1 /* 2 * fs/direct-io.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * O_DIRECT 7 * 8 * 04Jul2002 Andrew Morton 9 * Initial version 10 * 11Sep2002 janetinc@us.ibm.com 11 * added readv/writev support. 12 * 29Oct2002 Andrew Morton 13 * rewrote bio_add_page() support. 14 * 30Oct2002 pbadari@us.ibm.com 15 * added support for non-aligned IO. 16 * 06Nov2002 pbadari@us.ibm.com 17 * added asynchronous IO support. 18 * 21Jul2003 nathans@sgi.com 19 * added IO completion notifier. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/types.h> 25 #include <linux/fs.h> 26 #include <linux/mm.h> 27 #include <linux/slab.h> 28 #include <linux/highmem.h> 29 #include <linux/pagemap.h> 30 #include <linux/task_io_accounting_ops.h> 31 #include <linux/bio.h> 32 #include <linux/wait.h> 33 #include <linux/err.h> 34 #include <linux/blkdev.h> 35 #include <linux/buffer_head.h> 36 #include <linux/rwsem.h> 37 #include <linux/uio.h> 38 #include <linux/atomic.h> 39 #include <linux/prefetch.h> 40 41 /* 42 * How many user pages to map in one call to get_user_pages(). This determines 43 * the size of a structure in the slab cache 44 */ 45 #define DIO_PAGES 64 46 47 /* 48 * This code generally works in units of "dio_blocks". A dio_block is 49 * somewhere between the hard sector size and the filesystem block size. it 50 * is determined on a per-invocation basis. When talking to the filesystem 51 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity 52 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted 53 * to bio_block quantities by shifting left by blkfactor. 54 * 55 * If blkfactor is zero then the user's request was aligned to the filesystem's 56 * blocksize. 57 */ 58 59 /* dio_state only used in the submission path */ 60 61 struct dio_submit { 62 struct bio *bio; /* bio under assembly */ 63 unsigned blkbits; /* doesn't change */ 64 unsigned blkfactor; /* When we're using an alignment which 65 is finer than the filesystem's soft 66 blocksize, this specifies how much 67 finer. blkfactor=2 means 1/4-block 68 alignment. Does not change */ 69 unsigned start_zero_done; /* flag: sub-blocksize zeroing has 70 been performed at the start of a 71 write */ 72 int pages_in_io; /* approximate total IO pages */ 73 sector_t block_in_file; /* Current offset into the underlying 74 file in dio_block units. */ 75 unsigned blocks_available; /* At block_in_file. changes */ 76 int reap_counter; /* rate limit reaping */ 77 sector_t final_block_in_request;/* doesn't change */ 78 int boundary; /* prev block is at a boundary */ 79 get_block_t *get_block; /* block mapping function */ 80 dio_submit_t *submit_io; /* IO submition function */ 81 82 loff_t logical_offset_in_bio; /* current first logical block in bio */ 83 sector_t final_block_in_bio; /* current final block in bio + 1 */ 84 sector_t next_block_for_io; /* next block to be put under IO, 85 in dio_blocks units */ 86 87 /* 88 * Deferred addition of a page to the dio. These variables are 89 * private to dio_send_cur_page(), submit_page_section() and 90 * dio_bio_add_page(). 91 */ 92 struct page *cur_page; /* The page */ 93 unsigned cur_page_offset; /* Offset into it, in bytes */ 94 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ 95 sector_t cur_page_block; /* Where it starts */ 96 loff_t cur_page_fs_offset; /* Offset in file */ 97 98 struct iov_iter *iter; 99 /* 100 * Page queue. These variables belong to dio_refill_pages() and 101 * dio_get_page(). 102 */ 103 unsigned head; /* next page to process */ 104 unsigned tail; /* last valid page + 1 */ 105 size_t from, to; 106 }; 107 108 /* dio_state communicated between submission path and end_io */ 109 struct dio { 110 int flags; /* doesn't change */ 111 int rw; 112 blk_qc_t bio_cookie; 113 struct block_device *bio_bdev; 114 struct inode *inode; 115 loff_t i_size; /* i_size when submitted */ 116 dio_iodone_t *end_io; /* IO completion function */ 117 118 void *private; /* copy from map_bh.b_private */ 119 120 /* BIO completion state */ 121 spinlock_t bio_lock; /* protects BIO fields below */ 122 int page_errors; /* errno from get_user_pages() */ 123 int is_async; /* is IO async ? */ 124 bool defer_completion; /* defer AIO completion to workqueue? */ 125 bool should_dirty; /* if pages should be dirtied */ 126 int io_error; /* IO error in completion path */ 127 unsigned long refcount; /* direct_io_worker() and bios */ 128 struct bio *bio_list; /* singly linked via bi_private */ 129 struct task_struct *waiter; /* waiting task (NULL if none) */ 130 131 /* AIO related stuff */ 132 struct kiocb *iocb; /* kiocb */ 133 ssize_t result; /* IO result */ 134 135 /* 136 * pages[] (and any fields placed after it) are not zeroed out at 137 * allocation time. Don't add new fields after pages[] unless you 138 * wish that they not be zeroed. 139 */ 140 union { 141 struct page *pages[DIO_PAGES]; /* page buffer */ 142 struct work_struct complete_work;/* deferred AIO completion */ 143 }; 144 } ____cacheline_aligned_in_smp; 145 146 static struct kmem_cache *dio_cache __read_mostly; 147 148 /* 149 * How many pages are in the queue? 