1 /* 2 * fs/direct-io.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * O_DIRECT 7 * 8 * 04Jul2002 Andrew Morton 9 * Initial version 10 * 11Sep2002 janetinc@us.ibm.com 11 * added readv/writev support. 12 * 29Oct2002 Andrew Morton 13 * rewrote bio_add_page() support. 14 * 30Oct2002 pbadari@us.ibm.com 15 * added support for non-aligned IO. 16 * 06Nov2002 pbadari@us.ibm.com 17 * added asynchronous IO support. 18 * 21Jul2003 nathans@sgi.com 19 * added IO completion notifier. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/types.h> 25 #include <linux/fs.h> 26 #include <linux/mm.h> 27 #include <linux/slab.h> 28 #include <linux/highmem.h> 29 #include <linux/pagemap.h> 30 #include <linux/task_io_accounting_ops.h> 31 #include <linux/bio.h> 32 #include <linux/wait.h> 33 #include <linux/err.h> 34 #include <linux/blkdev.h> 35 #include <linux/buffer_head.h> 36 #include <linux/rwsem.h> 37 #include <linux/uio.h> 38 #include <linux/atomic.h> 39 #include <linux/prefetch.h> 40 #include <linux/aio.h> 41 42 /* 43 * How many user pages to map in one call to get_user_pages(). This determines 44 * the size of a structure in the slab cache 45 */ 46 #define DIO_PAGES 64 47 48 /* 49 * This code generally works in units of "dio_blocks". A dio_block is 50 * somewhere between the hard sector size and the filesystem block size. it 51 * is determined on a per-invocation basis. When talking to the filesystem 52 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity 53 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted 54 * to bio_block quantities by shifting left by blkfactor. 55 * 56 * If blkfactor is zero then the user's request was aligned to the filesystem's 57 * blocksize. 58 */ 59 60 /* dio_state only used in the submission path */ 61 62 struct dio_submit { 63 struct bio *bio; /* bio under assembly */ 64 unsigned blkbits; /* doesn't change */ 65 unsigned blkfactor; /* When we're using an alignment which 66 is finer than the filesystem's soft 67 blocksize, this specifies how much 68 finer. blkfactor=2 means 1/4-block 69 alignment. Does not change */ 70 unsigned start_zero_done; /* flag: sub-blocksize zeroing has 71 been performed at the start of a 72 write */ 73 int pages_in_io; /* approximate total IO pages */ 74 size_t size; /* total request size (doesn't change)*/ 75 sector_t block_in_file; /* Current offset into the underlying 76 file in dio_block units. */ 77 unsigned blocks_available; /* At block_in_file. changes */ 78 int reap_counter; /* rate limit reaping */ 79 sector_t final_block_in_request;/* doesn't change */ 80 unsigned first_block_in_page; /* doesn't change, Used only once */ 81 int boundary; /* prev block is at a boundary */ 82 get_block_t *get_block; /* block mapping function */ 83 dio_submit_t *submit_io; /* IO submition function */ 84 85 loff_t logical_offset_in_bio; /* current first logical block in bio */ 86 sector_t final_block_in_bio; /* current final block in bio + 1 */ 87 sector_t next_block_for_io; /* next block to be put under IO, 88 in dio_blocks units */ 89 90 /* 91 * Deferred addition of a page to the dio. These variables are 92 * private to dio_send_cur_page(), submit_page_section() and 93 * dio_bio_add_page(). 94 */ 95 struct page *cur_page; /* The page */ 96 unsigned cur_page_offset; /* Offset into it, in bytes */ 97 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ 98 sector_t cur_page_block; /* Where it starts */ 99 loff_t cur_page_fs_offset; /* Offset in file */ 100 101 /* 102 * Page fetching state. These variables belong to dio_refill_pages(). 103 */ 104 int curr_page; /* changes */ 105 int total_pages; /* doesn't change */ 106 unsigned long curr_user_address;/* changes */ 107 108 /* 109 * Page queue. These variables belong to dio_refill_pages() and 110 * dio_get_page(). 111 */ 112 unsigned head; /* next page to process */ 113 unsigned tail; /* last valid page + 1 */ 114 }; 115 116 /* dio_state communicated between submission path and end_io */ 117 struct dio { 118 int flags; /* doesn't change */ 119 int rw; 120 struct inode *inode; 121 loff_t i_size; /* i_size when submitted */ 122 dio_iodone_t *end_io; /* IO completion function */ 123 124 void *private; /* copy from map_bh.b_private */ 125 126 /* BIO completion state */ 127 spinlock_t bio_lock; /* protects BIO fields below */ 128 int page_errors; /* errno from get_user_pages() */ 129 int is_async; /* is IO async ? */ 130 bool defer_completion; /* defer AIO completion to workqueue? */ 131 int io_error; /* IO error in completion path */ 132 unsigned long refcount; /* direct_io_worker() and bios */ 133 struct bio *bio_list; /* singly linked via bi_private */ 134 struct task_struct *waiter; /* waiting task (NULL if none) */ 135 136 /* AIO related stuff */ 137 struct kiocb *iocb; /* kiocb */ 138 ssize_t result; /* IO result */ 139 140 /* 141 * pages[] (and any fields placed after it) are not zeroed out at 142 * allocation time. Don't add new fields after pages[] unless you 143 * wish that they not be zeroed. 144 */ 145 union { 146 struct page *pages[DIO_PAGES]; /* page buffer */ 147 struct work_struct complete_work;/* deferred AIO completion */ 148 }; 149 } ____cacheline_aligned_in_smp; 150 151 static struct kmem_cache *dio_cache __read_mostly; 152 153 /* 154 * How many pages are in the queue? 