xref: /openbmc/linux/fs/direct-io.c (revision afc98d90)
1 /*
2  * fs/direct-io.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * O_DIRECT
7  *
8  * 04Jul2002	Andrew Morton
9  *		Initial version
10  * 11Sep2002	janetinc@us.ibm.com
11  * 		added readv/writev support.
12  * 29Oct2002	Andrew Morton
13  *		rewrote bio_add_page() support.
14  * 30Oct2002	pbadari@us.ibm.com
15  *		added support for non-aligned IO.
16  * 06Nov2002	pbadari@us.ibm.com
17  *		added asynchronous IO support.
18  * 21Jul2003	nathans@sgi.com
19  *		added IO completion notifier.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <linux/atomic.h>
39 #include <linux/prefetch.h>
40 #include <linux/aio.h>
41 
42 /*
43  * How many user pages to map in one call to get_user_pages().  This determines
44  * the size of a structure in the slab cache
45  */
46 #define DIO_PAGES	64
47 
48 /*
49  * This code generally works in units of "dio_blocks".  A dio_block is
50  * somewhere between the hard sector size and the filesystem block size.  it
51  * is determined on a per-invocation basis.   When talking to the filesystem
52  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
53  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
54  * to bio_block quantities by shifting left by blkfactor.
55  *
56  * If blkfactor is zero then the user's request was aligned to the filesystem's
57  * blocksize.
58  */
59 
60 /* dio_state only used in the submission path */
61 
62 struct dio_submit {
63 	struct bio *bio;		/* bio under assembly */
64 	unsigned blkbits;		/* doesn't change */
65 	unsigned blkfactor;		/* When we're using an alignment which
66 					   is finer than the filesystem's soft
67 					   blocksize, this specifies how much
68 					   finer.  blkfactor=2 means 1/4-block
69 					   alignment.  Does not change */
70 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
71 					   been performed at the start of a
72 					   write */
73 	int pages_in_io;		/* approximate total IO pages */
74 	size_t	size;			/* total request size (doesn't change)*/
75 	sector_t block_in_file;		/* Current offset into the underlying
76 					   file in dio_block units. */
77 	unsigned blocks_available;	/* At block_in_file.  changes */
78 	int reap_counter;		/* rate limit reaping */
79 	sector_t final_block_in_request;/* doesn't change */
80 	unsigned first_block_in_page;	/* doesn't change, Used only once */
81 	int boundary;			/* prev block is at a boundary */
82 	get_block_t *get_block;		/* block mapping function */
83 	dio_submit_t *submit_io;	/* IO submition function */
84 
85 	loff_t logical_offset_in_bio;	/* current first logical block in bio */
86 	sector_t final_block_in_bio;	/* current final block in bio + 1 */
87 	sector_t next_block_for_io;	/* next block to be put under IO,
88 					   in dio_blocks units */
89 
90 	/*
91 	 * Deferred addition of a page to the dio.  These variables are
92 	 * private to dio_send_cur_page(), submit_page_section() and
93 	 * dio_bio_add_page().
94 	 */
95 	struct page *cur_page;		/* The page */
96 	unsigned cur_page_offset;	/* Offset into it, in bytes */
97 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
98 	sector_t cur_page_block;	/* Where it starts */
99 	loff_t cur_page_fs_offset;	/* Offset in file */
100 
101 	/*
102 	 * Page fetching state. These variables belong to dio_refill_pages().
103 	 */
104 	int curr_page;			/* changes */
105 	int total_pages;		/* doesn't change */
106 	unsigned long curr_user_address;/* changes */
107 
108 	/*
109 	 * Page queue.  These variables belong to dio_refill_pages() and
110 	 * dio_get_page().
111 	 */
112 	unsigned head;			/* next page to process */
113 	unsigned tail;			/* last valid page + 1 */
114 };
115 
116 /* dio_state communicated between submission path and end_io */
117 struct dio {
118 	int flags;			/* doesn't change */
119 	int rw;
120 	struct inode *inode;
121 	loff_t i_size;			/* i_size when submitted */
122 	dio_iodone_t *end_io;		/* IO completion function */
123 
124 	void *private;			/* copy from map_bh.b_private */
125 
126 	/* BIO completion state */
127 	spinlock_t bio_lock;		/* protects BIO fields below */
128 	int page_errors;		/* errno from get_user_pages() */
129 	int is_async;			/* is IO async ? */
130 	bool defer_completion;		/* defer AIO completion to workqueue? */
131 	int io_error;			/* IO error in completion path */
132 	unsigned long refcount;		/* direct_io_worker() and bios */
133 	struct bio *bio_list;		/* singly linked via bi_private */
134 	struct task_struct *waiter;	/* waiting task (NULL if none) */
135 
136 	/* AIO related stuff */
137 	struct kiocb *iocb;		/* kiocb */
138 	ssize_t result;                 /* IO result */
139 
140 	/*
141 	 * pages[] (and any fields placed after it) are not zeroed out at
142 	 * allocation time.  Don't add new fields after pages[] unless you
143 	 * wish that they not be zeroed.
144 	 */
145 	union {
146 		struct page *pages[DIO_PAGES];	/* page buffer */
147 		struct work_struct complete_work;/* deferred AIO completion */
148 	};
149 } ____cacheline_aligned_in_smp;
150 
151 static struct kmem_cache *dio_cache __read_mostly;
152 
153 /*
154  * How many pages are in the queue?
155  */
156 static inline unsigned dio_pages_present(struct dio_submit *sdio)
157 {
158 	return sdio->tail - sdio->head;
159 }
160 
161 /*
162  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
163  */
164 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
165 {
166 	int ret;
167 	int nr_pages;
168 
169 	nr_pages = min(sdio->total_pages - sdio->curr_page, DIO_PAGES);
170 	ret = get_user_pages_fast(
171 		sdio->curr_user_address,		/* Where from? */
172 		nr_pages,			/* How many pages? */
173 		dio->rw == READ,		/* Write to memory? */
174 		&dio->pages[0]);		/* Put results here */
175 
176 	if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) {
177 		struct page *page = ZERO_PAGE(0);
178 		/*
179 		 * A memory fault, but the filesystem has some outstanding
180 		 * mapped blocks.  We need to use those blocks up to avoid
181 		 * leaking stale data in the file.