150 */ 151 static inline unsigned dio_pages_present(struct dio_submit *sdio) 152 { 153 return sdio->tail - sdio->head; 154 } 155 156 /* 157 * Go grab and pin some userspace pages. Typically we'll get 64 at a time. 158 */ 159 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio) 160 { 161 ssize_t ret; 162 163 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES, 164 &sdio->from); 165 166 if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) { 167 struct page *page = ZERO_PAGE(0); 168 /* 169 * A memory fault, but the filesystem has some outstanding 170 * mapped blocks. We need to use those blocks up to avoid 171 * leaking stale data in the file. 172 */ 173 if (dio->page_errors == 0) 174 dio->page_errors = ret; 175 page_cache_get(page); 176 dio->pages[0] = page; 177 sdio->head = 0; 178 sdio->tail = 1; 179 sdio->from = 0; 180 sdio->to = PAGE_SIZE; 181 return 0; 182 } 183 184 if (ret >= 0) { 185 iov_iter_advance(sdio->iter, ret); 186 ret += sdio->from; 187 sdio->head = 0; 188 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE; 189 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1; 190 return 0; 191 } 192 return ret; 193 } 194 195 /* 196 * Get another userspace page. Returns an ERR_PTR on error. Pages are 197 * buffered inside the dio so that we can call get_user_pages() against a 198 * decent number of pages, less frequently. To provide nicer use of the 199 * L1 cache. 200 */ 201 static inline struct page *dio_get_page(struct dio *dio, 202 struct dio_submit *sdio) 203 { 204 if (dio_pages_present(sdio) == 0) { 205 int ret; 206 207 ret = dio_refill_pages(dio, sdio); 208 if (ret) 209 return ERR_PTR(ret); 210 BUG_ON(dio_pages_present(sdio) == 0); 211 } 212 return dio->pages[sdio->head]; 213 } 214 215 /** 216 * dio_complete() - called when all DIO BIO I/O has been completed 217 * @offset: the byte offset in the file of the completed operation 218 * 219 * This drops i_dio_count, lets interested parties know that a DIO operation 220 * has completed, and calculates the resulting return code for the operation. 221 * 222 * It lets the filesystem know if it registered an interest earlier via 223 * get_block. Pass the private field of the map buffer_head so that 224 * filesystems can use it to hold additional state between get_block calls and 225 * dio_complete. 226 */ 227 static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret, 228 bool is_async) 229 { 230 ssize_t transferred = 0; 231 232 /* 233 * AIO submission can race with bio completion to get here while 234 * expecting to have the last io completed by bio completion. 235 * In that case -EIOCBQUEUED is in fact not an error we want 236 * to preserve through this call. 237 */ 238 if (ret == -EIOCBQUEUED) 239 ret = 0; 240 241 if (dio->result) { 242 transferred = dio->result; 243 244 /* Check for short read case */ 245 if ((dio->rw == READ) && ((offset + transferred) > dio->i_size)) 246 transferred = dio->i_size - offset; 247 } 248 249 if (ret == 0) 250 ret = dio->page_errors; 251 if (ret == 0) 252 ret = dio->io_error; 253 if (ret == 0) 254 ret = transferred; 255 256 if (dio->end_io && dio->result) 257 dio->end_io(dio->iocb, offset, transferred, dio->private); 258 259 if (!(dio->flags & DIO_SKIP_DIO_COUNT)) 260 inode_dio_end(dio->inode); 261 262 if (is_async) { 263 if (dio->rw & WRITE) { 264 int err; 265 266 err = generic_write_sync(dio->iocb->ki_filp, offset, 267 transferred); 268 if (err < 0 && ret > 0) 269 ret = err; 270 } 271 272 dio->iocb->ki_complete(dio->iocb, ret, 0); 273 } 274 275 kmem_cache_free(dio_cache, dio); 276 return ret; 277 } 278 279 static void dio_aio_complete_work(struct work_struct *work) 280 { 281 struct dio *dio = container_of(work, struct dio, complete_work); 282 283 dio_complete(dio, dio->iocb->ki_pos, 0, true); 284 } 285 286 static int dio_bio_complete(struct dio *dio, struct bio *bio); 287 288 /* 289 * Asynchronous IO callback. 290 */ 291 static void dio_bio_end_aio(struct bio *bio) 292 { 293 struct dio *dio = bio->bi_private; 294 unsigned long remaining; 295 unsigned long flags; 296 297 /* cleanup the bio */ 298 dio_bio_complete(dio, bio); 299 300 spin_lock_irqsave(&dio->bio_lock, flags); 301 remaining = --dio->refcount; 302 if (remaining == 1 && dio->waiter) 303 wake_up_process(dio->waiter); 304 spin_unlock_irqrestore(&dio->bio_lock, flags); 305 306 if (remaining == 0) { 307 if (dio->result && dio->defer_completion) { 308 INIT_WORK(&dio->complete_work, dio_aio_complete_work); 309 queue_work(dio->inode->i_sb->s_dio_done_wq, 310 &dio->complete_work); 311 } else { 312 dio_complete(dio, dio->iocb->ki_pos, 0, true); 313 } 314 } 315 } 316 317 /* 318 * The BIO completion handler simply queues the BIO up for the process-context 319 * handler. 