1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/direct-io.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * O_DIRECT 8 * 9 * 04Jul2002 Andrew Morton 10 * Initial version 11 * 11Sep2002 janetinc@us.ibm.com 12 * added readv/writev support. 13 * 29Oct2002 Andrew Morton 14 * rewrote bio_add_page() support. 15 * 30Oct2002 pbadari@us.ibm.com 16 * added support for non-aligned IO. 17 * 06Nov2002 pbadari@us.ibm.com 18 * added asynchronous IO support. 19 * 21Jul2003 nathans@sgi.com 20 * added IO completion notifier. 21 */ 22 23 #include <linux/kernel.h> 24 #include <linux/module.h> 25 #include <linux/types.h> 26 #include <linux/fs.h> 27 #include <linux/mm.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/pagemap.h> 31 #include <linux/task_io_accounting_ops.h> 32 #include <linux/bio.h> 33 #include <linux/wait.h> 34 #include <linux/err.h> 35 #include <linux/blkdev.h> 36 #include <linux/buffer_head.h> 37 #include <linux/rwsem.h> 38 #include <linux/uio.h> 39 #include <linux/atomic.h> 40 #include <linux/prefetch.h> 41 42 #include "internal.h" 43 44 /* 45 * How many user pages to map in one call to get_user_pages(). This determines 46 * the size of a structure in the slab cache 47 */ 48 #define DIO_PAGES 64 49 50 /* 51 * Flags for dio_complete() 52 */ 53 #define DIO_COMPLETE_ASYNC 0x01 /* This is async IO */ 54 #define DIO_COMPLETE_INVALIDATE 0x02 /* Can invalidate pages */ 55 56 /* 57 * This code generally works in units of "dio_blocks". A dio_block is 58 * somewhere between the hard sector size and the filesystem block size. it 59 * is determined on a per-invocation basis. When talking to the filesystem 60 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity 61 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted 62 * to bio_block quantities by shifting left by blkfactor. 63 * 64 * If blkfactor is zero then the user's request was aligned to the filesystem's 65 * blocksize. 66 */ 67 68 /* dio_state only used in the submission path */ 69 70 struct dio_submit { 71 struct bio *bio; /* bio under assembly */ 72 unsigned blkbits; /* doesn't change */ 73 unsigned blkfactor; /* When we're using an alignment which 74 is finer than the filesystem's soft 75 blocksize, this specifies how much 76 finer. blkfactor=2 means 1/4-block 77 alignment. Does not change */ 78 unsigned start_zero_done; /* flag: sub-blocksize zeroing has 79 been performed at the start of a 80 write */ 81 int pages_in_io; /* approximate total IO pages */ 82 sector_t block_in_file; /* Current offset into the underlying 83 file in dio_block units. */ 84 unsigned blocks_available; /* At block_in_file. changes */ 85 int reap_counter; /* rate limit reaping */ 86 sector_t final_block_in_request;/* doesn't change */ 87 int boundary; /* prev block is at a boundary */ 88 get_block_t *get_block; /* block mapping function */ 89 dio_submit_t *submit_io; /* IO submition function */ 90 91 loff_t logical_offset_in_bio; /* current first logical block in bio */ 92 sector_t final_block_in_bio; /* current final block in bio + 1 */ 93 sector_t next_block_for_io; /* next block to be put under IO, 94 in dio_blocks units */ 95 96 /* 97 * Deferred addition of a page to the dio. These variables are 98 * private to dio_send_cur_page(), submit_page_section() and 99 * dio_bio_add_page(). 100 */ 101 struct page *cur_page; /* The page */ 102 unsigned cur_page_offset; /* Offset into it, in bytes */ 103 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ 104 sector_t cur_page_block; /* Where it starts */ 105 loff_t cur_page_fs_offset; /* Offset in file */ 106 107 struct iov_iter *iter; 108 /* 109 * Page queue. These variables belong to dio_refill_pages() and 110 * dio_get_page(). 111 */ 112 unsigned head; /* next page to process */ 113 unsigned tail; /* last valid page + 1 */ 114 size_t from, to; 115 }; 116 117 /* dio_state communicated between submission path and end_io */ 118 struct dio { 119 int flags; /* doesn't change */ 120 int op; 121 int op_flags; 122 blk_qc_t bio_cookie; 123 struct gendisk *bio_disk; 124 struct inode *inode; 125 loff_t i_size; /* i_size when submitted */ 126 dio_iodone_t *end_io; /* IO completion function */ 127 128 void *private; /* copy from map_bh.b_private */ 129 130 /* BIO completion state */ 131 spinlock_t bio_lock; /* protects BIO fields below */ 132 int page_errors; /* errno from get_user_pages() */ 133 int is_async; /* is IO async ? */ 134 bool defer_completion; /* defer AIO completion to workqueue? */ 135 bool should_dirty; /* if pages should be dirtied */ 136 int io_error; /* IO error in completion path */ 137 unsigned long refcount; /* direct_io_worker() and bios */ 138 struct bio *bio_list; /* singly linked via bi_private */ 139 struct task_struct *waiter; /* waiting task (NULL if none) */ 140 141 /* AIO related stuff */ 142 struct kiocb *iocb; /* kiocb */ 143 ssize_t result; /* IO result */ 144 145 /* 146 * pages[] (and any fields placed after it) are not zeroed out at 147 * allocation time. Don't add new fields after pages[] unless you 148 * wish that they not be zeroed. 149 */ 150 union { 151 struct page *pages[DIO_PAGES]; /* page buffer */ 152 struct work_struct complete_work;/* deferred AIO completion */ 153 }; 154 } ____cacheline_aligned_in_smp; 155 156 static struct kmem_cache *dio_cache __read_mostly; 157 158 /* 159 * How many pages are in the queue? 