182 		 */
183 		if (dio->page_errors == 0)
184 			dio->page_errors = ret;
185 		page_cache_get(page);
186 		dio->pages[0] = page;
187 		sdio->head = 0;
188 		sdio->tail = 1;
189 		ret = 0;
190 		goto out;
191 	}
192 
193 	if (ret >= 0) {
194 		sdio->curr_user_address += ret * PAGE_SIZE;
195 		sdio->curr_page += ret;
196 		sdio->head = 0;
197 		sdio->tail = ret;
198 		ret = 0;
199 	}
200 out:
201 	return ret;
202 }
203 
204 /*
205  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
206  * buffered inside the dio so that we can call get_user_pages() against a
207  * decent number of pages, less frequently.  To provide nicer use of the
208  * L1 cache.
209  */
210 static inline struct page *dio_get_page(struct dio *dio,
211 		struct dio_submit *sdio)
212 {
213 	if (dio_pages_present(sdio) == 0) {
214 		int ret;
215 
216 		ret = dio_refill_pages(dio, sdio);
217 		if (ret)
218 			return ERR_PTR(ret);
219 		BUG_ON(dio_pages_present(sdio) == 0);
220 	}
221 	return dio->pages[sdio->head++];
222 }
223 
224 /**
225  * dio_complete() - called when all DIO BIO I/O has been completed
226  * @offset: the byte offset in the file of the completed operation
227  *
228  * This drops i_dio_count, lets interested parties know that a DIO operation
229  * has completed, and calculates the resulting return code for the operation.
230  *
231  * It lets the filesystem know if it registered an interest earlier via
232  * get_block.  Pass the private field of the map buffer_head so that
233  * filesystems can use it to hold additional state between get_block calls and
234  * dio_complete.
235  */
236 static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret,
237 		bool is_async)
238 {
239 	ssize_t transferred = 0;
240 
241 	/*
242 	 * AIO submission can race with bio completion to get here while
243 	 * expecting to have the last io completed by bio completion.
244 	 * In that case -EIOCBQUEUED is in fact not an error we want
245 	 * to preserve through this call.
246 	 */
247 	if (ret == -EIOCBQUEUED)
248 		ret = 0;
249 
250 	if (dio->result) {
251 		transferred = dio->result;
252 
253 		/* Check for short read case */
254 		if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
255 			transferred = dio->i_size - offset;
256 	}
257 
258 	if (ret == 0)
259 		ret = dio->page_errors;
260 	if (ret == 0)
261 		ret = dio->io_error;
262 	if (ret == 0)
263 		ret = transferred;
264 
265 	if (dio->end_io && dio->result)
266 		dio->end_io(dio->iocb, offset, transferred, dio->private);
267 
268 	inode_dio_done(dio->inode);
269 	if (is_async) {
270 		if (dio->rw & WRITE) {
271 			int err;
272 
273 			err = generic_write_sync(dio->iocb->ki_filp, offset,
274 						 transferred);
275 			if (err < 0 && ret > 0)
276 				ret = err;
277 		}
278 
279 		aio_complete(dio->iocb, ret, 0);
280 	}
281 
282 	kmem_cache_free(dio_cache, dio);
283 	return ret;
284 }
285 
286 static void dio_aio_complete_work(struct work_struct *work)
287 {
288 	struct dio *dio = container_of(work, struct dio, complete_work);
289 
290 	dio_complete(dio, dio->iocb->ki_pos, 0, true);
291 }
292 
293 static int dio_bio_complete(struct dio *dio, struct bio *bio);
294 
295 /*
296  * Asynchronous IO callback.
297  */
298 static void dio_bio_end_aio(struct bio *bio, int error)
299 {
300 	struct dio *dio = bio->bi_private;
301 	unsigned long remaining;
302 	unsigned long flags;
303 
304 	/* cleanup the bio */
305 	dio_bio_complete(dio, bio);
306 
307 	spin_lock_irqsave(&dio->bio_lock, flags);
308 	remaining = --dio->refcount;
309 	if (remaining == 1 && dio->waiter)
310 		wake_up_process(dio->waiter);
311 	spin_unlock_irqrestore(&dio->bio_lock, flags);
312 
313 	if (remaining == 0) {
314 		if (dio->result && dio->defer_completion) {
315 			INIT_WORK(&dio->complete_work, dio_aio_complete_work);
316 			queue_work(dio->inode->i_sb->s_dio_done_wq,
317 				   &dio->complete_work);
318 		} else {
319 			dio_complete(dio, dio->iocb->ki_pos, 0, true);
320 		}
321 	}
322 }
323 
324 /*
325  * The BIO completion handler simply queues the BIO up for the process-context
326  * handler.
327  *
328  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
329  * implement a singly-linked list of completed BIOs, at dio->bio_list.
330  */
331 static void dio_bio_end_io(struct bio *bio, int error)
332 {
333 	struct dio *dio = bio->bi_private;
334 	unsigned long flags;
335 
336 	spin_lock_irqsave(&dio->bio_lock, flags);
337 	bio->bi_private = dio->bio_list;
338 	dio->bio_list = bio;
339 	if (--dio->refcount == 1 && dio->waiter)
340 		wake_up_process(dio->waiter);
341 	spin_unlock_irqrestore(&dio->bio_lock, flags);
342 }
343 
344 /**
345  * dio_end_io - handle the end io action for the given bio
346  * @bio: The direct io bio thats being completed
347  * @error: Error if there was one
348  *
349  * This is meant to be called by any filesystem that uses their own dio_submit_t
350  * so that the DIO specific endio actions are dealt with after the filesystem
351  * has done it's completion work.
