xref: /openbmc/linux/fs/direct-io.c (revision a2cce7a9)
1 /*
2  * fs/direct-io.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * O_DIRECT
7  *
8  * 04Jul2002	Andrew Morton
9  *		Initial version
10  * 11Sep2002	janetinc@us.ibm.com
11  * 		added readv/writev support.
12  * 29Oct2002	Andrew Morton
13  *		rewrote bio_add_page() support.
14  * 30Oct2002	pbadari@us.ibm.com
15  *		added support for non-aligned IO.
16  * 06Nov2002	pbadari@us.ibm.com
17  *		added asynchronous IO support.
18  * 21Jul2003	nathans@sgi.com
19  *		added IO completion notifier.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <linux/atomic.h>
39 #include <linux/prefetch.h>
40 
41 /*
42  * How many user pages to map in one call to get_user_pages().  This determines
43  * the size of a structure in the slab cache
44  */
45 #define DIO_PAGES	64
46 
47 /*
48  * This code generally works in units of "dio_blocks".  A dio_block is
49  * somewhere between the hard sector size and the filesystem block size.  it
50  * is determined on a per-invocation basis.   When talking to the filesystem
51  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
52  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
53  * to bio_block quantities by shifting left by blkfactor.
54  *
55  * If blkfactor is zero then the user's request was aligned to the filesystem's
56  * blocksize.
57  */
58 
59 /* dio_state only used in the submission path */
60 
61 struct dio_submit {
62 	struct bio *bio;		/* bio under assembly */
63 	unsigned blkbits;		/* doesn't change */
64 	unsigned blkfactor;		/* When we're using an alignment which
65 					   is finer than the filesystem's soft
66 					   blocksize, this specifies how much
67 					   finer.  blkfactor=2 means 1/4-block
68 					   alignment.  Does not change */
69 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
70 					   been performed at the start of a
71 					   write */
72 	int pages_in_io;		/* approximate total IO pages */
73 	sector_t block_in_file;		/* Current offset into the underlying
74 					   file in dio_block units. */
75 	unsigned blocks_available;	/* At block_in_file.  changes */
76 	int reap_counter;		/* rate limit reaping */
77 	sector_t final_block_in_request;/* doesn't change */
78 	int boundary;			/* prev block is at a boundary */
79 	get_block_t *get_block;		/* block mapping function */
80 	dio_submit_t *submit_io;	/* IO submition function */
81 
82 	loff_t logical_offset_in_bio;	/* current first logical block in bio */
83 	sector_t final_block_in_bio;	/* current final block in bio + 1 */
84 	sector_t next_block_for_io;	/* next block to be put under IO,
85 					   in dio_blocks units */
86 
87 	/*
88 	 * Deferred addition of a page to the dio.  These variables are
89 	 * private to dio_send_cur_page(), submit_page_section() and
90 	 * dio_bio_add_page().
91 	 */
92 	struct page *cur_page;		/* The page */
93 	unsigned cur_page_offset;	/* Offset into it, in bytes */
94 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
95 	sector_t cur_page_block;	/* Where it starts */
96 	loff_t cur_page_fs_offset;	/* Offset in file */
97 
98 	struct iov_iter *iter;
99 	/*
100 	 * Page queue.  These variables belong to dio_refill_pages() and
101 	 * dio_get_page().
102 	 */
103 	unsigned head;			/* next page to process */
104 	unsigned tail;			/* last valid page + 1 */
105 	size_t from, to;
106 };
107 
108 /* dio_state communicated between submission path and end_io */
109 struct dio {
110 	int flags;			/* doesn't change */
111 	int rw;
112 	struct inode *inode;
113 	loff_t i_size;			/* i_size when submitted */
114 	dio_iodone_t *end_io;		/* IO completion function */
115 
116 	void *private;			/* copy from map_bh.b_private */
117 
118 	/* BIO completion state */
119 	spinlock_t bio_lock;		/* protects BIO fields below */
120 	int page_errors;		/* errno from get_user_pages() */
121 	int is_async;			/* is IO async ? */
122 	bool defer_completion;		/* defer AIO completion to workqueue? */
123 	int io_error;			/* IO error in completion path */
124 	unsigned long refcount;		/* direct_io_worker() and bios */
125 	struct bio *bio_list;		/* singly linked via bi_private */
126 	struct task_struct *waiter;	/* waiting task (NULL if none) */
127 
128 	/* AIO related stuff */
129 	struct kiocb *iocb;		/* kiocb */
130 	ssize_t result;                 /* IO result */
131 
132 	/*
133 	 * pages[] (and any fields placed after it) are not zeroed out at
134 	 * allocation time.  Don't add new fields after pages[] unless you
135 	 * wish that they not be zeroed.
136 	 */
137 	union {
138 		struct page *pages[DIO_PAGES];	/* page buffer */
139 		struct work_struct complete_work;/* deferred AIO completion */
140 	};
141 } ____cacheline_aligned_in_smp;
142 
143 static struct kmem_cache *dio_cache __read_mostly;
144 
145 /*
146  * How many pages are in the queue?
147  */
148 static inline unsigned dio_pages_present(struct dio_submit *sdio)
149 {
150 	return sdio->tail - sdio->head;
151 }
152 
153 /*
154  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
155  */
156 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
157 {
158 	ssize_t ret;
159 
160 	ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
161 				&sdio->from);
162 
163 	if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) {
164 		struct page *page = ZERO_PAGE(0);
165 		/*
166 		 * A memory fault, but the filesystem has some outstanding
167 		 * mapped blocks.  We need to use those blocks up to avoid
168 		 * leaking stale data in the file.
