xref: /openbmc/linux/fs/direct-io.c (revision a16be368)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/direct-io.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * O_DIRECT
8  *
9  * 04Jul2002	Andrew Morton
10  *		Initial version
11  * 11Sep2002	janetinc@us.ibm.com
12  * 		added readv/writev support.
13  * 29Oct2002	Andrew Morton
14  *		rewrote bio_add_page() support.
15  * 30Oct2002	pbadari@us.ibm.com
16  *		added support for non-aligned IO.
17  * 06Nov2002	pbadari@us.ibm.com
18  *		added asynchronous IO support.
19  * 21Jul2003	nathans@sgi.com
20  *		added IO completion notifier.
21  */
22 
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/mm.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/pagemap.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/bio.h>
33 #include <linux/wait.h>
34 #include <linux/err.h>
35 #include <linux/blkdev.h>
36 #include <linux/buffer_head.h>
37 #include <linux/rwsem.h>
38 #include <linux/uio.h>
39 #include <linux/atomic.h>
40 #include <linux/prefetch.h>
41 
42 #include "internal.h"
43 
44 /*
45  * How many user pages to map in one call to get_user_pages().  This determines
46  * the size of a structure in the slab cache
47  */
48 #define DIO_PAGES	64
49 
50 /*
51  * Flags for dio_complete()
52  */
53 #define DIO_COMPLETE_ASYNC		0x01	/* This is async IO */
54 #define DIO_COMPLETE_INVALIDATE		0x02	/* Can invalidate pages */
55 
56 /*
57  * This code generally works in units of "dio_blocks".  A dio_block is
58  * somewhere between the hard sector size and the filesystem block size.  it
59  * is determined on a per-invocation basis.   When talking to the filesystem
60  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
61  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
62  * to bio_block quantities by shifting left by blkfactor.
63  *
64  * If blkfactor is zero then the user's request was aligned to the filesystem's
65  * blocksize.
66  */
67 
68 /* dio_state only used in the submission path */
69 
70 struct dio_submit {
71 	struct bio *bio;		/* bio under assembly */
72 	unsigned blkbits;		/* doesn't change */
73 	unsigned blkfactor;		/* When we're using an alignment which
74 					   is finer than the filesystem's soft
75 					   blocksize, this specifies how much
76 					   finer.  blkfactor=2 means 1/4-block
77 					   alignment.  Does not change */
78 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
79 					   been performed at the start of a
80 					   write */
81 	int pages_in_io;		/* approximate total IO pages */
82 	sector_t block_in_file;		/* Current offset into the underlying
83 					   file in dio_block units. */
84 	unsigned blocks_available;	/* At block_in_file.  changes */
85 	int reap_counter;		/* rate limit reaping */
86 	sector_t final_block_in_request;/* doesn't change */
87 	int boundary;			/* prev block is at a boundary */
88 	get_block_t *get_block;		/* block mapping function */
89 	dio_submit_t *submit_io;	/* IO submition function */
90 
91 	loff_t logical_offset_in_bio;	/* current first logical block in bio */
92 	sector_t final_block_in_bio;	/* current final block in bio + 1 */
93 	sector_t next_block_for_io;	/* next block to be put under IO,
94 					   in dio_blocks units */
95 
96 	/*
97 	 * Deferred addition of a page to the dio.  These variables are
98 	 * private to dio_send_cur_page(), submit_page_section() and
99 	 * dio_bio_add_page().
100 	 */
101 	struct page *cur_page;		/* The page */
102 	unsigned cur_page_offset;	/* Offset into it, in bytes */
103 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
104 	sector_t cur_page_block;	/* Where it starts */
105 	loff_t cur_page_fs_offset;	/* Offset in file */
106 
107 	struct iov_iter *iter;
108 	/*
109 	 * Page queue.  These variables belong to dio_refill_pages() and
110 	 * dio_get_page().
111 	 */
112 	unsigned head;			/* next page to process */
113 	unsigned tail;			/* last valid page + 1 */
114 	size_t from, to;
115 };
116 
117 /* dio_state communicated between submission path and end_io */
118 struct dio {
119 	int flags;			/* doesn't change */
120 	int op;
121 	int op_flags;
122 	blk_qc_t bio_cookie;
123 	struct gendisk *bio_disk;
124 	struct inode *inode;
125 	loff_t i_size;			/* i_size when submitted */
126 	dio_iodone_t *end_io;		/* IO completion function */
127 
128 	void *private;			/* copy from map_bh.b_private */
129 
130 	/* BIO completion state */
131 	spinlock_t bio_lock;		/* protects BIO fields below */
132 	int page_errors;		/* errno from get_user_pages() */
133 	int is_async;			/* is IO async ? */
134 	bool defer_completion;		/* defer AIO completion to workqueue? */
135 	bool should_dirty;		/* if pages should be dirtied */
136 	int io_error;			/* IO error in completion path */
137 	unsigned long refcount;		/* direct_io_worker() and bios */
138 	struct bio *bio_list;		/* singly linked via bi_private */
139 	struct task_struct *waiter;	/* waiting task (NULL if none) */
140 
141 	/* AIO related stuff */
142 	struct kiocb *iocb;		/* kiocb */
143 	ssize_t result;                 /* IO result */
144 
145 	/*
146 	 * pages[] (and any fields placed after it) are not zeroed out at
147 	 * allocation time.  Don't add new fields after pages[] unless you
148 	 * wish that they not be zeroed.
149 	 */
150 	union {
151 		struct page *pages[DIO_PAGES];	/* page buffer */
152 		struct work_struct complete_work;/* deferred AIO completion */
153 	};
154 } ____cacheline_aligned_in_smp;
155 
156 static struct kmem_cache *dio_cache __read_mostly;
157 
158 /*
159  * How many pages are in the queue?
160  */
161 static inline unsigned dio_pages_present(struct dio_submit *sdio)
162 {
163 	return sdio->tail - sdio->head;
164 }
165 
166 /*
167  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
168  */
169 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
170 {
171 	ssize_t ret;
172 
173 	ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
174 				&sdio->from);
175 
176 	if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) {
177 		struct page *page = ZERO_PAGE(0);
178 		/*
179 		 * A memory fault, but the filesystem has some outstanding
180 		 * mapped blocks.  We need to use those blocks up to avoid
181 		 * leaking stale data in the file.
