1 /* 2 * fs/direct-io.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * O_DIRECT 7 * 8 * 04Jul2002 Andrew Morton 9 * Initial version 10 * 11Sep2002 janetinc@us.ibm.com 11 * added readv/writev support. 12 * 29Oct2002 Andrew Morton 13 * rewrote bio_add_page() support. 14 * 30Oct2002 pbadari@us.ibm.com 15 * added support for non-aligned IO. 16 * 06Nov2002 pbadari@us.ibm.com 17 * added asynchronous IO support. 18 * 21Jul2003 nathans@sgi.com 19 * added IO completion notifier. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/types.h> 25 #include <linux/fs.h> 26 #include <linux/mm.h> 27 #include <linux/slab.h> 28 #include <linux/highmem.h> 29 #include <linux/pagemap.h> 30 #include <linux/task_io_accounting_ops.h> 31 #include <linux/bio.h> 32 #include <linux/wait.h> 33 #include <linux/err.h> 34 #include <linux/blkdev.h> 35 #include <linux/buffer_head.h> 36 #include <linux/rwsem.h> 37 #include <linux/uio.h> 38 #include <linux/atomic.h> 39 #include <linux/prefetch.h> 40 41 /* 42 * How many user pages to map in one call to get_user_pages(). This determines 43 * the size of a structure in the slab cache 44 */ 45 #define DIO_PAGES 64 46 47 /* 48 * This code generally works in units of "dio_blocks". A dio_block is 49 * somewhere between the hard sector size and the filesystem block size. it 50 * is determined on a per-invocation basis. When talking to the filesystem 51 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity 52 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted 53 * to bio_block quantities by shifting left by blkfactor. 54 * 55 * If blkfactor is zero then the user's request was aligned to the filesystem's 56 * blocksize. 57 */ 58 59 /* dio_state only used in the submission path */ 60 61 struct dio_submit { 62 struct bio *bio; /* bio under assembly */ 63 unsigned blkbits; /* doesn't change */ 64 unsigned blkfactor; /* When we're using an alignment which 65 is finer than the filesystem's soft 66 blocksize, this specifies how much 67 finer. blkfactor=2 means 1/4-block 68 alignment. Does not change */ 69 unsigned start_zero_done; /* flag: sub-blocksize zeroing has 70 been performed at the start of a 71 write */ 72 int pages_in_io; /* approximate total IO pages */ 73 sector_t block_in_file; /* Current offset into the underlying 74 file in dio_block units. */ 75 unsigned blocks_available; /* At block_in_file. changes */ 76 int reap_counter; /* rate limit reaping */ 77 sector_t final_block_in_request;/* doesn't change */ 78 int boundary; /* prev block is at a boundary */ 79 get_block_t *get_block; /* block mapping function */ 80 dio_submit_t *submit_io; /* IO submition function */ 81 82 loff_t logical_offset_in_bio; /* current first logical block in bio */ 83 sector_t final_block_in_bio; /* current final block in bio + 1 */ 84 sector_t next_block_for_io; /* next block to be put under IO, 85 in dio_blocks units */ 86 87 /* 88 * Deferred addition of a page to the dio. These variables are 89 * private to dio_send_cur_page(), submit_page_section() and 90 * dio_bio_add_page(). 91 */ 92 struct page *cur_page; /* The page */ 93 unsigned cur_page_offset; /* Offset into it, in bytes */ 94 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ 95 sector_t cur_page_block; /* Where it starts */ 96 loff_t cur_page_fs_offset; /* Offset in file */ 97 98 struct iov_iter *iter; 99 /* 100 * Page queue. These variables belong to dio_refill_pages() and 101 * dio_get_page(). 102 */ 103 unsigned head; /* next page to process */ 104 unsigned tail; /* last valid page + 1 */ 105 size_t from, to; 106 }; 107 108 /* dio_state communicated between submission path and end_io */ 109 struct dio { 110 int flags; /* doesn't change */ 111 int op; 112 int op_flags; 113 blk_qc_t bio_cookie; 114 struct block_device *bio_bdev; 115 struct inode *inode; 116 loff_t i_size; /* i_size when submitted */ 117 dio_iodone_t *end_io; /* IO completion function */ 118 119 void *private; /* copy from map_bh.b_private */ 120 121 /* BIO completion state */ 122 spinlock_t bio_lock; /* protects BIO fields below */ 123 int page_errors; /* errno from get_user_pages() */ 124 int is_async; /* is IO async ? */ 125 bool defer_completion; /* defer AIO completion to workqueue? */ 126 bool should_dirty; /* if pages should be dirtied */ 127 int io_error; /* IO error in completion path */ 128 unsigned long refcount; /* direct_io_worker() and bios */ 129 struct bio *bio_list; /* singly linked via bi_private */ 130 struct task_struct *waiter; /* waiting task (NULL if none) */ 131 132 /* AIO related stuff */ 133 struct kiocb *iocb; /* kiocb */ 134 ssize_t result; /* IO result */ 135 136 /* 137 * pages[] (and any fields placed after it) are not zeroed out at 138 * allocation time. Don't add new fields after pages[] unless you 139 * wish that they not be zeroed. 140 */ 141 union { 142 struct page *pages[DIO_PAGES]; /* page buffer */ 143 struct work_struct complete_work;/* deferred AIO completion */ 144 }; 145 } ____cacheline_aligned_in_smp; 146 147 static struct kmem_cache *dio_cache __read_mostly; 148 149 /* 150 * How many pages are in the queue? 