made available at 613 * bh->b_blocknr. 614 * 615 * If *any* of the mapped blocks are new, then the fs must set buffer_new(). 616 * This isn't very efficient... 617 * 618 * In the case of filesystem holes: the fs may return an arbitrarily-large 619 * hole by returning an appropriate value in b_size and by clearing 620 * buffer_mapped(). However the direct-io code will only process holes one 621 * block at a time - it will repeatedly call get_block() as it walks the hole. 622 */ 623 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio, 624 struct buffer_head *map_bh) 625 { 626 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 627 int ret; 628 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ 629 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */ 630 unsigned long fs_count; /* Number of filesystem-sized blocks */ 631 int create; 632 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor; 633 loff_t i_size; 634 635 /* 636 * If there was a memory error and we've overwritten all the 637 * mapped blocks then we can now return that memory error 638 */ 639 ret = dio->page_errors; 640 if (ret == 0) { 641 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request); 642 fs_startblk = sdio->block_in_file >> sdio->blkfactor; 643 fs_endblk = (sdio->final_block_in_request - 1) >> 644 sdio->blkfactor; 645 fs_count = fs_endblk - fs_startblk + 1; 646 647 map_bh->b_state = 0; 648 map_bh->b_size = fs_count << i_blkbits; 649 650 /* 651 * For writes that could fill holes inside i_size on a 652 * DIO_SKIP_HOLES filesystem we forbid block creations: only 653 * overwrites are permitted. We will return early to the caller 654 * once we see an unmapped buffer head returned, and the caller 655 * will fall back to buffered I/O. 656 * 657 * Otherwise the decision is left to the get_blocks method, 658 * which may decide to handle it or also return an unmapped 659 * buffer head. 660 */ 661 create = dio_op == REQ_OP_WRITE; 662 if (dio->flags & DIO_SKIP_HOLES) { 663 i_size = i_size_read(dio->inode); 664 if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits) 665 create = 0; 666 } 667 668 ret = (*sdio->get_block)(dio->inode, fs_startblk, 669 map_bh, create); 670 671 /* Store for completion */ 672 dio->private = map_bh->b_private; 673 674 if (ret == 0 && buffer_defer_completion(map_bh)) 675 ret = dio_set_defer_completion(dio); 676 } 677 return ret; 678 } 679 680 /* 681 * There is no bio. Make one now. 682 */ 683 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio, 684 sector_t start_sector, struct buffer_head *map_bh) 685 { 686 sector_t sector; 687 int ret, nr_pages; 688 689 ret = dio_bio_reap(dio, sdio); 690 if (ret) 691 goto out; 692 sector = start_sector << (sdio->blkbits - 9); 693 nr_pages = bio_max_segs(sdio->pages_in_io); 694 BUG_ON(nr_pages <= 0); 695 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages); 696 sdio->boundary = 0; 697 out: 698 return ret; 699 } 700 701 /* 702 * Attempt to put the current chunk of 'cur_page' into the current BIO. If 703 * that was successful then update final_block_in_bio and take a ref against 704 * the just-added page. 705 * 706 * Return zero on success. Non-zero means the caller needs to start a new BIO. 707 */ 708 static inline int dio_bio_add_page(struct dio_submit *sdio) 709 { 710 int ret; 711 712 ret = bio_add_page(sdio->bio, sdio->cur_page, 713 sdio->cur_page_len, sdio->cur_page_offset); 714 if (ret == sdio->cur_page_len) { 715 /* 716 * Decrement count only, if we are done with this page 717 */ 718 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE) 719 sdio->pages_in_io--; 720 get_page(sdio->cur_page); 721 sdio->final_block_in_bio = sdio->cur_page_block + 722 (sdio->cur_page_len >> sdio->blkbits); 723 ret = 0; 724 } else { 725 ret = 1; 726 } 727 return ret; 728 } 729 730 /* 731 * Put cur_page under IO. The section of cur_page which is described by 732 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page 733 * starts on-disk at cur_page_block. 