182 		 */
183 		if (dio->page_errors == 0)
184 			dio->page_errors = ret;
185 		get_page(page);
186 		dio->pages[0] = page;
187 		sdio->head = 0;
188 		sdio->tail = 1;
189 		sdio->from = 0;
190 		sdio->to = PAGE_SIZE;
191 		return 0;
192 	}
193 
194 	if (ret >= 0) {
195 		iov_iter_advance(sdio->iter, ret);
196 		ret += sdio->from;
197 		sdio->head = 0;
198 		sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
199 		sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
200 		return 0;
201 	}
202 	return ret;
203 }
204 
205 /*
206  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
207  * buffered inside the dio so that we can call get_user_pages() against a
208  * decent number of pages, less frequently.  To provide nicer use of the
209  * L1 cache.
210  */
211 static inline struct page *dio_get_page(struct dio *dio,
212 					struct dio_submit *sdio)
213 {
214 	if (dio_pages_present(sdio) == 0) {
215 		int ret;
216 
217 		ret = dio_refill_pages(dio, sdio);
218 		if (ret)
219 			return ERR_PTR(ret);
220 		BUG_ON(dio_pages_present(sdio) == 0);
221 	}
222 	return dio->pages[sdio->head];
223 }
224 
225 /*
226  * dio_complete() - called when all DIO BIO I/O has been completed
227  *
228  * This drops i_dio_count, lets interested parties know that a DIO operation
229  * has completed, and calculates the resulting return code for the operation.
230  *
231  * It lets the filesystem know if it registered an interest earlier via
232  * get_block.  Pass the private field of the map buffer_head so that
233  * filesystems can use it to hold additional state between get_block calls and
234  * dio_complete.
235  */
236 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
237 {
238 	loff_t offset = dio->iocb->ki_pos;
239 	ssize_t transferred = 0;
240 	int err;
241 
242 	/*
243 	 * AIO submission can race with bio completion to get here while
244 	 * expecting to have the last io completed by bio completion.
245 	 * In that case -EIOCBQUEUED is in fact not an error we want
246 	 * to preserve through this call.
247 	 */
248 	if (ret == -EIOCBQUEUED)
249 		ret = 0;
250 
251 	if (dio->result) {
252 		transferred = dio->result;
253 
254 		/* Check for short read case */
255 		if ((dio->op == REQ_OP_READ) &&
256 		    ((offset + transferred) > dio->i_size))
257 			transferred = dio->i_size - offset;
258 		/* ignore EFAULT if some IO has been done */
259 		if (unlikely(ret == -EFAULT) && transferred)
260 			ret = 0;
261 	}
262 
263 	if (ret == 0)
264 		ret = dio->page_errors;
265 	if (ret == 0)
266 		ret = dio->io_error;
267 	if (ret == 0)
268 		ret = transferred;
269 
270 	if (dio->end_io) {
271 		// XXX: ki_pos??
272 		err = dio->end_io(dio->iocb, offset, ret, dio->private);
273 		if (err)
274 			ret = err;
275 	}
276 
277 	/*
278 	 * Try again to invalidate clean pages which might have been cached by
279 	 * non-direct readahead, or faulted in by get_user_pages() if the source
280 	 * of the write was an mmap'ed region of the file we're writing.  Either
281 	 * one is a pretty crazy thing to do, so we don't support it 100%.  If
282 	 * this invalidation fails, tough, the write still worked...
283 	 *
284 	 * And this page cache invalidation has to be after dio->end_io(), as
285 	 * some filesystems convert unwritten extents to real allocations in
286 	 * end_io() when necessary, otherwise a racing buffer read would cache
287 	 * zeros from unwritten extents.
288 	 */
289 	if (flags & DIO_COMPLETE_INVALIDATE &&
290 	    ret > 0 && dio->op == REQ_OP_WRITE &&
291 	    dio->inode->i_mapping->nrpages) {
292 		err = invalidate_inode_pages2_range(dio->inode->i_mapping,
293 					offset >> PAGE_SHIFT,
294 					(offset + ret - 1) >> PAGE_SHIFT);
295 		if (err)
296 			dio_warn_stale_pagecache(dio->iocb->ki_filp);
297 	}
298 
299 	inode_dio_end(dio->inode);
300 
301 	if (flags & DIO_COMPLETE_ASYNC) {
302 		/*
303 		 * generic_write_sync expects ki_pos to have been updated
304 		 * already, but the submission path only does this for
305 		 * synchronous I/O.
306 		 */
307 		dio->iocb->ki_pos += transferred;
308 
309 		if (ret > 0 && dio->op == REQ_OP_WRITE)
310 			ret = generic_write_sync(dio->iocb, ret);
311 		dio->iocb->ki_complete(dio->iocb, ret, 0);
312 	}
313 
314 	kmem_cache_free(dio_cache, dio);
315 	return ret;
316 }
317 
318 static void dio_aio_complete_work(struct work_struct *work)
319 {
320 	struct dio *dio = container_of(work, struct dio, complete_work);
321 
322 	dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
323 }
324 
325 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
326 
327 /*
328  * Asynchronous IO callback.
329  */
330 static void dio_bio_end_aio(struct bio *bio)
331 {
332 	struct dio *dio = bio->bi_private;
333 	unsigned long remaining;
334 	unsigned long flags;
335 	bool defer_completion = false;
336 
337 	/* cleanup the bio */
338 	dio_bio_complete(dio, bio);
339 
340 	spin_lock_irqsave(&dio->bio_lock, flags);
341 	remaining = --dio->refcount;
342 	if (remaining == 1 && dio->waiter)
343 		wake_up_process(dio->waiter);
344 	spin_unlock_irqrestore(&dio->bio_lock, flags);
345 
346 	if (remaining == 0) {
347 		/*
348 		 * Defer completion when defer_completion is set or
349 		 * when the inode has pages mapped and this is AIO write.