160 */ 161 static inline unsigned dio_pages_present(struct dio_submit *sdio) 162 { 163 return sdio->tail - sdio->head; 164 } 165 166 /* 167 * Go grab and pin some userspace pages. Typically we'll get 64 at a time. 168 */ 169 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio) 170 { 171 ssize_t ret; 172 173 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES, 174 &sdio->from); 175 176 if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) { 177 struct page *page = ZERO_PAGE(0); 178 /* 179 * A memory fault, but the filesystem has some outstanding 180 * mapped blocks. We need to use those blocks up to avoid 181 * leaking stale data in the file. 182 */ 183 if (dio->page_errors == 0) 184 dio->page_errors = ret; 185 get_page(page); 186 dio->pages[0] = page; 187 sdio->head = 0; 188 sdio->tail = 1; 189 sdio->from = 0; 190 sdio->to = PAGE_SIZE; 191 return 0; 192 } 193 194 if (ret >= 0) { 195 iov_iter_advance(sdio->iter, ret); 196 ret += sdio->from; 197 sdio->head = 0; 198 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE; 199 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1; 200 return 0; 201 } 202 return ret; 203 } 204 205 /* 206 * Get another userspace page. Returns an ERR_PTR on error. Pages are 207 * buffered inside the dio so that we can call get_user_pages() against a 208 * decent number of pages, less frequently. To provide nicer use of the 209 * L1 cache. 210 */ 211 static inline struct page *dio_get_page(struct dio *dio, 212 struct dio_submit *sdio) 213 { 214 if (dio_pages_present(sdio) == 0) { 215 int ret; 216 217 ret = dio_refill_pages(dio, sdio); 218 if (ret) 219 return ERR_PTR(ret); 220 BUG_ON(dio_pages_present(sdio) == 0); 221 } 222 return dio->pages[sdio->head]; 223 } 224 225 /* 226 * dio_complete() - called when all DIO BIO I/O has been completed 227 * 228 * This drops i_dio_count, lets interested parties know that a DIO operation 229 * has completed, and calculates the resulting return code for the operation. 230 * 231 * It lets the filesystem know if it registered an interest earlier via 232 * get_block. Pass the private field of the map buffer_head so that 233 * filesystems can use it to hold additional state between get_block calls and 234 * dio_complete. 235 */ 236 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags) 237 { 238 loff_t offset = dio->iocb->ki_pos; 239 ssize_t transferred = 0; 240 int err; 241 242 /* 243 * AIO submission can race with bio completion to get here while 244 * expecting to have the last io completed by bio completion. 245 * In that case -EIOCBQUEUED is in fact not an error we want 246 * to preserve through this call. 247 */ 248 if (ret == -EIOCBQUEUED) 249 ret = 0; 250 251 if (dio->result) { 252 transferred = dio->result; 253 254 /* Check for short read case */ 255 if ((dio->op == REQ_OP_READ) && 256 ((offset + transferred) > dio->i_size)) 257 transferred = dio->i_size - offset; 258 /* ignore EFAULT if some IO has been done */ 259 if (unlikely(ret == -EFAULT) && transferred) 260 ret = 0; 261 } 262 263 if (ret == 0) 264 ret = dio->page_errors; 265 if (ret == 0) 266 ret = dio->io_error; 267 if (ret == 0) 268 ret = transferred; 269 270 if (dio->end_io) { 271 // XXX: ki_pos?? 272 err = dio->end_io(dio->iocb, offset, ret, dio->private); 273 if (err) 274 ret = err; 275 } 276 277 /* 278 * Try again to invalidate clean pages which might have been cached by 279 * non-direct readahead, or faulted in by get_user_pages() if the source 280 * of the write was an mmap'ed region of the file we're writing. Either 281 * one is a pretty crazy thing to do, so we don't support it 100%. If 282 * this invalidation fails, tough, the write still worked... 283 * 284 * And this page cache invalidation has to be after dio->end_io(), as 285 * some filesystems convert unwritten extents to real allocations in 286 * end_io() when necessary, otherwise a racing buffer read would cache 287 * zeros from unwritten extents. 288 */ 289 if (flags & DIO_COMPLETE_INVALIDATE && 290 ret > 0 && dio->op == REQ_OP_WRITE && 291 dio->inode->i_mapping->nrpages) { 292 err = invalidate_inode_pages2_range(dio->inode->i_mapping, 293 offset >> PAGE_SHIFT, 294 (offset + ret - 1) >> PAGE_SHIFT); 295 if (err) 296 dio_warn_stale_pagecache(dio->iocb->ki_filp); 297 } 298 299 inode_dio_end(dio->inode); 300 301 if (flags & DIO_COMPLETE_ASYNC) { 302 /* 303 * generic_write_sync expects ki_pos to have been updated 304 * already, but the submission path only does this for 305 * synchronous I/O. 306 */ 307 dio->iocb->ki_pos += transferred; 308 309 if (ret > 0 && dio->op == REQ_OP_WRITE) 310 ret = generic_write_sync(dio->iocb, ret); 311 dio->iocb->ki_complete(dio->iocb, ret, 0); 312 } 313 314 kmem_cache_free(dio_cache, dio); 315 return ret; 316 } 317 318 static void dio_aio_complete_work(struct work_struct *work) 319 { 320 struct dio *dio = container_of(work, struct dio, complete_work); 321 322 dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE); 323 } 324 325 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio); 326 327 /* 328 * Asynchronous IO callback. 329 */ 330 static void dio_bio_end_aio(struct bio *bio) 331 { 332 struct dio *dio = bio->bi_private; 333 unsigned long remaining; 334 unsigned long flags; 335 bool defer_completion = false; 336 337 /* cleanup the bio */ 338 dio_bio_complete(dio, bio); 339 340 spin_lock_irqsave(&dio->bio_lock, flags); 341 remaining = --dio->refcount; 342 if (remaining == 1 && dio->waiter) 343 wake_up_process(dio->waiter); 344 spin_unlock_irqrestore(&dio->bio_lock, flags); 345 346 if (remaining == 0) { 347 /* 348 * Defer completion when defer_completion is set or 349 * when the inode has pages mapped and this is AIO write. 