xref: /openbmc/linux/fs/direct-io.c (revision a36954f5)
1 /*
2  * fs/direct-io.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * O_DIRECT
7  *
8  * 04Jul2002	Andrew Morton
9  *		Initial version
10  * 11Sep2002	janetinc@us.ibm.com
11  * 		added readv/writev support.
12  * 29Oct2002	Andrew Morton
13  *		rewrote bio_add_page() support.
14  * 30Oct2002	pbadari@us.ibm.com
15  *		added support for non-aligned IO.
16  * 06Nov2002	pbadari@us.ibm.com
17  *		added asynchronous IO support.
18  * 21Jul2003	nathans@sgi.com
19  *		added IO completion notifier.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <linux/atomic.h>
39 #include <linux/prefetch.h>
40 
41 /*
42  * How many user pages to map in one call to get_user_pages().  This determines
43  * the size of a structure in the slab cache
44  */
45 #define DIO_PAGES	64
46 
47 /*
48  * This code generally works in units of "dio_blocks".  A dio_block is
49  * somewhere between the hard sector size and the filesystem block size.  it
50  * is determined on a per-invocation basis.   When talking to the filesystem
51  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
52  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
53  * to bio_block quantities by shifting left by blkfactor.
54  *
55  * If blkfactor is zero then the user's request was aligned to the filesystem's
56  * blocksize.
57  */
58 
59 /* dio_state only used in the submission path */
60 
61 struct dio_submit {
62 	struct bio *bio;		/* bio under assembly */
63 	unsigned blkbits;		/* doesn't change */
64 	unsigned blkfactor;		/* When we're using an alignment which
65 					   is finer than the filesystem's soft
66 					   blocksize, this specifies how much
67 					   finer.  blkfactor=2 means 1/4-block
68 					   alignment.  Does not change */
69 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
70 					   been performed at the start of a
71 					   write */
72 	int pages_in_io;		/* approximate total IO pages */
73 	sector_t block_in_file;		/* Current offset into the underlying
74 					   file in dio_block units. */
75 	unsigned blocks_available;	/* At block_in_file.  changes */
76 	int reap_counter;		/* rate limit reaping */
77 	sector_t final_block_in_request;/* doesn't change */
78 	int boundary;			/* prev block is at a boundary */
79 	get_block_t *get_block;		/* block mapping function */
80 	dio_submit_t *submit_io;	/* IO submition function */
81 
82 	loff_t logical_offset_in_bio;	/* current first logical block in bio */
83 	sector_t final_block_in_bio;	/* current final block in bio + 1 */
84 	sector_t next_block_for_io;	/* next block to be put under IO,
85 					   in dio_blocks units */
86 
87 	/*
88 	 * Deferred addition of a page to the dio.  These variables are
89 	 * private to dio_send_cur_page(), submit_page_section() and
90 	 * dio_bio_add_page().
91 	 */
92 	struct page *cur_page;		/* The page */
93 	unsigned cur_page_offset;	/* Offset into it, in bytes */
94 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
95 	sector_t cur_page_block;	/* Where it starts */
96 	loff_t cur_page_fs_offset;	/* Offset in file */
97 
98 	struct iov_iter *iter;
99 	/*
100 	 * Page queue.  These variables belong to dio_refill_pages() and
101 	 * dio_get_page().
102 	 */
103 	unsigned head;			/* next page to process */
104 	unsigned tail;			/* last valid page + 1 */
105 	size_t from, to;
106 };
107 
108 /* dio_state communicated between submission path and end_io */
109 struct dio {
110 	int flags;			/* doesn't change */
111 	int op;
112 	int op_flags;
113 	blk_qc_t bio_cookie;
114 	struct block_device *bio_bdev;
115 	struct inode *inode;
116 	loff_t i_size;			/* i_size when submitted */
117 	dio_iodone_t *end_io;		/* IO completion function */
118 
119 	void *private;			/* copy from map_bh.b_private */
120 
121 	/* BIO completion state */
122 	spinlock_t bio_lock;		/* protects BIO fields below */
123 	int page_errors;		/* errno from get_user_pages() */
124 	int is_async;			/* is IO async ? */
125 	bool defer_completion;		/* defer AIO completion to workqueue? */
126 	bool should_dirty;		/* if pages should be dirtied */
127 	int io_error;			/* IO error in completion path */
128 	unsigned long refcount;		/* direct_io_worker() and bios */
129 	struct bio *bio_list;		/* singly linked via bi_private */
130 	struct task_struct *waiter;	/* waiting task (NULL if none) */
131 
132 	/* AIO related stuff */
133 	struct kiocb *iocb;		/* kiocb */
134 	ssize_t result;                 /* IO result */
135 
136 	/*
137 	 * pages[] (and any fields placed after it) are not zeroed out at
138 	 * allocation time.  Don't add new fields after pages[] unless you
139 	 * wish that they not be zeroed.
140 	 */
141 	union {
142 		struct page *pages[DIO_PAGES];	/* page buffer */
143 		struct work_struct complete_work;/* deferred AIO completion */
144 	};
145 } ____cacheline_aligned_in_smp;
146 
147 static struct kmem_cache *dio_cache __read_mostly;
148 
149 /*
150  * How many pages are in the queue?
151  */
152 static inline unsigned dio_pages_present(struct dio_submit *sdio)
153 {
154 	return sdio->tail - sdio->head;
155 }
156 
157 /*
158  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
159  */
160 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
161 {
162 	ssize_t ret;
163 
164 	ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
165 				&sdio->from);
166 
167 	if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) {
168 		struct page *page = ZERO_PAGE(0);
169 		/*
170 		 * A memory fault, but the filesystem has some outstanding
171 		 * mapped blocks.  We need to use those blocks up to avoid
172 		 * leaking stale data in the file.