169 		 */
170 		if (dio->page_errors == 0)
171 			dio->page_errors = ret;
172 		page_cache_get(page);
173 		dio->pages[0] = page;
174 		sdio->head = 0;
175 		sdio->tail = 1;
176 		sdio->from = 0;
177 		sdio->to = PAGE_SIZE;
178 		return 0;
179 	}
180 
181 	if (ret >= 0) {
182 		iov_iter_advance(sdio->iter, ret);
183 		ret += sdio->from;
184 		sdio->head = 0;
185 		sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
186 		sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
187 		return 0;
188 	}
189 	return ret;
190 }
191 
192 /*
193  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
194  * buffered inside the dio so that we can call get_user_pages() against a
195  * decent number of pages, less frequently.  To provide nicer use of the
196  * L1 cache.
197  */
198 static inline struct page *dio_get_page(struct dio *dio,
199 					struct dio_submit *sdio)
200 {
201 	if (dio_pages_present(sdio) == 0) {
202 		int ret;
203 
204 		ret = dio_refill_pages(dio, sdio);
205 		if (ret)
206 			return ERR_PTR(ret);
207 		BUG_ON(dio_pages_present(sdio) == 0);
208 	}
209 	return dio->pages[sdio->head];
210 }
211 
212 /**
213  * dio_complete() - called when all DIO BIO I/O has been completed
214  * @offset: the byte offset in the file of the completed operation
215  *
216  * This drops i_dio_count, lets interested parties know that a DIO operation
217  * has completed, and calculates the resulting return code for the operation.
218  *
219  * It lets the filesystem know if it registered an interest earlier via
220  * get_block.  Pass the private field of the map buffer_head so that
221  * filesystems can use it to hold additional state between get_block calls and
222  * dio_complete.
223  */
224 static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret,
225 		bool is_async)
226 {
227 	ssize_t transferred = 0;
228 
229 	/*
230 	 * AIO submission can race with bio completion to get here while
231 	 * expecting to have the last io completed by bio completion.
232 	 * In that case -EIOCBQUEUED is in fact not an error we want
233 	 * to preserve through this call.
234 	 */
235 	if (ret == -EIOCBQUEUED)
236 		ret = 0;
237 
238 	if (dio->result) {
239 		transferred = dio->result;
240 
241 		/* Check for short read case */
242 		if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
243 			transferred = dio->i_size - offset;
244 	}
245 
246 	if (ret == 0)
247 		ret = dio->page_errors;
248 	if (ret == 0)
249 		ret = dio->io_error;
250 	if (ret == 0)
251 		ret = transferred;
252 
253 	if (dio->end_io && dio->result)
254 		dio->end_io(dio->iocb, offset, transferred, dio->private);
255 
256 	if (!(dio->flags & DIO_SKIP_DIO_COUNT))
257 		inode_dio_end(dio->inode);
258 
259 	if (is_async) {
260 		if (dio->rw & WRITE) {
261 			int err;
262 
263 			err = generic_write_sync(dio->iocb->ki_filp, offset,
264 						 transferred);
265 			if (err < 0 && ret > 0)
266 				ret = err;
267 		}
268 
269 		dio->iocb->ki_complete(dio->iocb, ret, 0);
270 	}
271 
272 	kmem_cache_free(dio_cache, dio);
273 	return ret;
274 }
275 
276 static void dio_aio_complete_work(struct work_struct *work)
277 {
278 	struct dio *dio = container_of(work, struct dio, complete_work);
279 
280 	dio_complete(dio, dio->iocb->ki_pos, 0, true);
281 }
282 
283 static int dio_bio_complete(struct dio *dio, struct bio *bio);
284 
285 /*
286  * Asynchronous IO callback.
287  */
288 static void dio_bio_end_aio(struct bio *bio)
289 {
290 	struct dio *dio = bio->bi_private;
291 	unsigned long remaining;
292 	unsigned long flags;
293 
294 	/* cleanup the bio */
295 	dio_bio_complete(dio, bio);
296 
297 	spin_lock_irqsave(&dio->bio_lock, flags);
298 	remaining = --dio->refcount;
299 	if (remaining == 1 && dio->waiter)
300 		wake_up_process(dio->waiter);
301 	spin_unlock_irqrestore(&dio->bio_lock, flags);
302 
303 	if (remaining == 0) {
304 		if (dio->result && dio->defer_completion) {
305 			INIT_WORK(&dio->complete_work, dio_aio_complete_work);
306 			queue_work(dio->inode->i_sb->s_dio_done_wq,
307 				   &dio->complete_work);
308 		} else {
309 			dio_complete(dio, dio->iocb->ki_pos, 0, true);
310 		}
311 	}
312 }
313 
314 /*
315  * The BIO completion handler simply queues the BIO up for the process-context
316  * handler.
317  *
318  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
319  * implement a singly-linked list of completed BIOs, at dio->bio_list.
320  */
321 static void dio_bio_end_io(struct bio *bio)
322 {
323 	struct dio *dio = bio->bi_private;
324 	unsigned long flags;
325 
326 	spin_lock_irqsave(&dio->bio_lock, flags);
327 	bio->bi_private = dio->bio_list;
328 	dio->bio_list = bio;
329 	if (--dio->refcount == 1 && dio->waiter)
330 		wake_up_process(dio->waiter);
331 	spin_unlock_irqrestore(&dio->bio_lock, flags);
332 }
333 
334 /**
335  * dio_end_io - handle the end io action for the given bio
336  * @bio: The direct io bio thats being completed
337  * @error: Error if there was one
338  *
339  * This is meant to be called by any filesystem that uses their own dio_submit_t
340  * so that the DIO specific endio actions are dealt with after the filesystem
341  * has done it's completion work.