350 		 * We need to invalidate those pages because there is a
351 		 * chance they contain stale data in the case buffered IO
352 		 * went in between AIO submission and completion into the
353 		 * same region.
354 		 */
355 		if (dio->result)
356 			defer_completion = dio->defer_completion ||
357 					   (dio->op == REQ_OP_WRITE &&
358 					    dio->inode->i_mapping->nrpages);
359 		if (defer_completion) {
360 			INIT_WORK(&dio->complete_work, dio_aio_complete_work);
361 			queue_work(dio->inode->i_sb->s_dio_done_wq,
362 				   &dio->complete_work);
363 		} else {
364 			dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
365 		}
366 	}
367 }
368 
369 /*
370  * The BIO completion handler simply queues the BIO up for the process-context
371  * handler.
372  *
373  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
374  * implement a singly-linked list of completed BIOs, at dio->bio_list.
375  */
376 static void dio_bio_end_io(struct bio *bio)
377 {
378 	struct dio *dio = bio->bi_private;
379 	unsigned long flags;
380 
381 	spin_lock_irqsave(&dio->bio_lock, flags);
382 	bio->bi_private = dio->bio_list;
383 	dio->bio_list = bio;
384 	if (--dio->refcount == 1 && dio->waiter)
385 		wake_up_process(dio->waiter);
386 	spin_unlock_irqrestore(&dio->bio_lock, flags);
387 }
388 
389 static inline void
390 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
391 	      struct block_device *bdev,
392 	      sector_t first_sector, int nr_vecs)
393 {
394 	struct bio *bio;
395 
396 	/*
397 	 * bio_alloc() is guaranteed to return a bio when allowed to sleep and
398 	 * we request a valid number of vectors.
399 	 */
400 	bio = bio_alloc(GFP_KERNEL, nr_vecs);
401 
402 	bio_set_dev(bio, bdev);
403 	bio->bi_iter.bi_sector = first_sector;
404 	bio_set_op_attrs(bio, dio->op, dio->op_flags);
405 	if (dio->is_async)
406 		bio->bi_end_io = dio_bio_end_aio;
407 	else
408 		bio->bi_end_io = dio_bio_end_io;
409 
410 	bio->bi_write_hint = dio->iocb->ki_hint;
411 
412 	sdio->bio = bio;
413 	sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
414 }
415 
416 /*
417  * In the AIO read case we speculatively dirty the pages before starting IO.
418  * During IO completion, any of these pages which happen to have been written
419  * back will be redirtied by bio_check_pages_dirty().
420  *
421  * bios hold a dio reference between submit_bio and ->end_io.
422  */
423 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
424 {
425 	struct bio *bio = sdio->bio;
426 	unsigned long flags;
427 
428 	bio->bi_private = dio;
429 
430 	spin_lock_irqsave(&dio->bio_lock, flags);
431 	dio->refcount++;
432 	spin_unlock_irqrestore(&dio->bio_lock, flags);
433 
434 	if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty)
435 		bio_set_pages_dirty(bio);
436 
437 	dio->bio_disk = bio->bi_disk;
438 
439 	if (sdio->submit_io) {
440 		sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
441 		dio->bio_cookie = BLK_QC_T_NONE;
442 	} else
443 		dio->bio_cookie = submit_bio(bio);
444 
445 	sdio->bio = NULL;
446 	sdio->boundary = 0;
447 	sdio->logical_offset_in_bio = 0;
448 }
449 
450 /*
451  * Release any resources in case of a failure
452  */
453 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
454 {
455 	while (sdio->head < sdio->tail)
456 		put_page(dio->pages[sdio->head++]);
457 }
458 
459 /*
460  * Wait for the next BIO to complete.  Remove it and return it.  NULL is
461  * returned once all BIOs have been completed.  This must only be called once
462  * all bios have been issued so that dio->refcount can only decrease.  This
463  * requires that that the caller hold a reference on the dio.
464  */
465 static struct bio *dio_await_one(struct dio *dio)
466 {
467 	unsigned long flags;
468 	struct bio *bio = NULL;
469 
470 	spin_lock_irqsave(&dio->bio_lock, flags);
471 
472 	/*
473 	 * Wait as long as the list is empty and there are bios in flight.  bio
474 	 * completion drops the count, maybe adds to the list, and wakes while
475 	 * holding the bio_lock so we don't need set_current_state()'s barrier
476 	 * and can call it after testing our condition.
477 	 */
478 	while (dio->refcount > 1 && dio->bio_list == NULL) {
479 		__set_current_state(TASK_UNINTERRUPTIBLE);
480 		dio->waiter = current;
481 		spin_unlock_irqrestore(&dio->bio_lock, flags);
482 		if (!(dio->iocb->ki_flags & IOCB_HIPRI) ||
483 		    !blk_poll(dio->bio_disk->queue, dio->bio_cookie, true))
484 			blk_io_schedule();
485 		/* wake up sets us TASK_RUNNING */
486 		spin_lock_irqsave(&dio->bio_lock, flags);
487 		dio->waiter = NULL;
488 	}
489 	if (dio->bio_list) {
490 		bio = dio->bio_list;
491 		dio->bio_list = bio->bi_private;
492 	}
493 	spin_unlock_irqrestore(&dio->bio_lock, flags);
494 	return bio;
495 }
496 
497 /*
498  * Process one completed BIO.  No locks are held.
499  */
500 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
501 {
502 	blk_status_t err = bio->bi_status;
503 	bool should_dirty = dio->op == REQ_OP_READ && dio->should_dirty;
504 
505 	if (err) {
506 		if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
507 			dio->io_error = -EAGAIN;
508 		else
509 			dio->io_error = -EIO;
510 	}
511 
512 	if (dio->is_async && should_dirty) {
513 		bio_check_pages_dirty(bio);	/* transfers ownership */
514 	} else {
515 		bio_release_pages(bio, should_dirty);
516 		bio_put(bio);
517 	}
518 	return err;
519 }
520 
521 /*
522  * Wait on and process all in-flight BIOs.  This must only be called once
523  * all bios have been issued so that the refcount can only decrease.