155 */ 156 static inline unsigned dio_pages_present(struct dio_submit *sdio) 157 { 158 return sdio->tail - sdio->head; 159 } 160 161 /* 162 * Go grab and pin some userspace pages. Typically we'll get 64 at a time. 163 */ 164 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio) 165 { 166 int ret; 167 int nr_pages; 168 169 nr_pages = min(sdio->total_pages - sdio->curr_page, DIO_PAGES); 170 ret = get_user_pages_fast( 171 sdio->curr_user_address, /* Where from? */ 172 nr_pages, /* How many pages? */ 173 dio->rw == READ, /* Write to memory? */ 174 &dio->pages[0]); /* Put results here */ 175 176 if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) { 177 struct page *page = ZERO_PAGE(0); 178 /* 179 * A memory fault, but the filesystem has some outstanding 180 * mapped blocks. We need to use those blocks up to avoid 181 * leaking stale data in the file. 182 */ 183 if (dio->page_errors == 0) 184 dio->page_errors = ret; 185 page_cache_get(page); 186 dio->pages[0] = page; 187 sdio->head = 0; 188 sdio->tail = 1; 189 ret = 0; 190 goto out; 191 } 192 193 if (ret >= 0) { 194 sdio->curr_user_address += ret * PAGE_SIZE; 195 sdio->curr_page += ret; 196 sdio->head = 0; 197 sdio->tail = ret; 198 ret = 0; 199 } 200 out: 201 return ret; 202 } 203 204 /* 205 * Get another userspace page. Returns an ERR_PTR on error. Pages are 206 * buffered inside the dio so that we can call get_user_pages() against a 207 * decent number of pages, less frequently. To provide nicer use of the 208 * L1 cache. 209 */ 210 static inline struct page *dio_get_page(struct dio *dio, 211 struct dio_submit *sdio) 212 { 213 if (dio_pages_present(sdio) == 0) { 214 int ret; 215 216 ret = dio_refill_pages(dio, sdio); 217 if (ret) 218 return ERR_PTR(ret); 219 BUG_ON(dio_pages_present(sdio) == 0); 220 } 221 return dio->pages[sdio->head++]; 222 } 223 224 /** 225 * dio_complete() - called when all DIO BIO I/O has been completed 226 * @offset: the byte offset in the file of the completed operation 227 * 228 * This drops i_dio_count, lets interested parties know that a DIO operation 229 * has completed, and calculates the resulting return code for the operation. 230 * 231 * It lets the filesystem know if it registered an interest earlier via 232 * get_block. Pass the private field of the map buffer_head so that 233 * filesystems can use it to hold additional state between get_block calls and 234 * dio_complete. 235 */ 236 static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret, 237 bool is_async) 238 { 239 ssize_t transferred = 0; 240 241 /* 242 * AIO submission can race with bio completion to get here while 243 * expecting to have the last io completed by bio completion. 244 * In that case -EIOCBQUEUED is in fact not an error we want 245 * to preserve through this call. 246 */ 247 if (ret == -EIOCBQUEUED) 248 ret = 0; 249 250 if (dio->result) { 251 transferred = dio->result; 252 253 /* Check for short read case */ 254 if ((dio->rw == READ) && ((offset + transferred) > dio->i_size)) 255 transferred = dio->i_size - offset; 256 } 257 258 if (ret == 0) 259 ret = dio->page_errors; 260 if (ret == 0) 261 ret = dio->io_error; 262 if (ret == 0) 263 ret = transferred; 264 265 if (dio->end_io && dio->result) 266 dio->end_io(dio->iocb, offset, transferred, dio->private); 267 268 inode_dio_done(dio->inode); 269 if (is_async) { 270 if (dio->rw & WRITE) { 271 int err; 272 273 err = generic_write_sync(dio->iocb->ki_filp, offset, 274 transferred); 275 if (err < 0 && ret > 0) 276 ret = err; 277 } 278 279 aio_complete(dio->iocb, ret, 0); 280 } 281 282 kmem_cache_free(dio_cache, dio); 283 return ret; 284 } 285 286 static void dio_aio_complete_work(struct work_struct *work) 287 { 288 struct dio *dio = container_of(work, struct dio, complete_work); 289 290 dio_complete(dio, dio->iocb->ki_pos, 0, true); 291 } 292 293 static int dio_bio_complete(struct dio *dio, struct bio *bio); 294 295 /* 296 * Asynchronous IO callback. 297 */ 298 static void dio_bio_end_aio(struct bio *bio, int error) 299 { 300 struct dio *dio = bio->bi_private; 301 unsigned long remaining; 302 unsigned long flags; 303 304 /* cleanup the bio */ 305 dio_bio_complete(dio, bio); 306 307 spin_lock_irqsave(&dio->bio_lock, flags); 308 remaining = --dio->refcount; 309 if (remaining == 1 && dio->waiter) 310 wake_up_process(dio->waiter); 311 spin_unlock_irqrestore(&dio->bio_lock, flags); 312 313 if (remaining == 0) { 314 if (dio->result && dio->defer_completion) { 315 INIT_WORK(&dio->complete_work, dio_aio_complete_work); 316 queue_work(dio->inode->i_sb->s_dio_done_wq, 317 &dio->complete_work); 318 } else { 319 dio_complete(dio, dio->iocb->ki_pos, 0, true); 320 } 321 } 322 } 323 324 /* 325 * The BIO completion handler simply queues the BIO up for the process-context 326 * handler. 327 * 328 * During I/O bi_private points at the dio. After I/O, bi_private is used to 329 * implement a singly-linked list of completed BIOs, at dio->bio_list. 330 */ 331 static void dio_bio_end_io(struct bio *bio, int error) 332 { 333 struct dio *dio = bio->bi_private; 334 unsigned long flags; 335 336 spin_lock_irqsave(&dio->bio_lock, flags); 337 bio->bi_private = dio->bio_list; 338 dio->bio_list = bio; 339 if (--dio->refcount == 1 && dio->waiter) 340 wake_up_process(dio->waiter); 341 spin_unlock_irqrestore(&dio->bio_lock, flags); 342 } 343 344 /** 345 * dio_end_io - handle the end io action for the given bio 346 * @bio: The direct io bio thats being completed 347 * @error: Error if there was one 348 * 349 * This is meant to be called by any filesystem that uses their own dio_submit_t 350 * so that the DIO specific endio actions are dealt with after the filesystem 351 * has done it's completion work. 352 */ 353 void dio_end_io(struct bio *bio, int error) 354 { 355 struct dio *dio = bio->bi_private; 356 357 if (dio->is_async) 358 dio_bio_end_aio(bio, error); 359 else 360 dio_bio_end_io(bio, error); 361 } 362 EXPORT_SYMBOL_GPL(dio_end_io); 363 364 static inline void 365 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio, 366 struct block_device *bdev, 367 sector_t first_sector, int nr_vecs) 368 { 369 struct bio *bio; 370 371 /* 372 * bio_alloc() is guaranteed to return a bio when called with 373 * __GFP_WAIT and we request a valid number of vectors. 