320 * 321 * During I/O bi_private points at the dio. After I/O, bi_private is used to 322 * implement a singly-linked list of completed BIOs, at dio->bio_list. 323 */ 324 static void dio_bio_end_io(struct bio *bio) 325 { 326 struct dio *dio = bio->bi_private; 327 unsigned long flags; 328 329 spin_lock_irqsave(&dio->bio_lock, flags); 330 bio->bi_private = dio->bio_list; 331 dio->bio_list = bio; 332 if (--dio->refcount == 1 && dio->waiter) 333 wake_up_process(dio->waiter); 334 spin_unlock_irqrestore(&dio->bio_lock, flags); 335 } 336 337 /** 338 * dio_end_io - handle the end io action for the given bio 339 * @bio: The direct io bio thats being completed 340 * @error: Error if there was one 341 * 342 * This is meant to be called by any filesystem that uses their own dio_submit_t 343 * so that the DIO specific endio actions are dealt with after the filesystem 344 * has done it's completion work. 345 */ 346 void dio_end_io(struct bio *bio, int error) 347 { 348 struct dio *dio = bio->bi_private; 349 350 if (dio->is_async) 351 dio_bio_end_aio(bio); 352 else 353 dio_bio_end_io(bio); 354 } 355 EXPORT_SYMBOL_GPL(dio_end_io); 356 357 static inline void 358 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio, 359 struct block_device *bdev, 360 sector_t first_sector, int nr_vecs) 361 { 362 struct bio *bio; 363 364 /* 365 * bio_alloc() is guaranteed to return a bio when called with 366 * __GFP_RECLAIM and we request a valid number of vectors. 367 */ 368 bio = bio_alloc(GFP_KERNEL, nr_vecs); 369 370 bio->bi_bdev = bdev; 371 bio->bi_iter.bi_sector = first_sector; 372 if (dio->is_async) 373 bio->bi_end_io = dio_bio_end_aio; 374 else 375 bio->bi_end_io = dio_bio_end_io; 376 377 sdio->bio = bio; 378 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset; 379 } 380 381 /* 382 * In the AIO read case we speculatively dirty the pages before starting IO. 383 * During IO completion, any of these pages which happen to have been written 384 * back will be redirtied by bio_check_pages_dirty(). 385 * 386 * bios hold a dio reference between submit_bio and ->end_io. 387 */ 388 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio) 389 { 390 struct bio *bio = sdio->bio; 391 unsigned long flags; 392 393 bio->bi_private = dio; 394 395 spin_lock_irqsave(&dio->bio_lock, flags); 396 dio->refcount++; 397 spin_unlock_irqrestore(&dio->bio_lock, flags); 398 399 if (dio->is_async && dio->rw == READ && dio->should_dirty) 400 bio_set_pages_dirty(bio); 401 402 dio->bio_bdev = bio->bi_bdev; 403 404 if (sdio->submit_io) { 405 sdio->submit_io(dio->rw, bio, dio->inode, 406 sdio->logical_offset_in_bio); 407 dio->bio_cookie = BLK_QC_T_NONE; 408 } else 409 dio->bio_cookie = submit_bio(dio->rw, bio); 410 411 sdio->bio = NULL; 412 sdio->boundary = 0; 413 sdio->logical_offset_in_bio = 0; 414 } 415 416 /* 417 * Release any resources in case of a failure 418 */ 419 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio) 420 { 421 while (sdio->head < sdio->tail) 422 page_cache_release(dio->pages[sdio->head++]); 423 } 424 425 /* 426 * Wait for the next BIO to complete. Remove it and return it. NULL is 427 * returned once all BIOs have been completed. This must only be called once 428 * all bios have been issued so that dio->refcount can only decrease. This 429 * requires that that the caller hold a reference on the dio. 430 */ 431 static struct bio *dio_await_one(struct dio *dio) 432 { 433 unsigned long flags; 434 struct bio *bio = NULL; 435 436 spin_lock_irqsave(&dio->bio_lock, flags); 437 438 /* 439 * Wait as long as the list is empty and there are bios in flight. bio 440 * completion drops the count, maybe adds to the list, and wakes while 441 * holding the bio_lock so we don't need set_current_state()'s barrier 442 * and can call it after testing our condition. 443 */ 444 while (dio->refcount > 1 && dio->bio_list == NULL) { 445 __set_current_state(TASK_UNINTERRUPTIBLE); 446 dio->waiter = current; 447 spin_unlock_irqrestore(&dio->bio_lock, flags); 448 if (!blk_poll(bdev_get_queue(dio->bio_bdev), dio->bio_cookie)) 449 io_schedule(); 450 /* wake up sets us TASK_RUNNING */ 451 spin_lock_irqsave(&dio->bio_lock, flags); 452 dio->waiter = NULL; 453 } 454 if (dio->bio_list) { 455 bio = dio->bio_list; 456 dio->bio_list = bio->bi_private; 457 } 458 spin_unlock_irqrestore(&dio->bio_lock, flags); 459 return bio; 460 } 461 462 /* 463 * Process one completed BIO. No locks are held. 464 */ 465 static int dio_bio_complete(struct dio *dio, struct bio *bio) 466 { 467 struct bio_vec *bvec; 468 unsigned i; 469 int err; 470 471 if (bio->bi_error) 472 dio->io_error = -EIO; 473 474 if (dio->is_async && dio->rw == READ && dio->should_dirty) { 475 bio_check_pages_dirty(bio); /* transfers ownership */ 476 err = bio->bi_error; 477 } else { 478 bio_for_each_segment_all(bvec, bio, i) { 479 struct page *page = bvec->bv_page; 480 481 if (dio->rw == READ && !PageCompound(page) && 482 dio->should_dirty) 483 set_page_dirty_lock(page); 484 page_cache_release(page); 485 } 486 err = bio->bi_error; 487 bio_put(bio); 488 } 489 return err; 490 } 491 492 /* 493 * Wait on and process all in-flight BIOs. This must only be called once 494 * all bios have been issued so that the refcount can only decrease. 495 * This just waits for all bios to make it through dio_bio_complete. IO 496 * errors are propagated through dio->io_error and should be propagated via 497 * dio_complete(). 498 */ 499 static void dio_await_completion(struct dio *dio) 500 { 501 struct bio *bio; 502 do { 503 bio = dio_await_one(dio); 504 if (bio) 505 dio_bio_complete(dio, bio); 506 } while (bio); 507 } 508 509 /* 510 * A really large O_DIRECT read or write can generate a lot of BIOs. So 511 * to keep the memory consumption sane we periodically reap any completed BIOs 512 * during the BIO generation phase. 513 * 514 * This also helps to limit the peak amount of pinned userspace memory. 