524  * This just waits for all bios to make it through dio_bio_complete.  IO
525  * errors are propagated through dio->io_error and should be propagated via
526  * dio_complete().
527  */
528 static void dio_await_completion(struct dio *dio)
529 {
530 	struct bio *bio;
531 	do {
532 		bio = dio_await_one(dio);
533 		if (bio)
534 			dio_bio_complete(dio, bio);
535 	} while (bio);
536 }
537 
538 /*
539  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
540  * to keep the memory consumption sane we periodically reap any completed BIOs
541  * during the BIO generation phase.
542  *
543  * This also helps to limit the peak amount of pinned userspace memory.
544  */
545 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
546 {
547 	int ret = 0;
548 
549 	if (sdio->reap_counter++ >= 64) {
550 		while (dio->bio_list) {
551 			unsigned long flags;
552 			struct bio *bio;
553 			int ret2;
554 
555 			spin_lock_irqsave(&dio->bio_lock, flags);
556 			bio = dio->bio_list;
557 			dio->bio_list = bio->bi_private;
558 			spin_unlock_irqrestore(&dio->bio_lock, flags);
559 			ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
560 			if (ret == 0)
561 				ret = ret2;
562 		}
563 		sdio->reap_counter = 0;
564 	}
565 	return ret;
566 }
567 
568 /*
569  * Create workqueue for deferred direct IO completions. We allocate the
570  * workqueue when it's first needed. This avoids creating workqueue for
571  * filesystems that don't need it and also allows us to create the workqueue
572  * late enough so the we can include s_id in the name of the workqueue.
573  */
574 int sb_init_dio_done_wq(struct super_block *sb)
575 {
576 	struct workqueue_struct *old;
577 	struct workqueue_struct *wq = alloc_workqueue("dio/%s",
578 						      WQ_MEM_RECLAIM, 0,
579 						      sb->s_id);
580 	if (!wq)
581 		return -ENOMEM;
582 	/*
583 	 * This has to be atomic as more DIOs can race to create the workqueue
584 	 */
585 	old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
586 	/* Someone created workqueue before us? Free ours... */
587 	if (old)
588 		destroy_workqueue(wq);
589 	return 0;
590 }
591 
592 static int dio_set_defer_completion(struct dio *dio)
593 {
594 	struct super_block *sb = dio->inode->i_sb;
595 
596 	if (dio->defer_completion)
597 		return 0;
598 	dio->defer_completion = true;
599 	if (!sb->s_dio_done_wq)
600 		return sb_init_dio_done_wq(sb);
601 	return 0;
602 }
603 
604 /*
605  * Call into the fs to map some more disk blocks.  We record the current number
606  * of available blocks at sdio->blocks_available.  These are in units of the
607  * fs blocksize, i_blocksize(inode).
608  *
609  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
610  * it uses the passed inode-relative block number as the file offset, as usual.
611  *
612  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
613  * has remaining to do.  The fs should not map more than this number of blocks.
614  *
615  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
616  * indicate how much contiguous disk space has been made available at
617  * bh->b_blocknr.
618  *
619  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
620  * This isn't very efficient...
621  *
622  * In the case of filesystem holes: the fs may return an arbitrarily-large
623  * hole by returning an appropriate value in b_size and by clearing
624  * buffer_mapped().  However the direct-io code will only process holes one
625  * block at a time - it will repeatedly call get_block() as it walks the hole.
626  */
627 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
628 			   struct buffer_head *map_bh)
629 {
630 	int ret;
631 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
632 	sector_t fs_endblk;	/* Into file, in filesystem-sized blocks */
633 	unsigned long fs_count;	/* Number of filesystem-sized blocks */
634 	int create;
635 	unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
636 	loff_t i_size;
637 
638 	/*
639 	 * If there was a memory error and we've overwritten all the
640 	 * mapped blocks then we can now return that memory error
641 	 */
642 	ret = dio->page_errors;
643 	if (ret == 0) {
644 		BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
645 		fs_startblk = sdio->block_in_file >> sdio->blkfactor;
646 		fs_endblk = (sdio->final_block_in_request - 1) >>
647 					sdio->blkfactor;
648 		fs_count = fs_endblk - fs_startblk + 1;
649 
650 		map_bh->b_state = 0;
651 		map_bh->b_size = fs_count << i_blkbits;
652 
653 		/*
654 		 * For writes that could fill holes inside i_size on a
655 		 * DIO_SKIP_HOLES filesystem we forbid block creations: only
656 		 * overwrites are permitted. We will return early to the caller
657 		 * once we see an unmapped buffer head returned, and the caller
658 		 * will fall back to buffered I/O.
659 		 *
660 		 * Otherwise the decision is left to the get_blocks method,
661 		 * which may decide to handle it or also return an unmapped
662 		 * buffer head.
663 		 */
664 		create = dio->op == REQ_OP_WRITE;
665 		if (dio->flags & DIO_SKIP_HOLES) {
666 			i_size = i_size_read(dio->inode);
667 			if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits)
668 				create = 0;
669 		}
670 
671 		ret = (*sdio->get_block)(dio->inode, fs_startblk,
672 						map_bh, create);
673 
674 		/* Store for completion */
675 		dio->private = map_bh->b_private;
676 
677 		if (ret == 0 && buffer_defer_completion(map_bh))
678 			ret = dio_set_defer_completion(dio);
679 	}
680 	return ret;
681 }
682 
683 /*
684  * There is no bio.  Make one now.
685  */
686 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
687 		sector_t start_sector, struct buffer_head *map_bh)
688 {
689 	sector_t sector;
690 	int ret, nr_pages;
691 
692 	ret = dio_bio_reap(dio, sdio);
693 	if (ret)
694 		goto out;
695 	sector = start_sector << (sdio->blkbits - 9);
696 	nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
697 	BUG_ON(nr_pages <= 0);
698 	dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
699 	sdio->boundary = 0;
700 out:
701 	return ret;
702 }
703 
704 /*
705  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
706  * that was successful then update final_block_in_bio and take a ref against
707  * the just-added page.