342  */
343 void dio_end_io(struct bio *bio, int error)
344 {
345 	struct dio *dio = bio->bi_private;
346 
347 	if (dio->is_async)
348 		dio_bio_end_aio(bio);
349 	else
350 		dio_bio_end_io(bio);
351 }
352 EXPORT_SYMBOL_GPL(dio_end_io);
353 
354 static inline void
355 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
356 	      struct block_device *bdev,
357 	      sector_t first_sector, int nr_vecs)
358 {
359 	struct bio *bio;
360 
361 	/*
362 	 * bio_alloc() is guaranteed to return a bio when called with
363 	 * __GFP_WAIT and we request a valid number of vectors.
364 	 */
365 	bio = bio_alloc(GFP_KERNEL, nr_vecs);
366 
367 	bio->bi_bdev = bdev;
368 	bio->bi_iter.bi_sector = first_sector;
369 	if (dio->is_async)
370 		bio->bi_end_io = dio_bio_end_aio;
371 	else
372 		bio->bi_end_io = dio_bio_end_io;
373 
374 	sdio->bio = bio;
375 	sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
376 }
377 
378 /*
379  * In the AIO read case we speculatively dirty the pages before starting IO.
380  * During IO completion, any of these pages which happen to have been written
381  * back will be redirtied by bio_check_pages_dirty().
382  *
383  * bios hold a dio reference between submit_bio and ->end_io.
384  */
385 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
386 {
387 	struct bio *bio = sdio->bio;
388 	unsigned long flags;
389 
390 	bio->bi_private = dio;
391 
392 	spin_lock_irqsave(&dio->bio_lock, flags);
393 	dio->refcount++;
394 	spin_unlock_irqrestore(&dio->bio_lock, flags);
395 
396 	if (dio->is_async && dio->rw == READ)
397 		bio_set_pages_dirty(bio);
398 
399 	if (sdio->submit_io)
400 		sdio->submit_io(dio->rw, bio, dio->inode,
401 			       sdio->logical_offset_in_bio);
402 	else
403 		submit_bio(dio->rw, bio);
404 
405 	sdio->bio = NULL;
406 	sdio->boundary = 0;
407 	sdio->logical_offset_in_bio = 0;
408 }
409 
410 /*
411  * Release any resources in case of a failure
412  */
413 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
414 {
415 	while (sdio->head < sdio->tail)
416 		page_cache_release(dio->pages[sdio->head++]);
417 }
418 
419 /*
420  * Wait for the next BIO to complete.  Remove it and return it.  NULL is
421  * returned once all BIOs have been completed.  This must only be called once
422  * all bios have been issued so that dio->refcount can only decrease.  This
423  * requires that that the caller hold a reference on the dio.
424  */
425 static struct bio *dio_await_one(struct dio *dio)
426 {
427 	unsigned long flags;
428 	struct bio *bio = NULL;
429 
430 	spin_lock_irqsave(&dio->bio_lock, flags);
431 
432 	/*
433 	 * Wait as long as the list is empty and there are bios in flight.  bio
434 	 * completion drops the count, maybe adds to the list, and wakes while
435 	 * holding the bio_lock so we don't need set_current_state()'s barrier
436 	 * and can call it after testing our condition.
437 	 */
438 	while (dio->refcount > 1 && dio->bio_list == NULL) {
439 		__set_current_state(TASK_UNINTERRUPTIBLE);
440 		dio->waiter = current;
441 		spin_unlock_irqrestore(&dio->bio_lock, flags);
442 		io_schedule();
443 		/* wake up sets us TASK_RUNNING */
444 		spin_lock_irqsave(&dio->bio_lock, flags);
445 		dio->waiter = NULL;
446 	}
447 	if (dio->bio_list) {
448 		bio = dio->bio_list;
449 		dio->bio_list = bio->bi_private;
450 	}
451 	spin_unlock_irqrestore(&dio->bio_lock, flags);
452 	return bio;
453 }
454 
455 /*
456  * Process one completed BIO.  No locks are held.
457  */
458 static int dio_bio_complete(struct dio *dio, struct bio *bio)
459 {
460 	struct bio_vec *bvec;
461 	unsigned i;
462 	int err;
463 
464 	if (bio->bi_error)
465 		dio->io_error = -EIO;
466 
467 	if (dio->is_async && dio->rw == READ) {
468 		bio_check_pages_dirty(bio);	/* transfers ownership */
469 		err = bio->bi_error;
470 	} else {
471 		bio_for_each_segment_all(bvec, bio, i) {
472 			struct page *page = bvec->bv_page;
473 
474 			if (dio->rw == READ && !PageCompound(page))
475 				set_page_dirty_lock(page);
476 			page_cache_release(page);
477 		}
478 		err = bio->bi_error;
479 		bio_put(bio);
480 	}
481 	return err;
482 }
483 
484 /*
485  * Wait on and process all in-flight BIOs.  This must only be called once
486  * all bios have been issued so that the refcount can only decrease.
487  * This just waits for all bios to make it through dio_bio_complete.  IO
488  * errors are propagated through dio->io_error and should be propagated via
489  * dio_complete().
490  */
491 static void dio_await_completion(struct dio *dio)
492 {
493 	struct bio *bio;
494 	do {
495 		bio = dio_await_one(dio);
496 		if (bio)
497 			dio_bio_complete(dio, bio);
498 	} while (bio);
499 }
500 
501 /*
502  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
503  * to keep the memory consumption sane we periodically reap any completed BIOs
504  * during the BIO generation phase.
505  *
506  * This also helps to limit the peak amount of pinned userspace memory.