734 * 735 * We take a ref against the page here (on behalf of its presence in the bio). 736 * 737 * The caller of this function is responsible for removing cur_page from the 738 * dio, and for dropping the refcount which came from that presence. 739 */ 740 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio, 741 struct buffer_head *map_bh) 742 { 743 int ret = 0; 744 745 if (sdio->bio) { 746 loff_t cur_offset = sdio->cur_page_fs_offset; 747 loff_t bio_next_offset = sdio->logical_offset_in_bio + 748 sdio->bio->bi_iter.bi_size; 749 750 /* 751 * See whether this new request is contiguous with the old. 752 * 753 * Btrfs cannot handle having logically non-contiguous requests 754 * submitted. For example if you have 755 * 756 * Logical: [0-4095][HOLE][8192-12287] 757 * Physical: [0-4095] [4096-8191] 758 * 759 * We cannot submit those pages together as one BIO. So if our 760 * current logical offset in the file does not equal what would 761 * be the next logical offset in the bio, submit the bio we 762 * have. 763 */ 764 if (sdio->final_block_in_bio != sdio->cur_page_block || 765 cur_offset != bio_next_offset) 766 dio_bio_submit(dio, sdio); 767 } 768 769 if (sdio->bio == NULL) { 770 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 771 if (ret) 772 goto out; 773 } 774 775 if (dio_bio_add_page(sdio) != 0) { 776 dio_bio_submit(dio, sdio); 777 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 778 if (ret == 0) { 779 ret = dio_bio_add_page(sdio); 780 BUG_ON(ret != 0); 781 } 782 } 783 out: 784 return ret; 785 } 786 787 /* 788 * An autonomous function to put a chunk of a page under deferred IO. 789 * 790 * The caller doesn't actually know (or care) whether this piece of page is in 791 * a BIO, or is under IO or whatever. We just take care of all possible 792 * situations here. The separation between the logic of do_direct_IO() and 793 * that of submit_page_section() is important for clarity. Please don't break. 794 * 795 * The chunk of page starts on-disk at blocknr. 796 * 797 * We perform deferred IO, by recording the last-submitted page inside our 798 * private part of the dio structure. If possible, we just expand the IO 799 * across that page here. 800 * 801 * If that doesn't work out then we put the old page into the bio and add this 802 * page to the dio instead. 803 */ 804 static inline int 805 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page, 806 unsigned offset, unsigned len, sector_t blocknr, 807 struct buffer_head *map_bh) 808 { 809 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 810 int ret = 0; 811 int boundary = sdio->boundary; /* dio_send_cur_page may clear it */ 812 813 if (dio_op == REQ_OP_WRITE) { 814 /* 815 * Read accounting is performed in submit_bio() 816 */ 817 task_io_account_write(len); 818 } 819 820 /* 821 * Can we just grow the current page's presence in the dio? 822 */ 823 if (sdio->cur_page == page && 824 sdio->cur_page_offset + sdio->cur_page_len == offset && 825 sdio->cur_page_block + 826 (sdio->cur_page_len >> sdio->blkbits) == blocknr) { 827 sdio->cur_page_len += len; 828 goto out; 829 } 830 831 /* 832 * If there's a deferred page already there then send it. 833 */ 834 if (sdio->cur_page) { 835 ret = dio_send_cur_page(dio, sdio, map_bh); 836 put_page(sdio->cur_page); 837 sdio->cur_page = NULL; 838 if (ret) 839 return ret; 840 } 841 842 get_page(page); /* It is in dio */ 843 sdio->cur_page = page; 844 sdio->cur_page_offset = offset; 845 sdio->cur_page_len = len; 846 sdio->cur_page_block = blocknr; 847 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits; 848 out: 849 /* 850 * If boundary then we want to schedule the IO now to 851 * avoid metadata seeks. 