350 * We need to invalidate those pages because there is a 351 * chance they contain stale data in the case buffered IO 352 * went in between AIO submission and completion into the 353 * same region. 354 */ 355 if (dio->result) 356 defer_completion = dio->defer_completion || 357 (dio->op == REQ_OP_WRITE && 358 dio->inode->i_mapping->nrpages); 359 if (defer_completion) { 360 INIT_WORK(&dio->complete_work, dio_aio_complete_work); 361 queue_work(dio->inode->i_sb->s_dio_done_wq, 362 &dio->complete_work); 363 } else { 364 dio_complete(dio, 0, DIO_COMPLETE_ASYNC); 365 } 366 } 367 } 368 369 /* 370 * The BIO completion handler simply queues the BIO up for the process-context 371 * handler. 372 * 373 * During I/O bi_private points at the dio. After I/O, bi_private is used to 374 * implement a singly-linked list of completed BIOs, at dio->bio_list. 375 */ 376 static void dio_bio_end_io(struct bio *bio) 377 { 378 struct dio *dio = bio->bi_private; 379 unsigned long flags; 380 381 spin_lock_irqsave(&dio->bio_lock, flags); 382 bio->bi_private = dio->bio_list; 383 dio->bio_list = bio; 384 if (--dio->refcount == 1 && dio->waiter) 385 wake_up_process(dio->waiter); 386 spin_unlock_irqrestore(&dio->bio_lock, flags); 387 } 388 389 static inline void 390 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio, 391 struct block_device *bdev, 392 sector_t first_sector, int nr_vecs) 393 { 394 struct bio *bio; 395 396 /* 397 * bio_alloc() is guaranteed to return a bio when allowed to sleep and 398 * we request a valid number of vectors. 399 */ 400 bio = bio_alloc(GFP_KERNEL, nr_vecs); 401 402 bio_set_dev(bio, bdev); 403 bio->bi_iter.bi_sector = first_sector; 404 bio_set_op_attrs(bio, dio->op, dio->op_flags); 405 if (dio->is_async) 406 bio->bi_end_io = dio_bio_end_aio; 407 else 408 bio->bi_end_io = dio_bio_end_io; 409 410 bio->bi_write_hint = dio->iocb->ki_hint; 411 412 sdio->bio = bio; 413 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset; 414 } 415 416 /* 417 * In the AIO read case we speculatively dirty the pages before starting IO. 418 * During IO completion, any of these pages which happen to have been written 419 * back will be redirtied by bio_check_pages_dirty(). 420 * 421 * bios hold a dio reference between submit_bio and ->end_io. 422 */ 423 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio) 424 { 425 struct bio *bio = sdio->bio; 426 unsigned long flags; 427 428 bio->bi_private = dio; 429 430 spin_lock_irqsave(&dio->bio_lock, flags); 431 dio->refcount++; 432 spin_unlock_irqrestore(&dio->bio_lock, flags); 433 434 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) 435 bio_set_pages_dirty(bio); 436 437 dio->bio_disk = bio->bi_disk; 438 439 if (sdio->submit_io) { 440 sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio); 441 dio->bio_cookie = BLK_QC_T_NONE; 442 } else 443 dio->bio_cookie = submit_bio(bio); 444 445 sdio->bio = NULL; 446 sdio->boundary = 0; 447 sdio->logical_offset_in_bio = 0; 448 } 449 450 /* 451 * Release any resources in case of a failure 452 */ 453 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio) 454 { 455 while (sdio->head < sdio->tail) 456 put_page(dio->pages[sdio->head++]); 457 } 458 459 /* 460 * Wait for the next BIO to complete. Remove it and return it. NULL is 461 * returned once all BIOs have been completed. This must only be called once 462 * all bios have been issued so that dio->refcount can only decrease. This 463 * requires that that the caller hold a reference on the dio. 464 */ 465 static struct bio *dio_await_one(struct dio *dio) 466 { 467 unsigned long flags; 468 struct bio *bio = NULL; 469 470 spin_lock_irqsave(&dio->bio_lock, flags); 471 472 /* 473 * Wait as long as the list is empty and there are bios in flight. bio 474 * completion drops the count, maybe adds to the list, and wakes while 475 * holding the bio_lock so we don't need set_current_state()'s barrier 476 * and can call it after testing our condition. 477 */ 478 while (dio->refcount > 1 && dio->bio_list == NULL) { 479 __set_current_state(TASK_UNINTERRUPTIBLE); 480 dio->waiter = current; 481 spin_unlock_irqrestore(&dio->bio_lock, flags); 482 if (!(dio->iocb->ki_flags & IOCB_HIPRI) || 483 !blk_poll(dio->bio_disk->queue, dio->bio_cookie, true)) 484 blk_io_schedule(); 485 /* wake up sets us TASK_RUNNING */ 486 spin_lock_irqsave(&dio->bio_lock, flags); 487 dio->waiter = NULL; 488 } 489 if (dio->bio_list) { 490 bio = dio->bio_list; 491 dio->bio_list = bio->bi_private; 492 } 493 spin_unlock_irqrestore(&dio->bio_lock, flags); 494 return bio; 495 } 496 497 /* 498 * Process one completed BIO. No locks are held. 499 */ 500 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio) 501 { 502 blk_status_t err = bio->bi_status; 503 bool should_dirty = dio->op == REQ_OP_READ && dio->should_dirty; 504 505 if (err) { 506 if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT)) 507 dio->io_error = -EAGAIN; 508 else 509 dio->io_error = -EIO; 510 } 511 512 if (dio->is_async && should_dirty) { 513 bio_check_pages_dirty(bio); /* transfers ownership */ 514 } else { 515 bio_release_pages(bio, should_dirty); 516 bio_put(bio); 517 } 518 return err; 519 } 520 521 /* 522 * Wait on and process all in-flight BIOs. This must only be called once 523 * all bios have been issued so that the refcount can only decrease. 