1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/direct-io.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * O_DIRECT 8 * 9 * 04Jul2002 Andrew Morton 10 * Initial version 11 * 11Sep2002 janetinc@us.ibm.com 12 * added readv/writev support. 13 * 29Oct2002 Andrew Morton 14 * rewrote bio_add_page() support. 15 * 30Oct2002 pbadari@us.ibm.com 16 * added support for non-aligned IO. 17 * 06Nov2002 pbadari@us.ibm.com 18 * added asynchronous IO support. 19 * 21Jul2003 nathans@sgi.com 20 * added IO completion notifier. 21 */ 22 23 #include <linux/kernel.h> 24 #include <linux/module.h> 25 #include <linux/types.h> 26 #include <linux/fs.h> 27 #include <linux/mm.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/pagemap.h> 31 #include <linux/task_io_accounting_ops.h> 32 #include <linux/bio.h> 33 #include <linux/wait.h> 34 #include <linux/err.h> 35 #include <linux/blkdev.h> 36 #include <linux/buffer_head.h> 37 #include <linux/rwsem.h> 38 #include <linux/uio.h> 39 #include <linux/atomic.h> 40 #include <linux/prefetch.h> 41 42 /* 43 * How many user pages to map in one call to get_user_pages(). This determines 44 * the size of a structure in the slab cache 45 */ 46 #define DIO_PAGES 64 47 48 /* 49 * Flags for dio_complete() 50 */ 51 #define DIO_COMPLETE_ASYNC 0x01 /* This is async IO */ 52 #define DIO_COMPLETE_INVALIDATE 0x02 /* Can invalidate pages */ 53 54 /* 55 * This code generally works in units of "dio_blocks". A dio_block is 56 * somewhere between the hard sector size and the filesystem block size. it 57 * is determined on a per-invocation basis. When talking to the filesystem 58 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity 59 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted 60 * to bio_block quantities by shifting left by blkfactor. 61 * 62 * If blkfactor is zero then the user's request was aligned to the filesystem's 63 * blocksize. 64 */ 65 66 /* dio_state only used in the submission path */ 67 68 struct dio_submit { 69 struct bio *bio; /* bio under assembly */ 70 unsigned blkbits; /* doesn't change */ 71 unsigned blkfactor; /* When we're using an alignment which 72 is finer than the filesystem's soft 73 blocksize, this specifies how much 74 finer. blkfactor=2 means 1/4-block 75 alignment. Does not change */ 76 unsigned start_zero_done; /* flag: sub-blocksize zeroing has 77 been performed at the start of a 78 write */ 79 int pages_in_io; /* approximate total IO pages */ 80 sector_t block_in_file; /* Current offset into the underlying 81 file in dio_block units. */ 82 unsigned blocks_available; /* At block_in_file. changes */ 83 int reap_counter; /* rate limit reaping */ 84 sector_t final_block_in_request;/* doesn't change */ 85 int boundary; /* prev block is at a boundary */ 86 get_block_t *get_block; /* block mapping function */ 87 dio_submit_t *submit_io; /* IO submition function */ 88 89 loff_t logical_offset_in_bio; /* current first logical block in bio */ 90 sector_t final_block_in_bio; /* current final block in bio + 1 */ 91 sector_t next_block_for_io; /* next block to be put under IO, 92 in dio_blocks units */ 93 94 /* 95 * Deferred addition of a page to the dio. These variables are 96 * private to dio_send_cur_page(), submit_page_section() and 97 * dio_bio_add_page(). 98 */ 99 struct page *cur_page; /* The page */ 100 unsigned cur_page_offset; /* Offset into it, in bytes */ 101 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ 102 sector_t cur_page_block; /* Where it starts */ 103 loff_t cur_page_fs_offset; /* Offset in file */ 104 105 struct iov_iter *iter; 106 /* 107 * Page queue. These variables belong to dio_refill_pages() and 108 * dio_get_page(). 