151 */ 152 static inline unsigned dio_pages_present(struct dio_submit *sdio) 153 { 154 return sdio->tail - sdio->head; 155 } 156 157 /* 158 * Go grab and pin some userspace pages. Typically we'll get 64 at a time. 159 */ 160 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio) 161 { 162 ssize_t ret; 163 164 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES, 165 &sdio->from); 166 167 if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) { 168 struct page *page = ZERO_PAGE(0); 169 /* 170 * A memory fault, but the filesystem has some outstanding 171 * mapped blocks. We need to use those blocks up to avoid 172 * leaking stale data in the file. 173 */ 174 if (dio->page_errors == 0) 175 dio->page_errors = ret; 176 get_page(page); 177 dio->pages[0] = page; 178 sdio->head = 0; 179 sdio->tail = 1; 180 sdio->from = 0; 181 sdio->to = PAGE_SIZE; 182 return 0; 183 } 184 185 if (ret >= 0) { 186 iov_iter_advance(sdio->iter, ret); 187 ret += sdio->from; 188 sdio->head = 0; 189 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE; 190 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1; 191 return 0; 192 } 193 return ret; 194 } 195 196 /* 197 * Get another userspace page. Returns an ERR_PTR on error. Pages are 198 * buffered inside the dio so that we can call get_user_pages() against a 199 * decent number of pages, less frequently. To provide nicer use of the 200 * L1 cache. 201 */ 202 static inline struct page *dio_get_page(struct dio *dio, 203 struct dio_submit *sdio) 204 { 205 if (dio_pages_present(sdio) == 0) { 206 int ret; 207 208 ret = dio_refill_pages(dio, sdio); 209 if (ret) 210 return ERR_PTR(ret); 211 BUG_ON(dio_pages_present(sdio) == 0); 212 } 213 return dio->pages[sdio->head]; 214 } 215 216 /** 217 * dio_complete() - called when all DIO BIO I/O has been completed 218 * @offset: the byte offset in the file of the completed operation 219 * 220 * This drops i_dio_count, lets interested parties know that a DIO operation 221 * has completed, and calculates the resulting return code for the operation. 222 * 223 * It lets the filesystem know if it registered an interest earlier via 224 * get_block. Pass the private field of the map buffer_head so that 225 * filesystems can use it to hold additional state between get_block calls and 226 * dio_complete. 227 */ 228 static ssize_t dio_complete(struct dio *dio, ssize_t ret, bool is_async) 229 { 230 loff_t offset = dio->iocb->ki_pos; 231 ssize_t transferred = 0; 232 233 /* 234 * AIO submission can race with bio completion to get here while 235 * expecting to have the last io completed by bio completion. 236 * In that case -EIOCBQUEUED is in fact not an error we want 237 * to preserve through this call. 238 */ 239 if (ret == -EIOCBQUEUED) 240 ret = 0; 241 242 if (dio->result) { 243 transferred = dio->result; 244 245 /* Check for short read case */ 246 if ((dio->op == REQ_OP_READ) && 247 ((offset + transferred) > dio->i_size)) 248 transferred = dio->i_size - offset; 249 /* ignore EFAULT if some IO has been done */ 250 if (unlikely(ret == -EFAULT) && transferred) 251 ret = 0; 252 } 253 254 if (ret == 0) 255 ret = dio->page_errors; 256 if (ret == 0) 257 ret = dio->io_error; 258 if (ret == 0) 259 ret = transferred; 260 261 if (dio->end_io) { 262 int err; 263 264 // XXX: ki_pos?? 265 err = dio->end_io(dio->iocb, offset, ret, dio->private); 266 if (err) 267 ret = err; 268 } 269 270 if (!(dio->flags & DIO_SKIP_DIO_COUNT)) 271 inode_dio_end(dio->inode); 272 273 if (is_async) { 274 /* 275 * generic_write_sync expects ki_pos to have been updated 276 * already, but the submission path only does this for 277 * synchronous I/O. 278 */ 279 dio->iocb->ki_pos += transferred; 280 281 if (dio->op == REQ_OP_WRITE) 282 ret = generic_write_sync(dio->iocb, transferred); 283 dio->iocb->ki_complete(dio->iocb, ret, 0); 284 } 285 286 kmem_cache_free(dio_cache, dio); 287 return ret; 288 } 289 290 static void dio_aio_complete_work(struct work_struct *work) 291 { 292 struct dio *dio = container_of(work, struct dio, complete_work); 293 294 dio_complete(dio, 0, true); 295 } 296 297 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio); 298 299 /* 300 * Asynchronous IO callback. 301 */ 302 static void dio_bio_end_aio(struct bio *bio) 303 { 304 struct dio *dio = bio->bi_private; 305 unsigned long remaining; 306 unsigned long flags; 307 308 /* cleanup the bio */ 309 dio_bio_complete(dio, bio); 310 311 spin_lock_irqsave(&dio->bio_lock, flags); 312 remaining = --dio->refcount; 313 if (remaining == 1 && dio->waiter) 314 wake_up_process(dio->waiter); 315 spin_unlock_irqrestore(&dio->bio_lock, flags); 316 317 if (remaining == 0) { 318 if (dio->result && dio->defer_completion) { 319 INIT_WORK(&dio->complete_work, dio_aio_complete_work); 320 queue_work(dio->inode->i_sb->s_dio_done_wq, 321 &dio->complete_work); 322 } else { 323 dio_complete(dio, 0, true); 324 } 325 } 326 } 327 328 /* 329 * The BIO completion handler simply queues the BIO up for the process-context 330 * handler. 