374 */ 375 bio = bio_alloc(GFP_KERNEL, nr_vecs); 376 377 bio->bi_bdev = bdev; 378 bio->bi_iter.bi_sector = first_sector; 379 if (dio->is_async) 380 bio->bi_end_io = dio_bio_end_aio; 381 else 382 bio->bi_end_io = dio_bio_end_io; 383 384 sdio->bio = bio; 385 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset; 386 } 387 388 /* 389 * In the AIO read case we speculatively dirty the pages before starting IO. 390 * During IO completion, any of these pages which happen to have been written 391 * back will be redirtied by bio_check_pages_dirty(). 392 * 393 * bios hold a dio reference between submit_bio and ->end_io. 394 */ 395 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio) 396 { 397 struct bio *bio = sdio->bio; 398 unsigned long flags; 399 400 bio->bi_private = dio; 401 402 spin_lock_irqsave(&dio->bio_lock, flags); 403 dio->refcount++; 404 spin_unlock_irqrestore(&dio->bio_lock, flags); 405 406 if (dio->is_async && dio->rw == READ) 407 bio_set_pages_dirty(bio); 408 409 if (sdio->submit_io) 410 sdio->submit_io(dio->rw, bio, dio->inode, 411 sdio->logical_offset_in_bio); 412 else 413 submit_bio(dio->rw, bio); 414 415 sdio->bio = NULL; 416 sdio->boundary = 0; 417 sdio->logical_offset_in_bio = 0; 418 } 419 420 /* 421 * Release any resources in case of a failure 422 */ 423 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio) 424 { 425 while (dio_pages_present(sdio)) 426 page_cache_release(dio_get_page(dio, sdio)); 427 } 428 429 /* 430 * Wait for the next BIO to complete. Remove it and return it. NULL is 431 * returned once all BIOs have been completed. This must only be called once 432 * all bios have been issued so that dio->refcount can only decrease. This 433 * requires that that the caller hold a reference on the dio. 434 */ 435 static struct bio *dio_await_one(struct dio *dio) 436 { 437 unsigned long flags; 438 struct bio *bio = NULL; 439 440 spin_lock_irqsave(&dio->bio_lock, flags); 441 442 /* 443 * Wait as long as the list is empty and there are bios in flight. bio 444 * completion drops the count, maybe adds to the list, and wakes while 445 * holding the bio_lock so we don't need set_current_state()'s barrier 446 * and can call it after testing our condition. 447 */ 448 while (dio->refcount > 1 && dio->bio_list == NULL) { 449 __set_current_state(TASK_UNINTERRUPTIBLE); 450 dio->waiter = current; 451 spin_unlock_irqrestore(&dio->bio_lock, flags); 452 io_schedule(); 453 /* wake up sets us TASK_RUNNING */ 454 spin_lock_irqsave(&dio->bio_lock, flags); 455 dio->waiter = NULL; 456 } 457 if (dio->bio_list) { 458 bio = dio->bio_list; 459 dio->bio_list = bio->bi_private; 460 } 461 spin_unlock_irqrestore(&dio->bio_lock, flags); 462 return bio; 463 } 464 465 /* 466 * Process one completed BIO. No locks are held. 467 */ 468 static int dio_bio_complete(struct dio *dio, struct bio *bio) 469 { 470 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 471 struct bio_vec *bvec; 472 unsigned i; 473 474 if (!uptodate) 475 dio->io_error = -EIO; 476 477 if (dio->is_async && dio->rw == READ) { 478 bio_check_pages_dirty(bio); /* transfers ownership */ 479 } else { 480 bio_for_each_segment_all(bvec, bio, i) { 481 struct page *page = bvec->bv_page; 482 483 if (dio->rw == READ && !PageCompound(page)) 484 set_page_dirty_lock(page); 485 page_cache_release(page); 486 } 487 bio_put(bio); 488 } 489 return uptodate ? 0 : -EIO; 490 } 491 492 /* 493 * Wait on and process all in-flight BIOs. This must only be called once 494 * all bios have been issued so that the refcount can only decrease. 495 * This just waits for all bios to make it through dio_bio_complete. IO 496 * errors are propagated through dio->io_error and should be propagated via 497 * dio_complete(). 498 */ 499 static void dio_await_completion(struct dio *dio) 500 { 501 struct bio *bio; 502 do { 503 bio = dio_await_one(dio); 504 if (bio) 505 dio_bio_complete(dio, bio); 506 } while (bio); 507 } 508 509 /* 510 * A really large O_DIRECT read or write can generate a lot of BIOs. So 511 * to keep the memory consumption sane we periodically reap any completed BIOs 512 * during the BIO generation phase. 513 * 514 * This also helps to limit the peak amount of pinned userspace memory. 515 */ 516 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio) 517 { 518 int ret = 0; 519 520 if (sdio->reap_counter++ >= 64) { 521 while (dio->bio_list) { 522 unsigned long flags; 523 struct bio *bio; 524 int ret2; 525 526 spin_lock_irqsave(&dio->bio_lock, flags); 527 bio = dio->bio_list; 528 dio->bio_list = bio->bi_private; 529 spin_unlock_irqrestore(&dio->bio_lock, flags); 530 ret2 = dio_bio_complete(dio, bio); 531 if (ret == 0) 532 ret = ret2; 533 } 534 sdio->reap_counter = 0; 535 } 536 return ret; 537 } 538 539 /* 540 * Create workqueue for deferred direct IO completions. We allocate the 541 * workqueue when it's first needed. This avoids creating workqueue for 542 * filesystems that don't need it and also allows us to create the workqueue 543 * late enough so the we can include s_id in the name of the workqueue. 