352  */
353 void dio_end_io(struct bio *bio, int error)
354 {
355 	struct dio *dio = bio->bi_private;
356 
357 	if (dio->is_async)
358 		dio_bio_end_aio(bio, error);
359 	else
360 		dio_bio_end_io(bio, error);
361 }
362 EXPORT_SYMBOL_GPL(dio_end_io);
363 
364 static inline void
365 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
366 	      struct block_device *bdev,
367 	      sector_t first_sector, int nr_vecs)
368 {
369 	struct bio *bio;
370 
371 	/*
372 	 * bio_alloc() is guaranteed to return a bio when called with
373 	 * __GFP_WAIT and we request a valid number of vectors.
374 	 */
375 	bio = bio_alloc(GFP_KERNEL, nr_vecs);
376 
377 	bio->bi_bdev = bdev;
378 	bio->bi_iter.bi_sector = first_sector;
379 	if (dio->is_async)
380 		bio->bi_end_io = dio_bio_end_aio;
381 	else
382 		bio->bi_end_io = dio_bio_end_io;
383 
384 	sdio->bio = bio;
385 	sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
386 }
387 
388 /*
389  * In the AIO read case we speculatively dirty the pages before starting IO.
390  * During IO completion, any of these pages which happen to have been written
391  * back will be redirtied by bio_check_pages_dirty().
392  *
393  * bios hold a dio reference between submit_bio and ->end_io.
394  */
395 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
396 {
397 	struct bio *bio = sdio->bio;
398 	unsigned long flags;
399 
400 	bio->bi_private = dio;
401 
402 	spin_lock_irqsave(&dio->bio_lock, flags);
403 	dio->refcount++;
404 	spin_unlock_irqrestore(&dio->bio_lock, flags);
405 
406 	if (dio->is_async && dio->rw == READ)
407 		bio_set_pages_dirty(bio);
408 
409 	if (sdio->submit_io)
410 		sdio->submit_io(dio->rw, bio, dio->inode,
411 			       sdio->logical_offset_in_bio);
412 	else
413 		submit_bio(dio->rw, bio);
414 
415 	sdio->bio = NULL;
416 	sdio->boundary = 0;
417 	sdio->logical_offset_in_bio = 0;
418 }
419 
420 /*
421  * Release any resources in case of a failure
422  */
423 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
424 {
425 	while (dio_pages_present(sdio))
426 		page_cache_release(dio_get_page(dio, sdio));
427 }
428 
429 /*
430  * Wait for the next BIO to complete.  Remove it and return it.  NULL is
431  * returned once all BIOs have been completed.  This must only be called once
432  * all bios have been issued so that dio->refcount can only decrease.  This
433  * requires that that the caller hold a reference on the dio.
434  */
435 static struct bio *dio_await_one(struct dio *dio)
436 {
437 	unsigned long flags;
438 	struct bio *bio = NULL;
439 
440 	spin_lock_irqsave(&dio->bio_lock, flags);
441 
442 	/*
443 	 * Wait as long as the list is empty and there are bios in flight.  bio
444 	 * completion drops the count, maybe adds to the list, and wakes while
445 	 * holding the bio_lock so we don't need set_current_state()'s barrier
446 	 * and can call it after testing our condition.
447 	 */
448 	while (dio->refcount > 1 && dio->bio_list == NULL) {
449 		__set_current_state(TASK_UNINTERRUPTIBLE);
450 		dio->waiter = current;
451 		spin_unlock_irqrestore(&dio->bio_lock, flags);
452 		io_schedule();
453 		/* wake up sets us TASK_RUNNING */
454 		spin_lock_irqsave(&dio->bio_lock, flags);
455 		dio->waiter = NULL;
456 	}
457 	if (dio->bio_list) {
458 		bio = dio->bio_list;
459 		dio->bio_list = bio->bi_private;
460 	}
461 	spin_unlock_irqrestore(&dio->bio_lock, flags);
462 	return bio;
463 }
464 
465 /*
466  * Process one completed BIO.  No locks are held.
467  */
468 static int dio_bio_complete(struct dio *dio, struct bio *bio)
469 {
470 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
471 	struct bio_vec *bvec;
472 	unsigned i;
473 
474 	if (!uptodate)
475 		dio->io_error = -EIO;
476 
477 	if (dio->is_async && dio->rw == READ) {
478 		bio_check_pages_dirty(bio);	/* transfers ownership */
479 	} else {
480 		bio_for_each_segment_all(bvec, bio, i) {
481 			struct page *page = bvec->bv_page;
482 
483 			if (dio->rw == READ && !PageCompound(page))
484 				set_page_dirty_lock(page);
485 			page_cache_release(page);
486 		}
487 		bio_put(bio);
488 	}
489 	return uptodate ? 0 : -EIO;
490 }
491 
492 /*
493  * Wait on and process all in-flight BIOs.  This must only be called once
494  * all bios have been issued so that the refcount can only decrease.
495  * This just waits for all bios to make it through dio_bio_complete.  IO
496  * errors are propagated through dio->io_error and should be propagated via
497  * dio_complete().
498  */
499 static void dio_await_completion(struct dio *dio)
500 {
501 	struct bio *bio;
502 	do {
503 		bio = dio_await_one(dio);
504 		if (bio)
505 			dio_bio_complete(dio, bio);
506 	} while (bio);
507 }
508 
509 /*
510  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
511  * to keep the memory consumption sane we periodically reap any completed BIOs
512  * during the BIO generation phase.
513  *
514  * This also helps to limit the peak amount of pinned userspace memory.
515  */
516 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
517 {
518 	int ret = 0;
519 
520 	if (sdio->reap_counter++ >= 64) {
521 		while (dio->bio_list) {
522 			unsigned long flags;
523 			struct bio *bio;
524 			int ret2;
525 
526 			spin_lock_irqsave(&dio->bio_lock, flags);
527 			bio = dio->bio_list;
528 			dio->bio_list = bio->bi_private;
529 			spin_unlock_irqrestore(&dio->bio_lock, flags);
530 			ret2 = dio_bio_complete(dio, bio);
531 			if (ret == 0)
532 				ret = ret2;
533 		}
534 		sdio->reap_counter = 0;
535 	}
536 	return ret;
537 }
538 
539 /*
540  * Create workqueue for deferred direct IO completions. We allocate the
541  * workqueue when it's first needed. This avoids creating workqueue for
542  * filesystems that don't need it and also allows us to create the workqueue
543  * late enough so the we can include s_id in the name of the workqueue.