173 		 */
174 		if (dio->page_errors == 0)
175 			dio->page_errors = ret;
176 		get_page(page);
177 		dio->pages[0] = page;
178 		sdio->head = 0;
179 		sdio->tail = 1;
180 		sdio->from = 0;
181 		sdio->to = PAGE_SIZE;
182 		return 0;
183 	}
184 
185 	if (ret >= 0) {
186 		iov_iter_advance(sdio->iter, ret);
187 		ret += sdio->from;
188 		sdio->head = 0;
189 		sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
190 		sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
191 		return 0;
192 	}
193 	return ret;
194 }
195 
196 /*
197  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
198  * buffered inside the dio so that we can call get_user_pages() against a
199  * decent number of pages, less frequently.  To provide nicer use of the
200  * L1 cache.
201  */
202 static inline struct page *dio_get_page(struct dio *dio,
203 					struct dio_submit *sdio)
204 {
205 	if (dio_pages_present(sdio) == 0) {
206 		int ret;
207 
208 		ret = dio_refill_pages(dio, sdio);
209 		if (ret)
210 			return ERR_PTR(ret);
211 		BUG_ON(dio_pages_present(sdio) == 0);
212 	}
213 	return dio->pages[sdio->head];
214 }
215 
216 /**
217  * dio_complete() - called when all DIO BIO I/O has been completed
218  * @offset: the byte offset in the file of the completed operation
219  *
220  * This drops i_dio_count, lets interested parties know that a DIO operation
221  * has completed, and calculates the resulting return code for the operation.
222  *
223  * It lets the filesystem know if it registered an interest earlier via
224  * get_block.  Pass the private field of the map buffer_head so that
225  * filesystems can use it to hold additional state between get_block calls and
226  * dio_complete.
227  */
228 static ssize_t dio_complete(struct dio *dio, ssize_t ret, bool is_async)
229 {
230 	loff_t offset = dio->iocb->ki_pos;
231 	ssize_t transferred = 0;
232 
233 	/*
234 	 * AIO submission can race with bio completion to get here while
235 	 * expecting to have the last io completed by bio completion.
236 	 * In that case -EIOCBQUEUED is in fact not an error we want
237 	 * to preserve through this call.
238 	 */
239 	if (ret == -EIOCBQUEUED)
240 		ret = 0;
241 
242 	if (dio->result) {
243 		transferred = dio->result;
244 
245 		/* Check for short read case */
246 		if ((dio->op == REQ_OP_READ) &&
247 		    ((offset + transferred) > dio->i_size))
248 			transferred = dio->i_size - offset;
249 		/* ignore EFAULT if some IO has been done */
250 		if (unlikely(ret == -EFAULT) && transferred)
251 			ret = 0;
252 	}
253 
254 	if (ret == 0)
255 		ret = dio->page_errors;
256 	if (ret == 0)
257 		ret = dio->io_error;
258 	if (ret == 0)
259 		ret = transferred;
260 
261 	if (dio->end_io) {
262 		int err;
263 
264 		// XXX: ki_pos??
265 		err = dio->end_io(dio->iocb, offset, ret, dio->private);
266 		if (err)
267 			ret = err;
268 	}
269 
270 	if (!(dio->flags & DIO_SKIP_DIO_COUNT))
271 		inode_dio_end(dio->inode);
272 
273 	if (is_async) {
274 		/*
275 		 * generic_write_sync expects ki_pos to have been updated
276 		 * already, but the submission path only does this for
277 		 * synchronous I/O.
278 		 */
279 		dio->iocb->ki_pos += transferred;
280 
281 		if (dio->op == REQ_OP_WRITE)
282 			ret = generic_write_sync(dio->iocb,  transferred);
283 		dio->iocb->ki_complete(dio->iocb, ret, 0);
284 	}
285 
286 	kmem_cache_free(dio_cache, dio);
287 	return ret;
288 }
289 
290 static void dio_aio_complete_work(struct work_struct *work)
291 {
292 	struct dio *dio = container_of(work, struct dio, complete_work);
293 
294 	dio_complete(dio, 0, true);
295 }
296 
297 static int dio_bio_complete(struct dio *dio, struct bio *bio);
298 
299 /*
300  * Asynchronous IO callback.
301  */
302 static void dio_bio_end_aio(struct bio *bio)
303 {
304 	struct dio *dio = bio->bi_private;
305 	unsigned long remaining;
306 	unsigned long flags;
307 
308 	/* cleanup the bio */
309 	dio_bio_complete(dio, bio);
310 
311 	spin_lock_irqsave(&dio->bio_lock, flags);
312 	remaining = --dio->refcount;
313 	if (remaining == 1 && dio->waiter)
314 		wake_up_process(dio->waiter);
315 	spin_unlock_irqrestore(&dio->bio_lock, flags);
316 
317 	if (remaining == 0) {
318 		if (dio->result && dio->defer_completion) {
319 			INIT_WORK(&dio->complete_work, dio_aio_complete_work);
320 			queue_work(dio->inode->i_sb->s_dio_done_wq,
321 				   &dio->complete_work);
322 		} else {
323 			dio_complete(dio, 0, true);
324 		}
325 	}
326 }
327 
328 /*
329  * The BIO completion handler simply queues the BIO up for the process-context
330  * handler.
331  *
332  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
333  * implement a singly-linked list of completed BIOs, at dio->bio_list.
334  */
335 static void dio_bio_end_io(struct bio *bio)
336 {
337 	struct dio *dio = bio->bi_private;
338 	unsigned long flags;
339 
340 	spin_lock_irqsave(&dio->bio_lock, flags);
341 	bio->bi_private = dio->bio_list;
342 	dio->bio_list = bio;
343 	if (--dio->refcount == 1 && dio->waiter)
344 		wake_up_process(dio->waiter);
345 	spin_unlock_irqrestore(&dio->bio_lock, flags);
346 }
347 
348 /**
349  * dio_end_io - handle the end io action for the given bio
350  * @bio: The direct io bio thats being completed
351  * @error: Error if there was one
352  *
353  * This is meant to be called by any filesystem that uses their own dio_submit_t
354  * so that the DIO specific endio actions are dealt with after the filesystem
355  * has done it's completion work.