331 * 332 * During I/O bi_private points at the dio. After I/O, bi_private is used to 333 * implement a singly-linked list of completed BIOs, at dio->bio_list. 334 */ 335 static void dio_bio_end_io(struct bio *bio) 336 { 337 struct dio *dio = bio->bi_private; 338 unsigned long flags; 339 340 spin_lock_irqsave(&dio->bio_lock, flags); 341 bio->bi_private = dio->bio_list; 342 dio->bio_list = bio; 343 if (--dio->refcount == 1 && dio->waiter) 344 wake_up_process(dio->waiter); 345 spin_unlock_irqrestore(&dio->bio_lock, flags); 346 } 347 348 /** 349 * dio_end_io - handle the end io action for the given bio 350 * @bio: The direct io bio thats being completed 351 * 352 * This is meant to be called by any filesystem that uses their own dio_submit_t 353 * so that the DIO specific endio actions are dealt with after the filesystem 354 * has done it's completion work. 355 */ 356 void dio_end_io(struct bio *bio) 357 { 358 struct dio *dio = bio->bi_private; 359 360 if (dio->is_async) 361 dio_bio_end_aio(bio); 362 else 363 dio_bio_end_io(bio); 364 } 365 EXPORT_SYMBOL_GPL(dio_end_io); 366 367 static inline void 368 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio, 369 struct block_device *bdev, 370 sector_t first_sector, int nr_vecs) 371 { 372 struct bio *bio; 373 374 /* 375 * bio_alloc() is guaranteed to return a bio when called with 376 * __GFP_RECLAIM and we request a valid number of vectors. 377 */ 378 bio = bio_alloc(GFP_KERNEL, nr_vecs); 379 380 bio->bi_bdev = bdev; 381 bio->bi_iter.bi_sector = first_sector; 382 bio_set_op_attrs(bio, dio->op, dio->op_flags); 383 if (dio->is_async) 384 bio->bi_end_io = dio_bio_end_aio; 385 else 386 bio->bi_end_io = dio_bio_end_io; 387 388 bio->bi_write_hint = dio->iocb->ki_hint; 389 390 sdio->bio = bio; 391 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset; 392 } 393 394 /* 395 * In the AIO read case we speculatively dirty the pages before starting IO. 396 * During IO completion, any of these pages which happen to have been written 397 * back will be redirtied by bio_check_pages_dirty(). 398 * 399 * bios hold a dio reference between submit_bio and ->end_io. 400 */ 401 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio) 402 { 403 struct bio *bio = sdio->bio; 404 unsigned long flags; 405 406 bio->bi_private = dio; 407 408 spin_lock_irqsave(&dio->bio_lock, flags); 409 dio->refcount++; 410 spin_unlock_irqrestore(&dio->bio_lock, flags); 411 412 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) 413 bio_set_pages_dirty(bio); 414 415 dio->bio_bdev = bio->bi_bdev; 416 417 if (sdio->submit_io) { 418 sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio); 419 dio->bio_cookie = BLK_QC_T_NONE; 420 } else 421 dio->bio_cookie = submit_bio(bio); 422 423 sdio->bio = NULL; 424 sdio->boundary = 0; 425 sdio->logical_offset_in_bio = 0; 426 } 427 428 /* 429 * Release any resources in case of a failure 430 */ 431 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio) 432 { 433 while (sdio->head < sdio->tail) 434 put_page(dio->pages[sdio->head++]); 435 } 436 437 /* 438 * Wait for the next BIO to complete. Remove it and return it. NULL is 439 * returned once all BIOs have been completed. This must only be called once 440 * all bios have been issued so that dio->refcount can only decrease. This 441 * requires that that the caller hold a reference on the dio. 442 */ 443 static struct bio *dio_await_one(struct dio *dio) 444 { 445 unsigned long flags; 446 struct bio *bio = NULL; 447 448 spin_lock_irqsave(&dio->bio_lock, flags); 449 450 /* 451 * Wait as long as the list is empty and there are bios in flight. bio 452 * completion drops the count, maybe adds to the list, and wakes while 453 * holding the bio_lock so we don't need set_current_state()'s barrier 454 * and can call it after testing our condition. 455 */ 456 while (dio->refcount > 1 && dio->bio_list == NULL) { 457 __set_current_state(TASK_UNINTERRUPTIBLE); 458 dio->waiter = current; 459 spin_unlock_irqrestore(&dio->bio_lock, flags); 460 if (!(dio->iocb->ki_flags & IOCB_HIPRI) || 461 !blk_mq_poll(bdev_get_queue(dio->bio_bdev), dio->bio_cookie)) 462 io_schedule(); 463 /* wake up sets us TASK_RUNNING */ 464 spin_lock_irqsave(&dio->bio_lock, flags); 465 dio->waiter = NULL; 466 } 467 if (dio->bio_list) { 468 bio = dio->bio_list; 469 dio->bio_list = bio->bi_private; 470 } 471 spin_unlock_irqrestore(&dio->bio_lock, flags); 472 return bio; 473 } 474 475 /* 476 * Process one completed BIO. No locks are held. 477 */ 478 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio) 479 { 480 struct bio_vec *bvec; 481 unsigned i; 482 blk_status_t err = bio->bi_status; 483 484 if (err) { 485 if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT)) 486 dio->io_error = -EAGAIN; 487 else 488 dio->io_error = -EIO; 489 } 490 491 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) { 492 bio_check_pages_dirty(bio); /* transfers ownership */ 493 } else { 494 bio_for_each_segment_all(bvec, bio, i) { 495 struct page *page = bvec->bv_page; 496 497 if (dio->op == REQ_OP_READ && !PageCompound(page) && 498 dio->should_dirty) 499 set_page_dirty_lock(page); 500 put_page(page); 501 } 502 bio_put(bio); 503 } 504 return err; 505 } 506 507 /* 508 * Wait on and process all in-flight BIOs. This must only be called once 509 * all bios have been issued so that the refcount can only decrease. 510 * This just waits for all bios to make it through dio_bio_complete. IO 511 * errors are propagated through dio->io_error and should be propagated via 512 * dio_complete(). 513 */ 514 static void dio_await_completion(struct dio *dio) 515 { 516 struct bio *bio; 517 do { 518 bio = dio_await_one(dio); 519 if (bio) 520 dio_bio_complete(dio, bio); 521 } while (bio); 522 } 523 524 /* 525 * A really large O_DIRECT read or write can generate a lot of BIOs. So 526 * to keep the memory consumption sane we periodically reap any completed BIOs 527 * during the BIO generation phase. 