109 */ 110 unsigned head; /* next page to process */ 111 unsigned tail; /* last valid page + 1 */ 112 size_t from, to; 113 }; 114 115 /* dio_state communicated between submission path and end_io */ 116 struct dio { 117 int flags; /* doesn't change */ 118 int op; 119 int op_flags; 120 blk_qc_t bio_cookie; 121 struct gendisk *bio_disk; 122 struct inode *inode; 123 loff_t i_size; /* i_size when submitted */ 124 dio_iodone_t *end_io; /* IO completion function */ 125 126 void *private; /* copy from map_bh.b_private */ 127 128 /* BIO completion state */ 129 spinlock_t bio_lock; /* protects BIO fields below */ 130 int page_errors; /* errno from get_user_pages() */ 131 int is_async; /* is IO async ? */ 132 bool defer_completion; /* defer AIO completion to workqueue? */ 133 bool should_dirty; /* if pages should be dirtied */ 134 int io_error; /* IO error in completion path */ 135 unsigned long refcount; /* direct_io_worker() and bios */ 136 struct bio *bio_list; /* singly linked via bi_private */ 137 struct task_struct *waiter; /* waiting task (NULL if none) */ 138 139 /* AIO related stuff */ 140 struct kiocb *iocb; /* kiocb */ 141 ssize_t result; /* IO result */ 142 143 /* 144 * pages[] (and any fields placed after it) are not zeroed out at 145 * allocation time. Don't add new fields after pages[] unless you 146 * wish that they not be zeroed. 147 */ 148 union { 149 struct page *pages[DIO_PAGES]; /* page buffer */ 150 struct work_struct complete_work;/* deferred AIO completion */ 151 }; 152 } ____cacheline_aligned_in_smp; 153 154 static struct kmem_cache *dio_cache __read_mostly; 155 156 /* 157 * How many pages are in the queue? 158 */ 159 static inline unsigned dio_pages_present(struct dio_submit *sdio) 160 { 161 return sdio->tail - sdio->head; 162 } 163 164 /* 165 * Go grab and pin some userspace pages. Typically we'll get 64 at a time. 166 */ 167 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio) 168 { 169 ssize_t ret; 170 171 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES, 172 &sdio->from); 173 174 if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) { 175 struct page *page = ZERO_PAGE(0); 176 /* 177 * A memory fault, but the filesystem has some outstanding 178 * mapped blocks. We need to use those blocks up to avoid 179 * leaking stale data in the file. 180 */ 181 if (dio->page_errors == 0) 182 dio->page_errors = ret; 183 get_page(page); 184 dio->pages[0] = page; 185 sdio->head = 0; 186 sdio->tail = 1; 187 sdio->from = 0; 188 sdio->to = PAGE_SIZE; 189 return 0; 190 } 191 192 if (ret >= 0) { 193 iov_iter_advance(sdio->iter, ret); 194 ret += sdio->from; 195 sdio->head = 0; 196 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE; 197 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1; 198 return 0; 199 } 200 return ret; 201 } 202 203 /* 204 * Get another userspace page. Returns an ERR_PTR on error. Pages are 205 * buffered inside the dio so that we can call get_user_pages() against a 206 * decent number of pages, less frequently. To provide nicer use of the 207 * L1 cache. 208 */ 209 static inline struct page *dio_get_page(struct dio *dio, 210 struct dio_submit *sdio) 211 { 212 if (dio_pages_present(sdio) == 0) { 213 int ret; 214 215 ret = dio_refill_pages(dio, sdio); 216 if (ret) 217 return ERR_PTR(ret); 218 BUG_ON(dio_pages_present(sdio) == 0); 219 } 220 return dio->pages[sdio->head]; 221 } 222 223 /* 224 * Warn about a page cache invalidation failure during a direct io write. 