356  */
357 void dio_end_io(struct bio *bio, int error)
358 {
359 	struct dio *dio = bio->bi_private;
360 
361 	if (dio->is_async)
362 		dio_bio_end_aio(bio);
363 	else
364 		dio_bio_end_io(bio);
365 }
366 EXPORT_SYMBOL_GPL(dio_end_io);
367 
368 static inline void
369 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
370 	      struct block_device *bdev,
371 	      sector_t first_sector, int nr_vecs)
372 {
373 	struct bio *bio;
374 
375 	/*
376 	 * bio_alloc() is guaranteed to return a bio when called with
377 	 * __GFP_RECLAIM and we request a valid number of vectors.
378 	 */
379 	bio = bio_alloc(GFP_KERNEL, nr_vecs);
380 
381 	bio->bi_bdev = bdev;
382 	bio->bi_iter.bi_sector = first_sector;
383 	bio_set_op_attrs(bio, dio->op, dio->op_flags);
384 	if (dio->is_async)
385 		bio->bi_end_io = dio_bio_end_aio;
386 	else
387 		bio->bi_end_io = dio_bio_end_io;
388 
389 	sdio->bio = bio;
390 	sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
391 }
392 
393 /*
394  * In the AIO read case we speculatively dirty the pages before starting IO.
395  * During IO completion, any of these pages which happen to have been written
396  * back will be redirtied by bio_check_pages_dirty().
397  *
398  * bios hold a dio reference between submit_bio and ->end_io.
399  */
400 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
401 {
402 	struct bio *bio = sdio->bio;
403 	unsigned long flags;
404 
405 	bio->bi_private = dio;
406 
407 	spin_lock_irqsave(&dio->bio_lock, flags);
408 	dio->refcount++;
409 	spin_unlock_irqrestore(&dio->bio_lock, flags);
410 
411 	if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty)
412 		bio_set_pages_dirty(bio);
413 
414 	dio->bio_bdev = bio->bi_bdev;
415 
416 	if (sdio->submit_io) {
417 		sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
418 		dio->bio_cookie = BLK_QC_T_NONE;
419 	} else
420 		dio->bio_cookie = submit_bio(bio);
421 
422 	sdio->bio = NULL;
423 	sdio->boundary = 0;
424 	sdio->logical_offset_in_bio = 0;
425 }
426 
427 /*
428  * Release any resources in case of a failure
429  */
430 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
431 {
432 	while (sdio->head < sdio->tail)
433 		put_page(dio->pages[sdio->head++]);
434 }
435 
436 /*
437  * Wait for the next BIO to complete.  Remove it and return it.  NULL is
438  * returned once all BIOs have been completed.  This must only be called once
439  * all bios have been issued so that dio->refcount can only decrease.  This
440  * requires that that the caller hold a reference on the dio.
441  */
442 static struct bio *dio_await_one(struct dio *dio)
443 {
444 	unsigned long flags;
445 	struct bio *bio = NULL;
446 
447 	spin_lock_irqsave(&dio->bio_lock, flags);
448 
449 	/*
450 	 * Wait as long as the list is empty and there are bios in flight.  bio
451 	 * completion drops the count, maybe adds to the list, and wakes while
452 	 * holding the bio_lock so we don't need set_current_state()'s barrier
453 	 * and can call it after testing our condition.
454 	 */
455 	while (dio->refcount > 1 && dio->bio_list == NULL) {
456 		__set_current_state(TASK_UNINTERRUPTIBLE);
457 		dio->waiter = current;
458 		spin_unlock_irqrestore(&dio->bio_lock, flags);
459 		if (!(dio->iocb->ki_flags & IOCB_HIPRI) ||
460 		    !blk_mq_poll(bdev_get_queue(dio->bio_bdev), dio->bio_cookie))
461 			io_schedule();
462 		/* wake up sets us TASK_RUNNING */
463 		spin_lock_irqsave(&dio->bio_lock, flags);
464 		dio->waiter = NULL;
465 	}
466 	if (dio->bio_list) {
467 		bio = dio->bio_list;
468 		dio->bio_list = bio->bi_private;
469 	}
470 	spin_unlock_irqrestore(&dio->bio_lock, flags);
471 	return bio;
472 }
473 
474 /*
475  * Process one completed BIO.  No locks are held.
476  */
477 static int dio_bio_complete(struct dio *dio, struct bio *bio)
478 {
479 	struct bio_vec *bvec;
480 	unsigned i;
481 	int err;
482 
483 	if (bio->bi_error)
484 		dio->io_error = -EIO;
485 
486 	if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) {
487 		err = bio->bi_error;
488 		bio_check_pages_dirty(bio);	/* transfers ownership */
489 	} else {
490 		bio_for_each_segment_all(bvec, bio, i) {
491 			struct page *page = bvec->bv_page;
492 
493 			if (dio->op == REQ_OP_READ && !PageCompound(page) &&
494 					dio->should_dirty)
495 				set_page_dirty_lock(page);
496 			put_page(page);
497 		}
498 		err = bio->bi_error;
499 		bio_put(bio);
500 	}
501 	return err;
502 }
503 
504 /*
505  * Wait on and process all in-flight BIOs.  This must only be called once
506  * all bios have been issued so that the refcount can only decrease.
507  * This just waits for all bios to make it through dio_bio_complete.  IO
508  * errors are propagated through dio->io_error and should be propagated via
509  * dio_complete().
510  */
511 static void dio_await_completion(struct dio *dio)
512 {
513 	struct bio *bio;
514 	do {
515 		bio = dio_await_one(dio);
516 		if (bio)
517 			dio_bio_complete(dio, bio);
518 	} while (bio);
519 }
520 
521 /*
522  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
523  * to keep the memory consumption sane we periodically reap any completed BIOs
524  * during the BIO generation phase.