507  */
508 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
509 {
510 	int ret = 0;
511 
512 	if (sdio->reap_counter++ >= 64) {
513 		while (dio->bio_list) {
514 			unsigned long flags;
515 			struct bio *bio;
516 			int ret2;
517 
518 			spin_lock_irqsave(&dio->bio_lock, flags);
519 			bio = dio->bio_list;
520 			dio->bio_list = bio->bi_private;
521 			spin_unlock_irqrestore(&dio->bio_lock, flags);
522 			ret2 = dio_bio_complete(dio, bio);
523 			if (ret == 0)
524 				ret = ret2;
525 		}
526 		sdio->reap_counter = 0;
527 	}
528 	return ret;
529 }
530 
531 /*
532  * Create workqueue for deferred direct IO completions. We allocate the
533  * workqueue when it's first needed. This avoids creating workqueue for
534  * filesystems that don't need it and also allows us to create the workqueue
535  * late enough so the we can include s_id in the name of the workqueue.
536  */
537 static int sb_init_dio_done_wq(struct super_block *sb)
538 {
539 	struct workqueue_struct *old;
540 	struct workqueue_struct *wq = alloc_workqueue("dio/%s",
541 						      WQ_MEM_RECLAIM, 0,
542 						      sb->s_id);
543 	if (!wq)
544 		return -ENOMEM;
545 	/*
546 	 * This has to be atomic as more DIOs can race to create the workqueue
547 	 */
548 	old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
549 	/* Someone created workqueue before us? Free ours... */
550 	if (old)
551 		destroy_workqueue(wq);
552 	return 0;
553 }
554 
555 static int dio_set_defer_completion(struct dio *dio)
556 {
557 	struct super_block *sb = dio->inode->i_sb;
558 
559 	if (dio->defer_completion)
560 		return 0;
561 	dio->defer_completion = true;
562 	if (!sb->s_dio_done_wq)
563 		return sb_init_dio_done_wq(sb);
564 	return 0;
565 }
566 
567 /*
568  * Call into the fs to map some more disk blocks.  We record the current number
569  * of available blocks at sdio->blocks_available.  These are in units of the
570  * fs blocksize, (1 << inode->i_blkbits).
571  *
572  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
573  * it uses the passed inode-relative block number as the file offset, as usual.
574  *
575  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
576  * has remaining to do.  The fs should not map more than this number of blocks.
577  *
578  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
579  * indicate how much contiguous disk space has been made available at
580  * bh->b_blocknr.
581  *
582  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
583  * This isn't very efficient...
584  *
585  * In the case of filesystem holes: the fs may return an arbitrarily-large
586  * hole by returning an appropriate value in b_size and by clearing
587  * buffer_mapped().  However the direct-io code will only process holes one
588  * block at a time - it will repeatedly call get_block() as it walks the hole.
589  */
590 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
591 			   struct buffer_head *map_bh)
592 {
593 	int ret;
594 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
595 	sector_t fs_endblk;	/* Into file, in filesystem-sized blocks */
596 	unsigned long fs_count;	/* Number of filesystem-sized blocks */
597 	int create;
598 	unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
599 
600 	/*
601 	 * If there was a memory error and we've overwritten all the
602 	 * mapped blocks then we can now return that memory error
603 	 */
604 	ret = dio->page_errors;
605 	if (ret == 0) {
606 		BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
607 		fs_startblk = sdio->block_in_file >> sdio->blkfactor;
608 		fs_endblk = (sdio->final_block_in_request - 1) >>
609 					sdio->blkfactor;
610 		fs_count = fs_endblk - fs_startblk + 1;
611 
612 		map_bh->b_state = 0;
613 		map_bh->b_size = fs_count << i_blkbits;
614 
615 		/*
616 		 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
617 		 * forbid block creations: only overwrites are permitted.
618 		 * We will return early to the caller once we see an
619 		 * unmapped buffer head returned, and the caller will fall
620 		 * back to buffered I/O.
621 		 *
622 		 * Otherwise the decision is left to the get_blocks method,
623 		 * which may decide to handle it or also return an unmapped
624 		 * buffer head.
625 		 */
626 		create = dio->rw & WRITE;
627 		if (dio->flags & DIO_SKIP_HOLES) {
628 			if (sdio->block_in_file < (i_size_read(dio->inode) >>
629 							sdio->blkbits))
630 				create = 0;
631 		}
632 
633 		ret = (*sdio->get_block)(dio->inode, fs_startblk,
634 						map_bh, create);
635 
636 		/* Store for completion */
637 		dio->private = map_bh->b_private;
638 
639 		if (ret == 0 && buffer_defer_completion(map_bh))
640 			ret = dio_set_defer_completion(dio);
641 	}
642 	return ret;
643 }
644 
645 /*
646  * There is no bio.  Make one now.
647  */
648 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
649 		sector_t start_sector, struct buffer_head *map_bh)
650 {
651 	sector_t sector;
652 	int ret, nr_pages;
653 
654 	ret = dio_bio_reap(dio, sdio);
655 	if (ret)
656 		goto out;
657 	sector = start_sector << (sdio->blkbits - 9);
658 	nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
659 	BUG_ON(nr_pages <= 0);
660 	dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
661 	sdio->boundary = 0;
662 out:
663 	return ret;
664 }
665 
666 /*
667  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
668  * that was successful then update final_block_in_bio and take a ref against
669  * the just-added page.
670  *
671  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
672  */
673 static inline int dio_bio_add_page(struct dio_submit *sdio)
674 {
675 	int ret;
676 
677 	ret = bio_add_page(sdio->bio, sdio->cur_page,
678 			sdio->cur_page_len, sdio->cur_page_offset);
679 	if (ret == sdio->cur_page_len) {
680 		/*
681 		 * Decrement count only, if we are done with this page
682 		 */
683 		if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
684 			sdio->pages_in_io--;
685 		page_cache_get(sdio->cur_page);
686 		sdio->final_block_in_bio = sdio->cur_page_block +
687 			(sdio->cur_page_len >> sdio->blkbits);
688 		ret = 0;
689 	} else {
690 		ret = 1;
691 	}
692 	return ret;
693 }
694 
695 /*
696  * Put cur_page under IO.  The section of cur_page which is described by
697  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
698  * starts on-disk at cur_page_block.