544 */ 545 static int sb_init_dio_done_wq(struct super_block *sb) 546 { 547 struct workqueue_struct *old; 548 struct workqueue_struct *wq = alloc_workqueue("dio/%s", 549 WQ_MEM_RECLAIM, 0, 550 sb->s_id); 551 if (!wq) 552 return -ENOMEM; 553 /* 554 * This has to be atomic as more DIOs can race to create the workqueue 555 */ 556 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq); 557 /* Someone created workqueue before us? Free ours... */ 558 if (old) 559 destroy_workqueue(wq); 560 return 0; 561 } 562 563 static int dio_set_defer_completion(struct dio *dio) 564 { 565 struct super_block *sb = dio->inode->i_sb; 566 567 if (dio->defer_completion) 568 return 0; 569 dio->defer_completion = true; 570 if (!sb->s_dio_done_wq) 571 return sb_init_dio_done_wq(sb); 572 return 0; 573 } 574 575 /* 576 * Call into the fs to map some more disk blocks. We record the current number 577 * of available blocks at sdio->blocks_available. These are in units of the 578 * fs blocksize, (1 << inode->i_blkbits). 579 * 580 * The fs is allowed to map lots of blocks at once. If it wants to do that, 581 * it uses the passed inode-relative block number as the file offset, as usual. 582 * 583 * get_block() is passed the number of i_blkbits-sized blocks which direct_io 584 * has remaining to do. The fs should not map more than this number of blocks. 585 * 586 * If the fs has mapped a lot of blocks, it should populate bh->b_size to 587 * indicate how much contiguous disk space has been made available at 588 * bh->b_blocknr. 589 * 590 * If *any* of the mapped blocks are new, then the fs must set buffer_new(). 591 * This isn't very efficient... 592 * 593 * In the case of filesystem holes: the fs may return an arbitrarily-large 594 * hole by returning an appropriate value in b_size and by clearing 595 * buffer_mapped(). However the direct-io code will only process holes one 596 * block at a time - it will repeatedly call get_block() as it walks the hole. 597 */ 598 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio, 599 struct buffer_head *map_bh) 600 { 601 int ret; 602 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ 603 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */ 604 unsigned long fs_count; /* Number of filesystem-sized blocks */ 605 int create; 606 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor; 607 608 /* 609 * If there was a memory error and we've overwritten all the 610 * mapped blocks then we can now return that memory error 611 */ 612 ret = dio->page_errors; 613 if (ret == 0) { 614 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request); 615 fs_startblk = sdio->block_in_file >> sdio->blkfactor; 616 fs_endblk = (sdio->final_block_in_request - 1) >> 617 sdio->blkfactor; 618 fs_count = fs_endblk - fs_startblk + 1; 619 620 map_bh->b_state = 0; 621 map_bh->b_size = fs_count << i_blkbits; 622 623 /* 624 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we 625 * forbid block creations: only overwrites are permitted. 626 * We will return early to the caller once we see an 627 * unmapped buffer head returned, and the caller will fall 628 * back to buffered I/O. 629 * 630 * Otherwise the decision is left to the get_blocks method, 631 * which may decide to handle it or also return an unmapped 632 * buffer head. 633 */ 634 create = dio->rw & WRITE; 635 if (dio->flags & DIO_SKIP_HOLES) { 636 if (sdio->block_in_file < (i_size_read(dio->inode) >> 637 sdio->blkbits)) 638 create = 0; 639 } 640 641 ret = (*sdio->get_block)(dio->inode, fs_startblk, 642 map_bh, create); 643 644 /* Store for completion */ 645 dio->private = map_bh->b_private; 646 647 if (ret == 0 && buffer_defer_completion(map_bh)) 648 ret = dio_set_defer_completion(dio); 649 } 650 return ret; 651 } 652 653 /* 654 * There is no bio. Make one now. 655 */ 656 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio, 657 sector_t start_sector, struct buffer_head *map_bh) 658 { 659 sector_t sector; 660 int ret, nr_pages; 661 662 ret = dio_bio_reap(dio, sdio); 663 if (ret) 664 goto out; 665 sector = start_sector << (sdio->blkbits - 9); 666 nr_pages = min(sdio->pages_in_io, bio_get_nr_vecs(map_bh->b_bdev)); 667 BUG_ON(nr_pages <= 0); 668 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages); 669 sdio->boundary = 0; 670 out: 671 return ret; 672 } 673 674 /* 675 * Attempt to put the current chunk of 'cur_page' into the current BIO. If 676 * that was successful then update final_block_in_bio and take a ref against 677 * the just-added page. 678 * 679 * Return zero on success. Non-zero means the caller needs to start a new BIO. 680 */ 681 static inline int dio_bio_add_page(struct dio_submit *sdio) 682 { 683 int ret; 684 685 ret = bio_add_page(sdio->bio, sdio->cur_page, 686 sdio->cur_page_len, sdio->cur_page_offset); 687 if (ret == sdio->cur_page_len) { 688 /* 689 * Decrement count only, if we are done with this page 690 */ 691 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE) 692 sdio->pages_in_io--; 693 page_cache_get(sdio->cur_page); 694 sdio->final_block_in_bio = sdio->cur_page_block + 695 (sdio->cur_page_len >> sdio->blkbits); 696 ret = 0; 697 } else { 698 ret = 1; 699 } 700 return ret; 701 } 702 703 /* 704 * Put cur_page under IO. The section of cur_page which is described by 705 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page 706 * starts on-disk at cur_page_block. 