525  *
526  * This also helps to limit the peak amount of pinned userspace memory.
527  */
528 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
529 {
530 	int ret = 0;
531 
532 	if (sdio->reap_counter++ >= 64) {
533 		while (dio->bio_list) {
534 			unsigned long flags;
535 			struct bio *bio;
536 			int ret2;
537 
538 			spin_lock_irqsave(&dio->bio_lock, flags);
539 			bio = dio->bio_list;
540 			dio->bio_list = bio->bi_private;
541 			spin_unlock_irqrestore(&dio->bio_lock, flags);
542 			ret2 = dio_bio_complete(dio, bio);
543 			if (ret == 0)
544 				ret = ret2;
545 		}
546 		sdio->reap_counter = 0;
547 	}
548 	return ret;
549 }
550 
551 /*
552  * Create workqueue for deferred direct IO completions. We allocate the
553  * workqueue when it's first needed. This avoids creating workqueue for
554  * filesystems that don't need it and also allows us to create the workqueue
555  * late enough so the we can include s_id in the name of the workqueue.
556  */
557 int sb_init_dio_done_wq(struct super_block *sb)
558 {
559 	struct workqueue_struct *old;
560 	struct workqueue_struct *wq = alloc_workqueue("dio/%s",
561 						      WQ_MEM_RECLAIM, 0,
562 						      sb->s_id);
563 	if (!wq)
564 		return -ENOMEM;
565 	/*
566 	 * This has to be atomic as more DIOs can race to create the workqueue
567 	 */
568 	old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
569 	/* Someone created workqueue before us? Free ours... */
570 	if (old)
571 		destroy_workqueue(wq);
572 	return 0;
573 }
574 
575 static int dio_set_defer_completion(struct dio *dio)
576 {
577 	struct super_block *sb = dio->inode->i_sb;
578 
579 	if (dio->defer_completion)
580 		return 0;
581 	dio->defer_completion = true;
582 	if (!sb->s_dio_done_wq)
583 		return sb_init_dio_done_wq(sb);
584 	return 0;
585 }
586 
587 /*
588  * Call into the fs to map some more disk blocks.  We record the current number
589  * of available blocks at sdio->blocks_available.  These are in units of the
590  * fs blocksize, i_blocksize(inode).
591  *
592  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
593  * it uses the passed inode-relative block number as the file offset, as usual.
594  *
595  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
596  * has remaining to do.  The fs should not map more than this number of blocks.
597  *
598  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
599  * indicate how much contiguous disk space has been made available at
600  * bh->b_blocknr.
601  *
602  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
603  * This isn't very efficient...
604  *
605  * In the case of filesystem holes: the fs may return an arbitrarily-large
606  * hole by returning an appropriate value in b_size and by clearing
607  * buffer_mapped().  However the direct-io code will only process holes one
608  * block at a time - it will repeatedly call get_block() as it walks the hole.
609  */
610 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
611 			   struct buffer_head *map_bh)
612 {
613 	int ret;
614 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
615 	sector_t fs_endblk;	/* Into file, in filesystem-sized blocks */
616 	unsigned long fs_count;	/* Number of filesystem-sized blocks */
617 	int create;
618 	unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
619 
620 	/*
621 	 * If there was a memory error and we've overwritten all the
622 	 * mapped blocks then we can now return that memory error
623 	 */
624 	ret = dio->page_errors;
625 	if (ret == 0) {
626 		BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
627 		fs_startblk = sdio->block_in_file >> sdio->blkfactor;
628 		fs_endblk = (sdio->final_block_in_request - 1) >>
629 					sdio->blkfactor;
630 		fs_count = fs_endblk - fs_startblk + 1;
631 
632 		map_bh->b_state = 0;
633 		map_bh->b_size = fs_count << i_blkbits;
634 
635 		/*
636 		 * For writes that could fill holes inside i_size on a
637 		 * DIO_SKIP_HOLES filesystem we forbid block creations: only
638 		 * overwrites are permitted. We will return early to the caller
639 		 * once we see an unmapped buffer head returned, and the caller
640 		 * will fall back to buffered I/O.
641 		 *
642 		 * Otherwise the decision is left to the get_blocks method,
643 		 * which may decide to handle it or also return an unmapped
644 		 * buffer head.
645 		 */
646 		create = dio->op == REQ_OP_WRITE;
647 		if (dio->flags & DIO_SKIP_HOLES) {
648 			if (fs_startblk <= ((i_size_read(dio->inode) - 1) >>
649 							i_blkbits))
650 				create = 0;
651 		}
652 
653 		ret = (*sdio->get_block)(dio->inode, fs_startblk,
654 						map_bh, create);
655 
656 		/* Store for completion */
657 		dio->private = map_bh->b_private;
658 
659 		if (ret == 0 && buffer_defer_completion(map_bh))
660 			ret = dio_set_defer_completion(dio);
661 	}
662 	return ret;
663 }
664 
665 /*
666  * There is no bio.  Make one now.
667  */
668 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
669 		sector_t start_sector, struct buffer_head *map_bh)
670 {
671 	sector_t sector;
672 	int ret, nr_pages;
673 
674 	ret = dio_bio_reap(dio, sdio);
675 	if (ret)
676 		goto out;
677 	sector = start_sector << (sdio->blkbits - 9);
678 	nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
679 	BUG_ON(nr_pages <= 0);
680 	dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
681 	sdio->boundary = 0;
682 out:
683 	return ret;
684 }
685 
686 /*
687  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
688  * that was successful then update final_block_in_bio and take a ref against
689  * the just-added page.