515 */ 516 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio) 517 { 518 int ret = 0; 519 520 if (sdio->reap_counter++ >= 64) { 521 while (dio->bio_list) { 522 unsigned long flags; 523 struct bio *bio; 524 int ret2; 525 526 spin_lock_irqsave(&dio->bio_lock, flags); 527 bio = dio->bio_list; 528 dio->bio_list = bio->bi_private; 529 spin_unlock_irqrestore(&dio->bio_lock, flags); 530 ret2 = dio_bio_complete(dio, bio); 531 if (ret == 0) 532 ret = ret2; 533 } 534 sdio->reap_counter = 0; 535 } 536 return ret; 537 } 538 539 /* 540 * Create workqueue for deferred direct IO completions. We allocate the 541 * workqueue when it's first needed. This avoids creating workqueue for 542 * filesystems that don't need it and also allows us to create the workqueue 543 * late enough so the we can include s_id in the name of the workqueue. 544 */ 545 static int sb_init_dio_done_wq(struct super_block *sb) 546 { 547 struct workqueue_struct *old; 548 struct workqueue_struct *wq = alloc_workqueue("dio/%s", 549 WQ_MEM_RECLAIM, 0, 550 sb->s_id); 551 if (!wq) 552 return -ENOMEM; 553 /* 554 * This has to be atomic as more DIOs can race to create the workqueue 555 */ 556 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq); 557 /* Someone created workqueue before us? Free ours... */ 558 if (old) 559 destroy_workqueue(wq); 560 return 0; 561 } 562 563 static int dio_set_defer_completion(struct dio *dio) 564 { 565 struct super_block *sb = dio->inode->i_sb; 566 567 if (dio->defer_completion) 568 return 0; 569 dio->defer_completion = true; 570 if (!sb->s_dio_done_wq) 571 return sb_init_dio_done_wq(sb); 572 return 0; 573 } 574 575 /* 576 * Call into the fs to map some more disk blocks. We record the current number 577 * of available blocks at sdio->blocks_available. These are in units of the 578 * fs blocksize, (1 << inode->i_blkbits). 579 * 580 * The fs is allowed to map lots of blocks at once. If it wants to do that, 581 * it uses the passed inode-relative block number as the file offset, as usual. 582 * 583 * get_block() is passed the number of i_blkbits-sized blocks which direct_io 584 * has remaining to do. The fs should not map more than this number of blocks. 585 * 586 * If the fs has mapped a lot of blocks, it should populate bh->b_size to 587 * indicate how much contiguous disk space has been made available at 588 * bh->b_blocknr. 589 * 590 * If *any* of the mapped blocks are new, then the fs must set buffer_new(). 591 * This isn't very efficient... 592 * 593 * In the case of filesystem holes: the fs may return an arbitrarily-large 594 * hole by returning an appropriate value in b_size and by clearing 595 * buffer_mapped(). However the direct-io code will only process holes one 596 * block at a time - it will repeatedly call get_block() as it walks the hole. 597 */ 598 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio, 599 struct buffer_head *map_bh) 600 { 601 int ret; 602 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ 603 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */ 604 unsigned long fs_count; /* Number of filesystem-sized blocks */ 605 int create; 606 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor; 607 608 /* 609 * If there was a memory error and we've overwritten all the 610 * mapped blocks then we can now return that memory error 611 */ 612 ret = dio->page_errors; 613 if (ret == 0) { 614 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request); 615 fs_startblk = sdio->block_in_file >> sdio->blkfactor; 616 fs_endblk = (sdio->final_block_in_request - 1) >> 617 sdio->blkfactor; 618 fs_count = fs_endblk - fs_startblk + 1; 619 620 map_bh->b_state = 0; 621 map_bh->b_size = fs_count << i_blkbits; 622 623 /* 624 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we 625 * forbid block creations: only overwrites are permitted. 626 * We will return early to the caller once we see an 627 * unmapped buffer head returned, and the caller will fall 628 * back to buffered I/O. 629 * 630 * Otherwise the decision is left to the get_blocks method, 631 * which may decide to handle it or also return an unmapped 632 * buffer head. 633 */ 634 create = dio->rw & WRITE; 635 if (dio->flags & DIO_SKIP_HOLES) { 636 if (sdio->block_in_file < (i_size_read(dio->inode) >> 637 sdio->blkbits)) 638 create = 0; 639 } 640 641 ret = (*sdio->get_block)(dio->inode, fs_startblk, 642 map_bh, create); 643 644 /* Store for completion */ 645 dio->private = map_bh->b_private; 646 647 if (ret == 0 && buffer_defer_completion(map_bh)) 648 ret = dio_set_defer_completion(dio); 649 } 650 return ret; 651 } 652 653 /* 654 * There is no bio. Make one now. 655 */ 656 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio, 657 sector_t start_sector, struct buffer_head *map_bh) 658 { 659 sector_t sector; 660 int ret, nr_pages; 661 662 ret = dio_bio_reap(dio, sdio); 663 if (ret) 664 goto out; 665 sector = start_sector << (sdio->blkbits - 9); 666 nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES); 667 BUG_ON(nr_pages <= 0); 668 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages); 669 sdio->boundary = 0; 670 out: 671 return ret; 672 } 673 674 /* 675 * Attempt to put the current chunk of 'cur_page' into the current BIO. If 676 * that was successful then update final_block_in_bio and take a