1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/direct-io.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * O_DIRECT 8 * 9 * 04Jul2002 Andrew Morton 10 * Initial version 11 * 11Sep2002 janetinc@us.ibm.com 12 * added readv/writev support. 13 * 29Oct2002 Andrew Morton 14 * rewrote bio_add_page() support. 15 * 30Oct2002 pbadari@us.ibm.com 16 * added support for non-aligned IO. 17 * 06Nov2002 pbadari@us.ibm.com 18 * added asynchronous IO support. 19 * 21Jul2003 nathans@sgi.com 20 * added IO completion notifier. 21 */ 22 23 #include <linux/kernel.h> 24 #include <linux/module.h> 25 #include <linux/types.h> 26 #include <linux/fs.h> 27 #include <linux/mm.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/pagemap.h> 31 #include <linux/task_io_accounting_ops.h> 32 #include <linux/bio.h> 33 #include <linux/wait.h> 34 #include <linux/err.h> 35 #include <linux/blkdev.h> 36 #include <linux/buffer_head.h> 37 #include <linux/rwsem.h> 38 #include <linux/uio.h> 39 #include <linux/atomic.h> 40 #include <linux/prefetch.h> 41 42 #include "internal.h" 43 44 /* 45 * How many user pages to map in one call to get_user_pages(). This determines 46 * the size of a structure in the slab cache 47 */ 48 #define DIO_PAGES 64 49 50 /* 51 * Flags for dio_complete() 52 */ 53 #define DIO_COMPLETE_ASYNC 0x01 /* This is async IO */ 54 #define DIO_COMPLETE_INVALIDATE 0x02 /* Can invalidate pages */ 55 56 /* 57 * This code generally works in units of "dio_blocks". A dio_block is 58 * somewhere between the hard sector size and the filesystem block size. it 59 * is determined on a per-invocation basis. When talking to the filesystem 60 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity 61 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted 62 * to bio_block quantities by shifting left by blkfactor. 63 * 64 * If blkfactor is zero then the user's request was aligned to the filesystem's 65 * blocksize. 66 */ 67 68 /* dio_state only used in the submission path */ 69 70 struct dio_submit { 71 struct bio *bio; /* bio under assembly */ 72 unsigned blkbits; /* doesn't change */ 73 unsigned blkfactor; /* When we're using an alignment which 74 is finer than the filesystem's soft 75 blocksize, this specifies how much 76 finer. blkfactor=2 means 1/4-block 77 alignment. Does not change */ 78 unsigned start_zero_done; /* flag: sub-blocksize zeroing has 79 been performed at the start of a 80 write */ 81 int pages_in_io; /* approximate total IO pages */ 82 sector_t block_in_file; /* Current offset into the underlying 83 file in dio_block units. */ 84 unsigned blocks_available; /* At block_in_file. changes */ 85 int reap_counter; /* rate limit reaping */ 86 sector_t final_block_in_request;/* doesn't change */ 87 int boundary; /* prev block is at a boundary */ 88 get_block_t *get_block; /* block mapping function */ 89 dio_submit_t *submit_io; /* IO submition function */ 90 91 loff_t logical_offset_in_bio; /* current first logical block in bio */ 92 sector_t final_block_in_bio; /* current final block in bio + 1 */ 93 sector_t next_block_for_io; /* next block to be put under IO, 94 in dio_blocks units */ 95 96 /* 97 * Deferred addition of a page to the dio. These variables are 98 * private to dio_send_cur_page(), submit_page_section() and 99 * dio_bio_add_page(). 100 */ 101 struct page *cur_page; /* The page */ 102 unsigned cur_page_offset; /* Offset into it, in bytes */ 103 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ 104 sector_t cur_page_block; /* Where it starts */ 105 loff_t cur_page_fs_offset; /* Offset in file */ 106 107 struct iov_iter *iter; 108 /* 109 * Page queue. These variables belong to dio_refill_pages() and 110 * dio_get_page(). 111 */ 112 unsigned head; /* next page to process */ 113 unsigned tail; /* last valid page + 1 */ 114 size_t from, to; 115 }; 116 117 /* dio_state communicated between submission path and end_io */ 118 struct dio { 119 int flags; /* doesn't change */ 120 int op; 121 int op_flags; 122 blk_qc_t bio_cookie; 123 struct gendisk *bio_disk; 124 struct inode *inode; 125 loff_t i_size; /* i_size when submitted */ 126 dio_iodone_t *end_io; /* IO completion function */ 127 128 void *private; /* copy from map_bh.b_private */ 129 130 /* BIO completion state */ 131 spinlock_t bio_lock; /* protects BIO fields below */ 132 int page_errors; /* errno from get_user_pages() */ 133 int is_async; /* is IO async ? */ 134 bool defer_completion; /* defer AIO completion to workqueue? */ 135 bool should_dirty; /* if pages should be dirtied */ 136 int io_error; /* IO error in completion path */ 137 unsigned long refcount; /* direct_io_worker() and bios */ 138 struct bio *bio_list; /* singly linked via bi_private */ 139 struct task_struct *waiter; /* waiting task (NULL if none) */ 140 141 /* AIO related stuff */ 142 struct kiocb *iocb; /* kiocb */ 143 ssize_t result; /* IO result */ 144 145 /* 146 * pages[] (and any fields placed after it) are not zeroed out at 147 * allocation time. Don't add new fields after pages[] unless you 148 * wish that they not be zeroed. 149 */ 150 union { 151 struct page *pages[DIO_PAGES]; /* page buffer */ 152 struct work_struct complete_work;/* deferred AIO completion */ 153 }; 154 } ____cacheline_aligned_in_smp; 155 156 static struct kmem_cache *dio_cache __read_mostly; 157 158 /* 159 * How many pages are in the queue? 