707 * 708 * We take a ref against the page here (on behalf of its presence in the bio). 709 * 710 * The caller of this function is responsible for removing cur_page from the 711 * dio, and for dropping the refcount which came from that presence. 712 */ 713 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio, 714 struct buffer_head *map_bh) 715 { 716 int ret = 0; 717 718 if (sdio->bio) { 719 loff_t cur_offset = sdio->cur_page_fs_offset; 720 loff_t bio_next_offset = sdio->logical_offset_in_bio + 721 sdio->bio->bi_iter.bi_size; 722 723 /* 724 * See whether this new request is contiguous with the old. 725 * 726 * Btrfs cannot handle having logically non-contiguous requests 727 * submitted. For example if you have 728 * 729 * Logical: [0-4095][HOLE][8192-12287] 730 * Physical: [0-4095] [4096-8191] 731 * 732 * We cannot submit those pages together as one BIO. So if our 733 * current logical offset in the file does not equal what would 734 * be the next logical offset in the bio, submit the bio we 735 * have. 736 */ 737 if (sdio->final_block_in_bio != sdio->cur_page_block || 738 cur_offset != bio_next_offset) 739 dio_bio_submit(dio, sdio); 740 } 741 742 if (sdio->bio == NULL) { 743 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 744 if (ret) 745 goto out; 746 } 747 748 if (dio_bio_add_page(sdio) != 0) { 749 dio_bio_submit(dio, sdio); 750 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 751 if (ret == 0) { 752 ret = dio_bio_add_page(sdio); 753 BUG_ON(ret != 0); 754 } 755 } 756 out: 757 return ret; 758 } 759 760 /* 761 * An autonomous function to put a chunk of a page under deferred IO. 762 * 763 * The caller doesn't actually know (or care) whether this piece of page is in 764 * a BIO, or is under IO or whatever. We just take care of all possible 765 * situations here. The separation between the logic of do_direct_IO() and 766 * that of submit_page_section() is important for clarity. Please don't break. 767 * 768 * The chunk of page starts on-disk at blocknr. 769 * 770 * We perform deferred IO, by recording the last-submitted page inside our 771 * private part of the dio structure. If possible, we just expand the IO 772 * across that page here. 773 * 774 * If that doesn't work out then we put the old page into the bio and add this 775 * page to the dio instead. 776 */ 777 static inline int 778 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page, 779 unsigned offset, unsigned len, sector_t blocknr, 780 struct buffer_head *map_bh) 781 { 782 int ret = 0; 783 784 if (dio->rw & WRITE) { 785 /* 786 * Read accounting is performed in submit_bio() 787 */ 788 task_io_account_write(len); 789 } 790 791 /* 792 * Can we just grow the current page's presence in the dio? 793 */ 794 if (sdio->cur_page == page && 795 sdio->cur_page_offset + sdio->cur_page_len == offset && 796 sdio->cur_page_block + 797 (sdio->cur_page_len >> sdio->blkbits) == blocknr) { 798 sdio->cur_page_len += len; 799 goto out; 800 } 801 802 /* 803 * If there's a deferred page already there then send it. 804 */ 805 if (sdio->cur_page) { 806 ret = dio_send_cur_page(dio, sdio, map_bh); 807 page_cache_release(sdio->cur_page); 808 sdio->cur_page = NULL; 809 if (ret) 810 return ret; 811 } 812 813 page_cache_get(page); /* It is in dio */ 814 sdio->cur_page = page; 815 sdio->cur_page_offset = offset; 816 sdio->cur_page_len = len; 817 sdio->cur_page_block = blocknr; 818 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits; 819 out: 820 /* 821 * If sdio->boundary then we want to schedule the IO now to 822 * avoid metadata seeks. 823 */ 824 if (sdio->boundary) { 825 ret = dio_send_cur_page(dio, sdio, map_bh); 826 dio_bio_submit(dio, sdio); 827 page_cache_release(sdio->cur_page); 828 sdio->cur_page = NULL; 829 } 830 return ret; 831 } 832 833 /* 834 * Clean any dirty buffers in the blockdev mapping which alias newly-created 835 * file blocks. Only called for S_ISREG files - blockdevs do not set 836 * buffer_new 837 */ 838 static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh) 839 { 840 unsigned i; 841 unsigned nblocks; 842 843 nblocks = map_bh->b_size >> dio->inode->i_blkbits; 844 845 for (i = 0; i < nblocks; i++) { 846 unmap_underlying_metadata(map_bh->b_bdev, 847 map_bh->b_blocknr + i); 848 } 849 } 850 851 /* 852 * If we are not writing the entire block and get_block() allocated 853 * the block for us, we need to fill-in the unused portion of the 854 * block with zeros. This happens only if user-buffer, fileoffset or 855 * io length is not filesystem block-size multiple. 856 * 857 * `end' is zero if we're doing the start of the IO, 1 at the end of the 858 * IO. 859 */ 860 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio, 861 int end, struct buffer_head *map_bh) 862 { 863 unsigned dio_blocks_per_fs_block; 864 unsigned this_chunk_blocks; /* In dio_blocks */ 865 unsigned this_chunk_bytes; 866 struct page *page; 867 868 sdio->start_zero_done = 1; 869 if (!sdio->blkfactor || !buffer_new(map_bh)) 870 return; 871 872 dio_blocks_per_fs_block = 1 << sdio->blkfactor; 873 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1); 874 875 if (!this_chunk_blocks) 876 return; 877 878 /* 879 * We need to zero out part of an fs block. It is either at the 880 * beginning or the end of the fs block. 