524 * This just waits for all bios to make it through dio_bio_complete. IO 525 * errors are propagated through dio->io_error and should be propagated via 526 * dio_complete(). 527 */ 528 static void dio_await_completion(struct dio *dio) 529 { 530 struct bio *bio; 531 do { 532 bio = dio_await_one(dio); 533 if (bio) 534 dio_bio_complete(dio, bio); 535 } while (bio); 536 } 537 538 /* 539 * A really large O_DIRECT read or write can generate a lot of BIOs. So 540 * to keep the memory consumption sane we periodically reap any completed BIOs 541 * during the BIO generation phase. 542 * 543 * This also helps to limit the peak amount of pinned userspace memory. 544 */ 545 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio) 546 { 547 int ret = 0; 548 549 if (sdio->reap_counter++ >= 64) { 550 while (dio->bio_list) { 551 unsigned long flags; 552 struct bio *bio; 553 int ret2; 554 555 spin_lock_irqsave(&dio->bio_lock, flags); 556 bio = dio->bio_list; 557 dio->bio_list = bio->bi_private; 558 spin_unlock_irqrestore(&dio->bio_lock, flags); 559 ret2 = blk_status_to_errno(dio_bio_complete(dio, bio)); 560 if (ret == 0) 561 ret = ret2; 562 } 563 sdio->reap_counter = 0; 564 } 565 return ret; 566 } 567 568 /* 569 * Create workqueue for deferred direct IO completions. We allocate the 570 * workqueue when it's first needed. This avoids creating workqueue for 571 * filesystems that don't need it and also allows us to create the workqueue 572 * late enough so the we can include s_id in the name of the workqueue. 573 */ 574 int sb_init_dio_done_wq(struct super_block *sb) 575 { 576 struct workqueue_struct *old; 577 struct workqueue_struct *wq = alloc_workqueue("dio/%s", 578 WQ_MEM_RECLAIM, 0, 579 sb->s_id); 580 if (!wq) 581 return -ENOMEM; 582 /* 583 * This has to be atomic as more DIOs can race to create the workqueue 584 */ 585 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq); 586 /* Someone created workqueue before us? Free ours... */ 587 if (old) 588 destroy_workqueue(wq); 589 return 0; 590 } 591 592 static int dio_set_defer_completion(struct dio *dio) 593 { 594 struct super_block *sb = dio->inode->i_sb; 595 596 if (dio->defer_completion) 597 return 0; 598 dio->defer_completion = true; 599 if (!sb->s_dio_done_wq) 600 return sb_init_dio_done_wq(sb); 601 return 0; 602 } 603 604 /* 605 * Call into the fs to map some more disk blocks. We record the current number 606 * of available blocks at sdio->blocks_available. These are in units of the 607 * fs blocksize, i_blocksize(inode). 608 * 609 * The fs is allowed to map lots of blocks at once. If it wants to do that, 610 * it uses the passed inode-relative block number as the file offset, as usual. 611 * 612 * get_block() is passed the number of i_blkbits-sized blocks which direct_io 613 * has remaining to do. The fs should not map more than this number of blocks. 614 * 615 * If the fs has mapped a lot of blocks, it should populate bh->b_size to 616 * indicate how much contiguous disk space has been made available at 617 * bh->b_blocknr. 618 * 619 * If *any* of the mapped blocks are new, then the fs must set buffer_new(). 620 * This isn't very efficient... 621 * 622 * In the case of filesystem holes: the fs may return an arbitrarily-large 623 * hole by returning an appropriate value in b_size and by clearing 624 * buffer_mapped(). However the direct-io code will only process holes one 625 * block at a time - it will repeatedly call get_block() as it walks the hole. 626 */ 627 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio, 628 struct buffer_head *map_bh) 629 { 630 int ret; 631 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ 632 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */ 633 unsigned long fs_count; /* Number of filesystem-sized blocks */ 634 int create; 635 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor; 636 loff_t i_size; 637 638 /* 639 * If there was a memory error and we've overwritten all the 640 * mapped blocks then we can now return that memory error 641 */ 642 ret = dio->page_errors; 643 if (ret == 0) { 644 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request); 645 fs_startblk = sdio->block_in_file >> sdio->blkfactor; 646 fs_endblk = (sdio->final_block_in_request - 1) >> 647 sdio->blkfactor; 648 fs_count = fs_endblk - fs_startblk + 1; 649 650 map_bh->b_state = 0; 651 map_bh->b_size = fs_count << i_blkbits; 652 653 /* 654 * For writes that could fill holes inside i_size on a 655 * DIO_SKIP_HOLES filesystem we forbid block creations: only 656 * overwrites are permitted. We will return early to the caller 657 * once we see an unmapped buffer head returned, and the caller 658 * will fall back to buffered I/O. 659 * 660 * Otherwise the decision is left to the get_blocks method, 661 * which may decide to handle it or also return an unmapped 662 * buffer head. 663 */ 664 create = dio->op == REQ_OP_WRITE; 665 if (dio->flags & DIO_SKIP_HOLES) { 666 i_size = i_size_read(dio->inode); 667 if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits) 668 create = 0; 669 } 670 671 ret = (*sdio->get_block)(dio->inode, fs_startblk, 672 map_bh, create); 673 674 /* Store for completion */ 675 dio->private = map_bh->b_private; 676 677 if (ret == 0 && buffer_defer_completion(map_bh)) 678 ret = dio_set_defer_completion(dio); 679 } 680 return ret; 681 } 682 683 /* 684 * There is no bio. Make one now. 685 */ 686 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio, 687 