160 */ 161 static inline unsigned dio_pages_present(struct dio_submit *sdio) 162 { 163 return sdio->tail - sdio->head; 164 } 165 166 /* 167 * Go grab and pin some userspace pages. Typically we'll get 64 at a time. 168 */ 169 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio) 170 { 171 ssize_t ret; 172 173 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES, 174 &sdio->from); 175 176 if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) { 177 struct page *page = ZERO_PAGE(0); 178 /* 179 * A memory fault, but the filesystem has some outstanding 180 * mapped blocks. We need to use those blocks up to avoid 181 * leaking stale data in the file. 182 */ 183 if (dio->page_errors == 0) 184 dio->page_errors = ret; 185 get_page(page); 186 dio->pages[0] = page; 187 sdio->head = 0; 188 sdio->tail = 1; 189 sdio->from = 0; 190 sdio->to = PAGE_SIZE; 191 return 0; 192 } 193 194 if (ret >= 0) { 195 iov_iter_advance(sdio->iter, ret); 196 ret += sdio->from; 197 sdio->head = 0; 198 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE; 199 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1; 200 return 0; 201 } 202 return ret; 203 } 204 205 /* 206 * Get another userspace page. Returns an ERR_PTR on error. Pages are 207 * buffered inside the dio so that we can call get_user_pages() against a 208 * decent number of pages, less frequently. To provide nicer use of the 209 * L1 cache. 210 */ 211 static inline struct page *dio_get_page(struct dio *dio, 212 struct dio_submit *sdio) 213 { 214 if (dio_pages_present(sdio) == 0) { 215 int ret; 216 217 ret = dio_refill_pages(dio, sdio); 218 if (ret) 219 return ERR_PTR(ret); 220 BUG_ON(dio_pages_present(sdio) == 0); 221 } 222 return dio->pages[sdio->head]; 223 } 224 225 /* 226 * dio_complete() - called when all DIO BIO I/O has been completed 227 * 228 * This drops i_dio_count, lets interested parties know that a DIO operation 229 * has completed, and calculates the resulting return code for the operation. 230 * 231 * It lets the filesystem know if it registered an interest earlier via 232 * get_block. Pass the private field of the map buffer_head so that 233 * filesystems can use it to hold additional state between get_block calls and 234 * dio_complete. 235 */ 236 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags) 237 { 238 loff_t offset = dio->iocb->ki_pos; 239 ssize_t transferred = 0; 240 int err; 241 242 /* 243 * AIO submission can race with bio completion to get here while 244 * expecting to have the last io completed by bio completion. 245 * In that case -EIOCBQUEUED is in fact not an error we want 246 * to preserve through this call. 247 */ 248 if (ret == -EIOCBQUEUED) 249 ret = 0; 250 251 if (dio->result) { 252 transferred = dio->result; 253 254 /* Check for short read case */ 255 if ((dio->op == REQ_OP_READ) && 256 ((offset + transferred) > dio->i_size)) 257 transferred = dio->i_size - offset; 258 /* ignore EFAULT if some IO has been done */ 259 if (unlikely(ret == -EFAULT) && transferred) 260 ret = 0; 261 } 262 263 if (ret == 0) 264 ret = dio->page_errors; 265 if (ret == 0) 266 ret = dio->io_error; 267 if (ret == 0) 268 ret = transferred; 269 270 if (dio->end_io) { 271 // XXX: ki_pos?? 272 err = dio->end_io(dio->iocb, offset, ret, dio->private); 273 if (err) 274 ret = err; 275 } 276 277 /* 278 * Try again to invalidate clean pages which might have been cached by 279 * non-direct readahead, or faulted in by get_user_pages() if the source 280 * of the write was an mmap'ed region of the file we're writing. Either 281 * one is a pretty crazy thing to do, so we don't support it 100%. If 282 * this invalidation fails, tough, the write still worked... 283 * 284 * And this page cache invalidation has to be after dio->end_io(), as 285 * some filesystems convert unwritten extents to real allocations in 286 * end_io() when necessary, otherwise a racing buffer read would cache 287 * zeros from unwritten extents. 288 */ 289 if (flags & DIO_COMPLETE_INVALIDATE && 290 ret > 0 && dio->op == REQ_OP_WRITE && 291 dio->inode->i_mapping->nrpages) { 292 err = invalidate_inode_pages2_range(dio->inode->i_mapping, 293 offset >> PAGE_SHIFT, 294 (offset + ret - 1) >> PAGE_SHIFT); 295 if (err) 296 dio_warn_stale_pagecache(dio->iocb->ki_filp); 297 } 298 299 inode_dio_end(dio->inode); 300 301 if (flags & DIO_COMPLETE_ASYNC) { 302 /* 303 * generic_write_sync expects ki_pos to have been updated 304 * already, but the submission path only does this for 305 * synchronous I/O. 306 */ 307 dio->iocb->ki_pos += transferred; 308 309 if (ret > 0 && dio->op == REQ_OP_WRITE) 310 ret = generic_write_sync(dio->iocb, ret); 311 dio->iocb->ki_complete(dio->iocb, ret, 0); 312 } 313 314 kmem_cache_free(dio_cache, dio); 315 return ret; 316 } 317 318 static void dio_aio_complete_work(struct work_struct *work) 319 { 320 struct dio *dio = container_of(work, struct dio, complete_work); 321 322 dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE); 323 } 324 325 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio); 326 327 /* 328 * Asynchronous IO callback. 329 */ 330 static void dio_bio_end_aio(struct bio *bio) 331 { 332 struct dio *dio = bio->bi_private; 333 unsigned long remaining; 334 unsigned long flags; 335 bool defer_completion = false; 336 337 /* cleanup the bio */ 338 dio_bio_complete(dio, bio); 339 340 spin_lock_irqsave(&dio->bio_lock, flags); 341 remaining = --dio->refcount; 342 if (remaining == 1 && dio->waiter) 343 wake_up_process(dio->waiter); 344 spin_unlock_irqrestore(&dio->bio_lock, flags); 345 346 if (remaining == 0) { 347 /* 348 * Defer completion when defer_completion is set or 349 * when the inode has pages mapped and this is AIO write. 