881 */ 882 if (end) 883 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; 884 885 this_chunk_bytes = this_chunk_blocks << sdio->blkbits; 886 887 page = ZERO_PAGE(0); 888 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes, 889 sdio->next_block_for_io, map_bh)) 890 return; 891 892 sdio->next_block_for_io += this_chunk_blocks; 893 } 894 895 /* 896 * Walk the user pages, and the file, mapping blocks to disk and generating 897 * a sequence of (page,offset,len,block) mappings. These mappings are injected 898 * into submit_page_section(), which takes care of the next stage of submission 899 * 900 * Direct IO against a blockdev is different from a file. Because we can 901 * happily perform page-sized but 512-byte aligned IOs. It is important that 902 * blockdev IO be able to have fine alignment and large sizes. 903 * 904 * So what we do is to permit the ->get_block function to populate bh.b_size 905 * with the size of IO which is permitted at this offset and this i_blkbits. 906 * 907 * For best results, the blockdev should be set up with 512-byte i_blkbits and 908 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives 909 * fine alignment but still allows this function to work in PAGE_SIZE units. 910 */ 911 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio, 912 struct buffer_head *map_bh) 913 { 914 const unsigned blkbits = sdio->blkbits; 915 const unsigned blocks_per_page = PAGE_SIZE >> blkbits; 916 struct page *page; 917 unsigned block_in_page; 918 int ret = 0; 919 920 /* The I/O can start at any block offset within the first page */ 921 block_in_page = sdio->first_block_in_page; 922 923 while (sdio->block_in_file < sdio->final_block_in_request) { 924 page = dio_get_page(dio, sdio); 925 if (IS_ERR(page)) { 926 ret = PTR_ERR(page); 927 goto out; 928 } 929 930 while (block_in_page < blocks_per_page) { 931 unsigned offset_in_page = block_in_page << blkbits; 932 unsigned this_chunk_bytes; /* # of bytes mapped */ 933 unsigned this_chunk_blocks; /* # of blocks */ 934 unsigned u; 935 936 if (sdio->blocks_available == 0) { 937 /* 938 * Need to go and map some more disk 939 */ 940 unsigned long blkmask; 941 unsigned long dio_remainder; 942 943 ret = get_more_blocks(dio, sdio, map_bh); 944 if (ret) { 945 page_cache_release(page); 946 goto out; 947 } 948 if (!buffer_mapped(map_bh)) 949 goto do_holes; 950 951 sdio->blocks_available = 952 map_bh->b_size >> sdio->blkbits; 953 sdio->next_block_for_io = 954 map_bh->b_blocknr << sdio->blkfactor; 955 if (buffer_new(map_bh)) 956 clean_blockdev_aliases(dio, map_bh); 957 958 if (!sdio->blkfactor) 959 goto do_holes; 960 961 blkmask = (1 << sdio->blkfactor) - 1; 962 dio_remainder = (sdio->block_in_file & blkmask); 963 964 /* 965 * If we are at the start of IO and that IO 966 * starts partway into a fs-block, 967 * dio_remainder will be non-zero. If the IO 968 * is a read then we can simply advance the IO 969 * cursor to the first block which is to be 970 * read. But if the IO is a write and the 971 * block was newly allocated we cannot do that; 972 * the start of the fs block must be zeroed out 973 * on-disk 974 */ 975 if (!buffer_new(map_bh)) 976 sdio->next_block_for_io += dio_remainder; 977 sdio->blocks_available -= dio_remainder; 978 } 979 do_holes: 980 /* Handle holes */ 981 if (!buffer_mapped(map_bh)) { 982 loff_t i_size_aligned; 983 984 /* AKPM: eargh, -ENOTBLK is a hack */ 985 if (dio->rw & WRITE) { 986 page_cache_release(page); 987 return -ENOTBLK; 988 } 989 990 /* 991 * Be sure to account for a partial block as the 992 * last block in the file 993 */ 994 i_size_aligned = ALIGN(i_size_read(dio->inode), 995 1 << blkbits); 996 if (sdio->block_in_file >= 997 i_size_aligned >> blkbits) { 998 /* We hit eof */ 999 page_cache_release(page); 1000 goto out; 1001 } 1002 zero_user(page, block_in_page << blkbits, 1003 1 << blkbits); 1004 sdio->block_in_file++; 1005 block_in_page++; 1006 goto next_block; 1007 } 1008 1009 /* 1010 * If we're performing IO which has an alignment which 1011 * is finer than the underlying fs, go check to see if 1012 * we must zero out the start of this block. 1013 */ 1014 if (unlikely(sdio->blkfactor && !sdio->start_zero_done)) 1015 dio_zero_block(dio, sdio, 0, map_bh); 1016 1017 /* 1018 * Work out, in this_chunk_blocks, how much disk we 1019 * can add to this page 1020 */ 1021 this_chunk_blocks = sdio->blocks_available; 1022 u = (PAGE_SIZE - offset_in_page) >> blkbits; 1023 if (this_chunk_blocks > u) 1024 this_chunk_blocks = u; 1025 u = sdio->final_block_in_request - sdio->block_in_file; 1026 if (this_chunk_blocks > u) 1027 this_chunk_blocks = u; 1028 this_chunk_bytes = this_chunk_blocks << blkbits; 1029 BUG_ON(this_chunk_bytes == 0); 1030 1031 if (this_chunk_blocks == sdio->blocks_available) 1032 sdio->boundary = buffer_boundary(map_bh); 1033 ret = submit_page_section(dio, sdio, page, 1034 offset_in_page, 1035 this_chunk_bytes, 1036 sdio->next_block_for_io, 1037 map_bh); 1038 if (ret) { 1039 page_cache_release(page); 1040 goto out; 1041 } 1042 sdio->next_block_for_io += this_chunk_blocks; 1043 1044 sdio->block_in_file += this_chunk_blocks; 1045 block_in_page += this_chunk_blocks; 1046 sdio->blocks_available -= this_chunk_blocks; 1047 next_block: 1048 BUG_ON(sdio->block_in_file > sdio->final_block_in_request); 1049 if (sdio->block_in_file == sdio->final_block_in_request) 1050 break; 1051 } 1052 1053 /* Drop the ref which was taken in get_user_pages() */ 1054 page_cache_release(page); 1055 block_in_page = 0; 1056 } 1057 out: 1058 return ret; 1059 } 1060 1061 static inline int drop_refcount(struct dio *dio) 1062 { 1063 int ret2; 1064 unsigned long flags; 1065 1066 /* 1067 * Sync will always be dropping the final ref and completing the 1068 * operation. AIO can if it was a broken operation described above or 1069 * in fact if all the bios race to complete before we get here. In 1070 * that case dio_complete() translates the EIOCBQUEUED into the proper 1071 * return code that the caller will hand to aio_complete(). 