708  *
709  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
710  */
711 static inline int dio_bio_add_page(struct dio_submit *sdio)
712 {
713 	int ret;
714 
715 	ret = bio_add_page(sdio->bio, sdio->cur_page,
716 			sdio->cur_page_len, sdio->cur_page_offset);
717 	if (ret == sdio->cur_page_len) {
718 		/*
719 		 * Decrement count only, if we are done with this page
720 		 */
721 		if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
722 			sdio->pages_in_io--;
723 		get_page(sdio->cur_page);
724 		sdio->final_block_in_bio = sdio->cur_page_block +
725 			(sdio->cur_page_len >> sdio->blkbits);
726 		ret = 0;
727 	} else {
728 		ret = 1;
729 	}
730 	return ret;
731 }
732 
733 /*
734  * Put cur_page under IO.  The section of cur_page which is described by
735  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
736  * starts on-disk at cur_page_block.
737  *
738  * We take a ref against the page here (on behalf of its presence in the bio).
739  *
740  * The caller of this function is responsible for removing cur_page from the
741  * dio, and for dropping the refcount which came from that presence.
742  */
743 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
744 		struct buffer_head *map_bh)
745 {
746 	int ret = 0;
747 
748 	if (sdio->bio) {
749 		loff_t cur_offset = sdio->cur_page_fs_offset;
750 		loff_t bio_next_offset = sdio->logical_offset_in_bio +
751 			sdio->bio->bi_iter.bi_size;
752 
753 		/*
754 		 * See whether this new request is contiguous with the old.
755 		 *
756 		 * Btrfs cannot handle having logically non-contiguous requests
757 		 * submitted.  For example if you have
758 		 *
759 		 * Logical:  [0-4095][HOLE][8192-12287]
760 		 * Physical: [0-4095]      [4096-8191]
761 		 *
762 		 * We cannot submit those pages together as one BIO.  So if our
763 		 * current logical offset in the file does not equal what would
764 		 * be the next logical offset in the bio, submit the bio we
765 		 * have.
766 		 */
767 		if (sdio->final_block_in_bio != sdio->cur_page_block ||
768 		    cur_offset != bio_next_offset)
769 			dio_bio_submit(dio, sdio);
770 	}
771 
772 	if (sdio->bio == NULL) {
773 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
774 		if (ret)
775 			goto out;
776 	}
777 
778 	if (dio_bio_add_page(sdio) != 0) {
779 		dio_bio_submit(dio, sdio);
780 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
781 		if (ret == 0) {
782 			ret = dio_bio_add_page(sdio);
783 			BUG_ON(ret != 0);
784 		}
785 	}
786 out:
787 	return ret;
788 }
789 
790 /*
791  * An autonomous function to put a chunk of a page under deferred IO.
792  *
793  * The caller doesn't actually know (or care) whether this piece of page is in
794  * a BIO, or is under IO or whatever.  We just take care of all possible
795  * situations here.  The separation between the logic of do_direct_IO() and
796  * that of submit_page_section() is important for clarity.  Please don't break.
797  *
798  * The chunk of page starts on-disk at blocknr.
799  *
800  * We perform deferred IO, by recording the last-submitted page inside our
801  * private part of the dio structure.  If possible, we just expand the IO
802  * across that page here.
803  *
804  * If that doesn't work out then we put the old page into the bio and add this
805  * page to the dio instead.
806  */
807 static inline int
808 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
809 		    unsigned offset, unsigned len, sector_t blocknr,
810 		    struct buffer_head *map_bh)
811 {
812 	int ret = 0;
813 
814 	if (dio->op == REQ_OP_WRITE) {
815 		/*
816 		 * Read accounting is performed in submit_bio()
817 		 */
818 		task_io_account_write(len);
819 	}
820 
821 	/*
822 	 * Can we just grow the current page's presence in the dio?
823 	 */
824 	if (sdio->cur_page == page &&
825 	    sdio->cur_page_offset + sdio->cur_page_len == offset &&
826 	    sdio->cur_page_block +
827 	    (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
828 		sdio->cur_page_len += len;
829 		goto out;
830 	}
831 
832 	/*
833 	 * If there's a deferred page already there then send it.
834 	 */
835 	if (sdio->cur_page) {
836 		ret = dio_send_cur_page(dio, sdio, map_bh);
837 		put_page(sdio->cur_page);
838 		sdio->cur_page = NULL;
839 		if (ret)
840 			return ret;
841 	}
842 
843 	get_page(page);		/* It is in dio */
844 	sdio->cur_page = page;
845 	sdio->cur_page_offset = offset;
846 	sdio->cur_page_len = len;
847 	sdio->cur_page_block = blocknr;
848 	sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
849 out:
850 	/*
851 	 * If sdio->boundary then we want to schedule the IO now to
852 	 * avoid metadata seeks.
853 	 */
854 	if (sdio->boundary) {
855 		ret = dio_send_cur_page(dio, sdio, map_bh);
856 		if (sdio->bio)
857 			dio_bio_submit(dio, sdio);
858 		put_page(sdio->cur_page);
859 		sdio->cur_page = NULL;
860 	}
861 	return ret;
862 }
863 
864 /*
865  * If we are not writing the entire block and get_block() allocated
866  * the block for us, we need to fill-in the unused portion of the
867  * block with zeros. This happens only if user-buffer, fileoffset or
868  * io length is not filesystem block-size multiple.
869  *
870  * `end' is zero if we're doing the start of the IO, 1 at the end of the
871  * IO.
872  */
873 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
874 		int end, struct buffer_head *map_bh)
875 {
876 	unsigned dio_blocks_per_fs_block;
877 	unsigned this_chunk_blocks;	/* In dio_blocks */
878 	unsigned this_chunk_bytes;
879 	struct page *page;
880 
881 	sdio->start_zero_done = 1;
882 	if (!sdio->blkfactor || !buffer_new(map_bh))
883 		return;
884 
885 	dio_blocks_per_fs_block = 1 << sdio->blkfactor;
886 	this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
887 
888 	if (!this_chunk_blocks)
889 		return;
890 
891 	/*
892 	 * We need to zero out part of an fs block.  It is either at the
893 	 * beginning or the end of the fs block.