350 * We need to invalidate those pages because there is a 351 * chance they contain stale data in the case buffered IO 352 * went in between AIO submission and completion into the 353 * same region. 354 */ 355 if (dio->result) 356 defer_completion = dio->defer_completion || 357 (dio->op == REQ_OP_WRITE && 358 dio->inode->i_mapping->nrpages); 359 if (defer_completion) { 360 INIT_WORK(&dio->complete_work, dio_aio_complete_work); 361 queue_work(dio->inode->i_sb->s_dio_done_wq, 362 &dio->complete_work); 363 } else { 364 dio_complete(dio, 0, DIO_COMPLETE_ASYNC); 365 } 366 } 367 } 368 369 /* 370 * The BIO completion handler simply queues the BIO up for the process-context 371 * handler. 372 * 373 * During I/O bi_private points at the dio. After I/O, bi_private is used to 374 * implement a singly-linked list of completed BIOs, at dio->bio_list. 375 */ 376 static void dio_bio_end_io(struct bio *bio) 377 { 378 struct dio *dio = bio->bi_private; 379 unsigned long flags; 380 381 spin_lock_irqsave(&dio->bio_lock, flags); 382 bio->bi_private = dio->bio_list; 383 dio->bio_list = bio; 384 if (--dio->refcount == 1 && dio->waiter) 385 wake_up_process(dio->waiter); 386 spin_unlock_irqrestore(&dio->bio_lock, flags); 387 } 388 389 /** 390 * dio_end_io - handle the end io action for the given bio 391 * @bio: The direct io bio thats being completed 392 * 393 * This is meant to be called by any filesystem that uses their own dio_submit_t 394 * so that the DIO specific endio actions are dealt with after the filesystem 395 * has done it's completion work. 396 */ 397 void dio_end_io(struct bio *bio) 398 { 399 struct dio *dio = bio->bi_private; 400 401 if (dio->is_async) 402 dio_bio_end_aio(bio); 403 else 404 dio_bio_end_io(bio); 405 } 406 EXPORT_SYMBOL_GPL(dio_end_io); 407 408 static inline void 409 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio, 410 struct block_device *bdev, 411 sector_t first_sector, int nr_vecs) 412 { 413 struct bio *bio; 414 415 /* 416 * bio_alloc() is guaranteed to return a bio when allowed to sleep and 417 * we request a valid number of vectors. 418 */ 419 bio = bio_alloc(GFP_KERNEL, nr_vecs); 420 421 bio_set_dev(bio, bdev); 422 bio->bi_iter.bi_sector = first_sector; 423 bio_set_op_attrs(bio, dio->op, dio->op_flags); 424 if (dio->is_async) 425 bio->bi_end_io = dio_bio_end_aio; 426 else 427 bio->bi_end_io = dio_bio_end_io; 428 429 bio->bi_write_hint = dio->iocb->ki_hint; 430 431 sdio->bio = bio; 432 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset; 433 } 434 435 /* 436 * In the AIO read case we speculatively dirty the pages before starting IO. 437 * During IO completion, any of these pages which happen to have been written 438 * back will be redirtied by bio_check_pages_dirty(). 439 * 440 * bios hold a dio reference between submit_bio and ->end_io. 441 */ 442 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio) 443 { 444 struct bio *bio = sdio->bio; 445 unsigned long flags; 446 447 bio->bi_private = dio; 448 449 spin_lock_irqsave(&dio->bio_lock, flags); 450 dio->refcount++; 451 spin_unlock_irqrestore(&dio->bio_lock, flags); 452 453 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) 454 bio_set_pages_dirty(bio); 455 456 dio->bio_disk = bio->bi_disk; 457 458 if (sdio->submit_io) { 459 sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio); 460 dio->bio_cookie = BLK_QC_T_NONE; 461 } else 462 dio->bio_cookie = submit_bio(bio); 463 464 sdio->bio = NULL; 465 sdio->boundary = 0; 466 sdio->logical_offset_in_bio = 0; 467 } 468 469 /* 470 * Release any resources in case of a failure 471 */ 472 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio) 473 { 474 while (sdio->head < sdio->tail) 475 put_page(dio->pages[sdio->head++]); 476 } 477 478 /* 479 * Wait for the next BIO to complete. Remove it and return it. NULL is 480 * returned once all BIOs have been completed. This must only be called once 481 * all bios have been issued so that dio->refcount can only decrease. This 482 * requires that that the caller hold a reference on the dio. 483 */ 484 static struct bio *dio_await_one(struct dio *dio) 485 { 486 unsigned long flags; 487 struct bio *bio = NULL; 488 489 spin_lock_irqsave(&dio->bio_lock, flags); 490 491 /* 492 * Wait as long as the list is empty and there are bios in flight. bio 493 * completion drops the count, maybe adds to the list, and wakes while 494 * holding the bio_lock so we don't need set_current_state()'s barrier 495 * and can call it after testing our condition. 496 */ 497 while (dio->refcount > 1 && dio->bio_list == NULL) { 498 __set_current_state(TASK_UNINTERRUPTIBLE); 499 dio->waiter = current; 500 spin_unlock_irqrestore(&dio->bio_lock, flags); 501 if (!(dio->iocb->ki_flags & IOCB_HIPRI) || 502 !blk_poll(dio->bio_disk->queue, dio->bio_cookie, true)) 503 blk_io_schedule(); 504 /* wake up sets us TASK_RUNNING */ 505 spin_lock_irqsave(&dio->bio_lock, flags); 506 dio->waiter = NULL; 507 } 508 if (dio->bio_list) { 509 bio = dio->bio_list; 510 dio->bio_list = bio->bi_private; 511 } 512 spin_unlock_irqrestore(&dio->bio_lock, flags); 513 return bio; 514 } 515 516 /* 517 * Process one completed BIO. No locks are held. 518 */ 519 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio) 520 { 521 blk_status_t err = bio->bi_status; 522 bool should_dirty = dio->op == REQ_OP_READ && dio->should_dirty; 523 524 if (err) { 525 if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT)) 526 dio->io_error = -EAGAIN; 527 else 528 dio->io_error = -EIO; 529 } 530 531 if (dio->is_async && should_dirty) { 532 bio_check_pages_dirty(bio); /* transfers ownership */ 533 } else { 534 bio_release_pages(bio, should_dirty); 535 bio_put(bio); 536 } 537 return err; 538 } 539 540 /* 541 * Wait on and process all in-flight BIOs. This must only be called once 542 * all bios have been issued so that the refcount can only decrease. 