699  *
700  * We take a ref against the page here (on behalf of its presence in the bio).
701  *
702  * The caller of this function is responsible for removing cur_page from the
703  * dio, and for dropping the refcount which came from that presence.
704  */
705 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
706 		struct buffer_head *map_bh)
707 {
708 	int ret = 0;
709 
710 	if (sdio->bio) {
711 		loff_t cur_offset = sdio->cur_page_fs_offset;
712 		loff_t bio_next_offset = sdio->logical_offset_in_bio +
713 			sdio->bio->bi_iter.bi_size;
714 
715 		/*
716 		 * See whether this new request is contiguous with the old.
717 		 *
718 		 * Btrfs cannot handle having logically non-contiguous requests
719 		 * submitted.  For example if you have
720 		 *
721 		 * Logical:  [0-4095][HOLE][8192-12287]
722 		 * Physical: [0-4095]      [4096-8191]
723 		 *
724 		 * We cannot submit those pages together as one BIO.  So if our
725 		 * current logical offset in the file does not equal what would
726 		 * be the next logical offset in the bio, submit the bio we
727 		 * have.
728 		 */
729 		if (sdio->final_block_in_bio != sdio->cur_page_block ||
730 		    cur_offset != bio_next_offset)
731 			dio_bio_submit(dio, sdio);
732 	}
733 
734 	if (sdio->bio == NULL) {
735 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
736 		if (ret)
737 			goto out;
738 	}
739 
740 	if (dio_bio_add_page(sdio) != 0) {
741 		dio_bio_submit(dio, sdio);
742 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
743 		if (ret == 0) {
744 			ret = dio_bio_add_page(sdio);
745 			BUG_ON(ret != 0);
746 		}
747 	}
748 out:
749 	return ret;
750 }
751 
752 /*
753  * An autonomous function to put a chunk of a page under deferred IO.
754  *
755  * The caller doesn't actually know (or care) whether this piece of page is in
756  * a BIO, or is under IO or whatever.  We just take care of all possible
757  * situations here.  The separation between the logic of do_direct_IO() and
758  * that of submit_page_section() is important for clarity.  Please don't break.
759  *
760  * The chunk of page starts on-disk at blocknr.
761  *
762  * We perform deferred IO, by recording the last-submitted page inside our
763  * private part of the dio structure.  If possible, we just expand the IO
764  * across that page here.
765  *
766  * If that doesn't work out then we put the old page into the bio and add this
767  * page to the dio instead.
768  */
769 static inline int
770 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
771 		    unsigned offset, unsigned len, sector_t blocknr,
772 		    struct buffer_head *map_bh)
773 {
774 	int ret = 0;
775 
776 	if (dio->rw & WRITE) {
777 		/*
778 		 * Read accounting is performed in submit_bio()
779 		 */
780 		task_io_account_write(len);
781 	}
782 
783 	/*
784 	 * Can we just grow the current page's presence in the dio?
785 	 */
786 	if (sdio->cur_page == page &&
787 	    sdio->cur_page_offset + sdio->cur_page_len == offset &&
788 	    sdio->cur_page_block +
789 	    (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
790 		sdio->cur_page_len += len;
791 		goto out;
792 	}
793 
794 	/*
795 	 * If there's a deferred page already there then send it.
796 	 */
797 	if (sdio->cur_page) {
798 		ret = dio_send_cur_page(dio, sdio, map_bh);
799 		page_cache_release(sdio->cur_page);
800 		sdio->cur_page = NULL;
801 		if (ret)
802 			return ret;
803 	}
804 
805 	page_cache_get(page);		/* It is in dio */
806 	sdio->cur_page = page;
807 	sdio->cur_page_offset = offset;
808 	sdio->cur_page_len = len;
809 	sdio->cur_page_block = blocknr;
810 	sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
811 out:
812 	/*
813 	 * If sdio->boundary then we want to schedule the IO now to
814 	 * avoid metadata seeks.
815 	 */
816 	if (sdio->boundary) {
817 		ret = dio_send_cur_page(dio, sdio, map_bh);
818 		dio_bio_submit(dio, sdio);
819 		page_cache_release(sdio->cur_page);
820 		sdio->cur_page = NULL;
821 	}
822 	return ret;
823 }
824 
825 /*
826  * Clean any dirty buffers in the blockdev mapping which alias newly-created
827  * file blocks.  Only called for S_ISREG files - blockdevs do not set
828  * buffer_new
829  */
830 static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh)
831 {
832 	unsigned i;
833 	unsigned nblocks;
834 
835 	nblocks = map_bh->b_size >> dio->inode->i_blkbits;
836 
837 	for (i = 0; i < nblocks; i++) {
838 		unmap_underlying_metadata(map_bh->b_bdev,
839 					  map_bh->b_blocknr + i);
840 	}
841 }
842 
843 /*
844  * If we are not writing the entire block and get_block() allocated
845  * the block for us, we need to fill-in the unused portion of the
846  * block with zeros. This happens only if user-buffer, fileoffset or
847  * io length is not filesystem block-size multiple.
848  *
849  * `end' is zero if we're doing the start of the IO, 1 at the end of the
850  * IO.
851  */
852 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
853 		int end, struct buffer_head *map_bh)
854 {
855 	unsigned dio_blocks_per_fs_block;
856 	unsigned this_chunk_blocks;	/* In dio_blocks */
857 	unsigned this_chunk_bytes;
858 	struct page *page;
859 
860 	sdio->start_zero_done = 1;
861 	if (!sdio->blkfactor || !buffer_new(map_bh))
862 		return;
863 
864 	dio_blocks_per_fs_block = 1 << sdio->blkfactor;
865 	this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
866 
867 	if (!this_chunk_blocks)
868 		return;
869 
870 	/*
871 	 * We need to zero out part of an fs block.  It is either at the
872 	 * beginning or the end of the fs block.