sector_t start_sector, struct buffer_head *map_bh) 688 { 689 sector_t sector; 690 int ret, nr_pages; 691 692 ret = dio_bio_reap(dio, sdio); 693 if (ret) 694 goto out; 695 sector = start_sector << (sdio->blkbits - 9); 696 nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES); 697 BUG_ON(nr_pages <= 0); 698 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages); 699 sdio->boundary = 0; 700 out: 701 return ret; 702 } 703 704 /* 705 * Attempt to put the current chunk of 'cur_page' into the current BIO. If 706 * that was successful then update final_block_in_bio and take a ref against 707 * the just-added page. 708 * 709 * Return zero on success. Non-zero means the caller needs to start a new BIO. 710 */ 711 static inline int dio_bio_add_page(struct dio_submit *sdio) 712 { 713 int ret; 714 715 ret = bio_add_page(sdio->bio, sdio->cur_page, 716 sdio->cur_page_len, sdio->cur_page_offset); 717 if (ret == sdio->cur_page_len) { 718 /* 719 * Decrement count only, if we are done with this page 720 */ 721 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE) 722 sdio->pages_in_io--; 723 get_page(sdio->cur_page); 724 sdio->final_block_in_bio = sdio->cur_page_block + 725 (sdio->cur_page_len >> sdio->blkbits); 726 ret = 0; 727 } else { 728 ret = 1; 729 } 730 return ret; 731 } 732 733 /* 734 * Put cur_page under IO. The section of cur_page which is described by 735 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page 736 * starts on-disk at cur_page_block. 737 * 738 * We take a ref against the page here (on behalf of its presence in the bio). 739 * 740 * The caller of this function is responsible for removing cur_page from the 741 * dio, and for dropping the refcount which came from that presence. 742 */ 743 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio, 744 struct buffer_head *map_bh) 745 { 746 int ret = 0; 747 748 if (sdio->bio) { 749 loff_t cur_offset = sdio->cur_page_fs_offset; 750 loff_t bio_next_offset = sdio->logical_offset_in_bio + 751 sdio->bio->bi_iter.bi_size; 752 753 /* 754 * See whether this new request is contiguous with the old. 755 * 756 * Btrfs cannot handle having logically non-contiguous requests 757 * submitted. For example if you have 758 * 759 * Logical: [0-4095][HOLE][8192-12287] 760 * Physical: [0-4095] [4096-8191] 761 * 762 * We cannot submit those pages together as one BIO. So if our 763 * current logical offset in the file does not equal what would 764 * be the next logical offset in the bio, submit the bio we 765 * have. 766 */ 767 if (sdio->final_block_in_bio != sdio->cur_page_block || 768 cur_offset != bio_next_offset) 769 dio_bio_submit(dio, sdio); 770 } 771 772 if (sdio->bio == NULL) { 773 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 774 if (ret) 775 goto out; 776 } 777 778 if (dio_bio_add_page(sdio) != 0) { 779 dio_bio_submit(dio, sdio); 780 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 781 if (ret == 0) { 782 ret = dio_bio_add_page(sdio); 783 BUG_ON(ret != 0); 784 } 785 } 786 out: 787 return ret; 788 } 789 790 /* 791 * An autonomous function to put a chunk of a page under deferred IO. 792 * 793 * The caller doesn't actually know (or care) whether this piece of page is in 794 * a BIO, or is under IO or whatever. We just take care of all possible 795 * situations here. The separation between the logic of do_direct_IO() and 796 * that of submit_page_section() is important for clarity. Please don't break. 797 * 798 * The chunk of page starts on-disk at blocknr. 799 * 800 * We perform deferred IO, by recording the last-submitted page inside our 801 * private part of the dio structure. If possible, we just expand the IO 802 * across that page here. 803 * 804 * If that doesn't work out then we put the old page into the bio and add this 805 * page to the dio instead. 806 */ 807 static inline int 808 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page, 809 unsigned offset, unsigned len, sector_t blocknr, 810 struct buffer_head *map_bh) 811 { 812 int ret = 0; 813 814 if (dio->op == REQ_OP_WRITE) { 815 /* 816 * Read accounting is performed in submit_bio() 817 */ 818 task_io_account_write(len); 819 } 820 821 /* 822 * Can we just grow the current page's presence in the dio? 823 */ 824 if (sdio->cur_page == page && 825 sdio->cur_page_offset + sdio->cur_page_len == offset && 826 sdio->cur_page_block + 827 (sdio->cur_page_len >> sdio->blkbits) == blocknr) { 828 sdio->cur_page_len += len; 829 goto out; 830 } 831 832 /* 833 * If there's a deferred page already there then send it. 834 */ 835 if (sdio->cur_page) { 836 ret = dio_send_cur_page(dio, sdio, map_bh); 837 put_page(sdio->cur_page); 838 sdio->cur_page = NULL; 839 if (ret) 840 return ret; 841 } 842 843 get_page(page); /* It is in dio */ 844 sdio->cur_page = page; 845 sdio->cur_page_offset = offset; 846 sdio->cur_page_len = len; 847 sdio->cur_page_block = blocknr; 848 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits; 849 out: 850 /* 851 * If sdio->boundary then we want to schedule the IO now to 852 * avoid metadata seeks. 853 */ 854 if (sdio->boundary) { 855 ret = dio_send_cur_page(dio, sdio, map_bh); 856 if (sdio->bio) 857 dio_bio_submit(dio, sdio); 858 put_page(sdio->cur_page); 859 sdio->cur_page = NULL; 860 } 861 return ret; 862 } 863 864 /* 865 * If we are not writing the entire block and get_block() allocated 866 * the block for us, we need to fill-in the unused portion of the 867 * block with zeros. This happens only if user-buffer, fileoffset or 868 * io length is not filesystem block-size multiple. 