ref against 677 * the just-added page. 678 * 679 * Return zero on success. Non-zero means the caller needs to start a new BIO. 680 */ 681 static inline int dio_bio_add_page(struct dio_submit *sdio) 682 { 683 int ret; 684 685 ret = bio_add_page(sdio->bio, sdio->cur_page, 686 sdio->cur_page_len, sdio->cur_page_offset); 687 if (ret == sdio->cur_page_len) { 688 /* 689 * Decrement count only, if we are done with this page 690 */ 691 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE) 692 sdio->pages_in_io--; 693 page_cache_get(sdio->cur_page); 694 sdio->final_block_in_bio = sdio->cur_page_block + 695 (sdio->cur_page_len >> sdio->blkbits); 696 ret = 0; 697 } else { 698 ret = 1; 699 } 700 return ret; 701 } 702 703 /* 704 * Put cur_page under IO. The section of cur_page which is described by 705 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page 706 * starts on-disk at cur_page_block. 707 * 708 * We take a ref against the page here (on behalf of its presence in the bio). 709 * 710 * The caller of this function is responsible for removing cur_page from the 711 * dio, and for dropping the refcount which came from that presence. 712 */ 713 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio, 714 struct buffer_head *map_bh) 715 { 716 int ret = 0; 717 718 if (sdio->bio) { 719 loff_t cur_offset = sdio->cur_page_fs_offset; 720 loff_t bio_next_offset = sdio->logical_offset_in_bio + 721 sdio->bio->bi_iter.bi_size; 722 723 /* 724 * See whether this new request is contiguous with the old. 725 * 726 * Btrfs cannot handle having logically non-contiguous requests 727 * submitted. For example if you have 728 * 729 * Logical: [0-4095][HOLE][8192-12287] 730 * Physical: [0-4095] [4096-8191] 731 * 732 * We cannot submit those pages together as one BIO. So if our 733 * current logical offset in the file does not equal what would 734 * be the next logical offset in the bio, submit the bio we 735 * have. 736 */ 737 if (sdio->final_block_in_bio != sdio->cur_page_block || 738 cur_offset != bio_next_offset) 739 dio_bio_submit(dio, sdio); 740 } 741 742 if (sdio->bio == NULL) { 743 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 744 if (ret) 745 goto out; 746 } 747 748 if (dio_bio_add_page(sdio) != 0) { 749 dio_bio_submit(dio, sdio); 750 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 751 if (ret == 0) { 752 ret = dio_bio_add_page(sdio); 753 BUG_ON(ret != 0); 754 } 755 } 756 out: 757 return ret; 758 } 759 760 /* 761 * An autonomous function to put a chunk of a page under deferred IO. 762 * 763 * The caller doesn't actually know (or care) whether this piece of page is in 764 * a BIO, or is under IO or whatever. We just take care of all possible 765 * situations here. The separation between the logic of do_direct_IO() and 766 * that of submit_page_section() is important for clarity. Please don't break. 767 * 768 * The chunk of page starts on-disk at blocknr. 769 * 770 * We perform deferred IO, by recording the last-submitted page inside our 771 * private part of the dio structure. If possible, we just expand the IO 772 * across that page here. 773 * 774 * If that doesn't work out then we put the old page into the bio and add this 775 * page to the dio instead. 776 */ 777 static inline int 778 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page, 779 unsigned offset, unsigned len, sector_t blocknr, 780 struct buffer_head *map_bh) 781 { 782 int ret = 0; 783 784 if (dio->rw & WRITE) { 785 /* 786 * Read accounting is performed in submit_bio() 787 */ 788 task_io_account_write(len); 789 } 790 791 /* 792 * Can we just grow the current page's presence in the dio? 793 */ 794 if (sdio->cur_page == page && 795 sdio->cur_page_offset + sdio->cur_page_len == offset && 796 sdio->cur_page_block + 797 (sdio->cur_page_len >> sdio->blkbits) == blocknr) { 798 sdio->cur_page_len += len; 799 goto out; 800 } 801 802 /* 803 * If there's a deferred page already there then send it. 804 */ 805 if (sdio->cur_page) { 806 ret = dio_send_cur_page(dio, sdio, map_bh); 807 page_cache_release(sdio->cur_page); 808 sdio->cur_page = NULL; 809 if (ret) 810 return ret; 811 } 812 813 page_cache_get(page); /* It is in dio */ 814 sdio->cur_page = page; 815 sdio->cur_page_offset = offset; 816 sdio->cur_page_len = len; 817 sdio->cur_page_block = blocknr; 818 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits; 819 out: 820 /* 821 * If sdio->boundary then we want to schedule the IO now to 822 * avoid metadata seeks. 823 */ 824 if (sdio->boundary) { 825 ret = dio_send_cur_page(dio, sdio, map_bh); 826 dio_bio_submit(dio, sdio); 827 page_cache_release(sdio->cur_page); 828 sdio->cur_page = NULL; 829 } 830 return ret; 831 } 832 833 /* 834 * Clean any dirty buffers in the blockdev mapping which alias newly-created 835 * file blocks. Only called for S_ISREG files - blockdevs do not set 836 * buffer_new 837 */ 838 static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh) 839 { 840 unsigned i; 841 unsigned nblocks; 842 843 nblocks = map_bh->b_size >> dio->inode->i_blkbits; 844 845 for (i = 0; i < nblocks; i++) { 846 unmap_underlying_metadata(map_bh->b_bdev, 847 map_bh->b_blocknr + i); 848 } 849 } 850 851 /* 852 * If we are not writing the entire block and get_block() allocated 853 * the block for us, we need to fill-in the unused portion of the 854 * block with zeros. This happens only if user-buffer, fileoffset or 855 * io length is not filesystem block-size multiple. 