852 */ 853 if (boundary) { 854 ret = dio_send_cur_page(dio, sdio, map_bh); 855 if (sdio->bio) 856 dio_bio_submit(dio, sdio); 857 put_page(sdio->cur_page); 858 sdio->cur_page = NULL; 859 } 860 return ret; 861 } 862 863 /* 864 * If we are not writing the entire block and get_block() allocated 865 * the block for us, we need to fill-in the unused portion of the 866 * block with zeros. This happens only if user-buffer, fileoffset or 867 * io length is not filesystem block-size multiple. 868 * 869 * `end' is zero if we're doing the start of the IO, 1 at the end of the 870 * IO. 871 */ 872 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio, 873 int end, struct buffer_head *map_bh) 874 { 875 unsigned dio_blocks_per_fs_block; 876 unsigned this_chunk_blocks; /* In dio_blocks */ 877 unsigned this_chunk_bytes; 878 struct page *page; 879 880 sdio->start_zero_done = 1; 881 if (!sdio->blkfactor || !buffer_new(map_bh)) 882 return; 883 884 dio_blocks_per_fs_block = 1 << sdio->blkfactor; 885 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1); 886 887 if (!this_chunk_blocks) 888 return; 889 890 /* 891 * We need to zero out part of an fs block. It is either at the 892 * beginning or the end of the fs block. 893 */ 894 if (end) 895 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; 896 897 this_chunk_bytes = this_chunk_blocks << sdio->blkbits; 898 899 page = ZERO_PAGE(0); 900 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes, 901 sdio->next_block_for_io, map_bh)) 902 return; 903 904 sdio->next_block_for_io += this_chunk_blocks; 905 } 906 907 /* 908 * Walk the user pages, and the file, mapping blocks to disk and generating 909 * a sequence of (page,offset,len,block) mappings. These mappings are injected 910 * into submit_page_section(), which takes care of the next stage of submission 911 * 912 * Direct IO against a blockdev is different from a file. Because we can 913 * happily perform page-sized but 512-byte aligned IOs. It is important that 914 * blockdev IO be able to have fine alignment and large sizes. 915 * 916 * So what we do is to permit the ->get_block function to populate bh.b_size 917 * with the size of IO which is permitted at this offset and this i_blkbits. 918 * 919 * For best results, the blockdev should be set up with 512-byte i_blkbits and 920 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives 921 * fine alignment but still allows this function to work in PAGE_SIZE units. 922 */ 923 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio, 924 struct buffer_head *map_bh) 925 { 926 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 927 const unsigned blkbits = sdio->blkbits; 928 const unsigned i_blkbits = blkbits + sdio->blkfactor; 929 int ret = 0; 930 931 while (sdio->block_in_file < sdio->final_block_in_request) { 932 struct page *page; 933 size_t from, to; 934 935 page = dio_get_page(dio, sdio); 936 if (IS_ERR(page)) { 937 ret = PTR_ERR(page); 938 goto out; 939 } 940 from = sdio->head ? 0 : sdio->from; 941 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE; 942 sdio->head++; 943 944 while (from < to) { 945 unsigned this_chunk_bytes; /* # of bytes mapped */ 946 unsigned this_chunk_blocks; /* # of blocks */ 947 unsigned u; 948 949 if (sdio->blocks_available == 0) { 950 /* 951 * Need to go and map some more disk 952 */ 953 unsigned long blkmask; 954 unsigned long dio_remainder; 955 956 ret = get_more_blocks(dio, sdio, map_bh); 957 if (ret) { 958 put_page(page); 959 goto out; 960 } 961 if (!buffer_mapped(map_bh)) 962 goto do_holes; 963 964 sdio->blocks_available = 965 map_bh->b_size >> blkbits; 966 sdio->next_block_for_io = 967 map_bh->b_blocknr << sdio->blkfactor; 968 if (buffer_new(map_bh)) { 969 clean_bdev_aliases( 970 map_bh->b_bdev, 971 map_bh->b_blocknr, 972 map_bh->b_size >> i_blkbits); 973 } 974 975 if (!sdio->blkfactor) 976 goto do_holes; 977 978 blkmask = (1 << sdio->blkfactor) - 1; 979 dio_remainder = (sdio->block_in_file & blkmask); 980 981 /* 982 * If we are at the start of IO and that IO 983 * starts partway into a fs-block, 984 * dio_remainder will