869 * 870 * `end' is zero if we're doing the start of the IO, 1 at the end of the 871 * IO. 872 */ 873 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio, 874 int end, struct buffer_head *map_bh) 875 { 876 unsigned dio_blocks_per_fs_block; 877 unsigned this_chunk_blocks; /* In dio_blocks */ 878 unsigned this_chunk_bytes; 879 struct page *page; 880 881 sdio->start_zero_done = 1; 882 if (!sdio->blkfactor || !buffer_new(map_bh)) 883 return; 884 885 dio_blocks_per_fs_block = 1 << sdio->blkfactor; 886 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1); 887 888 if (!this_chunk_blocks) 889 return; 890 891 /* 892 * We need to zero out part of an fs block. It is either at the 893 * beginning or the end of the fs block. 894 */ 895 if (end) 896 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; 897 898 this_chunk_bytes = this_chunk_blocks << sdio->blkbits; 899 900 page = ZERO_PAGE(0); 901 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes, 902 sdio->next_block_for_io, map_bh)) 903 return; 904 905 sdio->next_block_for_io += this_chunk_blocks; 906 } 907 908 /* 909 * Walk the user pages, and the file, mapping blocks to disk and generating 910 * a sequence of (page,offset,len,block) mappings. These mappings are injected 911 * into submit_page_section(), which takes care of the next stage of submission 912 * 913 * Direct IO against a blockdev is different from a file. Because we can 914 * happily perform page-sized but 512-byte aligned IOs. It is important that 915 * blockdev IO be able to have fine alignment and large sizes. 916 * 917 * So what we do is to permit the ->get_block function to populate bh.b_size 918 * with the size of IO which is permitted at this offset and this i_blkbits. 919 * 920 * For best results, the blockdev should be set up with 512-byte i_blkbits and 921 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives 922 * fine alignment but still allows this function to work in PAGE_SIZE units. 923 */ 924 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio, 925 struct buffer_head *map_bh) 926 { 927 const unsigned blkbits = sdio->blkbits; 928 const unsigned i_blkbits = blkbits + sdio->blkfactor; 929 int ret = 0; 930 931 while (sdio->block_in_file < sdio->final_block_in_request) { 932 struct page *page; 933 size_t from, to; 934 935 page = dio_get_page(dio, sdio); 936 if (IS_ERR(page)) { 937 ret = PTR_ERR(page); 938 goto out; 939 } 940 from = sdio->head ? 0 : sdio->from; 941 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE; 942 sdio->head++; 943 944 while (from < to) { 945 unsigned this_chunk_bytes; /* # of bytes mapped */ 946 unsigned this_chunk_blocks; /* # of blocks */ 947 unsigned u; 948 949 if (sdio->blocks_available == 0) { 950 /* 951 * Need to go and map some more disk 952 */ 953 unsigned long blkmask; 954 unsigned long dio_remainder; 955 956 ret = get_more_blocks(dio, sdio, map_bh); 957 if (ret) { 958 put_page(page); 959 goto out; 960 } 961 if (!buffer_mapped(map_bh)) 962 goto do_holes; 963 964 sdio->blocks_available = 965 map_bh->b_size >> blkbits; 966 sdio->next_block_for_io = 967 map_bh->b_blocknr << sdio->blkfactor; 968 if (buffer_new(map_bh)) { 969 clean_bdev_aliases( 970 map_bh->b_bdev, 971 map_bh->b_blocknr, 972 map_bh->b_size >> i_blkbits); 973 } 974 975 if (!sdio->blkfactor) 976 goto do_holes; 977 978 blkmask = (1 << sdio->blkfactor) - 1; 979 dio_remainder = (sdio->block_in_file & blkmask); 980 981 /* 982 * If we are at the start of IO and that IO 983 * starts partway into a fs-block, 984 * dio_remainder will be non-zero. If the IO 985 * is a read then we can simply advance the IO 986 * cursor to the first block which is to be 987 * read. But if the IO is a write and the 988 * block was newly allocated we cannot do that; 989 * the start of the fs block must be zeroed out 990 * on-disk 991 */ 992 if (!buffer_new(map_bh)) 993 sdio->next_block_for_io += dio_remainder; 994 sdio->blocks_available -= dio_remainder; 995 } 996 do_holes: 997 /* Handle holes */ 998 if (!buffer_mapped(map_bh)) { 999 loff_t i_size_aligned; 1000 1001 /* AKPM: eargh, -ENOTBLK is a hack */ 1002 if (dio->op == REQ_OP_WRITE) { 1003 put_page(page); 1004 return -ENOTBLK; 1005 } 1006 1007 /* 1008 * Be sure to account for a partial block as the 1009 * last block in the file 1010 */ 1011 i_size_aligned = ALIGN(i_size_read(dio->inode), 1012 1 << blkbits); 1013 if (sdio->block_in_file >= 1014 i_size_aligned >> blkbits) { 1015 /* We hit eof */ 1016 put_page(page); 1017 goto out; 1018 } 1019 zero_user(page, from, 1 << blkbits); 1020 sdio->block_in_file++; 1021 from += 1 << blkbits; 1022 dio->result += 1 << blkbits; 1023 goto next_block; 1024 } 1025 1026 /* 1027 * If we're performing IO which has an alignment which 1028 * is finer than the underlying fs, go check to see if 1029 * we must zero out the start of this block. 