225 */ 226 void dio_warn_stale_pagecache(struct file *filp) 227 { 228 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 229 char pathname[128]; 230 struct inode *inode = file_inode(filp); 231 char *path; 232 233 errseq_set(&inode->i_mapping->wb_err, -EIO); 234 if (__ratelimit(&_rs)) { 235 path = file_path(filp, pathname, sizeof(pathname)); 236 if (IS_ERR(path)) 237 path = "(unknown)"; 238 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 239 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 240 current->comm); 241 } 242 } 243 244 /* 245 * dio_complete() - called when all DIO BIO I/O has been completed 246 * 247 * This drops i_dio_count, lets interested parties know that a DIO operation 248 * has completed, and calculates the resulting return code for the operation. 249 * 250 * It lets the filesystem know if it registered an interest earlier via 251 * get_block. Pass the private field of the map buffer_head so that 252 * filesystems can use it to hold additional state between get_block calls and 253 * dio_complete. 254 */ 255 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags) 256 { 257 loff_t offset = dio->iocb->ki_pos; 258 ssize_t transferred = 0; 259 int err; 260 261 /* 262 * AIO submission can race with bio completion to get here while 263 * expecting to have the last io completed by bio completion. 264 * In that case -EIOCBQUEUED is in fact not an error we want 265 * to preserve through this call. 266 */ 267 if (ret == -EIOCBQUEUED) 268 ret = 0; 269 270 if (dio->result) { 271 transferred = dio->result; 272 273 /* Check for short read case */ 274 if ((dio->op == REQ_OP_READ) && 275 ((offset + transferred) > dio->i_size)) 276 transferred = dio->i_size - offset; 277 /* ignore EFAULT if some IO has been done */ 278 if (unlikely(ret == -EFAULT) && transferred) 279 ret = 0; 280 } 281 282 if (ret == 0) 283 ret = dio->page_errors; 284 if (ret == 0) 285 ret = dio->io_error; 286 if (ret == 0) 287 ret = transferred; 288 289 if (dio->end_io) { 290 // XXX: ki_pos?? 291 err = dio->end_io(dio->iocb, offset, ret, dio->private); 292 if (err) 293 ret = err; 294 } 295 296 /* 297 * Try again to invalidate clean pages which might have been cached by 298 * non-direct readahead, or faulted in by get_user_pages() if the source 299 * of the write was an mmap'ed region of the file we're writing. Either 300 * one is a pretty crazy thing to do, so we don't support it 100%. If 301 * this invalidation fails, tough, the write still worked... 302 * 303 * And this page cache invalidation has to be after dio->end_io(), as 304 * some filesystems convert unwritten extents to real allocations in 305 * end_io() when necessary, otherwise a racing buffer read would cache 306 * zeros from unwritten extents. 307 */ 308 if (flags & DIO_COMPLETE_INVALIDATE && 309 ret > 0 && dio->op == REQ_OP_WRITE && 310 dio->inode->i_mapping->nrpages) { 311 err = invalidate_inode_pages2_range(dio->inode->i_mapping, 312 offset >> PAGE_SHIFT, 313 (offset + ret - 1) >> PAGE_SHIFT); 314 if (err) 315 dio_warn_stale_pagecache(dio->iocb->ki_filp); 316 } 317 318 inode_dio_end(dio->inode); 319 320 if (flags & DIO_COMPLETE_ASYNC) { 321 /* 322 * generic_write_sync expects ki_pos to have been updated 323 * already, but the submission path only does this for 324 * synchronous I/O. 325 */ 326 dio->iocb->ki_pos += transferred; 327 328 if (ret > 0 && dio->op == REQ_OP_WRITE) 329 ret = generic_write_sync(dio->iocb, ret); 330 dio->iocb->ki_complete(dio->iocb, ret, 0); 331 } 332 333 kmem_cache_free(dio_cache, dio); 334 return ret; 335 } 336 337 static void dio_aio_complete_work(struct work_struct *work) 338 { 339 struct dio *dio = container_of(work, struct dio, complete_work); 340 341 dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE); 342 } 343 344 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio); 345 346 /* 347 * Asynchronous IO callback. 