543 * This just waits for all bios to make it through dio_bio_complete. IO 544 * errors are propagated through dio->io_error and should be propagated via 545 * dio_complete(). 546 */ 547 static void dio_await_completion(struct dio *dio) 548 { 549 struct bio *bio; 550 do { 551 bio = dio_await_one(dio); 552 if (bio) 553 dio_bio_complete(dio, bio); 554 } while (bio); 555 } 556 557 /* 558 * A really large O_DIRECT read or write can generate a lot of BIOs. So 559 * to keep the memory consumption sane we periodically reap any completed BIOs 560 * during the BIO generation phase. 561 * 562 * This also helps to limit the peak amount of pinned userspace memory. 563 */ 564 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio) 565 { 566 int ret = 0; 567 568 if (sdio->reap_counter++ >= 64) { 569 while (dio->bio_list) { 570 unsigned long flags; 571 struct bio *bio; 572 int ret2; 573 574 spin_lock_irqsave(&dio->bio_lock, flags); 575 bio = dio->bio_list; 576 dio->bio_list = bio->bi_private; 577 spin_unlock_irqrestore(&dio->bio_lock, flags); 578 ret2 = blk_status_to_errno(dio_bio_complete(dio, bio)); 579 if (ret == 0) 580 ret = ret2; 581 } 582 sdio->reap_counter = 0; 583 } 584 return ret; 585 } 586 587 /* 588 * Create workqueue for deferred direct IO completions. We allocate the 589 * workqueue when it's first needed. This avoids creating workqueue for 590 * filesystems that don't need it and also allows us to create the workqueue 591 * late enough so the we can include s_id in the name of the workqueue. 592 */ 593 int sb_init_dio_done_wq(struct super_block *sb) 594 { 595 struct workqueue_struct *old; 596 struct workqueue_struct *wq = alloc_workqueue("dio/%s", 597 WQ_MEM_RECLAIM, 0, 598 sb->s_id); 599 if (!wq) 600 return -ENOMEM; 601 /* 602 * This has to be atomic as more DIOs can race to create the workqueue 603 */ 604 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq); 605 /* Someone created workqueue before us? Free ours... */ 606 if (old) 607 destroy_workqueue(wq); 608 return 0; 609 } 610 611 static int dio_set_defer_completion(struct dio *dio) 612 { 613 struct super_block *sb = dio->inode->i_sb; 614 615 if (dio->defer_completion) 616 return 0; 617 dio->defer_completion = true; 618 if (!sb->s_dio_done_wq) 619 return sb_init_dio_done_wq(sb); 620 return 0; 621 } 622 623 /* 624 * Call into the fs to map some more disk blocks. We record the current number 625 * of available blocks at sdio->blocks_available. These are in units of the 626 * fs blocksize, i_blocksize(inode). 627 * 628 * The fs is allowed to map lots of blocks at once. If it wants to do that, 629 * it uses the passed inode-relative block number as the file offset, as usual. 630 * 631 * get_block() is passed the number of i_blkbits-sized blocks which direct_io 632 * has remaining to do. The fs should not map more than this number of blocks. 633 * 634 * If the fs has mapped a lot of blocks, it should populate bh->b_size to 635 * indicate how much contiguous disk space has been made available at 636 * bh->b_blocknr. 637 * 638 * If *any* of the mapped blocks are new, then the fs must set buffer_new(). 639 * This isn't very efficient... 640 * 641 * In the case of filesystem holes: the fs may return an arbitrarily-large 642 * hole by returning an appropriate value in b_size and by clearing 643 * buffer_mapped(). However the direct-io code will only process holes one 644 * block at a time - it will repeatedly call get_block() as it walks the hole. 645 */ 646 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio, 647 struct buffer_head *map_bh) 648 { 649 int ret; 650 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ 651 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */ 652 unsigned long fs_count; /* Number of filesystem-sized blocks */ 653 int create; 654 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor; 655 loff_t i_size; 656 657 /* 658 * If there was a memory error and we've overwritten all the 659 * mapped blocks then we can now return that memory error 660 */ 661 ret = dio->page_errors; 662 if (ret == 0) { 663 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request); 664 fs_startblk = sdio->block_in_file >> sdio->blkfactor; 665 fs_endblk = (sdio->final_block_in_request - 1) >> 666 sdio->blkfactor; 667 fs_count = fs_endblk - fs_startblk + 1; 668 669 map_bh->b_state = 0; 670 map_bh->b_size = fs_count << i_blkbits; 671 672 /* 673 * For writes that could fill holes inside i_size on a 674 * DIO_SKIP_HOLES filesystem we forbid block creations: only 675 * overwrites are permitted. We will return early to the caller 676 * once we see an unmapped buffer head returned, and the caller 677 * will fall back to buffered I/O. 678 * 679 * Otherwise the decision is left to the get_blocks method, 680 * which may decide to handle it or also return an unmapped 681 * buffer head. 682 */ 683 create = dio->op == REQ_OP_WRITE; 684 if (dio->flags & DIO_SKIP_HOLES) { 685 i_size = i_size_read(dio->inode); 686 if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits) 687 create = 0; 688 } 689 690 ret = (*sdio->get_block)(dio->inode, fs_startblk, 691 map_bh, create); 692 693 /* Store for completion */ 694 dio->private = map_bh->b_private; 695 696 if (ret == 0 && buffer_defer_completion(map_bh)) 697 ret = dio_set_defer_completion(dio); 698 } 699 return ret; 700 } 701 702 /* 703 * There is no bio. Make one now. 704 */ 705 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio, 706 sector_t start_sector, struct buffer_head *map_bh) 707 { 708 sector_t sector; 709 int ret, nr_pages; 710 711 ret = dio_bio_reap(dio, sdio); 712 if (ret) 713 goto out; 714 sector = start_sector << (sdio->blkbits - 9); 715 nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES); 716 BUG_ON(nr_pages <= 0); 717 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages); 718 sdio->boundary = 0; 719 out: 720 return ret; 721 } 722 723 /* 724 * Attempt to put the current chunk of 'cur_page' into the current BIO. If 725 * that was successful then update final_block_in_bio and take a ref against 726 * the just-added page. 727 * 728 * Return zero on success. Non-zero means the caller needs to start a new BIO. 729 */ 730 static inline int dio_bio_add_page(struct dio_submit *sdio) 731 { 732 int ret; 733 734 ret = bio_add_page(sdio->bio, sdio->cur_page, 735 sdio->cur_page_len, sdio->cur_page_offset); 736 if (ret == sdio->cur_page_len) { 737 /* 738 * Decrement count only, if we are done with this page 739 */ 740 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE) 741 sdio->pages_in_io--; 742 get_page(sdio->cur_page); 743 sdio->final_block_in_bio = sdio->cur_page_block + 744 (sdio->cur_page_len >> sdio->blkbits); 745 ret = 0; 746 } else { 747 ret = 1; 748 } 749 return ret; 750 } 751 752 /* 753 * Put cur_page under IO. The section of cur_page which is described by 754 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page 755 * starts on-disk at cur_page_block. 756 * 757 * We take a ref against the page here (on behalf of its presence in the bio). 758 * 759 * The caller of this function is responsible for removing cur_page from the 760 * dio, and for dropping the refcount which came from that presence. 761 */ 762 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio, 763 struct buffer_head *map_bh) 764 { 765 int ret = 0; 766 767 if (sdio->bio) { 768 loff_t cur_offset = sdio->cur_page_fs_offset; 769 loff_t bio_next_offset = sdio->logical_offset_in_bio + 770 sdio->bio->bi_iter.bi_size; 771 772 /* 773 * See whether this new request is contiguous with the old. 774 * 775 * Btrfs cannot handle having logically non-contiguous requests 776 * submitted. For example if you have 777 * 778 * Logical: [0-4095][HOLE][8192-12287] 779 * Physical: [0-4095] [4096-8191] 780 * 781 * We cannot submit those pages together as one BIO. So if our 782 * current logical offset in the file does not equal what would 783 * be the next logical offset in the bio, submit the bio we 784 * have. 785 */ 786 if (sdio->final_block_in_bio != sdio->cur_page_block || 787 cur_offset != bio_next_offset) 788 dio_bio_submit(dio, sdio); 789 } 790 791 if (sdio->bio == NULL) { 792 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 793 if (ret) 794 goto out; 795 } 796 797 if (dio_bio_add_page(sdio) != 0) { 798 dio_bio_submit(dio, sdio); 799 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 800 if (ret == 0) { 801 ret = dio_bio_add_page(sdio); 802 BUG_ON(ret != 0); 803 } 804 } 805 out: 806 return ret; 807 } 808 809 /* 810 * An autonomous function to put a chunk of a page under deferred IO. 811 * 812 * The caller doesn't actually know (or care) whether this piece of page is in 813 * a BIO, or is under IO or whatever. We just take care of all possible 814 * situations here. The separation between the logic of do_direct_IO() and 815 * that of submit_page_section() is important for clarity. Please don't break. 816 * 817 * The chunk of page starts on-disk at blocknr. 818 * 819 * We perform deferred IO, by recording the last-submitted page inside our 820 * private part of the dio structure. If possible, we just expand the IO 821 * across that page here. 822 * 823 * If that doesn't work out then we put the old page into the bio and add this 824 * page to the dio instead. 825 */ 826 static inline int 827 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page, 828 unsigned offset, unsigned len, sector_t blocknr, 829 struct buffer_head *map_bh) 830 { 831 int ret = 0; 832 833 if (dio->op == REQ_OP_WRITE) { 834 /* 835 * Read accounting is performed in submit_bio() 836 */ 837 task_io_account_write(len); 838 } 839 840 /* 841 * Can we just grow the current page's presence in the dio? 842 */ 843 if (sdio->cur_page == page && 844 sdio->cur_page_offset + sdio->cur_page_len == offset && 845 sdio->cur_page_block + 846 (sdio->cur_page_len >> sdio->blkbits) == blocknr) { 847 sdio->cur_page_len += len; 848 goto out; 849 } 850 851 /* 852 * If there's a deferred page already there then send it. 853 */ 854 if (sdio->cur_page) { 855 ret = dio_send_cur_page(dio, sdio, map_bh); 856 put_page(sdio->cur_page); 857 sdio->cur_page = NULL; 858 if (ret) 859 return ret; 860 } 861 862 get_page(page); /* It is in dio */ 863 sdio->cur_page = page; 864 sdio->cur_page_offset = offset; 865 sdio->cur_page_len = len; 866 sdio->cur_page_block = blocknr; 867 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits; 868 out: 869 /* 870 * If sdio->boundary then we want to schedule the IO now to 871 * avoid metadata seeks. 