690  *
691  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
692  */
693 static inline int dio_bio_add_page(struct dio_submit *sdio)
694 {
695 	int ret;
696 
697 	ret = bio_add_page(sdio->bio, sdio->cur_page,
698 			sdio->cur_page_len, sdio->cur_page_offset);
699 	if (ret == sdio->cur_page_len) {
700 		/*
701 		 * Decrement count only, if we are done with this page
702 		 */
703 		if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
704 			sdio->pages_in_io--;
705 		get_page(sdio->cur_page);
706 		sdio->final_block_in_bio = sdio->cur_page_block +
707 			(sdio->cur_page_len >> sdio->blkbits);
708 		ret = 0;
709 	} else {
710 		ret = 1;
711 	}
712 	return ret;
713 }
714 
715 /*
716  * Put cur_page under IO.  The section of cur_page which is described by
717  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
718  * starts on-disk at cur_page_block.
719  *
720  * We take a ref against the page here (on behalf of its presence in the bio).
721  *
722  * The caller of this function is responsible for removing cur_page from the
723  * dio, and for dropping the refcount which came from that presence.
724  */
725 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
726 		struct buffer_head *map_bh)
727 {
728 	int ret = 0;
729 
730 	if (sdio->bio) {
731 		loff_t cur_offset = sdio->cur_page_fs_offset;
732 		loff_t bio_next_offset = sdio->logical_offset_in_bio +
733 			sdio->bio->bi_iter.bi_size;
734 
735 		/*
736 		 * See whether this new request is contiguous with the old.
737 		 *
738 		 * Btrfs cannot handle having logically non-contiguous requests
739 		 * submitted.  For example if you have
740 		 *
741 		 * Logical:  [0-4095][HOLE][8192-12287]
742 		 * Physical: [0-4095]      [4096-8191]
743 		 *
744 		 * We cannot submit those pages together as one BIO.  So if our
745 		 * current logical offset in the file does not equal what would
746 		 * be the next logical offset in the bio, submit the bio we
747 		 * have.
748 		 */
749 		if (sdio->final_block_in_bio != sdio->cur_page_block ||
750 		    cur_offset != bio_next_offset)
751 			dio_bio_submit(dio, sdio);
752 	}
753 
754 	if (sdio->bio == NULL) {
755 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
756 		if (ret)
757 			goto out;
758 	}
759 
760 	if (dio_bio_add_page(sdio) != 0) {
761 		dio_bio_submit(dio, sdio);
762 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
763 		if (ret == 0) {
764 			ret = dio_bio_add_page(sdio);
765 			BUG_ON(ret != 0);
766 		}
767 	}
768 out:
769 	return ret;
770 }
771 
772 /*
773  * An autonomous function to put a chunk of a page under deferred IO.
774  *
775  * The caller doesn't actually know (or care) whether this piece of page is in
776  * a BIO, or is under IO or whatever.  We just take care of all possible
777  * situations here.  The separation between the logic of do_direct_IO() and
778  * that of submit_page_section() is important for clarity.  Please don't break.
779  *
780  * The chunk of page starts on-disk at blocknr.
781  *
782  * We perform deferred IO, by recording the last-submitted page inside our
783  * private part of the dio structure.  If possible, we just expand the IO
784  * across that page here.
785  *
786  * If that doesn't work out then we put the old page into the bio and add this
787  * page to the dio instead.
788  */
789 static inline int
790 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
791 		    unsigned offset, unsigned len, sector_t blocknr,
792 		    struct buffer_head *map_bh)
793 {
794 	int ret = 0;
795 
796 	if (dio->op == REQ_OP_WRITE) {
797 		/*
798 		 * Read accounting is performed in submit_bio()
799 		 */
800 		task_io_account_write(len);
801 	}
802 
803 	/*
804 	 * Can we just grow the current page's presence in the dio?
805 	 */
806 	if (sdio->cur_page == page &&
807 	    sdio->cur_page_offset + sdio->cur_page_len == offset &&
808 	    sdio->cur_page_block +
809 	    (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
810 		sdio->cur_page_len += len;
811 		goto out;
812 	}
813 
814 	/*
815 	 * If there's a deferred page already there then send it.
816 	 */
817 	if (sdio->cur_page) {
818 		ret = dio_send_cur_page(dio, sdio, map_bh);
819 		put_page(sdio->cur_page);
820 		sdio->cur_page = NULL;
821 		if (ret)
822 			return ret;
823 	}
824 
825 	get_page(page);		/* It is in dio */
826 	sdio->cur_page = page;
827 	sdio->cur_page_offset = offset;
828 	sdio->cur_page_len = len;
829 	sdio->cur_page_block = blocknr;
830 	sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
831 out:
832 	/*
833 	 * If sdio->boundary then we want to schedule the IO now to
834 	 * avoid metadata seeks.
835 	 */
836 	if (sdio->boundary) {
837 		ret = dio_send_cur_page(dio, sdio, map_bh);
838 		dio_bio_submit(dio, sdio);
839 		put_page(sdio->cur_page);
840 		sdio->cur_page = NULL;
841 	}
842 	return ret;
843 }
844 
845 /*
846  * If we are not writing the entire block and get_block() allocated
847  * the block for us, we need to fill-in the unused portion of the
848  * block with zeros. This happens only if user-buffer, fileoffset or
849  * io length is not filesystem block-size multiple.
850  *
851  * `end' is zero if we're doing the start of the IO, 1 at the end of the
852  * IO.
853  */
854 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
855 		int end, struct buffer_head *map_bh)
856 {
857 	unsigned dio_blocks_per_fs_block;
858 	unsigned this_chunk_blocks;	/* In dio_blocks */
859 	unsigned this_chunk_bytes;
860 	struct page *page;
861 
862 	sdio->start_zero_done = 1;
863 	if (!sdio->blkfactor || !buffer_new(map_bh))
864 		return;
865 
866 	dio_blocks_per_fs_block = 1 << sdio->blkfactor;
867 	this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
868 
869 	if (!this_chunk_blocks)
870 		return;
871 
872 	/*
873 	 * We need to zero out part of an fs block.  It is either at the
874 	 * beginning or the end of the fs block.