894 	 */
895 	if (end)
896 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
897 
898 	this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
899 
900 	page = ZERO_PAGE(0);
901 	if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
902 				sdio->next_block_for_io, map_bh))
903 		return;
904 
905 	sdio->next_block_for_io += this_chunk_blocks;
906 }
907 
908 /*
909  * Walk the user pages, and the file, mapping blocks to disk and generating
910  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
911  * into submit_page_section(), which takes care of the next stage of submission
912  *
913  * Direct IO against a blockdev is different from a file.  Because we can
914  * happily perform page-sized but 512-byte aligned IOs.  It is important that
915  * blockdev IO be able to have fine alignment and large sizes.
916  *
917  * So what we do is to permit the ->get_block function to populate bh.b_size
918  * with the size of IO which is permitted at this offset and this i_blkbits.
919  *
920  * For best results, the blockdev should be set up with 512-byte i_blkbits and
921  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
922  * fine alignment but still allows this function to work in PAGE_SIZE units.
923  */
924 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
925 			struct buffer_head *map_bh)
926 {
927 	const unsigned blkbits = sdio->blkbits;
928 	const unsigned i_blkbits = blkbits + sdio->blkfactor;
929 	int ret = 0;
930 
931 	while (sdio->block_in_file < sdio->final_block_in_request) {
932 		struct page *page;
933 		size_t from, to;
934 
935 		page = dio_get_page(dio, sdio);
936 		if (IS_ERR(page)) {
937 			ret = PTR_ERR(page);
938 			goto out;
939 		}
940 		from = sdio->head ? 0 : sdio->from;
941 		to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
942 		sdio->head++;
943 
944 		while (from < to) {
945 			unsigned this_chunk_bytes;	/* # of bytes mapped */
946 			unsigned this_chunk_blocks;	/* # of blocks */
947 			unsigned u;
948 
949 			if (sdio->blocks_available == 0) {
950 				/*
951 				 * Need to go and map some more disk
952 				 */
953 				unsigned long blkmask;
954 				unsigned long dio_remainder;
955 
956 				ret = get_more_blocks(dio, sdio, map_bh);
957 				if (ret) {
958 					put_page(page);
959 					goto out;
960 				}
961 				if (!buffer_mapped(map_bh))
962 					goto do_holes;
963 
964 				sdio->blocks_available =
965 						map_bh->b_size >> blkbits;
966 				sdio->next_block_for_io =
967 					map_bh->b_blocknr << sdio->blkfactor;
968 				if (buffer_new(map_bh)) {
969 					clean_bdev_aliases(
970 						map_bh->b_bdev,
971 						map_bh->b_blocknr,
972 						map_bh->b_size >> i_blkbits);
973 				}
974 
975 				if (!sdio->blkfactor)
976 					goto do_holes;
977 
978 				blkmask = (1 << sdio->blkfactor) - 1;
979 				dio_remainder = (sdio->block_in_file & blkmask);
980 
981 				/*
982 				 * If we are at the start of IO and that IO
983 				 * starts partway into a fs-block,
984 				 * dio_remainder will be non-zero.  If the IO
985 				 * is a read then we can simply advance the IO
986 				 * cursor to the first block which is to be
987 				 * read.  But if the IO is a write and the
988 				 * block was newly allocated we cannot do that;
989 				 * the start of the fs block must be zeroed out
990 				 * on-disk
991 				 */
992 				if (!buffer_new(map_bh))
993 					sdio->next_block_for_io += dio_remainder;
994 				sdio->blocks_available -= dio_remainder;
995 			}
996 do_holes:
997 			/* Handle holes */
998 			if (!buffer_mapped(map_bh)) {
999 				loff_t i_size_aligned;
1000 
1001 				/* AKPM: eargh, -ENOTBLK is a hack */
1002 				if (dio->op == REQ_OP_WRITE) {
1003 					put_page(page);
1004 					return -ENOTBLK;
1005 				}
1006 
1007 				/*
1008 				 * Be sure to account for a partial block as the
1009 				 * last block in the file
1010 				 */
1011 				i_size_aligned = ALIGN(i_size_read(dio->inode),
1012 							1 << blkbits);
1013 				if (sdio->block_in_file >=
1014 						i_size_aligned >> blkbits) {
1015 					/* We hit eof */
1016 					put_page(page);
1017 					goto out;
1018 				}
1019 				zero_user(page, from, 1 << blkbits);
1020 				sdio->block_in_file++;
1021 				from += 1 << blkbits;
1022 				dio->result += 1 << blkbits;
1023 				goto next_block;
1024 			}
1025 
1026 			/*
1027 			 * If we're performing IO which has an alignment which
1028 			 * is finer than the underlying fs, go check to see if
1029 			 * we must zero out the start of this block.
1030 			 */
1031 			if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1032 				dio_zero_block(dio, sdio, 0, map_bh);
1033 
1034 			/*
1035 			 * Work out, in this_chunk_blocks, how much disk we
1036 			 * can add to this page
1037 			 */
1038 			this_chunk_blocks = sdio->blocks_available;
1039 			u = (to - from) >> blkbits;
1040 			if (this_chunk_blocks > u)
1041 				this_chunk_blocks = u;
1042 			u = sdio->final_block_in_request - sdio->block_in_file;
1043 			if (this_chunk_blocks > u)
1044 				this_chunk_blocks = u;
1045 			this_chunk_bytes = this_chunk_blocks << blkbits;
1046 			BUG_ON(this_chunk_bytes == 0);
1047 
1048 			if (this_chunk_blocks == sdio->blocks_available)
1049 				sdio->boundary = buffer_boundary(map_bh);
1050 			ret = submit_page_section(dio, sdio, page,
1051 						  from,
1052 						  this_chunk_bytes,
1053 						  sdio->next_block_for_io,
1054 						  map_bh);
1055 			if (ret) {
1056 				put_page(page);
1057 				goto out;
1058 			}
1059 			sdio->next_block_for_io += this_chunk_blocks;
1060 
1061 			sdio->block_in_file += this_chunk_blocks;
1062 			from += this_chunk_bytes;
1063 			dio->result += this_chunk_bytes;
1064 			sdio->blocks_available -= this_chunk_blocks;
1065 next_block:
1066 			BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1067 			if (sdio->block_in_file == sdio->final_block_in_request)
1068 				break;
1069 		}
1070 
1071 		/* Drop the ref which was taken in get_user_pages() */
1072 		put_page(page);
1073 	}
1074 out:
1075 	return ret;
1076 }
1077 
1078 static inline int drop_refcount(struct dio *dio)
1079 {
1080 	int ret2;
1081 	unsigned long flags;
1082 
1083 	/*
1084 	 * Sync will always be dropping the final ref and completing the
1085 	 * operation.  AIO can if it was a broken operation described above or
1086 	 * in fact if all the bios race to complete before we get here.  In
1087 	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1088 	 * return code that the caller will hand to ->complete().