1030 */ 1031 if (unlikely(sdio->blkfactor && !sdio->start_zero_done)) 1032 dio_zero_block(dio, sdio, 0, map_bh); 1033 1034 /* 1035 * Work out, in this_chunk_blocks, how much disk we 1036 * can add to this page 1037 */ 1038 this_chunk_blocks = sdio->blocks_available; 1039 u = (to - from) >> blkbits; 1040 if (this_chunk_blocks > u) 1041 this_chunk_blocks = u; 1042 u = sdio->final_block_in_request - sdio->block_in_file; 1043 if (this_chunk_blocks > u) 1044 this_chunk_blocks = u; 1045 this_chunk_bytes = this_chunk_blocks << blkbits; 1046 BUG_ON(this_chunk_bytes == 0); 1047 1048 if (this_chunk_blocks == sdio->blocks_available) 1049 sdio->boundary = buffer_boundary(map_bh); 1050 ret = submit_page_section(dio, sdio, page, 1051 from, 1052 this_chunk_bytes, 1053 sdio->next_block_for_io, 1054 map_bh); 1055 if (ret) { 1056 put_page(page); 1057 goto out; 1058 } 1059 sdio->next_block_for_io += this_chunk_blocks; 1060 1061 sdio->block_in_file += this_chunk_blocks; 1062 from += this_chunk_bytes; 1063 dio->result += this_chunk_bytes; 1064 sdio->blocks_available -= this_chunk_blocks; 1065 next_block: 1066 BUG_ON(sdio->block_in_file > sdio->final_block_in_request); 1067 if (sdio->block_in_file == sdio->final_block_in_request) 1068 break; 1069 } 1070 1071 /* Drop the ref which was taken in get_user_pages() */ 1072 put_page(page); 1073 } 1074 out: 1075 return ret; 1076 } 1077 1078 static inline int drop_refcount(struct dio *dio) 1079 { 1080 int ret2; 1081 unsigned long flags; 1082 1083 /* 1084 * Sync will always be dropping the final ref and completing the 1085 * operation. AIO can if it was a broken operation described above or 1086 * in fact if all the bios race to complete before we get here. In 1087 * that case dio_complete() translates the EIOCBQUEUED into the proper 1088 * return code that the caller will hand to ->complete(). 1089 * 1090 * This is managed by the bio_lock instead of being an atomic_t so that 1091 * completion paths can drop their ref and use the remaining count to 1092 * decide to wake the submission path atomically. 1093 */ 1094 spin_lock_irqsave(&dio->bio_lock, flags); 1095 ret2 = --dio->refcount; 1096 spin_unlock_irqrestore(&dio->bio_lock, flags); 1097 return ret2; 1098 } 1099 1100 /* 1101 * This is a library function for use by filesystem drivers. 1102 * 1103 * The locking rules are governed by the flags parameter: 1104 * - if the flags value contains DIO_LOCKING we use a fancy locking 1105 * scheme for dumb filesystems. 1106 * For writes this function is called under i_mutex and returns with 1107 * i_mutex held, for reads, i_mutex is not held on entry, but it is 1108 * taken and dropped again before returning. 1109 * - if the flags value does NOT contain DIO_LOCKING we don't use any 1110 * internal locking but rather rely on the filesystem to synchronize 1111 * direct I/O reads/writes versus each other and truncate. 1112 * 1113 * To help with locking against truncate we incremented the i_dio_count 1114 * counter before starting direct I/O, and decrement it once we are done. 1115 * Truncate can wait for it to reach zero to provide exclusion. It is 1116 * expected that filesystem provide exclusion between new direct I/O 1117 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex, 1118 * but other filesystems need to take care of this on their own. 1119 * 1120 * NOTE: if you pass "sdio" to anything by pointer make sure that function 1121 * is always inlined. Otherwise gcc is unable to split the structure into 1122 * individual fields and will generate much worse code. This is important 1123 * for the whole file. 1124 */ 1125 static inline ssize_t 1126 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1127 struct block_device *bdev, struct iov_iter *iter, 1128 get_block_t get_block, dio_iodone_t end_io, 1129 dio_submit_t submit_io, int flags) 1130 { 1131 unsigned i_blkbits = READ_ONCE(inode->i_blkbits); 1132 unsigned blkbits = i_blkbits; 1133 unsigned blocksize_mask = (1 << blkbits) - 1; 1134 ssize_t retval = -EINVAL; 1135 const size_t count = iov_iter_count(iter); 1136 loff_t offset = iocb->ki_pos; 1137 const loff_t end = offset + count; 1138 struct dio *dio; 1139 struct dio_submit sdio = { 0, }; 1140 struct buffer_head map_bh = { 0, }; 1141 struct blk_plug plug; 1142 unsigned long align = offset | iov_iter_alignment(iter); 1143 1144 /* 1145 * Avoid references to bdev if not absolutely needed to give 1146 * the early prefetch in the caller enough time. 1147 */ 1148 1149 if (align & blocksize_mask) { 1150 if (bdev) 1151 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 1152 blocksize_mask = (1 << blkbits) - 1; 1153 if (align & blocksize_mask) 1154 goto out; 1155 } 1156 1157 /* watch out for a 0 len io from a tricksy fs */ 1158 if (iov_iter_rw(iter) == READ && !count) 1159 return 0; 1160 1161 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL); 1162 retval = -ENOMEM; 1163 if (!dio) 1164 goto out; 1165 /* 1166 * Believe it or not, zeroing out the page array caused a .5% 1167 * performance regression in a database benchmark. So, we take 1168 * care to only zero out what's needed. 1169 */ 1170 memset(dio, 0, offsetof(struct dio, pages)); 1171 1172 dio->flags = flags; 1173 if (dio->flags & DIO_LOCKING) { 1174 if (iov_iter_rw(iter) == READ) { 1175 struct address_space *mapping = 1176 iocb->ki_filp->f_mapping; 1177 1178 /* will be released by direct_io_worker */ 1179 inode_lock(inode); 1180 1181 retval = filemap_write_and_wait_range(mapping, offset, 1182 end - 1); 1183 if (retval) { 1184 inode_unlock(inode); 1185 kmem_cache_free(dio_cache, dio); 1186 goto out; 1187 } 1188 } 1189 } 1190 1191 /* Once we sampled i_size check for reads beyond EOF */ 1192 dio->i_size = i_size_read(inode); 1193 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) { 1194 if (dio->flags & DIO_LOCKING) 1195 inode_unlock(inode); 1196 kmem_cache_free(dio_cache, dio); 1197 retval = 0; 1198 goto out; 1199 } 1200 1201 /* 1202 * For file extending writes updating i_size before data writeouts 1203 * complete can expose uninitialized blocks in dumb filesystems. 