875 	 */
876 	if (end)
877 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
878 
879 	this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
880 
881 	page = ZERO_PAGE(0);
882 	if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
883 				sdio->next_block_for_io, map_bh))
884 		return;
885 
886 	sdio->next_block_for_io += this_chunk_blocks;
887 }
888 
889 /*
890  * Walk the user pages, and the file, mapping blocks to disk and generating
891  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
892  * into submit_page_section(), which takes care of the next stage of submission
893  *
894  * Direct IO against a blockdev is different from a file.  Because we can
895  * happily perform page-sized but 512-byte aligned IOs.  It is important that
896  * blockdev IO be able to have fine alignment and large sizes.
897  *
898  * So what we do is to permit the ->get_block function to populate bh.b_size
899  * with the size of IO which is permitted at this offset and this i_blkbits.
900  *
901  * For best results, the blockdev should be set up with 512-byte i_blkbits and
902  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
903  * fine alignment but still allows this function to work in PAGE_SIZE units.
904  */
905 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
906 			struct buffer_head *map_bh)
907 {
908 	const unsigned blkbits = sdio->blkbits;
909 	const unsigned i_blkbits = blkbits + sdio->blkfactor;
910 	int ret = 0;
911 
912 	while (sdio->block_in_file < sdio->final_block_in_request) {
913 		struct page *page;
914 		size_t from, to;
915 
916 		page = dio_get_page(dio, sdio);
917 		if (IS_ERR(page)) {
918 			ret = PTR_ERR(page);
919 			goto out;
920 		}
921 		from = sdio->head ? 0 : sdio->from;
922 		to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
923 		sdio->head++;
924 
925 		while (from < to) {
926 			unsigned this_chunk_bytes;	/* # of bytes mapped */
927 			unsigned this_chunk_blocks;	/* # of blocks */
928 			unsigned u;
929 
930 			if (sdio->blocks_available == 0) {
931 				/*
932 				 * Need to go and map some more disk
933 				 */
934 				unsigned long blkmask;
935 				unsigned long dio_remainder;
936 
937 				ret = get_more_blocks(dio, sdio, map_bh);
938 				if (ret) {
939 					put_page(page);
940 					goto out;
941 				}
942 				if (!buffer_mapped(map_bh))
943 					goto do_holes;
944 
945 				sdio->blocks_available =
946 						map_bh->b_size >> blkbits;
947 				sdio->next_block_for_io =
948 					map_bh->b_blocknr << sdio->blkfactor;
949 				if (buffer_new(map_bh)) {
950 					clean_bdev_aliases(
951 						map_bh->b_bdev,
952 						map_bh->b_blocknr,
953 						map_bh->b_size >> i_blkbits);
954 				}
955 
956 				if (!sdio->blkfactor)
957 					goto do_holes;
958 
959 				blkmask = (1 << sdio->blkfactor) - 1;
960 				dio_remainder = (sdio->block_in_file & blkmask);
961 
962 				/*
963 				 * If we are at the start of IO and that IO
964 				 * starts partway into a fs-block,
965 				 * dio_remainder will be non-zero.  If the IO
966 				 * is a read then we can simply advance the IO
967 				 * cursor to the first block which is to be
968 				 * read.  But if the IO is a write and the
969 				 * block was newly allocated we cannot do that;
970 				 * the start of the fs block must be zeroed out
971 				 * on-disk
972 				 */
973 				if (!buffer_new(map_bh))
974 					sdio->next_block_for_io += dio_remainder;
975 				sdio->blocks_available -= dio_remainder;
976 			}
977 do_holes:
978 			/* Handle holes */
979 			if (!buffer_mapped(map_bh)) {
980 				loff_t i_size_aligned;
981 
982 				/* AKPM: eargh, -ENOTBLK is a hack */
983 				if (dio->op == REQ_OP_WRITE) {
984 					put_page(page);
985 					return -ENOTBLK;
986 				}
987 
988 				/*
989 				 * Be sure to account for a partial block as the
990 				 * last block in the file
991 				 */
992 				i_size_aligned = ALIGN(i_size_read(dio->inode),
993 							1 << blkbits);
994 				if (sdio->block_in_file >=
995 						i_size_aligned >> blkbits) {
996 					/* We hit eof */
997 					put_page(page);
998 					goto out;
999 				}
1000 				zero_user(page, from, 1 << blkbits);
1001 				sdio->block_in_file++;
1002 				from += 1 << blkbits;
1003 				dio->result += 1 << blkbits;
1004 				goto next_block;
1005 			}
1006 
1007 			/*
1008 			 * If we're performing IO which has an alignment which
1009 			 * is finer than the underlying fs, go check to see if
1010 			 * we must zero out the start of this block.
1011 			 */
1012 			if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1013 				dio_zero_block(dio, sdio, 0, map_bh);
1014 
1015 			/*
1016 			 * Work out, in this_chunk_blocks, how much disk we
1017 			 * can add to this page
1018 			 */
1019 			this_chunk_blocks = sdio->blocks_available;
1020 			u = (to - from) >> blkbits;
1021 			if (this_chunk_blocks > u)
1022 				this_chunk_blocks = u;
1023 			u = sdio->final_block_in_request - sdio->block_in_file;
1024 			if (this_chunk_blocks > u)
1025 				this_chunk_blocks = u;
1026 			this_chunk_bytes = this_chunk_blocks << blkbits;
1027 			BUG_ON(this_chunk_bytes == 0);
1028 
1029 			if (this_chunk_blocks == sdio->blocks_available)
1030 				sdio->boundary = buffer_boundary(map_bh);
1031 			ret = submit_page_section(dio, sdio, page,
1032 						  from,
1033 						  this_chunk_bytes,
1034 						  sdio->next_block_for_io,
1035 						  map_bh);
1036 			if (ret) {
1037 				put_page(page);
1038 				goto out;
1039 			}
1040 			sdio->next_block_for_io += this_chunk_blocks;
1041 
1042 			sdio->block_in_file += this_chunk_blocks;
1043 			from += this_chunk_bytes;
1044 			dio->result += this_chunk_bytes;
1045 			sdio->blocks_available -= this_chunk_blocks;
1046 next_block:
1047 			BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1048 			if (sdio->block_in_file == sdio->final_block_in_request)
1049 				break;
1050 		}
1051 
1052 		/* Drop the ref which was taken in get_user_pages() */
1053 		put_page(page);
1054 	}
1055 out:
1056 	return ret;
1057 }
1058 
1059 static inline int drop_refcount(struct dio *dio)
1060 {
1061 	int ret2;
1062 	unsigned long flags;
1063 
1064 	/*
1065 	 * Sync will always be dropping the final ref and completing the
1066 	 * operation.  AIO can if it was a broken operation described above or
1067 	 * in fact if all the bios race to complete before we get here.  In
1068 	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1069 	 * return code that the caller will hand to ->complete().