544  */
545 static int sb_init_dio_done_wq(struct super_block *sb)
546 {
547 	struct workqueue_struct *old;
548 	struct workqueue_struct *wq = alloc_workqueue("dio/%s",
549 						      WQ_MEM_RECLAIM, 0,
550 						      sb->s_id);
551 	if (!wq)
552 		return -ENOMEM;
553 	/*
554 	 * This has to be atomic as more DIOs can race to create the workqueue
555 	 */
556 	old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
557 	/* Someone created workqueue before us? Free ours... */
558 	if (old)
559 		destroy_workqueue(wq);
560 	return 0;
561 }
562 
563 static int dio_set_defer_completion(struct dio *dio)
564 {
565 	struct super_block *sb = dio->inode->i_sb;
566 
567 	if (dio->defer_completion)
568 		return 0;
569 	dio->defer_completion = true;
570 	if (!sb->s_dio_done_wq)
571 		return sb_init_dio_done_wq(sb);
572 	return 0;
573 }
574 
575 /*
576  * Call into the fs to map some more disk blocks.  We record the current number
577  * of available blocks at sdio->blocks_available.  These are in units of the
578  * fs blocksize, (1 << inode->i_blkbits).
579  *
580  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
581  * it uses the passed inode-relative block number as the file offset, as usual.
582  *
583  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
584  * has remaining to do.  The fs should not map more than this number of blocks.
585  *
586  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
587  * indicate how much contiguous disk space has been made available at
588  * bh->b_blocknr.
589  *
590  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
591  * This isn't very efficient...
592  *
593  * In the case of filesystem holes: the fs may return an arbitrarily-large
594  * hole by returning an appropriate value in b_size and by clearing
595  * buffer_mapped().  However the direct-io code will only process holes one
596  * block at a time - it will repeatedly call get_block() as it walks the hole.
597  */
598 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
599 			   struct buffer_head *map_bh)
600 {
601 	int ret;
602 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
603 	sector_t fs_endblk;	/* Into file, in filesystem-sized blocks */
604 	unsigned long fs_count;	/* Number of filesystem-sized blocks */
605 	int create;
606 	unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
607 
608 	/*
609 	 * If there was a memory error and we've overwritten all the
610 	 * mapped blocks then we can now return that memory error
611 	 */
612 	ret = dio->page_errors;
613 	if (ret == 0) {
614 		BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
615 		fs_startblk = sdio->block_in_file >> sdio->blkfactor;
616 		fs_endblk = (sdio->final_block_in_request - 1) >>
617 					sdio->blkfactor;
618 		fs_count = fs_endblk - fs_startblk + 1;
619 
620 		map_bh->b_state = 0;
621 		map_bh->b_size = fs_count << i_blkbits;
622 
623 		/*
624 		 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
625 		 * forbid block creations: only overwrites are permitted.
626 		 * We will return early to the caller once we see an
627 		 * unmapped buffer head returned, and the caller will fall
628 		 * back to buffered I/O.
629 		 *
630 		 * Otherwise the decision is left to the get_blocks method,
631 		 * which may decide to handle it or also return an unmapped
632 		 * buffer head.
633 		 */
634 		create = dio->rw & WRITE;
635 		if (dio->flags & DIO_SKIP_HOLES) {
636 			if (sdio->block_in_file < (i_size_read(dio->inode) >>
637 							sdio->blkbits))
638 				create = 0;
639 		}
640 
641 		ret = (*sdio->get_block)(dio->inode, fs_startblk,
642 						map_bh, create);
643 
644 		/* Store for completion */
645 		dio->private = map_bh->b_private;
646 
647 		if (ret == 0 && buffer_defer_completion(map_bh))
648 			ret = dio_set_defer_completion(dio);
649 	}
650 	return ret;
651 }
652 
653 /*
654  * There is no bio.  Make one now.
655  */
656 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
657 		sector_t start_sector, struct buffer_head *map_bh)
658 {
659 	sector_t sector;
660 	int ret, nr_pages;
661 
662 	ret = dio_bio_reap(dio, sdio);
663 	if (ret)
664 		goto out;
665 	sector = start_sector << (sdio->blkbits - 9);
666 	nr_pages = min(sdio->pages_in_io, bio_get_nr_vecs(map_bh->b_bdev));
667 	nr_pages = min(nr_pages, BIO_MAX_PAGES);
668 	BUG_ON(nr_pages <= 0);
669 	dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
670 	sdio->boundary = 0;
671 out:
672 	return ret;
673 }
674 
675 /*
676  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
677  * that was successful then update final_block_in_bio and take a ref against
678  * the just-added page.
679  *
680  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
681  */
682 static inline int dio_bio_add_page(struct dio_submit *sdio)
683 {
684 	int ret;
685 
686 	ret = bio_add_page(sdio->bio, sdio->cur_page,
687 			sdio->cur_page_len, sdio->cur_page_offset);
688 	if (ret == sdio->cur_page_len) {
689 		/*
690 		 * Decrement count only, if we are done with this page
691 		 */
692 		if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
693 			sdio->pages_in_io--;
694 		page_cache_get(sdio->cur_page);
695 		sdio->final_block_in_bio = sdio->cur_page_block +
696 			(sdio->cur_page_len >> sdio->blkbits);
697 		ret = 0;
698 	} else {
699 		ret = 1;
700 	}
701 	return ret;
702 }
703 
704 /*
705  * Put cur_page under IO.  The section of cur_page which is described by
706  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
707  * starts on-disk at cur_page_block.
708  *
709  * We take a ref against the page here (on behalf of its presence in the bio).
710  *
711  * The caller of this function is responsible for removing cur_page from the
712  * dio, and for dropping the refcount which came from that presence.
713  */
714 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
715 		struct buffer_head *map_bh)
716 {
717 	int ret = 0;
718 
719 	if (sdio->bio) {
720 		loff_t cur_offset = sdio->cur_page_fs_offset;
721 		loff_t bio_next_offset = sdio->logical_offset_in_bio +
722 			sdio->bio->bi_iter.bi_size;
723 
724 		/*
725 		 * See whether this new request is contiguous with the old.