528 * 529 * This also helps to limit the peak amount of pinned userspace memory. 530 */ 531 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio) 532 { 533 int ret = 0; 534 535 if (sdio->reap_counter++ >= 64) { 536 while (dio->bio_list) { 537 unsigned long flags; 538 struct bio *bio; 539 int ret2; 540 541 spin_lock_irqsave(&dio->bio_lock, flags); 542 bio = dio->bio_list; 543 dio->bio_list = bio->bi_private; 544 spin_unlock_irqrestore(&dio->bio_lock, flags); 545 ret2 = blk_status_to_errno(dio_bio_complete(dio, bio)); 546 if (ret == 0) 547 ret = ret2; 548 } 549 sdio->reap_counter = 0; 550 } 551 return ret; 552 } 553 554 /* 555 * Create workqueue for deferred direct IO completions. We allocate the 556 * workqueue when it's first needed. This avoids creating workqueue for 557 * filesystems that don't need it and also allows us to create the workqueue 558 * late enough so the we can include s_id in the name of the workqueue. 559 */ 560 int sb_init_dio_done_wq(struct super_block *sb) 561 { 562 struct workqueue_struct *old; 563 struct workqueue_struct *wq = alloc_workqueue("dio/%s", 564 WQ_MEM_RECLAIM, 0, 565 sb->s_id); 566 if (!wq) 567 return -ENOMEM; 568 /* 569 * This has to be atomic as more DIOs can race to create the workqueue 570 */ 571 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq); 572 /* Someone created workqueue before us? Free ours... */ 573 if (old) 574 destroy_workqueue(wq); 575 return 0; 576 } 577 578 static int dio_set_defer_completion(struct dio *dio) 579 { 580 struct super_block *sb = dio->inode->i_sb; 581 582 if (dio->defer_completion) 583 return 0; 584 dio->defer_completion = true; 585 if (!sb->s_dio_done_wq) 586 return sb_init_dio_done_wq(sb); 587 return 0; 588 } 589 590 /* 591 * Call into the fs to map some more disk blocks. We record the current number 592 * of available blocks at sdio->blocks_available. These are in units of the 593 * fs blocksize, i_blocksize(inode). 594 * 595 * The fs is allowed to map lots of blocks at once. If it wants to do that, 596 * it uses the passed inode-relative block number as the file offset, as usual. 597 * 598 * get_block() is passed the number of i_blkbits-sized blocks which direct_io 599 * has remaining to do. The fs should not map more than this number of blocks. 600 * 601 * If the fs has mapped a lot of blocks, it should populate bh->b_size to 602 * indicate how much contiguous disk space has been made available at 603 * bh->b_blocknr. 604 * 605 * If *any* of the mapped blocks are new, then the fs must set buffer_new(). 606 * This isn't very efficient... 607 * 608 * In the case of filesystem holes: the fs may return an arbitrarily-large 609 * hole by returning an appropriate value in b_size and by clearing 610 * buffer_mapped(). However the direct-io code will only process holes one 611 * block at a time - it will repeatedly call get_block() as it walks the hole. 612 */ 613 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio, 614 struct buffer_head *map_bh) 615 { 616 int ret; 617 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ 618 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */ 619 unsigned long fs_count; /* Number of filesystem-sized blocks */ 620 int create; 621 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor; 622 623 /* 624 * If there was a memory error and we've overwritten all the 625 * mapped blocks then we can now return that memory error 626 */ 627 ret = dio->page_errors; 628 if (ret == 0) { 629 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request); 630 fs_startblk = sdio->block_in_file >> sdio->blkfactor; 631 fs_endblk = (sdio->final_block_in_request - 1) >> 632 sdio->blkfactor; 633 fs_count = fs_endblk - fs_startblk + 1; 634 635 map_bh->b_state = 0; 636 map_bh->b_size = fs_count << i_blkbits; 637 638 /* 639 * For writes that could fill holes inside i_size on a 640 * DIO_SKIP_HOLES filesystem we forbid block creations: only 641 * overwrites are permitted. We will return early to the caller 642 * once we see an unmapped buffer head returned, and the caller 643 * will fall back to buffered I/O. 644 * 645 * Otherwise the decision is left to the get_blocks method, 646 * which may decide to handle it or also return an unmapped 647 * buffer head. 648 */ 649 create = dio->op == REQ_OP_WRITE; 650 if (dio->flags & DIO_SKIP_HOLES) { 651 if (fs_startblk <= ((i_size_read(dio->inode) - 1) >> 652 i_blkbits)) 653 create = 0; 654 } 655 656 ret = (*sdio->get_block)(dio->inode, fs_startblk, 657 map_bh, create); 658 659 /* Store for completion */ 660 dio->private = map_bh->b_private; 661 662 if (ret == 0 && buffer_defer_completion(map_bh)) 663 ret = dio_set_defer_completion(dio); 664 } 665 return ret; 666 } 667 668 /* 669 * There is no bio. Make one now. 670 */ 671 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio, 672 sector_t start_sector, struct buffer_head *map_bh) 673 { 674 sector_t sector; 675 int ret, nr_pages; 676 677 ret = dio_bio_reap(dio, sdio); 678 if (ret) 679 goto out; 680 sector = start_sector << (sdio->blkbits - 9); 681 nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES); 682 BUG_ON(nr_pages <= 0); 683 