1070 	 *
1071 	 * This is managed by the bio_lock instead of being an atomic_t so that
1072 	 * completion paths can drop their ref and use the remaining count to
1073 	 * decide to wake the submission path atomically.
1074 	 */
1075 	spin_lock_irqsave(&dio->bio_lock, flags);
1076 	ret2 = --dio->refcount;
1077 	spin_unlock_irqrestore(&dio->bio_lock, flags);
1078 	return ret2;
1079 }
1080 
1081 /*
1082  * This is a library function for use by filesystem drivers.
1083  *
1084  * The locking rules are governed by the flags parameter:
1085  *  - if the flags value contains DIO_LOCKING we use a fancy locking
1086  *    scheme for dumb filesystems.
1087  *    For writes this function is called under i_mutex and returns with
1088  *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1089  *    taken and dropped again before returning.
1090  *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1091  *    internal locking but rather rely on the filesystem to synchronize
1092  *    direct I/O reads/writes versus each other and truncate.
1093  *
1094  * To help with locking against truncate we incremented the i_dio_count
1095  * counter before starting direct I/O, and decrement it once we are done.
1096  * Truncate can wait for it to reach zero to provide exclusion.  It is
1097  * expected that filesystem provide exclusion between new direct I/O
1098  * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1099  * but other filesystems need to take care of this on their own.
1100  *
1101  * NOTE: if you pass "sdio" to anything by pointer make sure that function
1102  * is always inlined. Otherwise gcc is unable to split the structure into
1103  * individual fields and will generate much worse code. This is important
1104  * for the whole file.
1105  */
1106 static inline ssize_t
1107 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1108 		      struct block_device *bdev, struct iov_iter *iter,
1109 		      get_block_t get_block, dio_iodone_t end_io,
1110 		      dio_submit_t submit_io, int flags)
1111 {
1112 	unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits);
1113 	unsigned blkbits = i_blkbits;
1114 	unsigned blocksize_mask = (1 << blkbits) - 1;
1115 	ssize_t retval = -EINVAL;
1116 	size_t count = iov_iter_count(iter);
1117 	loff_t offset = iocb->ki_pos;
1118 	loff_t end = offset + count;
1119 	struct dio *dio;
1120 	struct dio_submit sdio = { 0, };
1121 	struct buffer_head map_bh = { 0, };
1122 	struct blk_plug plug;
1123 	unsigned long align = offset | iov_iter_alignment(iter);
1124 
1125 	/*
1126 	 * Avoid references to bdev if not absolutely needed to give
1127 	 * the early prefetch in the caller enough time.
1128 	 */
1129 
1130 	if (align & blocksize_mask) {
1131 		if (bdev)
1132 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
1133 		blocksize_mask = (1 << blkbits) - 1;
1134 		if (align & blocksize_mask)
1135 			goto out;
1136 	}
1137 
1138 	/* watch out for a 0 len io from a tricksy fs */
1139 	if (iov_iter_rw(iter) == READ && !iov_iter_count(iter))
1140 		return 0;
1141 
1142 	dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1143 	retval = -ENOMEM;
1144 	if (!dio)
1145 		goto out;
1146 	/*
1147 	 * Believe it or not, zeroing out the page array caused a .5%
1148 	 * performance regression in a database benchmark.  So, we take
1149 	 * care to only zero out what's needed.
1150 	 */
1151 	memset(dio, 0, offsetof(struct dio, pages));
1152 
1153 	dio->flags = flags;
1154 	if (dio->flags & DIO_LOCKING) {
1155 		if (iov_iter_rw(iter) == READ) {
1156 			struct address_space *mapping =
1157 					iocb->ki_filp->f_mapping;
1158 
1159 			/* will be released by direct_io_worker */
1160 			inode_lock(inode);
1161 
1162 			retval = filemap_write_and_wait_range(mapping, offset,
1163 							      end - 1);
1164 			if (retval) {
1165 				inode_unlock(inode);
1166 				kmem_cache_free(dio_cache, dio);
1167 				goto out;
1168 			}
1169 		}
1170 	}
1171 
1172 	/* Once we sampled i_size check for reads beyond EOF */
1173 	dio->i_size = i_size_read(inode);
1174 	if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1175 		if (dio->flags & DIO_LOCKING)
1176 			inode_unlock(inode);
1177 		kmem_cache_free(dio_cache, dio);
1178 		retval = 0;
1179 		goto out;
1180 	}
1181 
1182 	/*
1183 	 * For file extending writes updating i_size before data writeouts
1184 	 * complete can expose uninitialized blocks in dumb filesystems.
1185 	 * In that case we need to wait for I/O completion even if asked
1186 	 * for an asynchronous write.