726 		 *
727 		 * Btrfs cannot handle having logically non-contiguous requests
728 		 * submitted.  For example if you have
729 		 *
730 		 * Logical:  [0-4095][HOLE][8192-12287]
731 		 * Physical: [0-4095]      [4096-8191]
732 		 *
733 		 * We cannot submit those pages together as one BIO.  So if our
734 		 * current logical offset in the file does not equal what would
735 		 * be the next logical offset in the bio, submit the bio we
736 		 * have.
737 		 */
738 		if (sdio->final_block_in_bio != sdio->cur_page_block ||
739 		    cur_offset != bio_next_offset)
740 			dio_bio_submit(dio, sdio);
741 	}
742 
743 	if (sdio->bio == NULL) {
744 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
745 		if (ret)
746 			goto out;
747 	}
748 
749 	if (dio_bio_add_page(sdio) != 0) {
750 		dio_bio_submit(dio, sdio);
751 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
752 		if (ret == 0) {
753 			ret = dio_bio_add_page(sdio);
754 			BUG_ON(ret != 0);
755 		}
756 	}
757 out:
758 	return ret;
759 }
760 
761 /*
762  * An autonomous function to put a chunk of a page under deferred IO.
763  *
764  * The caller doesn't actually know (or care) whether this piece of page is in
765  * a BIO, or is under IO or whatever.  We just take care of all possible
766  * situations here.  The separation between the logic of do_direct_IO() and
767  * that of submit_page_section() is important for clarity.  Please don't break.
768  *
769  * The chunk of page starts on-disk at blocknr.
770  *
771  * We perform deferred IO, by recording the last-submitted page inside our
772  * private part of the dio structure.  If possible, we just expand the IO
773  * across that page here.
774  *
775  * If that doesn't work out then we put the old page into the bio and add this
776  * page to the dio instead.
777  */
778 static inline int
779 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
780 		    unsigned offset, unsigned len, sector_t blocknr,
781 		    struct buffer_head *map_bh)
782 {
783 	int ret = 0;
784 
785 	if (dio->rw & WRITE) {
786 		/*
787 		 * Read accounting is performed in submit_bio()
788 		 */
789 		task_io_account_write(len);
790 	}
791 
792 	/*
793 	 * Can we just grow the current page's presence in the dio?
794 	 */
795 	if (sdio->cur_page == page &&
796 	    sdio->cur_page_offset + sdio->cur_page_len == offset &&
797 	    sdio->cur_page_block +
798 	    (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
799 		sdio->cur_page_len += len;
800 		goto out;
801 	}
802 
803 	/*
804 	 * If there's a deferred page already there then send it.
805 	 */
806 	if (sdio->cur_page) {
807 		ret = dio_send_cur_page(dio, sdio, map_bh);
808 		page_cache_release(sdio->cur_page);
809 		sdio->cur_page = NULL;
810 		if (ret)
811 			return ret;
812 	}
813 
814 	page_cache_get(page);		/* It is in dio */
815 	sdio->cur_page = page;
816 	sdio->cur_page_offset = offset;
817 	sdio->cur_page_len = len;
818 	sdio->cur_page_block = blocknr;
819 	sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
820 out:
821 	/*
822 	 * If sdio->boundary then we want to schedule the IO now to
823 	 * avoid metadata seeks.
824 	 */
825 	if (sdio->boundary) {
826 		ret = dio_send_cur_page(dio, sdio, map_bh);
827 		dio_bio_submit(dio, sdio);
828 		page_cache_release(sdio->cur_page);
829 		sdio->cur_page = NULL;
830 	}
831 	return ret;
832 }
833 
834 /*
835  * Clean any dirty buffers in the blockdev mapping which alias newly-created
836  * file blocks.  Only called for S_ISREG files - blockdevs do not set
837  * buffer_new
838  */
839 static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh)
840 {
841 	unsigned i;
842 	unsigned nblocks;
843 
844 	nblocks = map_bh->b_size >> dio->inode->i_blkbits;
845 
846 	for (i = 0; i < nblocks; i++) {
847 		unmap_underlying_metadata(map_bh->b_bdev,
848 					  map_bh->b_blocknr + i);
849 	}
850 }
851 
852 /*
853  * If we are not writing the entire block and get_block() allocated
854  * the block for us, we need to fill-in the unused portion of the
855  * block with zeros. This happens only if user-buffer, fileoffset or
856  * io length is not filesystem block-size multiple.
857  *
858  * `end' is zero if we're doing the start of the IO, 1 at the end of the
859  * IO.
860  */
861 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
862 		int end, struct buffer_head *map_bh)
863 {
864 	unsigned dio_blocks_per_fs_block;
865 	unsigned this_chunk_blocks;	/* In dio_blocks */
866 	unsigned this_chunk_bytes;
867 	struct page *page;
868 
869 	sdio->start_zero_done = 1;
870 	if (!sdio->blkfactor || !buffer_new(map_bh))
871 		return;
872 
873 	dio_blocks_per_fs_block = 1 << sdio->blkfactor;
874 	this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
875 
876 	if (!this_chunk_blocks)
877 		return;
878 
879 	/*
880 	 * We need to zero out part of an fs block.  It is either at the
881 	 * beginning or the end of the fs block.
882 	 */
883 	if (end)
884 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
885 
886 	this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
887 
888 	page = ZERO_PAGE(0);
889 	if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
890 				sdio->next_block_for_io, map_bh))
891 		return;
892 
893 	sdio->next_block_for_io += this_chunk_blocks;
894 }
895 
896 /*
897  * Walk the user pages, and the file, mapping blocks to disk and generating
898  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
899  * into submit_page_section(), which takes care of the next stage of submission
900  *
901  * Direct IO against a blockdev is different from a file.  Because we can
902  * happily perform page-sized but 512-byte aligned IOs.  It is important that
903  * blockdev IO be able to have fine alignment and large sizes.