873 	 */
874 	if (end)
875 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
876 
877 	this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
878 
879 	page = ZERO_PAGE(0);
880 	if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
881 				sdio->next_block_for_io, map_bh))
882 		return;
883 
884 	sdio->next_block_for_io += this_chunk_blocks;
885 }
886 
887 /*
888  * Walk the user pages, and the file, mapping blocks to disk and generating
889  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
890  * into submit_page_section(), which takes care of the next stage of submission
891  *
892  * Direct IO against a blockdev is different from a file.  Because we can
893  * happily perform page-sized but 512-byte aligned IOs.  It is important that
894  * blockdev IO be able to have fine alignment and large sizes.
895  *
896  * So what we do is to permit the ->get_block function to populate bh.b_size
897  * with the size of IO which is permitted at this offset and this i_blkbits.
898  *
899  * For best results, the blockdev should be set up with 512-byte i_blkbits and
900  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
901  * fine alignment but still allows this function to work in PAGE_SIZE units.
902  */
903 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
904 			struct buffer_head *map_bh)
905 {
906 	const unsigned blkbits = sdio->blkbits;
907 	int ret = 0;
908 
909 	while (sdio->block_in_file < sdio->final_block_in_request) {
910 		struct page *page;
911 		size_t from, to;
912 
913 		page = dio_get_page(dio, sdio);
914 		if (IS_ERR(page)) {
915 			ret = PTR_ERR(page);
916 			goto out;
917 		}
918 		from = sdio->head ? 0 : sdio->from;
919 		to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
920 		sdio->head++;
921 
922 		while (from < to) {
923 			unsigned this_chunk_bytes;	/* # of bytes mapped */
924 			unsigned this_chunk_blocks;	/* # of blocks */
925 			unsigned u;
926 
927 			if (sdio->blocks_available == 0) {
928 				/*
929 				 * Need to go and map some more disk
930 				 */
931 				unsigned long blkmask;
932 				unsigned long dio_remainder;
933 
934 				ret = get_more_blocks(dio, sdio, map_bh);
935 				if (ret) {
936 					page_cache_release(page);
937 					goto out;
938 				}
939 				if (!buffer_mapped(map_bh))
940 					goto do_holes;
941 
942 				sdio->blocks_available =
943 						map_bh->b_size >> sdio->blkbits;
944 				sdio->next_block_for_io =
945 					map_bh->b_blocknr << sdio->blkfactor;
946 				if (buffer_new(map_bh))
947 					clean_blockdev_aliases(dio, map_bh);
948 
949 				if (!sdio->blkfactor)
950 					goto do_holes;
951 
952 				blkmask = (1 << sdio->blkfactor) - 1;
953 				dio_remainder = (sdio->block_in_file & blkmask);
954 
955 				/*
956 				 * If we are at the start of IO and that IO
957 				 * starts partway into a fs-block,
958 				 * dio_remainder will be non-zero.  If the IO
959 				 * is a read then we can simply advance the IO
960 				 * cursor to the first block which is to be
961 				 * read.  But if the IO is a write and the
962 				 * block was newly allocated we cannot do that;
963 				 * the start of the fs block must be zeroed out
964 				 * on-disk
965 				 */
966 				if (!buffer_new(map_bh))
967 					sdio->next_block_for_io += dio_remainder;
968 				sdio->blocks_available -= dio_remainder;
969 			}
970 do_holes:
971 			/* Handle holes */
972 			if (!buffer_mapped(map_bh)) {
973 				loff_t i_size_aligned;
974 
975 				/* AKPM: eargh, -ENOTBLK is a hack */
976 				if (dio->rw & WRITE) {
977 					page_cache_release(page);
978 					return -ENOTBLK;
979 				}
980 
981 				/*
982 				 * Be sure to account for a partial block as the
983 				 * last block in the file
984 				 */
985 				i_size_aligned = ALIGN(i_size_read(dio->inode),
986 							1 << blkbits);
987 				if (sdio->block_in_file >=
988 						i_size_aligned >> blkbits) {
989 					/* We hit eof */
990 					page_cache_release(page);
991 					goto out;
992 				}
993 				zero_user(page, from, 1 << blkbits);
994 				sdio->block_in_file++;
995 				from += 1 << blkbits;
996 				dio->result += 1 << blkbits;
997 				goto next_block;
998 			}
999 
1000 			/*
1001 			 * If we're performing IO which has an alignment which
1002 			 * is finer than the underlying fs, go check to see if
1003 			 * we must zero out the start of this block.