1187 	 */
1188 	if (is_sync_kiocb(iocb))
1189 		dio->is_async = false;
1190 	else if (!(dio->flags & DIO_ASYNC_EXTEND) &&
1191 		 iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1192 		dio->is_async = false;
1193 	else
1194 		dio->is_async = true;
1195 
1196 	dio->inode = inode;
1197 	if (iov_iter_rw(iter) == WRITE) {
1198 		dio->op = REQ_OP_WRITE;
1199 		dio->op_flags = REQ_SYNC | REQ_IDLE;
1200 	} else {
1201 		dio->op = REQ_OP_READ;
1202 	}
1203 
1204 	/*
1205 	 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1206 	 * so that we can call ->fsync.
1207 	 */
1208 	if (dio->is_async && iov_iter_rw(iter) == WRITE &&
1209 	    ((iocb->ki_filp->f_flags & O_DSYNC) ||
1210 	     IS_SYNC(iocb->ki_filp->f_mapping->host))) {
1211 		retval = dio_set_defer_completion(dio);
1212 		if (retval) {
1213 			/*
1214 			 * We grab i_mutex only for reads so we don't have
1215 			 * to release it here
1216 			 */
1217 			kmem_cache_free(dio_cache, dio);
1218 			goto out;
1219 		}
1220 	}
1221 
1222 	/*
1223 	 * Will be decremented at I/O completion time.
1224 	 */
1225 	if (!(dio->flags & DIO_SKIP_DIO_COUNT))
1226 		inode_dio_begin(inode);
1227 
1228 	retval = 0;
1229 	sdio.blkbits = blkbits;
1230 	sdio.blkfactor = i_blkbits - blkbits;
1231 	sdio.block_in_file = offset >> blkbits;
1232 
1233 	sdio.get_block = get_block;
1234 	dio->end_io = end_io;
1235 	sdio.submit_io = submit_io;
1236 	sdio.final_block_in_bio = -1;
1237 	sdio.next_block_for_io = -1;
1238 
1239 	dio->iocb = iocb;
1240 
1241 	spin_lock_init(&dio->bio_lock);
1242 	dio->refcount = 1;
1243 
1244 	dio->should_dirty = (iter->type == ITER_IOVEC);
1245 	sdio.iter = iter;
1246 	sdio.final_block_in_request =
1247 		(offset + iov_iter_count(iter)) >> blkbits;
1248 
1249 	/*
1250 	 * In case of non-aligned buffers, we may need 2 more
1251 	 * pages since we need to zero out first and last block.
1252 	 */
1253 	if (unlikely(sdio.blkfactor))
1254 		sdio.pages_in_io = 2;
1255 
1256 	sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1257 
1258 	blk_start_plug(&plug);
1259 
1260 	retval = do_direct_IO(dio, &sdio, &map_bh);
1261 	if (retval)
1262 		dio_cleanup(dio, &sdio);
1263 
1264 	if (retval == -ENOTBLK) {
1265 		/*
1266 		 * The remaining part of the request will be
1267 		 * be handled by buffered I/O when we return
1268 		 */
1269 		retval = 0;
1270 	}
1271 	/*
1272 	 * There may be some unwritten disk at the end of a part-written
1273 	 * fs-block-sized block.  Go zero that now.
1274 	 */
1275 	dio_zero_block(dio, &sdio, 1, &map_bh);
1276 
1277 	if (sdio.cur_page) {
1278 		ssize_t ret2;
1279 
1280 		ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1281 		if (retval == 0)
1282 			retval = ret2;
1283 		put_page(sdio.cur_page);
1284 		sdio.cur_page = NULL;
1285 	}
1286 	if (sdio.bio)
1287 		dio_bio_submit(dio, &sdio);
1288 
1289 	blk_finish_plug(&plug);
1290 
1291 	/*
1292 	 * It is possible that, we return short IO due to end of file.
1293 	 * In that case, we need to release all the pages we got hold on.
1294 	 */
1295 	dio_cleanup(dio, &sdio);
1296 
1297 	/*
1298 	 * All block lookups have been performed. For READ requests
1299 	 * we can let i_mutex go now that its achieved its purpose
1300 	 * of protecting us from looking up uninitialized blocks.
1301 	 */
1302 	if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1303 		inode_unlock(dio->inode);
1304 
1305 	/*
1306 	 * The only time we want to leave bios in flight is when a successful
1307 	 * partial aio read or full aio write have been setup.  In that case
1308 	 * bio completion will call aio_complete.  The only time it's safe to
1309 	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1310 	 * This had *better* be the only place that raises -EIOCBQUEUED.
1311 	 */
1312 	BUG_ON(retval == -EIOCBQUEUED);
1313 	if (dio->is_async && retval == 0 && dio->result &&
1314 	    (iov_iter_rw(iter) == READ || dio->result == count))
1315 		retval = -EIOCBQUEUED;
1316 	else
1317 		dio_await_completion(dio);
1318 
1319 	if (drop_refcount(dio) == 0) {
1320 		retval = dio_complete(dio, retval, false);
1321 	} else
1322 		BUG_ON(retval != -EIOCBQUEUED);
1323 
1324 out:
1325 	return retval;
1326 }
1327 
1328 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1329 			     struct block_device *bdev, struct iov_iter *iter,
1330 			     get_block_t get_block,
1331 			     dio_iodone_t end_io, dio_submit_t submit_io,
1332 			     int flags)
1333 {
1334 	/*
1335 	 * The block device state is needed in the end to finally
1336 	 * submit everything.  Since it's likely to be cache cold
1337 	 * prefetch it here as first thing to hide some of the
1338 	 * latency.
1339 	 *
1340 	 * Attempt to prefetch the pieces we likely need later.
1341 	 */
1342 	prefetch(&bdev->bd_disk->part_tbl);
1343 	prefetch(bdev->bd_queue);
1344 	prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1345 
1346 	return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block,
1347 				     end_io, submit_io, flags);
1348 }
1349 
1350 EXPORT_SYMBOL(__blockdev_direct_IO);
1351 
1352 static __init int dio_init(void)
1353 {
1354 	dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1355 	return 0;
1356 }
1357 module_init(dio_init)
1358