1204 * In that case we need to wait for I/O completion even if asked 1205 * for an asynchronous write. 1206 */ 1207 if (is_sync_kiocb(iocb)) 1208 dio->is_async = false; 1209 else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode)) 1210 dio->is_async = false; 1211 else 1212 dio->is_async = true; 1213 1214 dio->inode = inode; 1215 if (iov_iter_rw(iter) == WRITE) { 1216 dio->op = REQ_OP_WRITE; 1217 dio->op_flags = REQ_SYNC | REQ_IDLE; 1218 if (iocb->ki_flags & IOCB_NOWAIT) 1219 dio->op_flags |= REQ_NOWAIT; 1220 } else { 1221 dio->op = REQ_OP_READ; 1222 } 1223 if (iocb->ki_flags & IOCB_HIPRI) 1224 dio->op_flags |= REQ_HIPRI; 1225 1226 /* 1227 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue 1228 * so that we can call ->fsync. 1229 */ 1230 if (dio->is_async && iov_iter_rw(iter) == WRITE) { 1231 retval = 0; 1232 if (iocb->ki_flags & IOCB_DSYNC) 1233 retval = dio_set_defer_completion(dio); 1234 else if (!dio->inode->i_sb->s_dio_done_wq) { 1235 /* 1236 * In case of AIO write racing with buffered read we 1237 * need to defer completion. We can't decide this now, 1238 * however the workqueue needs to be initialized here. 1239 */ 1240 retval = sb_init_dio_done_wq(dio->inode->i_sb); 1241 } 1242 if (retval) { 1243 /* 1244 * We grab i_mutex only for reads so we don't have 1245 * to release it here 1246 */ 1247 kmem_cache_free(dio_cache, dio); 1248 goto out; 1249 } 1250 } 1251 1252 /* 1253 * Will be decremented at I/O completion time. 1254 */ 1255 inode_dio_begin(inode); 1256 1257 retval = 0; 1258 sdio.blkbits = blkbits; 1259 sdio.blkfactor = i_blkbits - blkbits; 1260 sdio.block_in_file = offset >> blkbits; 1261 1262 sdio.get_block = get_block; 1263 dio->end_io = end_io; 1264 sdio.submit_io = submit_io; 1265 sdio.final_block_in_bio = -1; 1266 sdio.next_block_for_io = -1; 1267 1268 dio->iocb = iocb; 1269 1270 spin_lock_init(&dio->bio_lock); 1271 dio->refcount = 1; 1272 1273 dio->should_dirty = iter_is_iovec(iter) && iov_iter_rw(iter) == READ; 1274 sdio.iter = iter; 1275 sdio.final_block_in_request = end >> blkbits; 1276 1277 /* 1278 * In case of non-aligned buffers, we may need 2 more 1279 * pages since we need to zero out first and last block. 1280 */ 1281 if (unlikely(sdio.blkfactor)) 1282 sdio.pages_in_io = 2; 1283 1284 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX); 1285 1286 blk_start_plug(&plug); 1287 1288 retval = do_direct_IO(dio, &sdio, &map_bh); 1289 if (retval) 1290 dio_cleanup(dio, &sdio); 1291 1292 if (retval == -ENOTBLK) { 1293 /* 1294 * The remaining part of the request will be 1295 * be handled by buffered I/O when we return 1296 */ 1297 retval = 0; 1298 } 1299 /* 1300 * There may be some unwritten disk at the end of a part-written 1301 * fs-block-sized block. Go zero that now. 1302 */ 1303 dio_zero_block(dio, &sdio, 1, &map_bh); 1304 1305 if (sdio.cur_page) { 1306 ssize_t ret2; 1307 1308 ret2 = dio_send_cur_page(dio, &sdio, &map_bh); 1309 if (retval == 0) 1310 retval = ret2; 1311 put_page(sdio.cur_page); 1312 sdio.cur_page = NULL; 1313 } 1314 if (sdio.bio) 1315 dio_bio_submit(dio, &sdio); 1316 1317 blk_finish_plug(&plug); 1318 1319 /* 1320 * It is possible that, we return short IO due to end of file. 1321 * In that case, we need to release all the pages we got hold on. 1322 */ 1323 dio_cleanup(dio, &sdio); 1324 1325 /* 1326 * All block lookups have been performed. For READ requests 1327 * we can let i_mutex go now that its achieved its purpose 1328 * of protecting us from looking up uninitialized blocks. 1329 */ 1330 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING)) 1331 inode_unlock(dio->inode); 1332 1333 /* 1334 * The only time we want to leave bios in flight is when a successful 1335 * partial aio read or full aio write have been setup. In that case 1336 * bio completion will call aio_complete. The only time it's safe to 1337 * call aio_complete is when we return -EIOCBQUEUED, so we key on that. 1338 * This had *better* be the only place that raises -EIOCBQUEUED. 1339 */ 1340 BUG_ON(retval == -EIOCBQUEUED); 1341 if (dio->is_async && retval == 0 && dio->result && 1342 (iov_iter_rw(iter) == READ || dio->result == count)) 1343 retval = -EIOCBQUEUED; 1344 else 1345 dio_await_completion(dio); 1346 1347 if (drop_refcount(dio) == 0) { 1348 retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE); 1349 } else 1350 BUG_ON(retval != -EIOCBQUEUED); 1351 1352 out: 1353 return retval; 1354 } 1355 1356 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1357 struct block_device *bdev, struct iov_iter *iter, 1358 get_block_t get_block, 1359 dio_iodone_t end_io, dio_submit_t submit_io, 1360 int flags) 1361 { 1362 /* 1363 * The block device state is needed in the end to finally 1364 * submit everything. Since it's likely to be cache cold 1365 * prefetch it here as first thing to hide some of the 1366 * latency. 1367 * 1368 * Attempt to prefetch the pieces we likely need later. 1369 */ 1370 prefetch(&bdev->bd_disk->part_tbl); 1371 prefetch(bdev->bd_queue); 1372 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES); 1373 1374 return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block, 1375 end_io, submit_io, flags); 1376 } 1377 1378 EXPORT_SYMBOL(__blockdev_direct_IO); 1379 1380 static __init int dio_init(void) 1381 { 1382 dio_cache = KMEM_CACHE(dio, SLAB_PANIC); 1383 return 0; 1384 } 1385 module_init(dio_init) 1386