348 */ 349 static void dio_bio_end_aio(struct bio *bio) 350 { 351 struct dio *dio = bio->bi_private; 352 unsigned long remaining; 353 unsigned long flags; 354 bool defer_completion = false; 355 356 /* cleanup the bio */ 357 dio_bio_complete(dio, bio); 358 359 spin_lock_irqsave(&dio->bio_lock, flags); 360 remaining = --dio->refcount; 361 if (remaining == 1 && dio->waiter) 362 wake_up_process(dio->waiter); 363 spin_unlock_irqrestore(&dio->bio_lock, flags); 364 365 if (remaining == 0) { 366 /* 367 * Defer completion when defer_completion is set or 368 * when the inode has pages mapped and this is AIO write. 369 * We need to invalidate those pages because there is a 370 * chance they contain stale data in the case buffered IO 371 * went in between AIO submission and completion into the 372 * same region. 373 */ 374 if (dio->result) 375 defer_completion = dio->defer_completion || 376 (dio->op == REQ_OP_WRITE && 377 dio->inode->i_mapping->nrpages); 378 if (defer_completion) { 379 INIT_WORK(&dio->complete_work, dio_aio_complete_work); 380 queue_work(dio->inode->i_sb->s_dio_done_wq, 381 &dio->complete_work); 382 } else { 383 dio_complete(dio, 0, DIO_COMPLETE_ASYNC); 384 } 385 } 386 } 387 388 /* 389 * The BIO completion handler simply queues the BIO up for the process-context 390 * handler. 391 * 392 * During I/O bi_private points at the dio. After I/O, bi_private is used to 393 * implement a singly-linked list of completed BIOs, at dio->bio_list. 394 */ 395 static void dio_bio_end_io(struct bio *bio) 396 { 397 struct dio *dio = bio->bi_private; 398 unsigned long flags; 399 400 spin_lock_irqsave(&dio->bio_lock, flags); 401 bio->bi_private = dio->bio_list; 402 dio->bio_list = bio; 403 if (--dio->refcount == 1 && dio->waiter) 404 wake_up_process(dio->waiter); 405 spin_unlock_irqrestore(&dio->bio_lock, flags); 406 } 407 408 /** 409 * dio_end_io - handle the end io action for the given bio 410 * @bio: The direct io bio thats being completed 411 * 412 * This is meant to be called by any filesystem that uses their own dio_submit_t 413 * so that the DIO specific endio actions are dealt with after the filesystem 414 * has done it's completion work. 415 */ 416 void dio_end_io(struct bio *bio) 417 { 418 struct dio *dio = bio->bi_private; 419 420 if (dio->is_async) 421 dio_bio_end_aio(bio); 422 else 423 dio_bio_end_io(bio); 424 } 425 EXPORT_SYMBOL_GPL(dio_end_io); 426 427 static inline void 428 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio, 429 struct block_device *bdev, 430 sector_t first_sector, int nr_vecs) 431 { 432 struct bio *bio; 433 434 /* 435 * bio_alloc() is guaranteed to return a bio when allowed to sleep and 436 * we request a valid number of vectors. 437 */ 438 bio = bio_alloc(GFP_KERNEL, nr_vecs); 439 440 bio_set_dev(bio, bdev); 441 bio->bi_iter.bi_sector = first_sector; 442 bio_set_op_attrs(bio, dio->op, dio->op_flags); 443 if (dio->is_async) 444 bio->bi_end_io = dio_bio_end_aio; 445 else 446 bio->bi_end_io = dio_bio_end_io; 447 448 bio->bi_write_hint = dio->iocb->ki_hint; 449 450 sdio->bio = bio; 451 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset; 452 } 453 454 /* 455 * In the AIO read case we speculatively dirty the pages before starting IO. 456 * During IO completion, any of these pages which happen to have been written 457 * back will be redirtied by bio_check_pages_dirty(). 