be non-zero. If the IO 985 * is a read then we can simply advance the IO 986 * cursor to the first block which is to be 987 * read. But if the IO is a write and the 988 * block was newly allocated we cannot do that; 989 * the start of the fs block must be zeroed out 990 * on-disk 991 */ 992 if (!buffer_new(map_bh)) 993 sdio->next_block_for_io += dio_remainder; 994 sdio->blocks_available -= dio_remainder; 995 } 996 do_holes: 997 /* Handle holes */ 998 if (!buffer_mapped(map_bh)) { 999 loff_t i_size_aligned; 1000 1001 /* AKPM: eargh, -ENOTBLK is a hack */ 1002 if (dio_op == REQ_OP_WRITE) { 1003 put_page(page); 1004 return -ENOTBLK; 1005 } 1006 1007 /* 1008 * Be sure to account for a partial block as the 1009 * last block in the file 1010 */ 1011 i_size_aligned = ALIGN(i_size_read(dio->inode), 1012 1 << blkbits); 1013 if (sdio->block_in_file >= 1014 i_size_aligned >> blkbits) { 1015 /* We hit eof */ 1016 put_page(page); 1017 goto out; 1018 } 1019 zero_user(page, from, 1 << blkbits); 1020 sdio->block_in_file++; 1021 from += 1 << blkbits; 1022 dio->result += 1 << blkbits; 1023 goto next_block; 1024 } 1025 1026 /* 1027 * If we're performing IO which has an alignment which 1028 * is finer than the underlying fs, go check to see if 1029 * we must zero out the start of this block. 1030 */ 1031 if (unlikely(sdio->blkfactor && !sdio->start_zero_done)) 1032 dio_zero_block(dio, sdio, 0, map_bh); 1033 1034 /* 1035 * Work out, in this_chunk_blocks, how much disk we 1036 * can add to this page 1037 */ 1038 this_chunk_blocks = sdio->blocks_available; 1039 u = (to - from) >> blkbits; 1040 if (this_chunk_blocks > u) 1041 this_chunk_blocks = u; 1042 u = sdio->final_block_in_request - sdio->block_in_file; 1043 if (this_chunk_blocks > u) 1044 this_chunk_blocks = u; 1045 this_chunk_bytes = this_chunk_blocks << blkbits; 1046 BUG_ON(this_chunk_bytes == 0); 1047 1048 if (this_chunk_blocks == sdio->blocks_available) 1049 sdio->boundary = buffer_boundary(map_bh); 1050 ret = submit_page_section(dio, sdio, page, 1051 from, 1052 this_chunk_bytes, 1053 sdio->next_block_for_io, 1054 map_bh); 1055 if (ret) { 1056 put_page(page); 1057 goto out; 1058 } 1059 sdio->next_block_for_io += this_chunk_blocks; 1060 1061 sdio->block_in_file += this_chunk_blocks; 1062 from += this_chunk_bytes; 1063 dio->result += this_chunk_bytes; 1064 sdio->blocks_available -= this_chunk_blocks; 1065 next_block: 1066 BUG_ON(sdio->block_in_file > sdio->final_block_in_request); 1067 if (sdio->block_in_file == sdio->final_block_in_request) 1068 break; 1069 } 1070 1071 /* Drop the ref which was taken in get_user_pages() */ 1072 put_page(page); 1073 } 1074 out: 1075 return ret; 1076 } 1077 1078 static inline int drop_refcount(struct dio *dio) 1079 { 1080 int ret2; 1081 unsigned long flags; 1082 1083 /* 1084 * Sync will always be dropping the final ref and completing the 1085 * operation. AIO can if it was a broken operation described above or 1086 * in fact if all the bios race to complete before we get here. In 1087 * that case dio_complete() translates the EIOCBQUEUED into the proper 1088 * return code that the caller will hand to ->complete(). 1089 * 1090 * This is managed by the bio_lock instead of being an atomic_t so that 1091 * completion paths can drop their ref and use the remaining count to 1092 * decide to wake the submission path atomically. 1093 */ 1094 spin_lock_irqsave(&dio->bio_lock, flags); 1095 ret2 = --dio->refcount; 1096 spin_unlock_irqrestore(&dio->bio_lock, flags); 1097 return ret2; 1098 } 1099 1100 /* 1101 * This is a library function for use by filesystem drivers. 1102 * 1103 * The locking rules are governed by the flags parameter: 1104 * - if the flags value contains DIO_LOCKING we use a fancy locking 1105 * scheme for dumb filesystems. 1106 * For writes this function is called under i_mutex and returns with 1107 * i_mutex held, for reads, i_mutex is not held on entry, but it is 1108 * taken and dropped again before returning. 