1004 			 */
1005 			if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1006 				dio_zero_block(dio, sdio, 0, map_bh);
1007 
1008 			/*
1009 			 * Work out, in this_chunk_blocks, how much disk we
1010 			 * can add to this page
1011 			 */
1012 			this_chunk_blocks = sdio->blocks_available;
1013 			u = (to - from) >> blkbits;
1014 			if (this_chunk_blocks > u)
1015 				this_chunk_blocks = u;
1016 			u = sdio->final_block_in_request - sdio->block_in_file;
1017 			if (this_chunk_blocks > u)
1018 				this_chunk_blocks = u;
1019 			this_chunk_bytes = this_chunk_blocks << blkbits;
1020 			BUG_ON(this_chunk_bytes == 0);
1021 
1022 			if (this_chunk_blocks == sdio->blocks_available)
1023 				sdio->boundary = buffer_boundary(map_bh);
1024 			ret = submit_page_section(dio, sdio, page,
1025 						  from,
1026 						  this_chunk_bytes,
1027 						  sdio->next_block_for_io,
1028 						  map_bh);
1029 			if (ret) {
1030 				page_cache_release(page);
1031 				goto out;
1032 			}
1033 			sdio->next_block_for_io += this_chunk_blocks;
1034 
1035 			sdio->block_in_file += this_chunk_blocks;
1036 			from += this_chunk_bytes;
1037 			dio->result += this_chunk_bytes;
1038 			sdio->blocks_available -= this_chunk_blocks;
1039 next_block:
1040 			BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1041 			if (sdio->block_in_file == sdio->final_block_in_request)
1042 				break;
1043 		}
1044 
1045 		/* Drop the ref which was taken in get_user_pages() */
1046 		page_cache_release(page);
1047 	}
1048 out:
1049 	return ret;
1050 }
1051 
1052 static inline int drop_refcount(struct dio *dio)
1053 {
1054 	int ret2;
1055 	unsigned long flags;
1056 
1057 	/*
1058 	 * Sync will always be dropping the final ref and completing the
1059 	 * operation.  AIO can if it was a broken operation described above or
1060 	 * in fact if all the bios race to complete before we get here.  In
1061 	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1062 	 * return code that the caller will hand to ->complete().
1063 	 *
1064 	 * This is managed by the bio_lock instead of being an atomic_t so that
1065 	 * completion paths can drop their ref and use the remaining count to
1066 	 * decide to wake the submission path atomically.
1067 	 */
1068 	spin_lock_irqsave(&dio->bio_lock, flags);
1069 	ret2 = --dio->refcount;
1070 	spin_unlock_irqrestore(&dio->bio_lock, flags);
1071 	return ret2;
1072 }
1073 
1074 /*
1075  * This is a library function for use by filesystem drivers.
1076  *
1077  * The locking rules are governed by the flags parameter:
1078  *  - if the flags value contains DIO_LOCKING we use a fancy locking
1079  *    scheme for dumb filesystems.
1080  *    For writes this function is called under i_mutex and returns with
1081  *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1082  *    taken and dropped again before returning.
1083  *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1084  *    internal locking but rather rely on the filesystem to synchronize
1085  *    direct I/O reads/writes versus each other and truncate.
1086  *
1087  * To help with locking against truncate we incremented the i_dio_count
1088  * counter before starting direct I/O, and decrement it once we are done.
1089  * Truncate can wait for it to reach zero to provide exclusion.  It is
1090  * expected that filesystem provide exclusion between new direct I/O
1091  * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1092  * but other filesystems need to take care of this on their own.
1093  *
1094  * NOTE: if you pass "sdio" to anything by pointer make sure that function
1095  * is always inlined. Otherwise gcc is unable to split the structure into
1096  * individual fields and will generate much worse code. This is important
1097  * for the whole file.
1098  */
1099 static inline ssize_t
1100 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1101 		      struct block_device *bdev, struct iov_iter *iter,
1102 		      loff_t offset, get_block_t get_block, dio_iodone_t end_io,
1103 		      dio_submit_t submit_io, int flags)
1104 {
1105 	unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits);
1106 	unsigned blkbits = i_blkbits;
1107 	unsigned blocksize_mask = (1 << blkbits) - 1;
1108 	ssize_t retval = -EINVAL;
1109 	size_t count = iov_iter_count(iter);
1110 	loff_t end = offset + count;
1111 	struct dio *dio;
1112 	struct dio_submit sdio = { 0, };
1113 	struct buffer_head map_bh = { 0, };
1114 	struct blk_plug plug;
1115 	unsigned long align = offset | iov_iter_alignment(iter);
1116 
1117 	/*
1118 	 * Avoid references to bdev if not absolutely needed to give
1119 	 * the early prefetch in the caller enough time.
1120 	 */
1121 
1122 	if (align & blocksize_mask) {
1123 		if (bdev)
1124 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
1125 		blocksize_mask = (1 << blkbits) - 1;
1126 		if (align & blocksize_mask)
1127 			goto out;
1128 	}
1129 
1130 	/* watch out for a 0 len io from a tricksy fs */
1131 	if (iov_iter_rw(iter) == READ && !iov_iter_count(iter))
1132 		return 0;
1133 
1134 	dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1135 	retval = -ENOMEM;
1136 	if (!dio)
1137 		goto out;
1138 	/*
1139 	 * Believe it or not, zeroing out the page array caused a .5%
1140 	 * performance regression in a database benchmark.  So, we take
1141 	 * care to only zero out what's needed.
1142 	 */
1143 	memset(dio, 0, offsetof(struct dio, pages));
1144 
1145 	dio->flags = flags;
1146 	if (dio->flags & DIO_LOCKING) {
1147 		if (iov_iter_rw(iter) == READ) {
1148 			struct address_space *mapping =
1149 					iocb->ki_filp->f_mapping;
1150 
1151 			/* will be released by direct_io_worker */
1152 			mutex_lock(&inode->i_mutex);
1153 
1154 			retval = filemap_write_and_wait_range(mapping, offset,
1155 							      end - 1);
1156 			if (retval) {
1157 				mutex_unlock(&inode->i_mutex);
1158 				kmem_cache_free(dio_cache, dio);
1159 				goto out;
1160 			}
1161 		}
1162 	}
1163 
1164 	/*
1165 	 * For file extending writes updating i_size before data writeouts
1166 	 * complete can expose uninitialized blocks in dumb filesystems.
1167 	 * In that case we need to wait for I/O completion even if asked
1168 	 * for an asynchronous write.
1169 	 */
1170 	if (is_sync_kiocb(iocb))
1171 		dio->is_async = false;
1172 	else if (!(dio->flags & DIO_ASYNC_EXTEND) &&
1173 		 iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1174 		dio->is_async = false;
1175 	else
1176 		dio->is_async = true;
1177 
1178 	dio->inode = inode;
1179 	dio->rw = iov_iter_rw(iter) == WRITE ? WRITE_ODIRECT : READ;
1180 
1181 	/*
1182 	 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1183 	 * so that we can call ->fsync.