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages); 684 sdio->boundary = 0; 685 out: 686 return ret; 687 } 688 689 /* 690 * Attempt to put the current chunk of 'cur_page' into the current BIO. If 691 * that was successful then update final_block_in_bio and take a ref against 692 * the just-added page. 693 * 694 * Return zero on success. Non-zero means the caller needs to start a new BIO. 695 */ 696 static inline int dio_bio_add_page(struct dio_submit *sdio) 697 { 698 int ret; 699 700 ret = bio_add_page(sdio->bio, sdio->cur_page, 701 sdio->cur_page_len, sdio->cur_page_offset); 702 if (ret == sdio->cur_page_len) { 703 /* 704 * Decrement count only, if we are done with this page 705 */ 706 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE) 707 sdio->pages_in_io--; 708 get_page(sdio->cur_page); 709 sdio->final_block_in_bio = sdio->cur_page_block + 710 (sdio->cur_page_len >> sdio->blkbits); 711 ret = 0; 712 } else { 713 ret = 1; 714 } 715 return ret; 716 } 717 718 /* 719 * Put cur_page under IO. The section of cur_page which is described by 720 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page 721 * starts on-disk at cur_page_block. 722 * 723 * We take a ref against the page here (on behalf of its presence in the bio). 724 * 725 * The caller of this function is responsible for removing cur_page from the 726 * dio, and for dropping the refcount which came from that presence. 727 */ 728 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio, 729 struct buffer_head *map_bh) 730 { 731 int ret = 0; 732 733 if (sdio->bio) { 734 loff_t cur_offset = sdio->cur_page_fs_offset; 735 loff_t bio_next_offset = sdio->logical_offset_in_bio + 736 sdio->bio->bi_iter.bi_size; 737 738 /* 739 * See whether this new request is contiguous with the old. 740 * 741 * Btrfs cannot handle having logically non-contiguous requests 742 * submitted. For example if you have 743 * 744 * Logical: [0-4095][HOLE][8192-12287] 745 * Physical: [0-4095] [4096-8191] 746 * 747 * We cannot submit those pages together as one BIO. So if our 748 * current logical offset in the file does not equal what would 749 * be the next logical offset in the bio, submit the bio we 750 * have. 751 */ 752 if (sdio->final_block_in_bio != sdio->cur_page_block || 753 cur_offset != bio_next_offset) 754 dio_bio_submit(dio, sdio); 755 } 756 757 if (sdio->bio == NULL) { 758 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 759 if (ret) 760 goto out; 761 } 762 763 if (dio_bio_add_page(sdio) != 0) { 764 dio_bio_submit(dio, sdio); 765 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 766 if (ret == 0) { 767 ret = dio_bio_add_page(sdio); 768 BUG_ON(ret != 0); 769 } 770 } 771 out: 772 return ret; 773 } 774 775 /* 776 * An autonomous function to put a chunk of a page under deferred IO. 777 * 778 * The caller doesn't actually know (or care) whether this piece of page is in 779 * a BIO, or is under IO or whatever. We just take care of all possible 780 * situations here. The separation between the logic of do_direct_IO() and 781 * that of submit_page_section() is important for clarity. Please don't break. 782 * 783 * The chunk of page starts on-disk at blocknr. 784 * 785 * We perform deferred IO, by recording the last-submitted page inside our 786 * private part of the dio structure. If possible, we just expand the IO 787 * across that page here. 788 * 789 * If that doesn't work out then we put the old page into the bio and add this 790 * page to the dio instead. 791 */ 792 static inline int 793 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page, 794 unsigned offset, unsigned len, sector_t blocknr, 795 struct buffer_head *map_bh) 796 { 797 int ret = 0; 798 799 if (dio->op == REQ_OP_WRITE) { 800 /* 801 * Read accounting is performed in submit_bio() 802 */ 803 task_io_account_write(len); 804 } 805 806 /* 807 * Can we just grow the current page's presence in the dio? 808 */ 809 if (sdio->cur_page == page && 810 sdio->cur_page_offset + sdio->cur_page_len == offset && 811 sdio->cur_page_block + 812 (sdio->cur_page_len >> sdio->blkbits) == blocknr) { 813 sdio->cur_page_len += len; 814 goto out; 815 } 816 817 /* 818 * If there's a deferred page already there then send it. 819 */ 820 if (sdio->cur_page) { 821 ret = dio_send_cur_page(dio, sdio, map_bh); 822 put_page(sdio->cur_page); 823 sdio->cur_page = NULL; 824 if (ret) 825 return ret; 826 } 827 828 get_page(page); /* It is in dio */ 829 sdio->cur_page = page; 830 sdio->cur_page_offset = offset; 831 sdio->cur_page_len = len; 832 sdio->cur_page_block = blocknr; 833 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits; 834 out: 835 /* 836 * If sdio->boundary then we want to schedule the IO now to 837 * avoid metadata seeks. 838 */ 839 if (sdio->boundary) { 840 ret = dio_send_cur_page(dio, sdio, map_bh); 841 dio_bio_submit(dio, sdio); 842 put_page(sdio->cur_page); 843 sdio->cur_page = NULL; 844 } 845 return ret; 846 } 847 848 /* 849 * If we are not writing the entire block and get_block() allocated 850 * the block for us, we need to fill-in the unused portion of the 851 * block with zeros. This happens only if user-buffer, fileoffset or 852 * io length is not filesystem block-size multiple. 