458 * 459 * bios hold a dio reference between submit_bio and ->end_io. 460 */ 461 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio) 462 { 463 struct bio *bio = sdio->bio; 464 unsigned long flags; 465 466 bio->bi_private = dio; 467 468 spin_lock_irqsave(&dio->bio_lock, flags); 469 dio->refcount++; 470 spin_unlock_irqrestore(&dio->bio_lock, flags); 471 472 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) 473 bio_set_pages_dirty(bio); 474 475 dio->bio_disk = bio->bi_disk; 476 477 if (sdio->submit_io) { 478 sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio); 479 dio->bio_cookie = BLK_QC_T_NONE; 480 } else 481 dio->bio_cookie = submit_bio(bio); 482 483 sdio->bio = NULL; 484 sdio->boundary = 0; 485 sdio->logical_offset_in_bio = 0; 486 } 487 488 /* 489 * Release any resources in case of a failure 490 */ 491 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio) 492 { 493 while (sdio->head < sdio->tail) 494 put_page(dio->pages[sdio->head++]); 495 } 496 497 /* 498 * Wait for the next BIO to complete. Remove it and return it. NULL is 499 * returned once all BIOs have been completed. This must only be called once 500 * all bios have been issued so that dio->refcount can only decrease. This 501 * requires that that the caller hold a reference on the dio. 502 */ 503 static struct bio *dio_await_one(struct dio *dio) 504 { 505 unsigned long flags; 506 struct bio *bio = NULL; 507 508 spin_lock_irqsave(&dio->bio_lock, flags); 509 510 /* 511 * Wait as long as the list is empty and there are bios in flight. bio 512 * completion drops the count, maybe adds to the list, and wakes while 513 * holding the bio_lock so we don't need set_current_state()'s barrier 514 * and can call it after testing our condition. 515 */ 516 while (dio->refcount > 1 && dio->bio_list == NULL) { 517 __set_current_state(TASK_UNINTERRUPTIBLE); 518 dio->waiter = current; 519 spin_unlock_irqrestore(&dio->bio_lock, flags); 520 if (!(dio->iocb->ki_flags & IOCB_HIPRI) || 521 !blk_poll(dio->bio_disk->queue, dio->bio_cookie, true)) 522 io_schedule(); 523 /* wake up sets us TASK_RUNNING */ 524 spin_lock_irqsave(&dio->bio_lock, flags); 525 dio->waiter = NULL; 526 } 527 if (dio->bio_list) { 528 bio = dio->bio_list; 529 dio->bio_list = bio->bi_private; 530 } 531 spin_unlock_irqrestore(&dio->bio_lock, flags); 532 return bio; 533 } 534 535 /* 536 * Process one completed BIO. No locks are held. 537 */ 538 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio) 539 { 540 blk_status_t err = bio->bi_status; 541 bool should_dirty = dio->op == REQ_OP_READ && dio->should_dirty; 542 543 if (err) { 544 if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT)) 545 dio->io_error = -EAGAIN; 546 else 547 dio->io_error = -EIO; 548 } 549 550 if (dio->is_async && should_dirty) { 551 bio_check_pages_dirty(bio); /* transfers ownership */ 552 } else { 553 bio_release_pages(bio, should_dirty); 554 bio_put(bio); 555 } 556 return err; 557 } 558 559 /* 560 * Wait on and process all in-flight BIOs. This must only be called once 561 * all bios have been issued so that the refcount can only decrease. 562 * This just waits for all bios to make it through dio_bio_complete. IO 563 * errors are propagated through dio->io_error and should be propagated via 564 * dio_complete(). 565 */ 566 static void dio_await_completion(struct dio *dio) 567 { 568 struct bio *bio; 569 do { 570 bio = dio_await_one(dio); 571 if (bio) 572 dio_bio_complete(dio, bio); 573 } while (bio); 574 } 575 576 /* 577 * A really large O_DIRECT read or write can generate a lot of BIOs. So 578 * to keep the memory consumption sane we periodically reap any completed BIOs 579 * during the BIO generation phase. 580 * 581 * This also helps to limit the peak amount of pinned userspace memory. 