856 * 857 * `end' is zero if we're doing the start of the IO, 1 at the end of the 858 * IO. 859 */ 860 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio, 861 int end, struct buffer_head *map_bh) 862 { 863 unsigned dio_blocks_per_fs_block; 864 unsigned this_chunk_blocks; /* In dio_blocks */ 865 unsigned this_chunk_bytes; 866 struct page *page; 867 868 sdio->start_zero_done = 1; 869 if (!sdio->blkfactor || !buffer_new(map_bh)) 870 return; 871 872 dio_blocks_per_fs_block = 1 << sdio->blkfactor; 873 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1); 874 875 if (!this_chunk_blocks) 876 return; 877 878 /* 879 * We need to zero out part of an fs block. It is either at the 880 * beginning or the end of the fs block. 881 */ 882 if (end) 883 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; 884 885 this_chunk_bytes = this_chunk_blocks << sdio->blkbits; 886 887 page = ZERO_PAGE(0); 888 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes, 889 sdio->next_block_for_io, map_bh)) 890 return; 891 892 sdio->next_block_for_io += this_chunk_blocks; 893 } 894 895 /* 896 * Walk the user pages, and the file, mapping blocks to disk and generating 897 * a sequence of (page,offset,len,block) mappings. These mappings are injected 898 * into submit_page_section(), which takes care of the next stage of submission 899 * 900 * Direct IO against a blockdev is different from a file. Because we can 901 * happily perform page-sized but 512-byte aligned IOs. It is important that 902 * blockdev IO be able to have fine alignment and large sizes. 903 * 904 * So what we do is to permit the ->get_block function to populate bh.b_size 905 * with the size of IO which is permitted at this offset and this i_blkbits. 906 * 907 * For best results, the blockdev should be set up with 512-byte i_blkbits and 908 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives 909 * fine alignment but still allows this function to work in PAGE_SIZE units. 910 */ 911 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio, 912 struct buffer_head *map_bh) 913 { 914 const unsigned blkbits = sdio->blkbits; 915 int ret = 0; 916 917 while (sdio->block_in_file < sdio->final_block_in_request) { 918 struct page *page; 919 size_t from, to; 920 921 page = dio_get_page(dio, sdio); 922 if (IS_ERR(page)) { 923 ret = PTR_ERR(page); 924 goto out; 925 } 926 from = sdio->head ? 0 : sdio->from; 927 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE; 928 sdio->head++; 929 930 while (from < to) { 931 unsigned this_chunk_bytes; /* # of bytes mapped */ 932 unsigned this_chunk_blocks; /* # of blocks */ 933 unsigned u; 934 935 if (sdio->blocks_available == 0) { 936 /* 937 * Need to go and map some more disk 938 */ 939 unsigned long blkmask; 940 unsigned long dio_remainder; 941 942 ret = get_more_blocks(dio, sdio, map_bh); 943 if (ret) { 944 page_cache_release(page); 945 goto out; 946 } 947 if (!buffer_mapped(map_bh)) 948 goto do_holes; 949 950 sdio->blocks_available = 951 map_bh->b_size >> sdio->blkbits; 952 sdio->next_block_for_io = 953 map_bh->b_blocknr << sdio->blkfactor; 954 if (buffer_new(map_bh)) 955 clean_blockdev_aliases(dio, map_bh); 956 957 if (!sdio->blkfactor) 958 goto do_holes; 959 960 blkmask = (1 << sdio->blkfactor) - 1; 961 dio_remainder = (sdio->block_in_file & blkmask); 962 963 /* 964 * If we are at the start of IO and that IO 965 * starts partway into a fs-block, 966 * dio_remainder will be non-zero. If the IO 967 * is a read then we can simply advance the IO 968 * cursor to the first block which is to be 969 * read. But if the IO is a write and the 970 * block was newly allocated we cannot do that; 971 * the start of the fs block must be zeroed out 972 * on-disk 973 */ 974 if (!buffer_new(map_bh)) 975 sdio->next_block_for_io += dio_remainder; 976 sdio->blocks_available -= dio_remainder; 977 } 978 do_holes: 979 /* Handle holes */ 980 if (!buffer_mapped(map_bh)) { 981 loff_t i_size_aligned; 982 983 /* AKPM: eargh, -ENOTBLK is a hack */ 984 if (dio->rw & WRITE) { 985 page_cache_release(page); 986 return -ENOTBLK; 987 } 988 989 /* 990 * Be sure to account for a partial block as the 991 * last block in the file 992 */ 993 i_size_aligned = ALIGN(i_size_read(dio->inode), 994 1 << blkbits); 995 if (sdio->block_in_file >= 996 i_size_aligned >> blkbits) { 997 /* We hit eof */ 998 page_cache_release(page); 999 goto out; 1000 } 1001 zero_user(page, from, 1 << blkbits); 1002 sdio->block_in_file++; 1003 from += 1 << blkbits; 1004 dio->result += 1 << blkbits; 1005 goto next_block; 1006 } 1007 1008 /* 1009 * If we're performing IO which has an alignment which 1010 * is finer than the underlying fs, go check to see if 1011 * we must zero out the start of this block. 