1072 * 1073 * This is managed by the bio_lock instead of being an atomic_t so that 1074 * completion paths can drop their ref and use the remaining count to 1075 * decide to wake the submission path atomically. 1076 */ 1077 spin_lock_irqsave(&dio->bio_lock, flags); 1078 ret2 = --dio->refcount; 1079 spin_unlock_irqrestore(&dio->bio_lock, flags); 1080 return ret2; 1081 } 1082 1083 /* 1084 * This is a library function for use by filesystem drivers. 1085 * 1086 * The locking rules are governed by the flags parameter: 1087 * - if the flags value contains DIO_LOCKING we use a fancy locking 1088 * scheme for dumb filesystems. 1089 * For writes this function is called under i_mutex and returns with 1090 * i_mutex held, for reads, i_mutex is not held on entry, but it is 1091 * taken and dropped again before returning. 1092 * - if the flags value does NOT contain DIO_LOCKING we don't use any 1093 * internal locking but rather rely on the filesystem to synchronize 1094 * direct I/O reads/writes versus each other and truncate. 1095 * 1096 * To help with locking against truncate we incremented the i_dio_count 1097 * counter before starting direct I/O, and decrement it once we are done. 1098 * Truncate can wait for it to reach zero to provide exclusion. It is 1099 * expected that filesystem provide exclusion between new direct I/O 1100 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex, 1101 * but other filesystems need to take care of this on their own. 1102 * 1103 * NOTE: if you pass "sdio" to anything by pointer make sure that function 1104 * is always inlined. Otherwise gcc is unable to split the structure into 1105 * individual fields and will generate much worse code. This is important 1106 * for the whole file. 1107 */ 1108 static inline ssize_t 1109 do_blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode, 1110 struct block_device *bdev, const struct iovec *iov, loff_t offset, 1111 unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io, 1112 dio_submit_t submit_io, int flags) 1113 { 1114 int seg; 1115 size_t size; 1116 unsigned long addr; 1117 unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits); 1118 unsigned blkbits = i_blkbits; 1119 unsigned blocksize_mask = (1 << blkbits) - 1; 1120 ssize_t retval = -EINVAL; 1121 loff_t end = offset; 1122 struct dio *dio; 1123 struct dio_submit sdio = { 0, }; 1124 unsigned long user_addr; 1125 size_t bytes; 1126 struct buffer_head map_bh = { 0, }; 1127 struct blk_plug plug; 1128 1129 if (rw & WRITE) 1130 rw = WRITE_ODIRECT; 1131 1132 /* 1133 * Avoid references to bdev if not absolutely needed to give 1134 * the early prefetch in the caller enough time. 1135 */ 1136 1137 if (offset & blocksize_mask) { 1138 if (bdev) 1139 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 1140 blocksize_mask = (1 << blkbits) - 1; 1141 if (offset & blocksize_mask) 1142 goto out; 1143 } 1144 1145 /* Check the memory alignment. Blocks cannot straddle pages */ 1146 for (seg = 0; seg < nr_segs; seg++) { 1147 addr = (unsigned long)iov[seg].iov_base; 1148 size = iov[seg].iov_len; 1149 end += size; 1150 if (unlikely((addr & blocksize_mask) || 1151 (size & blocksize_mask))) { 1152 if (bdev) 1153 blkbits = blksize_bits( 1154 bdev_logical_block_size(bdev)); 1155 blocksize_mask = (1 << blkbits) - 1; 1156 if ((addr & blocksize_mask) || (size & blocksize_mask)) 1157 goto out; 1158 } 1159 } 1160 1161 /* watch out for a 0 len io from a tricksy fs */ 1162 if (rw == READ && end == offset) 1163 return 0; 1164 1165 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL); 1166 retval = -ENOMEM; 1167 if (!dio) 1168 goto out; 1169 /* 1170 * Believe it or not, zeroing out the page array caused a .5% 1171 * performance regression in a database benchmark. So, we take 1172 * care to only zero out what's needed. 1173 */ 1174 memset(dio, 0, offsetof(struct dio, pages)); 1175 1176 dio->flags = flags; 1177 if (dio->flags & DIO_LOCKING) { 1178 if (rw == READ) { 1179 struct address_space *mapping = 1180 iocb->ki_filp->f_mapping; 1181 1182 /* will be released by direct_io_worker */ 1183 mutex_lock(&inode->i_mutex); 1184 1185 retval = filemap_write_and_wait_range(mapping, offset, 1186 end - 1); 1187 if (retval) { 1188 mutex_unlock(&inode->i_mutex); 1189 kmem_cache_free(dio_cache, dio); 1190 goto out; 1191 } 1192 } 1193 } 1194 1195 /* 1196 * For file extending writes updating i_size before data writeouts 1197 * complete can expose uninitialized blocks in dumb filesystems. 1198 * In that case we need to wait for I/O completion even if asked 1199 * for an asynchronous write. 1200 */ 1201 if (is_sync_kiocb(iocb)) 1202 dio->is_async = false; 1203 else if (!(dio->flags & DIO_ASYNC_EXTEND) && 1204 (rw & WRITE) && end > i_size_read(inode)) 1205 dio->is_async = false; 1206 else 1207 dio->is_async = true; 1208 1209 dio->inode = inode; 1210 dio->rw = rw; 1211 1212 /* 1213 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue 1214 * so that we can call ->fsync. 