582 */ 583 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio) 584 { 585 int ret = 0; 586 587 if (sdio->reap_counter++ >= 64) { 588 while (dio->bio_list) { 589 unsigned long flags; 590 struct bio *bio; 591 int ret2; 592 593 spin_lock_irqsave(&dio->bio_lock, flags); 594 bio = dio->bio_list; 595 dio->bio_list = bio->bi_private; 596 spin_unlock_irqrestore(&dio->bio_lock, flags); 597 ret2 = blk_status_to_errno(dio_bio_complete(dio, bio)); 598 if (ret == 0) 599 ret = ret2; 600 } 601 sdio->reap_counter = 0; 602 } 603 return ret; 604 } 605 606 /* 607 * Create workqueue for deferred direct IO completions. We allocate the 608 * workqueue when it's first needed. This avoids creating workqueue for 609 * filesystems that don't need it and also allows us to create the workqueue 610 * late enough so the we can include s_id in the name of the workqueue. 611 */ 612 int sb_init_dio_done_wq(struct super_block *sb) 613 { 614 struct workqueue_struct *old; 615 struct workqueue_struct *wq = alloc_workqueue("dio/%s", 616 WQ_MEM_RECLAIM, 0, 617 sb->s_id); 618 if (!wq) 619 return -ENOMEM; 620 /* 621 * This has to be atomic as more DIOs can race to create the workqueue 622 */ 623 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq); 624 /* Someone created workqueue before us? Free ours... */ 625 if (old) 626 destroy_workqueue(wq); 627 return 0; 628 } 629 630 static int dio_set_defer_completion(struct dio *dio) 631 { 632 struct super_block *sb = dio->inode->i_sb; 633 634 if (dio->defer_completion) 635 return 0; 636 dio->defer_completion = true; 637 if (!sb->s_dio_done_wq) 638 return sb_init_dio_done_wq(sb); 639 return 0; 640 } 641 642 /* 643 * Call into the fs to map some more disk blocks. We record the current number 644 * of available blocks at sdio->blocks_available. These are in units of the 645 * fs blocksize, i_blocksize(inode). 646 * 647 * The fs is allowed to map lots of blocks at once. If it wants to do that, 648 * it uses the passed inode-relative block number as the file offset, as usual. 649 * 650 * get_block() is passed the number of i_blkbits-sized blocks which direct_io 651 * has remaining to do. The fs should not map more than this number of blocks. 652 * 653 * If the fs has mapped a lot of blocks, it should populate bh->b_size to 654 * indicate how much contiguous disk space has been made available at 655 * bh->b_blocknr. 656 * 657 * If *any* of the mapped blocks are new, then the fs must set buffer_new(). 658 * This isn't very efficient... 659 * 660 * In the case of filesystem holes: the fs may return an arbitrarily-large 661 * hole by returning an appropriate value in b_size and by clearing 662 * buffer_mapped(). However the direct-io code will only process holes one 663 * block at a time - it will repeatedly call get_block() as it walks the hole. 664 */ 665 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio, 666 struct buffer_head *map_bh) 667 { 668 int ret; 669 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ 670 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */ 671 unsigned long fs_count; /* Number of filesystem-sized blocks */ 672 int create; 673 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor; 674 loff_t i_size; 675 676 /* 677 * If there was a memory error and we've overwritten all the 678 * mapped blocks then we can now return that memory error 679 */ 680 ret = dio->page_errors; 681 if (ret == 0) { 682 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request); 683 fs_startblk = sdio->block_in_file >> sdio->blkfactor; 684 fs_endblk = (sdio->final_block_in_request - 1) >> 685 sdio->blkfactor; 