1089 	 *
1090 	 * This is managed by the bio_lock instead of being an atomic_t so that
1091 	 * completion paths can drop their ref and use the remaining count to
1092 	 * decide to wake the submission path atomically.
1093 	 */
1094 	spin_lock_irqsave(&dio->bio_lock, flags);
1095 	ret2 = --dio->refcount;
1096 	spin_unlock_irqrestore(&dio->bio_lock, flags);
1097 	return ret2;
1098 }
1099 
1100 /*
1101  * This is a library function for use by filesystem drivers.
1102  *
1103  * The locking rules are governed by the flags parameter:
1104  *  - if the flags value contains DIO_LOCKING we use a fancy locking
1105  *    scheme for dumb filesystems.
1106  *    For writes this function is called under i_mutex and returns with
1107  *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1108  *    taken and dropped again before returning.
1109  *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1110  *    internal locking but rather rely on the filesystem to synchronize
1111  *    direct I/O reads/writes versus each other and truncate.
1112  *
1113  * To help with locking against truncate we incremented the i_dio_count
1114  * counter before starting direct I/O, and decrement it once we are done.
1115  * Truncate can wait for it to reach zero to provide exclusion.  It is
1116  * expected that filesystem provide exclusion between new direct I/O
1117  * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1118  * but other filesystems need to take care of this on their own.
1119  *
1120  * NOTE: if you pass "sdio" to anything by pointer make sure that function
1121  * is always inlined. Otherwise gcc is unable to split the structure into
1122  * individual fields and will generate much worse code. This is important
1123  * for the whole file.
1124  */
1125 static inline ssize_t
1126 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1127 		      struct block_device *bdev, struct iov_iter *iter,
1128 		      get_block_t get_block, dio_iodone_t end_io,
1129 		      dio_submit_t submit_io, int flags)
1130 {
1131 	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
1132 	unsigned blkbits = i_blkbits;
1133 	unsigned blocksize_mask = (1 << blkbits) - 1;
1134 	ssize_t retval = -EINVAL;
1135 	const size_t count = iov_iter_count(iter);
1136 	loff_t offset = iocb->ki_pos;
1137 	const loff_t end = offset + count;
1138 	struct dio *dio;
1139 	struct dio_submit sdio = { 0, };
1140 	struct buffer_head map_bh = { 0, };
1141 	struct blk_plug plug;
1142 	unsigned long align = offset | iov_iter_alignment(iter);
1143 
1144 	/*
1145 	 * Avoid references to bdev if not absolutely needed to give
1146 	 * the early prefetch in the caller enough time.
1147 	 */
1148 
1149 	if (align & blocksize_mask) {
1150 		if (bdev)
1151 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
1152 		blocksize_mask = (1 << blkbits) - 1;
1153 		if (align & blocksize_mask)
1154 			goto out;
1155 	}
1156 
1157 	/* watch out for a 0 len io from a tricksy fs */
1158 	if (iov_iter_rw(iter) == READ && !count)
1159 		return 0;
1160 
1161 	dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1162 	retval = -ENOMEM;
1163 	if (!dio)
1164 		goto out;
1165 	/*
1166 	 * Believe it or not, zeroing out the page array caused a .5%
1167 	 * performance regression in a database benchmark.  So, we take
1168 	 * care to only zero out what's needed.
1169 	 */
1170 	memset(dio, 0, offsetof(struct dio, pages));
1171 
1172 	dio->flags = flags;
1173 	if (dio->flags & DIO_LOCKING) {
1174 		if (iov_iter_rw(iter) == READ) {
1175 			struct address_space *mapping =
1176 					iocb->ki_filp->f_mapping;
1177 
1178 			/* will be released by direct_io_worker */
1179 			inode_lock(inode);
1180 
1181 			retval = filemap_write_and_wait_range(mapping, offset,
1182 							      end - 1);
1183 			if (retval) {
1184 				inode_unlock(inode);
1185 				kmem_cache_free(dio_cache, dio);
1186 				goto out;
1187 			}
1188 		}
1189 	}
1190 
1191 	/* Once we sampled i_size check for reads beyond EOF */
1192 	dio->i_size = i_size_read(inode);
1193 	if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1194 		if (dio->flags & DIO_LOCKING)
1195 			inode_unlock(inode);
1196 		kmem_cache_free(dio_cache, dio);
1197 		retval = 0;
1198 		goto out;
1199 	}
1200 
1201 	/*
1202 	 * For file extending writes updating i_size before data writeouts
1203 	 * complete can expose uninitialized blocks in dumb filesystems.
1204 	 * In that case we need to wait for I/O completion even if asked
1205 	 * for an asynchronous write.