1012 */ 1013 if (unlikely(sdio->blkfactor && !sdio->start_zero_done)) 1014 dio_zero_block(dio, sdio, 0, map_bh); 1015 1016 /* 1017 * Work out, in this_chunk_blocks, how much disk we 1018 * can add to this page 1019 */ 1020 this_chunk_blocks = sdio->blocks_available; 1021 u = (to - from) >> blkbits; 1022 if (this_chunk_blocks > u) 1023 this_chunk_blocks = u; 1024 u = sdio->final_block_in_request - sdio->block_in_file; 1025 if (this_chunk_blocks > u) 1026 this_chunk_blocks = u; 1027 this_chunk_bytes = this_chunk_blocks << blkbits; 1028 BUG_ON(this_chunk_bytes == 0); 1029 1030 if (this_chunk_blocks == sdio->blocks_available) 1031 sdio->boundary = buffer_boundary(map_bh); 1032 ret = submit_page_section(dio, sdio, page, 1033 from, 1034 this_chunk_bytes, 1035 sdio->next_block_for_io, 1036 map_bh); 1037 if (ret) { 1038 page_cache_release(page); 1039 goto out; 1040 } 1041 sdio->next_block_for_io += this_chunk_blocks; 1042 1043 sdio->block_in_file += this_chunk_blocks; 1044 from += this_chunk_bytes; 1045 dio->result += this_chunk_bytes; 1046 sdio->blocks_available -= this_chunk_blocks; 1047 next_block: 1048 BUG_ON(sdio->block_in_file > sdio->final_block_in_request); 1049 if (sdio->block_in_file == sdio->final_block_in_request) 1050 break; 1051 } 1052 1053 /* Drop the ref which was taken in get_user_pages() */ 1054 page_cache_release(page); 1055 } 1056 out: 1057 return ret; 1058 } 1059 1060 static inline int drop_refcount(struct dio *dio) 1061 { 1062 int ret2; 1063 unsigned long flags; 1064 1065 /* 1066 * Sync will always be dropping the final ref and completing the 1067 * operation. AIO can if it was a broken operation described above or 1068 * in fact if all the bios race to complete before we get here. In 1069 * that case dio_complete() translates the EIOCBQUEUED into the proper 1070 * return code that the caller will hand to ->complete(). 1071 * 1072 * This is managed by the bio_lock instead of being an atomic_t so that 1073 * completion paths can drop their ref and use the remaining count to 1074 * decide to wake the submission path atomically. 1075 */ 1076 spin_lock_irqsave(&dio->bio_lock, flags); 1077 ret2 = --dio->refcount; 1078 spin_unlock_irqrestore(&dio->bio_lock, flags); 1079 return ret2; 1080 } 1081 1082 /* 1083 * This is a library function for use by filesystem drivers. 1084 * 1085 * The locking rules are governed by the flags parameter: 1086 * - if the flags value contains DIO_LOCKING we use a fancy locking 1087 * scheme for dumb filesystems. 1088 * For writes this function is called under i_mutex and returns with 1089 * i_mutex held, for reads, i_mutex is not held on entry, but it is 1090 * taken and dropped again before returning. 1091 * - if the flags value does NOT contain DIO_LOCKING we don't use any 1092 * internal locking but rather rely on the filesystem to synchronize 1093 * direct I/O reads/writes versus each other and truncate. 1094 * 1095 * To help with locking against truncate we incremented the i_dio_count 1096 * counter before starting direct I/O, and decrement it once we are done. 1097 * Truncate can wait for it to reach zero to provide exclusion. It is 1098 * expected that filesystem provide exclusion between new direct I/O 1099 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex, 1100 * but other filesystems need to take care of this on their own. 1101 * 1102 * NOTE: if you pass "sdio" to anything by pointer make sure that function 1103 * is always inlined. Otherwise gcc is unable to split the structure into 1104 * individual fields and will generate much worse code. This is important 1105 * for the whole file. 1106 */ 1107 static inline ssize_t 1108 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1109 struct block_device *bdev, struct iov_iter *iter, 1110 loff_t offset, get_block_t get_block, dio_iodone_t end_io, 1111 dio_submit_t submit_io, int flags) 1112 { 1113 unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits); 1114 unsigned blkbits = i_blkbits; 1115 unsigned blocksize_mask = (1 << blkbits) - 1; 1116 ssize_t retval = -EINVAL; 1117 size_t count = iov_iter_count(iter); 1118 loff_t end = offset + count; 1119 struct dio *dio; 1120 struct dio_submit sdio = { 0, }; 1121 struct buffer_head map_bh = { 0, }; 1122 struct blk_plug plug; 1123 unsigned long align = offset | iov_iter_alignment(iter); 1124 1125 /* 1126 * Avoid references to bdev if not absolutely needed to give 1127 * the early prefetch in the caller enough time. 1128 */ 1129 1130 if (align & blocksize_mask) { 1131 if (bdev) 1132 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 1133 blocksize_mask = (1 << blkbits) - 1; 1134 if (align & blocksize_mask) 1135 goto out; 1136 } 1137 1138 /* watch out for a 0 len io from a tricksy fs */ 1139 if (iov_iter_rw(iter) == READ && !iov_iter_count(iter)) 1140 return 0; 1141 1142 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL); 1143 retval = -ENOMEM; 1144 if (!dio) 1145 goto out; 1146 /* 1147 * Believe it or not, zeroing out the page array caused a .5% 1148 * performance regression in a database benchmark. So, we take 1149 * care to only zero out what's needed. 1150 */ 1151 memset(dio, 0, offsetof(struct dio, pages)); 1152 1153 dio->flags = flags; 1154 if (dio->flags & DIO_LOCKING) { 1155 if (iov_iter_rw(iter) == READ) { 1156 struct address_space *mapping = 1157 iocb->ki_filp->f_mapping; 1158 1159 /* will be released by direct_io_worker */ 1160 mutex_lock(&inode->i_mutex); 1161 1162 retval = filemap_write_and_wait_range(mapping, offset, 1163 end - 1); 1164 if (retval) { 1165 mutex_unlock(&inode->i_mutex); 1166 kmem_cache_free(dio_cache, dio); 1167 goto out; 1168 } 1169 } 1170 } 1171 1172 /* 1173 * For file extending writes updating i_size before data writeouts 1174 * complete can expose uninitialized blocks in dumb filesystems. 