904  *
905  * So what we do is to permit the ->get_block function to populate bh.b_size
906  * with the size of IO which is permitted at this offset and this i_blkbits.
907  *
908  * For best results, the blockdev should be set up with 512-byte i_blkbits and
909  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
910  * fine alignment but still allows this function to work in PAGE_SIZE units.
911  */
912 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
913 			struct buffer_head *map_bh)
914 {
915 	const unsigned blkbits = sdio->blkbits;
916 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
917 	struct page *page;
918 	unsigned block_in_page;
919 	int ret = 0;
920 
921 	/* The I/O can start at any block offset within the first page */
922 	block_in_page = sdio->first_block_in_page;
923 
924 	while (sdio->block_in_file < sdio->final_block_in_request) {
925 		page = dio_get_page(dio, sdio);
926 		if (IS_ERR(page)) {
927 			ret = PTR_ERR(page);
928 			goto out;
929 		}
930 
931 		while (block_in_page < blocks_per_page) {
932 			unsigned offset_in_page = block_in_page << blkbits;
933 			unsigned this_chunk_bytes;	/* # of bytes mapped */
934 			unsigned this_chunk_blocks;	/* # of blocks */
935 			unsigned u;
936 
937 			if (sdio->blocks_available == 0) {
938 				/*
939 				 * Need to go and map some more disk
940 				 */
941 				unsigned long blkmask;
942 				unsigned long dio_remainder;
943 
944 				ret = get_more_blocks(dio, sdio, map_bh);
945 				if (ret) {
946 					page_cache_release(page);
947 					goto out;
948 				}
949 				if (!buffer_mapped(map_bh))
950 					goto do_holes;
951 
952 				sdio->blocks_available =
953 						map_bh->b_size >> sdio->blkbits;
954 				sdio->next_block_for_io =
955 					map_bh->b_blocknr << sdio->blkfactor;
956 				if (buffer_new(map_bh))
957 					clean_blockdev_aliases(dio, map_bh);
958 
959 				if (!sdio->blkfactor)
960 					goto do_holes;
961 
962 				blkmask = (1 << sdio->blkfactor) - 1;
963 				dio_remainder = (sdio->block_in_file & blkmask);
964 
965 				/*
966 				 * If we are at the start of IO and that IO
967 				 * starts partway into a fs-block,
968 				 * dio_remainder will be non-zero.  If the IO
969 				 * is a read then we can simply advance the IO
970 				 * cursor to the first block which is to be
971 				 * read.  But if the IO is a write and the
972 				 * block was newly allocated we cannot do that;
973 				 * the start of the fs block must be zeroed out
974 				 * on-disk
975 				 */
976 				if (!buffer_new(map_bh))
977 					sdio->next_block_for_io += dio_remainder;
978 				sdio->blocks_available -= dio_remainder;
979 			}
980 do_holes:
981 			/* Handle holes */
982 			if (!buffer_mapped(map_bh)) {
983 				loff_t i_size_aligned;
984 
985 				/* AKPM: eargh, -ENOTBLK is a hack */
986 				if (dio->rw & WRITE) {
987 					page_cache_release(page);
988 					return -ENOTBLK;
989 				}
990 
991 				/*
992 				 * Be sure to account for a partial block as the
993 				 * last block in the file
994 				 */
995 				i_size_aligned = ALIGN(i_size_read(dio->inode),
996 							1 << blkbits);
997 				if (sdio->block_in_file >=
998 						i_size_aligned >> blkbits) {
999 					/* We hit eof */
1000 					page_cache_release(page);
1001 					goto out;
1002 				}
1003 				zero_user(page, block_in_page << blkbits,
1004 						1 << blkbits);
1005 				sdio->block_in_file++;
1006 				block_in_page++;
1007 				goto next_block;
1008 			}
1009 
1010 			/*
1011 			 * If we're performing IO which has an alignment which
1012 			 * is finer than the underlying fs, go check to see if
1013 			 * we must zero out the start of this block.
1014 			 */
1015 			if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1016 				dio_zero_block(dio, sdio, 0, map_bh);
1017 
1018 			/*
1019 			 * Work out, in this_chunk_blocks, how much disk we
1020 			 * can add to this page
1021 			 */
1022 			this_chunk_blocks = sdio->blocks_available;
1023 			u = (PAGE_SIZE - offset_in_page) >> blkbits;
1024 			if (this_chunk_blocks > u)
1025 				this_chunk_blocks = u;
1026 			u = sdio->final_block_in_request - sdio->block_in_file;
1027 			if (this_chunk_blocks > u)
1028 				this_chunk_blocks = u;
1029 			this_chunk_bytes = this_chunk_blocks << blkbits;
1030 			BUG_ON(this_chunk_bytes == 0);
1031 
1032 			if (this_chunk_blocks == sdio->blocks_available)
1033 				sdio->boundary = buffer_boundary(map_bh);
1034 			ret = submit_page_section(dio, sdio, page,
1035 						  offset_in_page,
1036 						  this_chunk_bytes,
1037 						  sdio->next_block_for_io,
1038 						  map_bh);
1039 			if (ret) {
1040 				page_cache_release(page);
1041 				goto out;
1042 			}
1043 			sdio->next_block_for_io += this_chunk_blocks;
1044 
1045 			sdio->block_in_file += this_chunk_blocks;
1046 			block_in_page += this_chunk_blocks;
1047 			sdio->blocks_available -= this_chunk_blocks;
1048 next_block:
1049 			BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1050 			if (sdio->block_in_file == sdio->final_block_in_request)
1051 				break;
1052 		}
1053 
1054 		/* Drop the ref which was taken in get_user_pages() */
1055 		page_cache_release(page);
1056 		block_in_page = 0;
1057 	}
1058 out:
1059 	return ret;
1060 }
1061 
1062 static inline int drop_refcount(struct dio *dio)
1063 {
1064 	int ret2;
1065 	unsigned long flags;
1066 
1067 	/*
1068 	 * Sync will always be dropping the final ref and completing the
1069 	 * operation.  AIO can if it was a broken operation described above or
1070 	 * in fact if all the bios race to complete before we get here.  In
1071 	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1072 	 * return code that the caller will hand to aio_complete().