853 * 854 * `end' is zero if we're doing the start of the IO, 1 at the end of the 855 * IO. 856 */ 857 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio, 858 int end, struct buffer_head *map_bh) 859 { 860 unsigned dio_blocks_per_fs_block; 861 unsigned this_chunk_blocks; /* In dio_blocks */ 862 unsigned this_chunk_bytes; 863 struct page *page; 864 865 sdio->start_zero_done = 1; 866 if (!sdio->blkfactor || !buffer_new(map_bh)) 867 return; 868 869 dio_blocks_per_fs_block = 1 << sdio->blkfactor; 870 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1); 871 872 if (!this_chunk_blocks) 873 return; 874 875 /* 876 * We need to zero out part of an fs block. It is either at the 877 * beginning or the end of the fs block. 878 */ 879 if (end) 880 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; 881 882 this_chunk_bytes = this_chunk_blocks << sdio->blkbits; 883 884 page = ZERO_PAGE(0); 885 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes, 886 sdio->next_block_for_io, map_bh)) 887 return; 888 889 sdio->next_block_for_io += this_chunk_blocks; 890 } 891 892 /* 893 * Walk the user pages, and the file, mapping blocks to disk and generating 894 * a sequence of (page,offset,len,block) mappings. These mappings are injected 895 * into submit_page_section(), which takes care of the next stage of submission 896 * 897 * Direct IO against a blockdev is different from a file. Because we can 898 * happily perform page-sized but 512-byte aligned IOs. It is important that 899 * blockdev IO be able to have fine alignment and large sizes. 900 * 901 * So what we do is to permit the ->get_block function to populate bh.b_size 902 * with the size of IO which is permitted at this offset and this i_blkbits. 903 * 904 * For best results, the blockdev should be set up with 512-byte i_blkbits and 905 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives 906 * fine alignment but still allows this function to work in PAGE_SIZE units. 907 */ 908 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio, 909 struct buffer_head *map_bh) 910 { 911 const unsigned blkbits = sdio->blkbits; 912 const unsigned i_blkbits = blkbits + sdio->blkfactor; 913 int ret = 0; 914 915 while (sdio->block_in_file < sdio->final_block_in_request) { 916 struct page *page; 917 size_t from, to; 918 919 page = dio_get_page(dio, sdio); 920 if (IS_ERR(page)) { 921 ret = PTR_ERR(page); 922 goto out; 923 } 924 from = sdio->head ? 0 : sdio->from; 925 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE; 926 sdio->head++; 927 928 while (from < to) { 929 unsigned this_chunk_bytes; /* # of bytes mapped */ 930 unsigned this_chunk_blocks; /* # of blocks */ 931 unsigned u; 932 933 if (sdio->blocks_available == 0) { 934 /* 935 * Need to go and map some more disk 936 */ 937 unsigned long blkmask; 938 unsigned long dio_remainder; 939 940 ret = get_more_blocks(dio, sdio, map_bh); 941 if (ret) { 942 put_page(page); 943 goto out; 944 } 945 if (!buffer_mapped(map_bh)) 946 goto do_holes; 947 948 sdio->blocks_available = 949 map_bh->b_size >> blkbits; 950 sdio->next_block_for_io = 951 map_bh->b_blocknr << sdio->blkfactor; 952 if (buffer_new(map_bh)) { 953 clean_bdev_aliases( 954 map_bh->b_bdev, 955 map_bh->b_blocknr, 956 map_bh->b_size >> i_blkbits); 957 } 958 959 if (!sdio->blkfactor) 960 goto do_holes; 961 962 blkmask = (1 << sdio->blkfactor) - 1; 963 dio_remainder = (sdio->block_in_file & blkmask); 964 965 /* 966 * If we are at the start of IO and that IO 967 * starts partway into a fs-block, 968 * dio_remainder will be non-zero. If the IO 969 * is a read then we can simply advance the IO 970 * cursor to the first block which is to be 971 * read. But if the IO is a write and the 972 * block was newly allocated we cannot do that; 973 * the start of the fs block must be zeroed out 974 * on-disk 975 */ 976 if (!buffer_new(map_bh)) 977 sdio->next_block_for_io += dio_remainder; 978 sdio->blocks_available -= dio_remainder; 979 } 980 do_holes: 981 /* Handle holes */ 982 if (!buffer_mapped(map_bh)) { 983 loff_t i_size_aligned; 984 985 /* AKPM: eargh, -ENOTBLK is a hack */ 986 if (dio->op == REQ_OP_WRITE) { 987 put_page(page); 988 return -ENOTBLK; 989 } 990 991 /* 992 * Be sure to account for a partial block as the 993 * last block in the file 994 */ 995 i_size_aligned = ALIGN(i_size_read(dio->inode), 996 1 << blkbits); 997 if (sdio->block_in_file >= 998 i_size_aligned >> blkbits) { 999 /* We hit eof */ 1000 put_page(page); 1001 goto out; 1002 } 1003 zero_user(page, from, 1 << blkbits); 1004 sdio->block_in_file++; 1005 from += 1 << blkbits; 1006 dio->result += 1 << blkbits; 1007 goto next_block; 1008 } 1009 1010 /* 1011 * If we're performing IO which has an alignment which 1012 * is finer than the underlying fs, go check to see if 1013 * we must zero out the start of this block. 