1109 * - if the flags value does NOT contain DIO_LOCKING we don't use any 1110 * internal locking but rather rely on the filesystem to synchronize 1111 * direct I/O reads/writes versus each other and truncate. 1112 * 1113 * To help with locking against truncate we incremented the i_dio_count 1114 * counter before starting direct I/O, and decrement it once we are done. 1115 * Truncate can wait for it to reach zero to provide exclusion. It is 1116 * expected that filesystem provide exclusion between new direct I/O 1117 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex, 1118 * but other filesystems need to take care of this on their own. 1119 * 1120 * NOTE: if you pass "sdio" to anything by pointer make sure that function 1121 * is always inlined. Otherwise gcc is unable to split the structure into 1122 * individual fields and will generate much worse code. This is important 1123 * for the whole file. 1124 */ 1125 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1126 struct block_device *bdev, struct iov_iter *iter, 1127 get_block_t get_block, dio_iodone_t end_io, 1128 dio_submit_t submit_io, int flags) 1129 { 1130 unsigned i_blkbits = READ_ONCE(inode->i_blkbits); 1131 unsigned blkbits = i_blkbits; 1132 unsigned blocksize_mask = (1 << blkbits) - 1; 1133 ssize_t retval = -EINVAL; 1134 const size_t count = iov_iter_count(iter); 1135 loff_t offset = iocb->ki_pos; 1136 const loff_t end = offset + count; 1137 struct dio *dio; 1138 struct dio_submit sdio = { 0, }; 1139 struct buffer_head map_bh = { 0, }; 1140 struct blk_plug plug; 1141 unsigned long align = offset | iov_iter_alignment(iter); 1142 1143 /* 1144 * Avoid references to bdev if not absolutely needed to give 1145 * the early prefetch in the caller enough time. 1146 */ 1147 1148 /* watch out for a 0 len io from a tricksy fs */ 1149 if (iov_iter_rw(iter) == READ && !count) 1150 return 0; 1151 1152 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL); 1153 if (!dio) 1154 return -ENOMEM; 1155 /* 1156 * Believe it or not, zeroing out the page array caused a .5% 1157 * performance regression in a database benchmark. So, we take 1158 * care to only zero out what's needed. 1159 */ 1160 memset(dio, 0, offsetof(struct dio, pages)); 1161 1162 dio->flags = flags; 1163 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) { 1164 /* will be released by direct_io_worker */ 1165 inode_lock(inode); 1166 } 1167 1168 /* Once we sampled i_size check for reads beyond EOF */ 1169 dio->i_size = i_size_read(inode); 1170 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) { 1171 retval = 0; 1172 goto fail_dio; 1173 } 1174 1175 if (align & blocksize_mask) { 1176 if (bdev) 1177 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 1178 blocksize_mask = (1 << blkbits) - 1; 1179 if (align & blocksize_mask) 1180 goto fail_dio; 1181 } 1182 1183 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) { 1184 struct address_space *mapping = iocb->ki_filp->f_mapping; 1185 1186 retval = filemap_write_and_wait_range(mapping, offset, end - 1); 1187 if (retval) 1188 goto fail_dio; 1189 } 1190 1191 /* 1192 * For file extending writes updating i_size before data writeouts 1193 * complete can expose uninitialized blocks in dumb filesystems. 1194 * In that case we need to wait for I/O completion even if asked 1195 * for an asynchronous write. 1196 */ 1197 if (is_sync_kiocb(iocb)) 1198 dio->is_async = false; 1199 else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode)) 1200 dio->is_async = false; 1201 else 1202 dio->is_async = true; 1203 1204 dio->inode = inode; 1205 if (iov_iter_rw(iter) == WRITE) { 1206 dio->opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE; 1207 if (iocb->ki_flags & IOCB_NOWAIT) 1208 dio->opf |= REQ_NOWAIT; 1209 } else { 1210 dio->opf = REQ_OP_READ; 1211 } 1212 1213 /* 1214 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue 1215 * so that we can call ->fsync. 