1073 	 *
1074 	 * This is managed by the bio_lock instead of being an atomic_t so that
1075 	 * completion paths can drop their ref and use the remaining count to
1076 	 * decide to wake the submission path atomically.
1077 	 */
1078 	spin_lock_irqsave(&dio->bio_lock, flags);
1079 	ret2 = --dio->refcount;
1080 	spin_unlock_irqrestore(&dio->bio_lock, flags);
1081 	return ret2;
1082 }
1083 
1084 /*
1085  * This is a library function for use by filesystem drivers.
1086  *
1087  * The locking rules are governed by the flags parameter:
1088  *  - if the flags value contains DIO_LOCKING we use a fancy locking
1089  *    scheme for dumb filesystems.
1090  *    For writes this function is called under i_mutex and returns with
1091  *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1092  *    taken and dropped again before returning.
1093  *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1094  *    internal locking but rather rely on the filesystem to synchronize
1095  *    direct I/O reads/writes versus each other and truncate.
1096  *
1097  * To help with locking against truncate we incremented the i_dio_count
1098  * counter before starting direct I/O, and decrement it once we are done.
1099  * Truncate can wait for it to reach zero to provide exclusion.  It is
1100  * expected that filesystem provide exclusion between new direct I/O
1101  * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1102  * but other filesystems need to take care of this on their own.
1103  *
1104  * NOTE: if you pass "sdio" to anything by pointer make sure that function
1105  * is always inlined. Otherwise gcc is unable to split the structure into
1106  * individual fields and will generate much worse code. This is important
1107  * for the whole file.
1108  */
1109 static inline ssize_t
1110 do_blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1111 	struct block_device *bdev, const struct iovec *iov, loff_t offset,
1112 	unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1113 	dio_submit_t submit_io,	int flags)
1114 {
1115 	int seg;
1116 	size_t size;
1117 	unsigned long addr;
1118 	unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits);
1119 	unsigned blkbits = i_blkbits;
1120 	unsigned blocksize_mask = (1 << blkbits) - 1;
1121 	ssize_t retval = -EINVAL;
1122 	loff_t end = offset;
1123 	struct dio *dio;
1124 	struct dio_submit sdio = { 0, };
1125 	unsigned long user_addr;
1126 	size_t bytes;
1127 	struct buffer_head map_bh = { 0, };
1128 	struct blk_plug plug;
1129 
1130 	if (rw & WRITE)
1131 		rw = WRITE_ODIRECT;
1132 
1133 	/*
1134 	 * Avoid references to bdev if not absolutely needed to give
1135 	 * the early prefetch in the caller enough time.
1136 	 */
1137 
1138 	if (offset & blocksize_mask) {
1139 		if (bdev)
1140 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
1141 		blocksize_mask = (1 << blkbits) - 1;
1142 		if (offset & blocksize_mask)
1143 			goto out;
1144 	}
1145 
1146 	/* Check the memory alignment.  Blocks cannot straddle pages */
1147 	for (seg = 0; seg < nr_segs; seg++) {
1148 		addr = (unsigned long)iov[seg].iov_base;
1149 		size = iov[seg].iov_len;
1150 		end += size;
1151 		if (unlikely((addr & blocksize_mask) ||
1152 			     (size & blocksize_mask))) {
1153 			if (bdev)
1154 				blkbits = blksize_bits(
1155 					 bdev_logical_block_size(bdev));
1156 			blocksize_mask = (1 << blkbits) - 1;
1157 			if ((addr & blocksize_mask) || (size & blocksize_mask))
1158 				goto out;
1159 		}
1160 	}
1161 
1162 	/* watch out for a 0 len io from a tricksy fs */
1163 	if (rw == READ && end == offset)
1164 		return 0;
1165 
1166 	dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1167 	retval = -ENOMEM;
1168 	if (!dio)
1169 		goto out;
1170 	/*
1171 	 * Believe it or not, zeroing out the page array caused a .5%
1172 	 * performance regression in a database benchmark.  So, we take
1173 	 * care to only zero out what's needed.
1174 	 */
1175 	memset(dio, 0, offsetof(struct dio, pages));
1176 
1177 	dio->flags = flags;
1178 	if (dio->flags & DIO_LOCKING) {
1179 		if (rw == READ) {
1180 			struct address_space *mapping =
1181 					iocb->ki_filp->f_mapping;
1182 
1183 			/* will be released by direct_io_worker */
1184 			mutex_lock(&inode->i_mutex);
1185 
1186 			retval = filemap_write_and_wait_range(mapping, offset,
1187 							      end - 1);
1188 			if (retval) {
1189 				mutex_unlock(&inode->i_mutex);
1190 				kmem_cache_free(dio_cache, dio);
1191 				goto out;
1192 			}
1193 		}
1194 	}
1195 
1196 	/*
1197 	 * For file extending writes updating i_size before data
1198 	 * writeouts complete can expose uninitialized blocks. So
1199 	 * even for AIO, we need to wait for i/o to complete before
1200 	 * returning in this case.
1201 	 */
1202 	dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) &&
1203 		(end > i_size_read(inode)));
1204 	dio->inode = inode;
1205 	dio->rw = rw;
1206 
1207 	/*
1208 	 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1209 	 * so that we can call ->fsync.
1210 	 */
1211 	if (dio->is_async && (rw & WRITE) &&
1212 	    ((iocb->ki_filp->f_flags & O_DSYNC) ||
1213 	     IS_SYNC(iocb->ki_filp->f_mapping->host))) {
1214 		retval = dio_set_defer_completion(dio);
1215 		if (retval) {
1216 			/*
1217 			 * We grab i_mutex only for reads so we don't have
1218 			 * to release it here
1219 			 */
1220 			kmem_cache_free(dio_cache, dio);
1221 			goto out;
1222 		}
1223 	}
1224 
1225 	/*
1226 	 * Will be decremented at I/O completion time.