1014 */ 1015 if (unlikely(sdio->blkfactor && !sdio->start_zero_done)) 1016 dio_zero_block(dio, sdio, 0, map_bh); 1017 1018 /* 1019 * Work out, in this_chunk_blocks, how much disk we 1020 * can add to this page 1021 */ 1022 this_chunk_blocks = sdio->blocks_available; 1023 u = (to - from) >> blkbits; 1024 if (this_chunk_blocks > u) 1025 this_chunk_blocks = u; 1026 u = sdio->final_block_in_request - sdio->block_in_file; 1027 if (this_chunk_blocks > u) 1028 this_chunk_blocks = u; 1029 this_chunk_bytes = this_chunk_blocks << blkbits; 1030 BUG_ON(this_chunk_bytes == 0); 1031 1032 if (this_chunk_blocks == sdio->blocks_available) 1033 sdio->boundary = buffer_boundary(map_bh); 1034 ret = submit_page_section(dio, sdio, page, 1035 from, 1036 this_chunk_bytes, 1037 sdio->next_block_for_io, 1038 map_bh); 1039 if (ret) { 1040 put_page(page); 1041 goto out; 1042 } 1043 sdio->next_block_for_io += this_chunk_blocks; 1044 1045 sdio->block_in_file += this_chunk_blocks; 1046 from += this_chunk_bytes; 1047 dio->result += this_chunk_bytes; 1048 sdio->blocks_available -= this_chunk_blocks; 1049 next_block: 1050 BUG_ON(sdio->block_in_file > sdio->final_block_in_request); 1051 if (sdio->block_in_file == sdio->final_block_in_request) 1052 break; 1053 } 1054 1055 /* Drop the ref which was taken in get_user_pages() */ 1056 put_page(page); 1057 } 1058 out: 1059 return ret; 1060 } 1061 1062 static inline int drop_refcount(struct dio *dio) 1063 { 1064 int ret2; 1065 unsigned long flags; 1066 1067 /* 1068 * Sync will always be dropping the final ref and completing the 1069 * operation. AIO can if it was a broken operation described above or 1070 * in fact if all the bios race to complete before we get here. In 1071 * that case dio_complete() translates the EIOCBQUEUED into the proper 1072 * return code that the caller will hand to ->complete(). 1073 * 1074 * This is managed by the bio_lock instead of being an atomic_t so that 1075 * completion paths can drop their ref and use the remaining count to 1076 * decide to wake the submission path atomically. 1077 */ 1078 spin_lock_irqsave(&dio->bio_lock, flags); 1079 ret2 = --dio->refcount; 1080 spin_unlock_irqrestore(&dio->bio_lock, flags); 1081 return ret2; 1082 } 1083 1084 /* 1085 * This is a library function for use by filesystem drivers. 1086 * 1087 * The locking rules are governed by the flags parameter: 1088 * - if the flags value contains DIO_LOCKING we use a fancy locking 1089 * scheme for dumb filesystems. 1090 * For writes this function is called under i_mutex and returns with 1091 * i_mutex held, for reads, i_mutex is not held on entry, but it is 1092 * taken and dropped again before returning. 1093 * - if the flags value does NOT contain DIO_LOCKING we don't use any 1094 * internal locking but rather rely on the filesystem to synchronize 1095 * direct I/O reads/writes versus each other and truncate. 1096 * 1097 * To help with locking against truncate we incremented the i_dio_count 1098 * counter before starting direct I/O, and decrement it once we are done. 1099 * Truncate can wait for it to reach zero to provide exclusion. It is 1100 * expected that filesystem provide exclusion between new direct I/O 1101 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex, 1102 * but other filesystems need to take care of this on their own. 1103 * 1104 * NOTE: if you pass "sdio" to anything by pointer make sure that function 1105 * is always inlined. Otherwise gcc is unable to split the structure into 1106 * individual fields and will generate much worse code. This is important 1107 * for the whole file. 1108 */ 1109 static inline ssize_t 1110 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1111 struct block_device *bdev, struct iov_iter *iter, 1112 get_block_t get_block, dio_iodone_t end_io, 1113 dio_submit_t submit_io, int flags) 1114 { 1115 unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits); 1116 unsigned blkbits = i_blkbits; 1117 unsigned blocksize_mask = (1 << blkbits) - 1; 1118 ssize_t retval = -EINVAL; 1119 size_t count = iov_iter_count(iter); 1120 loff_t offset = iocb->ki_pos; 1121 loff_t end = offset + count; 1122 struct dio *dio; 1123 struct dio_submit sdio = { 0, }; 1124 struct buffer_head map_bh = { 0, }; 1125 struct blk_plug plug; 1126 unsigned long align = offset | iov_iter_alignment(iter); 1127 1128 /* 1129 * Avoid references to bdev if not absolutely needed to give 1130 * the early prefetch in the caller enough time. 1131 */ 1132 1133 if (align & blocksize_mask) { 1134 if (bdev) 1135 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 1136 blocksize_mask = (1 << blkbits) - 1; 1137 if (align & blocksize_mask) 1138 goto out; 1139 } 1140 1141 /* watch out for a 0 len io from a tricksy fs */ 1142 if (iov_iter_rw(iter) == READ && !iov_iter_count(iter)) 1143 return 0; 1144 1145 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL); 1146 retval = -ENOMEM; 1147 if (!dio) 1148 goto out; 1149 /* 1150 * Believe it or not, zeroing out the page array caused a .5% 1151 * performance regression in a database benchmark. So, we take 1152 * care to only zero out what's needed. 1153 */ 1154 memset(dio, 0, offsetof(struct dio, pages)); 1155 1156 dio->flags = flags; 1157 if (dio->flags & DIO_LOCKING) { 1158 if (iov_iter_rw(iter) == READ) { 1159 struct address_space *mapping = 1160 iocb->ki_filp->f_mapping; 1161 1162 /* will be released by direct_io_worker */ 1163 inode_lock(inode); 1164 1165 retval = filemap_write_and_wait_range(mapping, offset, 1166 end - 1); 1167 if (retval) { 1168 inode_unlock(inode); 1169 kmem_cache_free(dio_cache, dio); 1170 goto out; 1171 } 1172 } 1173 } 1174 1175 /* Once we sampled i_size check for reads beyond EOF */ 1176 dio->i_size = i_size_read(inode); 1177 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) { 1178 if (dio->flags & DIO_LOCKING) 1179 inode_unlock(inode); 1180 kmem_cache_free(dio_cache, dio); 1181 retval = 0; 1182 goto out; 1183 } 1184 1185 /* 1186 * For file extending writes updating i_size before data writeouts 1187 * complete can expose uninitialized blocks in dumb filesystems. 