1184 	 */
1185 	if (dio->is_async && iov_iter_rw(iter) == WRITE &&
1186 	    ((iocb->ki_filp->f_flags & O_DSYNC) ||
1187 	     IS_SYNC(iocb->ki_filp->f_mapping->host))) {
1188 		retval = dio_set_defer_completion(dio);
1189 		if (retval) {
1190 			/*
1191 			 * We grab i_mutex only for reads so we don't have
1192 			 * to release it here
1193 			 */
1194 			kmem_cache_free(dio_cache, dio);
1195 			goto out;
1196 		}
1197 	}
1198 
1199 	/*
1200 	 * Will be decremented at I/O completion time.
1201 	 */
1202 	if (!(dio->flags & DIO_SKIP_DIO_COUNT))
1203 		inode_dio_begin(inode);
1204 
1205 	retval = 0;
1206 	sdio.blkbits = blkbits;
1207 	sdio.blkfactor = i_blkbits - blkbits;
1208 	sdio.block_in_file = offset >> blkbits;
1209 
1210 	sdio.get_block = get_block;
1211 	dio->end_io = end_io;
1212 	sdio.submit_io = submit_io;
1213 	sdio.final_block_in_bio = -1;
1214 	sdio.next_block_for_io = -1;
1215 
1216 	dio->iocb = iocb;
1217 	dio->i_size = i_size_read(inode);
1218 
1219 	spin_lock_init(&dio->bio_lock);
1220 	dio->refcount = 1;
1221 
1222 	sdio.iter = iter;
1223 	sdio.final_block_in_request =
1224 		(offset + iov_iter_count(iter)) >> blkbits;
1225 
1226 	/*
1227 	 * In case of non-aligned buffers, we may need 2 more
1228 	 * pages since we need to zero out first and last block.
1229 	 */
1230 	if (unlikely(sdio.blkfactor))
1231 		sdio.pages_in_io = 2;
1232 
1233 	sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1234 
1235 	blk_start_plug(&plug);
1236 
1237 	retval = do_direct_IO(dio, &sdio, &map_bh);
1238 	if (retval)
1239 		dio_cleanup(dio, &sdio);
1240 
1241 	if (retval == -ENOTBLK) {
1242 		/*
1243 		 * The remaining part of the request will be
1244 		 * be handled by buffered I/O when we return
1245 		 */
1246 		retval = 0;
1247 	}
1248 	/*
1249 	 * There may be some unwritten disk at the end of a part-written
1250 	 * fs-block-sized block.  Go zero that now.
1251 	 */
1252 	dio_zero_block(dio, &sdio, 1, &map_bh);
1253 
1254 	if (sdio.cur_page) {
1255 		ssize_t ret2;
1256 
1257 		ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1258 		if (retval == 0)
1259 			retval = ret2;
1260 		page_cache_release(sdio.cur_page);
1261 		sdio.cur_page = NULL;
1262 	}
1263 	if (sdio.bio)
1264 		dio_bio_submit(dio, &sdio);
1265 
1266 	blk_finish_plug(&plug);
1267 
1268 	/*
1269 	 * It is possible that, we return short IO due to end of file.
1270 	 * In that case, we need to release all the pages we got hold on.
1271 	 */
1272 	dio_cleanup(dio, &sdio);
1273 
1274 	/*
1275 	 * All block lookups have been performed. For READ requests
1276 	 * we can let i_mutex go now that its achieved its purpose
1277 	 * of protecting us from looking up uninitialized blocks.
1278 	 */
1279 	if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1280 		mutex_unlock(&dio->inode->i_mutex);
1281 
1282 	/*
1283 	 * The only time we want to leave bios in flight is when a successful
1284 	 * partial aio read or full aio write have been setup.  In that case
1285 	 * bio completion will call aio_complete.  The only time it's safe to
1286 	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1287 	 * This had *better* be the only place that raises -EIOCBQUEUED.
1288 	 */
1289 	BUG_ON(retval == -EIOCBQUEUED);
1290 	if (dio->is_async && retval == 0 && dio->result &&
1291 	    (iov_iter_rw(iter) == READ || dio->result == count))
1292 		retval = -EIOCBQUEUED;
1293 	else
1294 		dio_await_completion(dio);
1295 
1296 	if (drop_refcount(dio) == 0) {
1297 		retval = dio_complete(dio, offset, retval, false);
1298 	} else
1299 		BUG_ON(retval != -EIOCBQUEUED);
1300 
1301 out:
1302 	return retval;
1303 }
1304 
1305 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1306 			     struct block_device *bdev, struct iov_iter *iter,
1307 			     loff_t offset, get_block_t get_block,
1308 			     dio_iodone_t end_io, dio_submit_t submit_io,
1309 			     int flags)
1310 {
1311 	/*
1312 	 * The block device state is needed in the end to finally
1313 	 * submit everything.  Since it's likely to be cache cold
1314 	 * prefetch it here as first thing to hide some of the
1315 	 * latency.
1316 	 *
1317 	 * Attempt to prefetch the pieces we likely need later.
1318 	 */
1319 	prefetch(&bdev->bd_disk->part_tbl);
1320 	prefetch(bdev->bd_queue);
1321 	prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1322 
1323 	return do_blockdev_direct_IO(iocb, inode, bdev, iter, offset, get_block,
1324 				     end_io, submit_io, flags);
1325 }
1326 
1327 EXPORT_SYMBOL(__blockdev_direct_IO);
1328 
1329 static __init int dio_init(void)
1330 {
1331 	dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1332 	return 0;
1333 }
1334 module_init(dio_init)
1335