872 */ 873 if (sdio->boundary) { 874 ret = dio_send_cur_page(dio, sdio, map_bh); 875 if (sdio->bio) 876 dio_bio_submit(dio, sdio); 877 put_page(sdio->cur_page); 878 sdio->cur_page = NULL; 879 } 880 return ret; 881 } 882 883 /* 884 * If we are not writing the entire block and get_block() allocated 885 * the block for us, we need to fill-in the unused portion of the 886 * block with zeros. This happens only if user-buffer, fileoffset or 887 * io length is not filesystem block-size multiple. 888 * 889 * `end' is zero if we're doing the start of the IO, 1 at the end of the 890 * IO. 891 */ 892 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio, 893 int end, struct buffer_head *map_bh) 894 { 895 unsigned dio_blocks_per_fs_block; 896 unsigned this_chunk_blocks; /* In dio_blocks */ 897 unsigned this_chunk_bytes; 898 struct page *page; 899 900 sdio->start_zero_done = 1; 901 if (!sdio->blkfactor || !buffer_new(map_bh)) 902 return; 903 904 dio_blocks_per_fs_block = 1 << sdio->blkfactor; 905 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1); 906 907 if (!this_chunk_blocks) 908 return; 909 910 /* 911 * We need to zero out part of an fs block. It is either at the 912 * beginning or the end of the fs block. 913 */ 914 if (end) 915 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; 916 917 this_chunk_bytes = this_chunk_blocks << sdio->blkbits; 918 919 page = ZERO_PAGE(0); 920 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes, 921 sdio->next_block_for_io, map_bh)) 922 return; 923 924 sdio->next_block_for_io += this_chunk_blocks; 925 } 926 927 /* 928 * Walk the user pages, and the file, mapping blocks to disk and generating 929 * a sequence of (page,offset,len,block) mappings. These mappings are injected 930 * into submit_page_section(), which takes care of the next stage of submission 931 * 932 * Direct IO against a blockdev is different from a file. Because we can 933 * happily perform page-sized but 512-byte aligned IOs. It is important that 934 * blockdev IO be able to have fine alignment and large sizes. 935 * 936 * So what we do is to permit the ->get_block function to populate bh.b_size 937 * with the size of IO which is permitted at this offset and this i_blkbits. 938 * 939 * For best results, the blockdev should be set up with 512-byte i_blkbits and 940 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives 941 * fine alignment but still allows this function to work in PAGE_SIZE units. 942 */ 943 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio, 944 struct buffer_head *map_bh) 945 { 946 const unsigned blkbits = sdio->blkbits; 947 const unsigned i_blkbits = blkbits + sdio->blkfactor; 948 int ret = 0; 949 950 while (sdio->block_in_file < sdio->final_block_in_request) { 951 struct page *page; 952 size_t from, to; 953 954 page = dio_get_page(dio, sdio); 955 if (IS_ERR(page)) { 956 ret = PTR_ERR(page); 957 goto out; 958 } 959 from = sdio->head ? 0 : sdio->from; 960 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE; 961 sdio->head++; 962 963 while (from < to) { 964 unsigned this_chunk_bytes; /* # of bytes mapped */ 965 unsigned this_chunk_blocks; /* # of blocks */ 966 unsigned u; 967 968 if (sdio->blocks_available == 0) { 969 /* 970 * Need to go and map some more disk 971 */ 972 unsigned long blkmask; 973 unsigned long dio_remainder; 974 975 ret = get_more_blocks(dio, sdio, map_bh); 976 if (ret) { 977 put_page(page); 978 goto out; 979 } 980 if (!buffer_mapped(map_bh)) 981 goto do_holes; 982 983 sdio->blocks_available = 984 map_bh->b_size >> blkbits; 985 sdio->next_block_for_io = 986 map_bh->b_blocknr << sdio->blkfactor; 987 if (buffer_new(map_bh)) { 988 clean_bdev_aliases( 989 map_bh->b_bdev, 990 map_bh->b_blocknr, 991 map_bh->b_size >> i_blkbits); 992 } 993 994 if (!sdio->blkfactor) 995 goto do_holes; 996 997 blkmask = (1 << sdio->blkfactor) - 1; 998 dio_remainder = (sdio->block_in_file & blkmask); 999 1000 /* 1001 * If we are at the start of IO and that IO 1002 * starts partway into a fs-block, 1003 * dio_remainder will be non-zero. If the IO 1004 * is a read then we can simply advance the IO 1005 * cursor to the first block which is to be 1006 * read. But if the IO is a write and the 1007 * block was newly allocated we cannot do that; 1008 * the start of the fs block must be zeroed out 1009 * on-disk 1010 */ 1011 if (!buffer_new(map_bh)) 1012 sdio->next_block_for_io += dio_remainder; 1013 sdio->blocks_available -= dio_remainder; 1014 } 1015 do_holes: 1016 /* Handle holes */ 1017 if (!buffer_mapped(map_bh)) { 1018 loff_t i_size_aligned; 1019 1020 /* AKPM: eargh, -ENOTBLK is a hack */ 1021 if (dio->op == REQ_OP_WRITE) { 1022 put_page(page); 1023 return -ENOTBLK; 1024 } 1025 1026 /* 1027 * Be sure to account for a partial block as the 1028 * last block in the file 1029 */ 1030 i_size_aligned = ALIGN(i_size_read(dio->inode), 1031 1 << blkbits); 1032 if (sdio->block_in_file >= 1033 i_size_aligned >> blkbits) { 1034 /* We hit eof */ 1035 put_page(page); 1036 goto out; 1037 } 1038 zero_user(page, from, 1 << blkbits); 1039 sdio->block_in_file++; 1040 from += 1 << blkbits; 1041 dio->result += 1 << blkbits; 1042 goto next_block; 1043 } 1044 1045 /* 1046 * If we're performing IO which has an alignment which 1047 * is finer than the underlying fs, go check to see if 1048 * we must zero out the start of this block. 