1215 */ 1216 if (dio->is_async && (rw & WRITE) && 1217 ((iocb->ki_filp->f_flags & O_DSYNC) || 1218 IS_SYNC(iocb->ki_filp->f_mapping->host))) { 1219 retval = dio_set_defer_completion(dio); 1220 if (retval) { 1221 /* 1222 * We grab i_mutex only for reads so we don't have 1223 * to release it here 1224 */ 1225 kmem_cache_free(dio_cache, dio); 1226 goto out; 1227 } 1228 } 1229 1230 /* 1231 * Will be decremented at I/O completion time. 1232 */ 1233 atomic_inc(&inode->i_dio_count); 1234 1235 retval = 0; 1236 sdio.blkbits = blkbits; 1237 sdio.blkfactor = i_blkbits - blkbits; 1238 sdio.block_in_file = offset >> blkbits; 1239 1240 sdio.get_block = get_block; 1241 dio->end_io = end_io; 1242 sdio.submit_io = submit_io; 1243 sdio.final_block_in_bio = -1; 1244 sdio.next_block_for_io = -1; 1245 1246 dio->iocb = iocb; 1247 dio->i_size = i_size_read(inode); 1248 1249 spin_lock_init(&dio->bio_lock); 1250 dio->refcount = 1; 1251 1252 /* 1253 * In case of non-aligned buffers, we may need 2 more 1254 * pages since we need to zero out first and last block. 1255 */ 1256 if (unlikely(sdio.blkfactor)) 1257 sdio.pages_in_io = 2; 1258 1259 for (seg = 0; seg < nr_segs; seg++) { 1260 user_addr = (unsigned long)iov[seg].iov_base; 1261 sdio.pages_in_io += 1262 ((user_addr + iov[seg].iov_len + PAGE_SIZE-1) / 1263 PAGE_SIZE - user_addr / PAGE_SIZE); 1264 } 1265 1266 blk_start_plug(&plug); 1267 1268 for (seg = 0; seg < nr_segs; seg++) { 1269 user_addr = (unsigned long)iov[seg].iov_base; 1270 sdio.size += bytes = iov[seg].iov_len; 1271 1272 /* Index into the first page of the first block */ 1273 sdio.first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits; 1274 sdio.final_block_in_request = sdio.block_in_file + 1275 (bytes >> blkbits); 1276 /* Page fetching state */ 1277 sdio.head = 0; 1278 sdio.tail = 0; 1279 sdio.curr_page = 0; 1280 1281 sdio.total_pages = 0; 1282 if (user_addr & (PAGE_SIZE-1)) { 1283 sdio.total_pages++; 1284 bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1)); 1285 } 1286 sdio.total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE; 1287 sdio.curr_user_address = user_addr; 1288 1289 retval = do_direct_IO(dio, &sdio, &map_bh); 1290 1291 dio->result += iov[seg].iov_len - 1292 ((sdio.final_block_in_request - sdio.block_in_file) << 1293 blkbits); 1294 1295 if (retval) { 1296 dio_cleanup(dio, &sdio); 1297 break; 1298 } 1299 } /* end iovec loop */ 1300 1301 if (retval == -ENOTBLK) { 1302 /* 1303 * The remaining part of the request will be 1304 * be handled by buffered I/O when we return 1305 */ 1306 retval = 0; 1307 } 1308 /* 1309 * There may be some unwritten disk at the end of a part-written 1310 * fs-block-sized block. Go zero that now. 1311 */ 1312 dio_zero_block(dio, &sdio, 1, &map_bh); 1313 1314 if (sdio.cur_page) { 1315 ssize_t ret2; 1316 1317 ret2 = dio_send_cur_page(dio, &sdio, &map_bh); 1318 if (retval == 0) 1319 retval = ret2; 1320 page_cache_release(sdio.cur_page); 1321 sdio.cur_page = NULL; 1322 } 1323 if (sdio.bio) 1324 dio_bio_submit(dio, &sdio); 1325 1326 blk_finish_plug(&plug); 1327 1328 /* 1329 * It is possible that, we return short IO due to end of file. 1330 * In that case, we need to release all the pages we got hold on. 1331 */ 1332 dio_cleanup(dio, &sdio); 1333 1334 /* 1335 * All block lookups have been performed. For READ requests 1336 * we can let i_mutex go now that its achieved its purpose 1337 * of protecting us from looking up uninitialized blocks. 1338 */ 1339 if (rw == READ && (dio->flags & DIO_LOCKING)) 1340 mutex_unlock(&dio->inode->i_mutex); 1341 1342 /* 1343 * The only time we want to leave bios in flight is when a successful 1344 * partial aio read or full aio write have been setup. In that case 1345 * bio completion will call aio_complete. The only time it's safe to 1346 * call aio_complete is when we return -EIOCBQUEUED, so we key on that. 1347 * This had *better* be the only place that raises -EIOCBQUEUED. 1348 */ 1349 BUG_ON(retval == -EIOCBQUEUED); 1350 if (dio->is_async && retval == 0 && dio->result && 1351 ((rw == READ) || (dio->result == sdio.size))) 1352 retval = -EIOCBQUEUED; 1353 1354 if (retval != -EIOCBQUEUED) 1355 dio_await_completion(dio); 1356 1357 if (drop_refcount(dio) == 0) { 1358 retval = dio_complete(dio, offset, retval, false); 1359 } else 1360 BUG_ON(retval != -EIOCBQUEUED); 1361 1362 out: 1363 return retval; 1364 } 1365 1366 ssize_t 1367 __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode, 1368 struct block_device *bdev, const struct iovec *iov, loff_t offset, 1369 unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io, 1370 dio_submit_t submit_io, int flags) 1371 { 1372 /* 1373 * The block device state is needed in the end to finally 1374 * submit everything. Since it's likely to be cache cold 1375 * prefetch it here as first thing to hide some of the 1376 * latency. 1377 * 1378 * Attempt to prefetch the pieces we likely need later. 1379 */ 1380 prefetch(&bdev->bd_disk->part_tbl); 1381 prefetch(bdev->bd_queue); 1382 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES); 1383 1384 return do_blockdev_direct_IO(rw, iocb, inode, bdev, iov, offset, 1385 nr_segs, get_block, end_io, 1386 submit_io, flags); 1387 } 1388 1389 EXPORT_SYMBOL(__blockdev_direct_IO); 1390 1391 static __init int dio_init(void) 1392 { 1393 dio_cache = KMEM_CACHE(dio, SLAB_PANIC); 1394 return 0; 1395 } 1396 module_init(dio_init) 1397