1175 * In that case we need to wait for I/O completion even if asked 1176 * for an asynchronous write. 1177 */ 1178 if (is_sync_kiocb(iocb)) 1179 dio->is_async = false; 1180 else if (!(dio->flags & DIO_ASYNC_EXTEND) && 1181 iov_iter_rw(iter) == WRITE && end > i_size_read(inode)) 1182 dio->is_async = false; 1183 else 1184 dio->is_async = true; 1185 1186 dio->inode = inode; 1187 dio->rw = iov_iter_rw(iter) == WRITE ? WRITE_ODIRECT : READ; 1188 1189 /* 1190 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue 1191 * so that we can call ->fsync. 1192 */ 1193 if (dio->is_async && iov_iter_rw(iter) == WRITE && 1194 ((iocb->ki_filp->f_flags & O_DSYNC) || 1195 IS_SYNC(iocb->ki_filp->f_mapping->host))) { 1196 retval = dio_set_defer_completion(dio); 1197 if (retval) { 1198 /* 1199 * We grab i_mutex only for reads so we don't have 1200 * to release it here 1201 */ 1202 kmem_cache_free(dio_cache, dio); 1203 goto out; 1204 } 1205 } 1206 1207 /* 1208 * Will be decremented at I/O completion time. 1209 */ 1210 if (!(dio->flags & DIO_SKIP_DIO_COUNT)) 1211 inode_dio_begin(inode); 1212 1213 retval = 0; 1214 sdio.blkbits = blkbits; 1215 sdio.blkfactor = i_blkbits - blkbits; 1216 sdio.block_in_file = offset >> blkbits; 1217 1218 sdio.get_block = get_block; 1219 dio->end_io = end_io; 1220 sdio.submit_io = submit_io; 1221 sdio.final_block_in_bio = -1; 1222 sdio.next_block_for_io = -1; 1223 1224 dio->iocb = iocb; 1225 dio->i_size = i_size_read(inode); 1226 1227 spin_lock_init(&dio->bio_lock); 1228 dio->refcount = 1; 1229 1230 dio->should_dirty = (iter->type == ITER_IOVEC); 1231 sdio.iter = iter; 1232 sdio.final_block_in_request = 1233 (offset + iov_iter_count(iter)) >> blkbits; 1234 1235 /* 1236 * In case of non-aligned buffers, we may need 2 more 1237 * pages since we need to zero out first and last block. 1238 */ 1239 if (unlikely(sdio.blkfactor)) 1240 sdio.pages_in_io = 2; 1241 1242 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX); 1243 1244 blk_start_plug(&plug); 1245 1246 retval = do_direct_IO(dio, &sdio, &map_bh); 1247 if (retval) 1248 dio_cleanup(dio, &sdio); 1249 1250 if (retval == -ENOTBLK) { 1251 /* 1252 * The remaining part of the request will be 1253 * be handled by buffered I/O when we return 1254 */ 1255 retval = 0; 1256 } 1257 /* 1258 * There may be some unwritten disk at the end of a part-written 1259 * fs-block-sized block. Go zero that now. 1260 */ 1261 dio_zero_block(dio, &sdio, 1, &map_bh); 1262 1263 if (sdio.cur_page) { 1264 ssize_t ret2; 1265 1266 ret2 = dio_send_cur_page(dio, &sdio, &map_bh); 1267 if (retval == 0) 1268 retval = ret2; 1269 page_cache_release(sdio.cur_page); 1270 sdio.cur_page = NULL; 1271 } 1272 if (sdio.bio) 1273 dio_bio_submit(dio, &sdio); 1274 1275 blk_finish_plug(&plug); 1276 1277 /* 1278 * It is possible that, we return short IO due to end of file. 1279 * In that case, we need to release all the pages we got hold on. 1280 */ 1281 dio_cleanup(dio, &sdio); 1282 1283 /* 1284 * All block lookups have been performed. For READ requests 1285 * we can let i_mutex go now that its achieved its purpose 1286 * of protecting us from looking up uninitialized blocks. 1287 */ 1288 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING)) 1289 mutex_unlock(&dio->inode->i_mutex); 1290 1291 /* 1292 * The only time we want to leave bios in flight is when a successful 1293 * partial aio read or full aio write have been setup. In that case 1294 * bio completion will call aio_complete. The only time it's safe to 1295 * call aio_complete is when we return -EIOCBQUEUED, so we key on that. 1296 * This had *better* be the only place that raises -EIOCBQUEUED. 1297 */ 1298 BUG_ON(retval == -EIOCBQUEUED); 1299 if (dio->is_async && retval == 0 && dio->result && 1300 (iov_iter_rw(iter) == READ || dio->result == count)) 1301 retval = -EIOCBQUEUED; 1302 else 1303 dio_await_completion(dio); 1304 1305 if (drop_refcount(dio) == 0) { 1306 retval = dio_complete(dio, offset, retval, false); 1307 } else 1308 BUG_ON(retval != -EIOCBQUEUED); 1309 1310 out: 1311 return retval; 1312 } 1313 1314 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1315 struct block_device *bdev, struct iov_iter *iter, 1316 loff_t offset, get_block_t get_block, 1317 dio_iodone_t end_io, dio_submit_t submit_io, 1318 int flags) 1319 { 1320 /* 1321 * The block device state is needed in the end to finally 1322 * submit everything. Since it's likely to be cache cold 1323 * prefetch it here as first thing to hide some of the 1324 * latency. 1325 * 1326 * Attempt to prefetch the pieces we likely need later. 1327 */ 1328 prefetch(&bdev->bd_disk->part_tbl); 1329 prefetch(bdev->bd_queue); 1330 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES); 1331 1332 return do_blockdev_direct_IO(iocb, inode, bdev, iter, offset, get_block, 1333 end_io, submit_io, flags); 1334 } 1335 1336 EXPORT_SYMBOL(__blockdev_direct_IO); 1337 1338 static __init int dio_init(void) 1339 { 1340 dio_cache = KMEM_CACHE(dio, SLAB_PANIC); 1341 return 0; 1342 } 1343 module_init(dio_init) 1344