1216 */ 1217 if (dio->is_async && iov_iter_rw(iter) == WRITE) { 1218 retval = 0; 1219 if (iocb_is_dsync(iocb)) 1220 retval = dio_set_defer_completion(dio); 1221 else if (!dio->inode->i_sb->s_dio_done_wq) { 1222 /* 1223 * In case of AIO write racing with buffered read we 1224 * need to defer completion. We can't decide this now, 1225 * however the workqueue needs to be initialized here. 1226 */ 1227 retval = sb_init_dio_done_wq(dio->inode->i_sb); 1228 } 1229 if (retval) 1230 goto fail_dio; 1231 } 1232 1233 /* 1234 * Will be decremented at I/O completion time. 1235 */ 1236 inode_dio_begin(inode); 1237 1238 retval = 0; 1239 sdio.blkbits = blkbits; 1240 sdio.blkfactor = i_blkbits - blkbits; 1241 sdio.block_in_file = offset >> blkbits; 1242 1243 sdio.get_block = get_block; 1244 dio->end_io = end_io; 1245 sdio.submit_io = submit_io; 1246 sdio.final_block_in_bio = -1; 1247 sdio.next_block_for_io = -1; 1248 1249 dio->iocb = iocb; 1250 1251 spin_lock_init(&dio->bio_lock); 1252 dio->refcount = 1; 1253 1254 dio->should_dirty = iter_is_iovec(iter) && iov_iter_rw(iter) == READ; 1255 sdio.iter = iter; 1256 sdio.final_block_in_request = end >> blkbits; 1257 1258 /* 1259 * In case of non-aligned buffers, we may need 2 more 1260 * pages since we need to zero out first and last block. 1261 */ 1262 if (unlikely(sdio.blkfactor)) 1263 sdio.pages_in_io = 2; 1264 1265 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX); 1266 1267 blk_start_plug(&plug); 1268 1269 retval = do_direct_IO(dio, &sdio, &map_bh); 1270 if (retval) 1271 dio_cleanup(dio, &sdio); 1272 1273 if (retval == -ENOTBLK) { 1274 /* 1275 * The remaining part of the request will be 1276 * handled by buffered I/O when we return 1277 */ 1278 retval = 0; 1279 } 1280 /* 1281 * There may be some unwritten disk at the end of a part-written 1282 * fs-block-sized block. Go zero that now. 1283 */ 1284 dio_zero_block(dio, &sdio, 1, &map_bh); 1285 1286 if (sdio.cur_page) { 1287 ssize_t ret2; 1288 1289 ret2 = dio_send_cur_page(dio, &sdio, &map_bh); 1290 if (retval == 0) 1291 retval = ret2; 1292 put_page(sdio.cur_page); 1293 sdio.cur_page = NULL; 1294 } 1295 if (sdio.bio) 1296 dio_bio_submit(dio, &sdio); 1297 1298 blk_finish_plug(&plug); 1299 1300 /* 1301 * It is possible that, we return short IO due to end of file. 1302 * In that case, we need to release all the pages we got hold on. 1303 */ 1304 dio_cleanup(dio, &sdio); 1305 1306 /* 1307 * All block lookups have been performed. For READ requests 1308 * we can let i_mutex go now that its achieved its purpose 1309 * of protecting us from looking up uninitialized blocks. 1310 */ 1311 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING)) 1312 inode_unlock(dio->inode); 1313 1314 /* 1315 * The only time we want to leave bios in flight is when a successful 1316 * partial aio read or full aio write have been setup. In that case 1317 * bio completion will call aio_complete. The only time it's safe to 1318 * call aio_complete is when we return -EIOCBQUEUED, so we key on that. 1319 * This had *better* be the only place that raises -EIOCBQUEUED. 1320 */ 1321 BUG_ON(retval == -EIOCBQUEUED); 1322 if (dio->is_async && retval == 0 && dio->result && 1323 (iov_iter_rw(iter) == READ || dio->result == count)) 1324 retval = -EIOCBQUEUED; 1325 else 1326 dio_await_completion(dio); 1327 1328 if (drop_refcount(dio) == 0) { 1329 retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE); 1330 } else 1331 BUG_ON(retval != -EIOCBQUEUED); 1332 1333 return retval; 1334 1335 fail_dio: 1336 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) 1337 inode_unlock(inode); 1338 1339 kmem_cache_free(dio_cache, dio); 1340 return retval; 1341 } 1342 EXPORT_SYMBOL(__blockdev_direct_IO); 1343 1344 static __init int dio_init(void) 1345 { 1346 dio_cache = KMEM_CACHE(dio, SLAB_PANIC); 1347 return 0; 1348 } 1349 module_init(dio_init) 1350