1227 	 */
1228 	atomic_inc(&inode->i_dio_count);
1229 
1230 	retval = 0;
1231 	sdio.blkbits = blkbits;
1232 	sdio.blkfactor = i_blkbits - blkbits;
1233 	sdio.block_in_file = offset >> blkbits;
1234 
1235 	sdio.get_block = get_block;
1236 	dio->end_io = end_io;
1237 	sdio.submit_io = submit_io;
1238 	sdio.final_block_in_bio = -1;
1239 	sdio.next_block_for_io = -1;
1240 
1241 	dio->iocb = iocb;
1242 	dio->i_size = i_size_read(inode);
1243 
1244 	spin_lock_init(&dio->bio_lock);
1245 	dio->refcount = 1;
1246 
1247 	/*
1248 	 * In case of non-aligned buffers, we may need 2 more
1249 	 * pages since we need to zero out first and last block.
1250 	 */
1251 	if (unlikely(sdio.blkfactor))
1252 		sdio.pages_in_io = 2;
1253 
1254 	for (seg = 0; seg < nr_segs; seg++) {
1255 		user_addr = (unsigned long)iov[seg].iov_base;
1256 		sdio.pages_in_io +=
1257 			((user_addr + iov[seg].iov_len + PAGE_SIZE-1) /
1258 				PAGE_SIZE - user_addr / PAGE_SIZE);
1259 	}
1260 
1261 	blk_start_plug(&plug);
1262 
1263 	for (seg = 0; seg < nr_segs; seg++) {
1264 		user_addr = (unsigned long)iov[seg].iov_base;
1265 		sdio.size += bytes = iov[seg].iov_len;
1266 
1267 		/* Index into the first page of the first block */
1268 		sdio.first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
1269 		sdio.final_block_in_request = sdio.block_in_file +
1270 						(bytes >> blkbits);
1271 		/* Page fetching state */
1272 		sdio.head = 0;
1273 		sdio.tail = 0;
1274 		sdio.curr_page = 0;
1275 
1276 		sdio.total_pages = 0;
1277 		if (user_addr & (PAGE_SIZE-1)) {
1278 			sdio.total_pages++;
1279 			bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
1280 		}
1281 		sdio.total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1282 		sdio.curr_user_address = user_addr;
1283 
1284 		retval = do_direct_IO(dio, &sdio, &map_bh);
1285 
1286 		dio->result += iov[seg].iov_len -
1287 			((sdio.final_block_in_request - sdio.block_in_file) <<
1288 					blkbits);
1289 
1290 		if (retval) {
1291 			dio_cleanup(dio, &sdio);
1292 			break;
1293 		}
1294 	} /* end iovec loop */
1295 
1296 	if (retval == -ENOTBLK) {
1297 		/*
1298 		 * The remaining part of the request will be
1299 		 * be handled by buffered I/O when we return
1300 		 */
1301 		retval = 0;
1302 	}
1303 	/*
1304 	 * There may be some unwritten disk at the end of a part-written
1305 	 * fs-block-sized block.  Go zero that now.
1306 	 */
1307 	dio_zero_block(dio, &sdio, 1, &map_bh);
1308 
1309 	if (sdio.cur_page) {
1310 		ssize_t ret2;
1311 
1312 		ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1313 		if (retval == 0)
1314 			retval = ret2;
1315 		page_cache_release(sdio.cur_page);
1316 		sdio.cur_page = NULL;
1317 	}
1318 	if (sdio.bio)
1319 		dio_bio_submit(dio, &sdio);
1320 
1321 	blk_finish_plug(&plug);
1322 
1323 	/*
1324 	 * It is possible that, we return short IO due to end of file.
1325 	 * In that case, we need to release all the pages we got hold on.
1326 	 */
1327 	dio_cleanup(dio, &sdio);
1328 
1329 	/*
1330 	 * All block lookups have been performed. For READ requests
1331 	 * we can let i_mutex go now that its achieved its purpose
1332 	 * of protecting us from looking up uninitialized blocks.
1333 	 */
1334 	if (rw == READ && (dio->flags & DIO_LOCKING))
1335 		mutex_unlock(&dio->inode->i_mutex);
1336 
1337 	/*
1338 	 * The only time we want to leave bios in flight is when a successful
1339 	 * partial aio read or full aio write have been setup.  In that case
1340 	 * bio completion will call aio_complete.  The only time it's safe to
1341 	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1342 	 * This had *better* be the only place that raises -EIOCBQUEUED.
1343 	 */
1344 	BUG_ON(retval == -EIOCBQUEUED);
1345 	if (dio->is_async && retval == 0 && dio->result &&
1346 	    ((rw == READ) || (dio->result == sdio.size)))
1347 		retval = -EIOCBQUEUED;
1348 
1349 	if (retval != -EIOCBQUEUED)
1350 		dio_await_completion(dio);
1351 
1352 	if (drop_refcount(dio) == 0) {
1353 		retval = dio_complete(dio, offset, retval, false);
1354 	} else
1355 		BUG_ON(retval != -EIOCBQUEUED);
1356 
1357 out:
1358 	return retval;
1359 }
1360 
1361 ssize_t
1362 __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1363 	struct block_device *bdev, const struct iovec *iov, loff_t offset,
1364 	unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1365 	dio_submit_t submit_io,	int flags)
1366 {
1367 	/*
1368 	 * The block device state is needed in the end to finally
1369 	 * submit everything.  Since it's likely to be cache cold
1370 	 * prefetch it here as first thing to hide some of the
1371 	 * latency.
1372 	 *
1373 	 * Attempt to prefetch the pieces we likely need later.
1374 	 */
1375 	prefetch(&bdev->bd_disk->part_tbl);
1376 	prefetch(bdev->bd_queue);
1377 	prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1378 
1379 	return do_blockdev_direct_IO(rw, iocb, inode, bdev, iov, offset,
1380 				     nr_segs, get_block, end_io,
1381 				     submit_io, flags);
1382 }
1383 
1384 EXPORT_SYMBOL(__blockdev_direct_IO);
1385 
1386 static __init int dio_init(void)
1387 {
1388 	dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1389 	return 0;
1390 }
1391 module_init(dio_init)
1392