1049 */ 1050 if (unlikely(sdio->blkfactor && !sdio->start_zero_done)) 1051 dio_zero_block(dio, sdio, 0, map_bh); 1052 1053 /* 1054 * Work out, in this_chunk_blocks, how much disk we 1055 * can add to this page 1056 */ 1057 this_chunk_blocks = sdio->blocks_available; 1058 u = (to - from) >> blkbits; 1059 if (this_chunk_blocks > u) 1060 this_chunk_blocks = u; 1061 u = sdio->final_block_in_request - sdio->block_in_file; 1062 if (this_chunk_blocks > u) 1063 this_chunk_blocks = u; 1064 this_chunk_bytes = this_chunk_blocks << blkbits; 1065 BUG_ON(this_chunk_bytes == 0); 1066 1067 if (this_chunk_blocks == sdio->blocks_available) 1068 sdio->boundary = buffer_boundary(map_bh); 1069 ret = submit_page_section(dio, sdio, page, 1070 from, 1071 this_chunk_bytes, 1072 sdio->next_block_for_io, 1073 map_bh); 1074 if (ret) { 1075 put_page(page); 1076 goto out; 1077 } 1078 sdio->next_block_for_io += this_chunk_blocks; 1079 1080 sdio->block_in_file += this_chunk_blocks; 1081 from += this_chunk_bytes; 1082 dio->result += this_chunk_bytes; 1083 sdio->blocks_available -= this_chunk_blocks; 1084 next_block: 1085 BUG_ON(sdio->block_in_file > sdio->final_block_in_request); 1086 if (sdio->block_in_file == sdio->final_block_in_request) 1087 break; 1088 } 1089 1090 /* Drop the ref which was taken in get_user_pages() */ 1091 put_page(page); 1092 } 1093 out: 1094 return ret; 1095 } 1096 1097 static inline int drop_refcount(struct dio *dio) 1098 { 1099 int ret2; 1100 unsigned long flags; 1101 1102 /* 1103 * Sync will always be dropping the final ref and completing the 1104 * operation. AIO can if it was a broken operation described above or 1105 * in fact if all the bios race to complete before we get here. In 1106 * that case dio_complete() translates the EIOCBQUEUED into the proper 1107 * return code that the caller will hand to ->complete(). 1108 * 1109 * This is managed by the bio_lock instead of being an atomic_t so that 1110 * completion paths can drop their ref and use the remaining count to 1111 * decide to wake the submission path atomically. 1112 */ 1113 spin_lock_irqsave(&dio->bio_lock, flags); 1114 ret2 = --dio->refcount; 1115 spin_unlock_irqrestore(&dio->bio_lock, flags); 1116 return ret2; 1117 } 1118 1119 /* 1120 * This is a library function for use by filesystem drivers. 1121 * 1122 * The locking rules are governed by the flags parameter: 1123 * - if the flags value contains DIO_LOCKING we use a fancy locking 1124 * scheme for dumb filesystems. 1125 * For writes this function is called under i_mutex and returns with 1126 * i_mutex held, for reads, i_mutex is not held on entry, but it is 1127 * taken and dropped again before returning. 1128 * - if the flags value does NOT contain DIO_LOCKING we don't use any 1129 * internal locking but rather rely on the filesystem to synchronize 1130 * direct I/O reads/writes versus each other and truncate. 1131 * 1132 * To help with locking against truncate we incremented the i_dio_count 1133 * counter before starting direct I/O, and decrement it once we are done. 1134 * Truncate can wait for it to reach zero to provide exclusion. It is 1135 * expected that filesystem provide exclusion between new direct I/O 1136 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex, 1137 * but other filesystems need to take care of this on their own. 1138 * 1139 * NOTE: if you pass "sdio" to anything by pointer make sure that function 1140 * is always inlined. Otherwise gcc is unable to split the structure into 1141 * individual fields and will generate much worse code. This is important 1142 * for the whole file. 1143 */ 1144 static inline ssize_t 1145 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1146 struct block_device *bdev, struct iov_iter *iter, 1147 get_block_t get_block, dio_iodone_t end_io, 1148 dio_submit_t submit_io, int flags) 1149 { 1150 unsigned i_blkbits = READ_ONCE(inode->i_blkbits); 1151 unsigned blkbits = i_blkbits; 1152 unsigned blocksize_mask = (1 << blkbits) - 1; 1153 ssize_t retval = -EINVAL; 1154 const size_t count = iov_iter_count(iter); 1155 loff_t offset = iocb->ki_pos; 1156 const loff_t end = offset + count; 1157 struct dio *dio; 1158 struct dio_submit sdio = { 0, }; 1159 struct buffer_head map_bh = { 0, }; 1160 struct blk_plug plug; 1161 unsigned long align = offset | iov_iter_alignment(iter); 1162 1163 /* 1164 * Avoid references to bdev if not absolutely needed to give 1165 * the early prefetch in the caller enough time. 1166 */ 1167 1168 if (align & blocksize_mask) { 1169 if (bdev) 1170 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 1171 blocksize_mask = (1 << blkbits) - 1; 1172 if (align & blocksize_mask) 1173 goto out; 1174 } 1175 1176 /* watch out for a 0 len io from a tricksy fs */ 1177 if (iov_iter_rw(iter) == READ && !count) 1178 return 0; 1179 1180 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL); 1181 retval = -ENOMEM; 1182 if (!dio) 1183 goto out; 1184 /* 1185 * Believe it or not, zeroing out the page array caused a .5% 1186 * performance regression in a database benchmark. So, we take 1187 * care to only zero out what's needed. 1188 */ 1189 memset(dio, 0, offsetof(struct dio, pages)); 1190 1191 dio->flags = flags; 1192 if (dio->flags & DIO_LOCKING) { 1193 if (iov_iter_rw(iter) == READ) { 1194 struct address_space *mapping = 1195 iocb->ki_filp->f_mapping; 1196 1197 /* will be released by direct_io_worker */ 1198 inode_lock(inode); 1199 1200 retval = filemap_write_and_wait_range(mapping, offset, 1201 end - 1); 1202 if (retval) { 1203 inode_unlock(inode); 1204 kmem_cache_free(dio_cache, dio); 1205 goto out; 1206 } 1207 } 1208 } 1209 1210 /* Once we sampled i_size check for reads beyond EOF */ 1211 dio->i_size = i_size_read(inode); 1212 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) { 1213 if (dio->flags & DIO_LOCKING) 1214 inode_unlock(inode); 1215 kmem_cache_free(dio_cache, dio); 1216 retval = 0; 1217 goto out; 1218 } 1219 1220 /* 1221 * For file extending writes updating i_size before data writeouts 1222 * complete can expose uninitialized blocks in dumb filesystems. 