1206 	 */
1207 	if (is_sync_kiocb(iocb))
1208 		dio->is_async = false;
1209 	else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1210 		dio->is_async = false;
1211 	else
1212 		dio->is_async = true;
1213 
1214 	dio->inode = inode;
1215 	if (iov_iter_rw(iter) == WRITE) {
1216 		dio->op = REQ_OP_WRITE;
1217 		dio->op_flags = REQ_SYNC | REQ_IDLE;
1218 		if (iocb->ki_flags & IOCB_NOWAIT)
1219 			dio->op_flags |= REQ_NOWAIT;
1220 	} else {
1221 		dio->op = REQ_OP_READ;
1222 	}
1223 	if (iocb->ki_flags & IOCB_HIPRI)
1224 		dio->op_flags |= REQ_HIPRI;
1225 
1226 	/*
1227 	 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1228 	 * so that we can call ->fsync.
1229 	 */
1230 	if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1231 		retval = 0;
1232 		if (iocb->ki_flags & IOCB_DSYNC)
1233 			retval = dio_set_defer_completion(dio);
1234 		else if (!dio->inode->i_sb->s_dio_done_wq) {
1235 			/*
1236 			 * In case of AIO write racing with buffered read we
1237 			 * need to defer completion. We can't decide this now,
1238 			 * however the workqueue needs to be initialized here.
1239 			 */
1240 			retval = sb_init_dio_done_wq(dio->inode->i_sb);
1241 		}
1242 		if (retval) {
1243 			/*
1244 			 * We grab i_mutex only for reads so we don't have
1245 			 * to release it here
1246 			 */
1247 			kmem_cache_free(dio_cache, dio);
1248 			goto out;
1249 		}
1250 	}
1251 
1252 	/*
1253 	 * Will be decremented at I/O completion time.
1254 	 */
1255 	inode_dio_begin(inode);
1256 
1257 	retval = 0;
1258 	sdio.blkbits = blkbits;
1259 	sdio.blkfactor = i_blkbits - blkbits;
1260 	sdio.block_in_file = offset >> blkbits;
1261 
1262 	sdio.get_block = get_block;
1263 	dio->end_io = end_io;
1264 	sdio.submit_io = submit_io;
1265 	sdio.final_block_in_bio = -1;
1266 	sdio.next_block_for_io = -1;
1267 
1268 	dio->iocb = iocb;
1269 
1270 	spin_lock_init(&dio->bio_lock);
1271 	dio->refcount = 1;
1272 
1273 	dio->should_dirty = iter_is_iovec(iter) && iov_iter_rw(iter) == READ;
1274 	sdio.iter = iter;
1275 	sdio.final_block_in_request = end >> blkbits;
1276 
1277 	/*
1278 	 * In case of non-aligned buffers, we may need 2 more
1279 	 * pages since we need to zero out first and last block.
1280 	 */
1281 	if (unlikely(sdio.blkfactor))
1282 		sdio.pages_in_io = 2;
1283 
1284 	sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1285 
1286 	blk_start_plug(&plug);
1287 
1288 	retval = do_direct_IO(dio, &sdio, &map_bh);
1289 	if (retval)
1290 		dio_cleanup(dio, &sdio);
1291 
1292 	if (retval == -ENOTBLK) {
1293 		/*
1294 		 * The remaining part of the request will be
1295 		 * be handled by buffered I/O when we return
1296 		 */
1297 		retval = 0;
1298 	}
1299 	/*
1300 	 * There may be some unwritten disk at the end of a part-written
1301 	 * fs-block-sized block.  Go zero that now.
1302 	 */
1303 	dio_zero_block(dio, &sdio, 1, &map_bh);
1304 
1305 	if (sdio.cur_page) {
1306 		ssize_t ret2;
1307 
1308 		ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1309 		if (retval == 0)
1310 			retval = ret2;
1311 		put_page(sdio.cur_page);
1312 		sdio.cur_page = NULL;
1313 	}
1314 	if (sdio.bio)
1315 		dio_bio_submit(dio, &sdio);
1316 
1317 	blk_finish_plug(&plug);
1318 
1319 	/*
1320 	 * It is possible that, we return short IO due to end of file.
1321 	 * In that case, we need to release all the pages we got hold on.
1322 	 */
1323 	dio_cleanup(dio, &sdio);
1324 
1325 	/*
1326 	 * All block lookups have been performed. For READ requests
1327 	 * we can let i_mutex go now that its achieved its purpose
1328 	 * of protecting us from looking up uninitialized blocks.
1329 	 */
1330 	if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1331 		inode_unlock(dio->inode);
1332 
1333 	/*
1334 	 * The only time we want to leave bios in flight is when a successful
1335 	 * partial aio read or full aio write have been setup.  In that case
1336 	 * bio completion will call aio_complete.  The only time it's safe to
1337 	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1338 	 * This had *better* be the only place that raises -EIOCBQUEUED.
1339 	 */
1340 	BUG_ON(retval == -EIOCBQUEUED);
1341 	if (dio->is_async && retval == 0 && dio->result &&
1342 	    (iov_iter_rw(iter) == READ || dio->result == count))
1343 		retval = -EIOCBQUEUED;
1344 	else
1345 		dio_await_completion(dio);
1346 
1347 	if (drop_refcount(dio) == 0) {
1348 		retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
1349 	} else
1350 		BUG_ON(retval != -EIOCBQUEUED);
1351 
1352 out:
1353 	return retval;
1354 }
1355 
1356 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1357 			     struct block_device *bdev, struct iov_iter *iter,
1358 			     get_block_t get_block,
1359 			     dio_iodone_t end_io, dio_submit_t submit_io,
1360 			     int flags)
1361 {
1362 	/*
1363 	 * The block device state is needed in the end to finally
1364 	 * submit everything.  Since it's likely to be cache cold
1365 	 * prefetch it here as first thing to hide some of the
1366 	 * latency.
1367 	 *
1368 	 * Attempt to prefetch the pieces we likely need later.
1369 	 */
1370 	prefetch(&bdev->bd_disk->part_tbl);
1371 	prefetch(bdev->bd_queue);
1372 	prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1373 
1374 	return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block,
1375 				     end_io, submit_io, flags);
1376 }
1377 
1378 EXPORT_SYMBOL(__blockdev_direct_IO);
1379 
1380 static __init int dio_init(void)
1381 {
1382 	dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1383 	return 0;
1384 }
1385 module_init(dio_init)
1386