1188 * In that case we need to wait for I/O completion even if asked 1189 * for an asynchronous write. 1190 */ 1191 if (is_sync_kiocb(iocb)) 1192 dio->is_async = false; 1193 else if (!(dio->flags & DIO_ASYNC_EXTEND) && 1194 iov_iter_rw(iter) == WRITE && end > i_size_read(inode)) 1195 dio->is_async = false; 1196 else 1197 dio->is_async = true; 1198 1199 dio->inode = inode; 1200 if (iov_iter_rw(iter) == WRITE) { 1201 dio->op = REQ_OP_WRITE; 1202 dio->op_flags = REQ_SYNC | REQ_IDLE; 1203 if (iocb->ki_flags & IOCB_NOWAIT) 1204 dio->op_flags |= REQ_NOWAIT; 1205 } else { 1206 dio->op = REQ_OP_READ; 1207 } 1208 1209 /* 1210 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue 1211 * so that we can call ->fsync. 1212 */ 1213 if (dio->is_async && iov_iter_rw(iter) == WRITE && 1214 ((iocb->ki_filp->f_flags & O_DSYNC) || 1215 IS_SYNC(iocb->ki_filp->f_mapping->host))) { 1216 retval = dio_set_defer_completion(dio); 1217 if (retval) { 1218 /* 1219 * We grab i_mutex only for reads so we don't have 1220 * to release it here 1221 */ 1222 kmem_cache_free(dio_cache, dio); 1223 goto out; 1224 } 1225 } 1226 1227 /* 1228 * Will be decremented at I/O completion time. 1229 */ 1230 if (!(dio->flags & DIO_SKIP_DIO_COUNT)) 1231 inode_dio_begin(inode); 1232 1233 retval = 0; 1234 sdio.blkbits = blkbits; 1235 sdio.blkfactor = i_blkbits - blkbits; 1236 sdio.block_in_file = offset >> blkbits; 1237 1238 sdio.get_block = get_block; 1239 dio->end_io = end_io; 1240 sdio.submit_io = submit_io; 1241 sdio.final_block_in_bio = -1; 1242 sdio.next_block_for_io = -1; 1243 1244 dio->iocb = iocb; 1245 1246 spin_lock_init(&dio->bio_lock); 1247 dio->refcount = 1; 1248 1249 dio->should_dirty = (iter->type == ITER_IOVEC); 1250 sdio.iter = iter; 1251 sdio.final_block_in_request = 1252 (offset + iov_iter_count(iter)) >> blkbits; 1253 1254 /* 1255 * In case of non-aligned buffers, we may need 2 more 1256 * pages since we need to zero out first and last block. 1257 */ 1258 if (unlikely(sdio.blkfactor)) 1259 sdio.pages_in_io = 2; 1260 1261 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX); 1262 1263 blk_start_plug(&plug); 1264 1265 retval = do_direct_IO(dio, &sdio, &map_bh); 1266 if (retval) 1267 dio_cleanup(dio, &sdio); 1268 1269 if (retval == -ENOTBLK) { 1270 /* 1271 * The remaining part of the request will be 1272 * be handled by buffered I/O when we return 1273 */ 1274 retval = 0; 1275 } 1276 /* 1277 * There may be some unwritten disk at the end of a part-written 1278 * fs-block-sized block. Go zero that now. 1279 */ 1280 dio_zero_block(dio, &sdio, 1, &map_bh); 1281 1282 if (sdio.cur_page) { 1283 ssize_t ret2; 1284 1285 ret2 = dio_send_cur_page(dio, &sdio, &map_bh); 1286 if (retval == 0) 1287 retval = ret2; 1288 put_page(sdio.cur_page); 1289 sdio.cur_page = NULL; 1290 } 1291 if (sdio.bio) 1292 dio_bio_submit(dio, &sdio); 1293 1294 blk_finish_plug(&plug); 1295 1296 /* 1297 * It is possible that, we return short IO due to end of file. 1298 * In that case, we need to release all the pages we got hold on. 1299 */ 1300 dio_cleanup(dio, &sdio); 1301 1302 /* 1303 * All block lookups have been performed. For READ requests 1304 * we can let i_mutex go now that its achieved its purpose 1305 * of protecting us from looking up uninitialized blocks. 1306 */ 1307 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING)) 1308 inode_unlock(dio->inode); 1309 1310 /* 1311 * The only time we want to leave bios in flight is when a successful 1312 * partial aio read or full aio write have been setup. In that case 1313 * bio completion will call aio_complete. The only time it's safe to 1314 * call aio_complete is when we return -EIOCBQUEUED, so we key on that. 1315 * This had *better* be the only place that raises -EIOCBQUEUED. 1316 */ 1317 BUG_ON(retval == -EIOCBQUEUED); 1318 if (dio->is_async && retval == 0 && dio->result && 1319 (iov_iter_rw(iter) == READ || dio->result == count)) 1320 retval = -EIOCBQUEUED; 1321 else 1322 dio_await_completion(dio); 1323 1324 if (drop_refcount(dio) == 0) { 1325 retval = dio_complete(dio, retval, false); 1326 } else 1327 BUG_ON(retval != -EIOCBQUEUED); 1328 1329 out: 1330 return retval; 1331 } 1332 1333 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1334 struct block_device *bdev, struct iov_iter *iter, 1335 get_block_t get_block, 1336 dio_iodone_t end_io, dio_submit_t submit_io, 1337 int flags) 1338 { 1339 /* 1340 * The block device state is needed in the end to finally 1341 * submit everything. Since it's likely to be cache cold 1342 * prefetch it here as first thing to hide some of the 1343 * latency. 1344 * 1345 * Attempt to prefetch the pieces we likely need later. 1346 */ 1347 prefetch(&bdev->bd_disk->part_tbl); 1348 prefetch(bdev->bd_queue); 1349 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES); 1350 1351 return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block, 1352 end_io, submit_io, flags); 1353 } 1354 1355 EXPORT_SYMBOL(__blockdev_direct_IO); 1356 1357 static __init int dio_init(void) 1358 { 1359 dio_cache = KMEM_CACHE(dio, SLAB_PANIC); 1360 return 0; 1361 } 1362 module_init(dio_init) 1363