1223 * In that case we need to wait for I/O completion even if asked 1224 * for an asynchronous write. 1225 */ 1226 if (is_sync_kiocb(iocb)) 1227 dio->is_async = false; 1228 else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode)) 1229 dio->is_async = false; 1230 else 1231 dio->is_async = true; 1232 1233 dio->inode = inode; 1234 if (iov_iter_rw(iter) == WRITE) { 1235 dio->op = REQ_OP_WRITE; 1236 dio->op_flags = REQ_SYNC | REQ_IDLE; 1237 if (iocb->ki_flags & IOCB_NOWAIT) 1238 dio->op_flags |= REQ_NOWAIT; 1239 } else { 1240 dio->op = REQ_OP_READ; 1241 } 1242 if (iocb->ki_flags & IOCB_HIPRI) 1243 dio->op_flags |= REQ_HIPRI; 1244 1245 /* 1246 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue 1247 * so that we can call ->fsync. 1248 */ 1249 if (dio->is_async && iov_iter_rw(iter) == WRITE) { 1250 retval = 0; 1251 if (iocb->ki_flags & IOCB_DSYNC) 1252 retval = dio_set_defer_completion(dio); 1253 else if (!dio->inode->i_sb->s_dio_done_wq) { 1254 /* 1255 * In case of AIO write racing with buffered read we 1256 * need to defer completion. We can't decide this now, 1257 * however the workqueue needs to be initialized here. 1258 */ 1259 retval = sb_init_dio_done_wq(dio->inode->i_sb); 1260 } 1261 if (retval) { 1262 /* 1263 * We grab i_mutex only for reads so we don't have 1264 * to release it here 1265 */ 1266 kmem_cache_free(dio_cache, dio); 1267 goto out; 1268 } 1269 } 1270 1271 /* 1272 * Will be decremented at I/O completion time. 1273 */ 1274 inode_dio_begin(inode); 1275 1276 retval = 0; 1277 sdio.blkbits = blkbits; 1278 sdio.blkfactor = i_blkbits - blkbits; 1279 sdio.block_in_file = offset >> blkbits; 1280 1281 sdio.get_block = get_block; 1282 dio->end_io = end_io; 1283 sdio.submit_io = submit_io; 1284 sdio.final_block_in_bio = -1; 1285 sdio.next_block_for_io = -1; 1286 1287 dio->iocb = iocb; 1288 1289 spin_lock_init(&dio->bio_lock); 1290 dio->refcount = 1; 1291 1292 dio->should_dirty = iter_is_iovec(iter) && iov_iter_rw(iter) == READ; 1293 sdio.iter = iter; 1294 sdio.final_block_in_request = end >> blkbits; 1295 1296 /* 1297 * In case of non-aligned buffers, we may need 2 more 1298 * pages since we need to zero out first and last block. 1299 */ 1300 if (unlikely(sdio.blkfactor)) 1301 sdio.pages_in_io = 2; 1302 1303 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX); 1304 1305 blk_start_plug(&plug); 1306 1307 retval = do_direct_IO(dio, &sdio, &map_bh); 1308 if (retval) 1309 dio_cleanup(dio, &sdio); 1310 1311 if (retval == -ENOTBLK) { 1312 /* 1313 * The remaining part of the request will be 1314 * be handled by buffered I/O when we return 1315 */ 1316 retval = 0; 1317 } 1318 /* 1319 * There may be some unwritten disk at the end of a part-written 1320 * fs-block-sized block. Go zero that now. 1321 */ 1322 dio_zero_block(dio, &sdio, 1, &map_bh); 1323 1324 if (sdio.cur_page) { 1325 ssize_t ret2; 1326 1327 ret2 = dio_send_cur_page(dio, &sdio, &map_bh); 1328 if (retval == 0) 1329 retval = ret2; 1330 put_page(sdio.cur_page); 1331 sdio.cur_page = NULL; 1332 } 1333 if (sdio.bio) 1334 dio_bio_submit(dio, &sdio); 1335 1336 blk_finish_plug(&plug); 1337 1338 /* 1339 * It is possible that, we return short IO due to end of file. 1340 * In that case, we need to release all the pages we got hold on. 1341 */ 1342 dio_cleanup(dio, &sdio); 1343 1344 /* 1345 * All block lookups have been performed. For READ requests 1346 * we can let i_mutex go now that its achieved its purpose 1347 * of protecting us from looking up uninitialized blocks. 1348 */ 1349 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING)) 1350 inode_unlock(dio->inode); 1351 1352 /* 1353 * The only time we want to leave bios in flight is when a successful 1354 * partial aio read or full aio write have been setup. In that case 1355 * bio completion will call aio_complete. The only time it's safe to 1356 * call aio_complete is when we return -EIOCBQUEUED, so we key on that. 1357 * This had *better* be the only place that raises -EIOCBQUEUED. 1358 */ 1359 BUG_ON(retval == -EIOCBQUEUED); 1360 if (dio->is_async && retval == 0 && dio->result && 1361 (iov_iter_rw(iter) == READ || dio->result == count)) 1362 retval = -EIOCBQUEUED; 1363 else 1364 dio_await_completion(dio); 1365 1366 if (drop_refcount(dio) == 0) { 1367 retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE); 1368 } else 1369 BUG_ON(retval != -EIOCBQUEUED); 1370 1371 out: 1372 return retval; 1373 } 1374 1375 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1376 struct block_device *bdev, struct iov_iter *iter, 1377 get_block_t get_block, 1378 dio_iodone_t end_io, dio_submit_t submit_io, 1379 int flags) 1380 { 1381 /* 1382 * The block device state is needed in the end to finally 1383 * submit everything. Since it's likely to be cache cold 1384 * prefetch it here as first thing to hide some of the 1385 * latency. 1386 * 1387 * Attempt to prefetch the pieces we likely need later. 1388 */ 1389 prefetch(&bdev->bd_disk->part_tbl); 1390 prefetch(bdev->bd_disk->queue); 1391 prefetch((char *)bdev->bd_disk->queue + SMP_CACHE_BYTES); 1392 1393 return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block, 1394 end_io, submit_io, flags); 1395 } 1396 1397 EXPORT_SYMBOL(__blockdev_direct_IO); 1398 1399 static __init int dio_init(void) 1400 { 1401 dio_cache = KMEM_CACHE(dio, SLAB_PANIC); 1402 return 0; 1403 } 1404 module_init(dio_init) 1405