686 fs_count = fs_endblk - fs_startblk + 1; 687 688 map_bh->b_state = 0; 689 map_bh->b_size = fs_count << i_blkbits; 690 691 /* 692 * For writes that could fill holes inside i_size on a 693 * DIO_SKIP_HOLES filesystem we forbid block creations: only 694 * overwrites are permitted. We will return early to the caller 695 * once we see an unmapped buffer head returned, and the caller 696 * will fall back to buffered I/O. 697 * 698 * Otherwise the decision is left to the get_blocks method, 699 * which may decide to handle it or also return an unmapped 700 * buffer head. 701 */ 702 create = dio->op == REQ_OP_WRITE; 703 if (dio->flags & DIO_SKIP_HOLES) { 704 i_size = i_size_read(dio->inode); 705 if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits) 706 create = 0; 707 } 708 709 ret = (*sdio->get_block)(dio->inode, fs_startblk, 710 map_bh, create); 711 712 /* Store for completion */ 713 dio->private = map_bh->b_private; 714 715 if (ret == 0 && buffer_defer_completion(map_bh)) 716 ret = dio_set_defer_completion(dio); 717 } 718 return ret; 719 } 720 721 /* 722 * There is no bio. Make one now. 723 */ 724 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio, 725 sector_t start_sector, struct buffer_head *map_bh) 726 { 727 sector_t sector; 728 int ret, nr_pages; 729 730 ret = dio_bio_reap(dio, sdio); 731 if (ret) 732 goto out; 733 sector = start_sector << (sdio->blkbits - 9); 734 nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES); 735 BUG_ON(nr_pages <= 0); 736 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages); 737 sdio->boundary = 0; 738 out: 739 return ret; 740 } 741 742 /* 743 * Attempt to put the current chunk of 'cur_page' into the current BIO. If 744 * that was successful then update final_block_in_bio and take a ref against 745 * the just-added page. 746 * 747 * Return zero on success. Non-zero means the caller needs to start a new BIO. 748 */ 749 static inline int dio_bio_add_page(struct dio_submit *sdio) 750 { 751 int ret; 752 753 ret = bio_add_page(sdio->bio, sdio->cur_page, 754 sdio->cur_page_len, sdio->cur_page_offset); 755 if (ret == sdio->cur_page_len) { 756 /* 757 * Decrement count only, if we are done with this page 758 */ 759 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE) 760 sdio->pages_in_io--; 761 get_page(sdio->cur_page); 762 sdio->final_block_in_bio = sdio->cur_page_block + 763 (sdio->cur_page_len >> sdio->blkbits); 764 ret = 0; 765 } else { 766 ret = 1; 767 } 768 return ret; 769 } 770 771 /* 772 * Put cur_page under IO. The section of cur_page which is described by 773 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page 774 * starts on-disk at cur_page_block. 775 * 776 * We take a ref against the page here (on behalf of its presence in the bio). 777 * 778 * The caller of this function is responsible for removing cur_page from the 779 * dio, and for dropping the refcount which came from that presence. 780 */ 781 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio, 782 struct buffer_head *map_bh) 783 { 784 int ret = 0; 785 786 if (sdio->bio) { 787 loff_t cur_offset = sdio->cur_page_fs_offset; 788 loff_t bio_next_offset = sdio->logical_offset_in_bio + 789 sdio->bio->bi_iter.bi_size; 790 791 /* 792 * See whether this new request is contiguous with the old. 793 * 794 * Btrfs cannot handle having logically non-contiguous requests 795 * submitted. For example if you have 796 * 797 * Logical: [0-4095][HOLE][8192-12287] 798 * Physical: [0-4095] [4096-8191] 799 * 800 * We cannot submit those pages together as one BIO. So if our 801 * current logical offset in the file does not equal what would 802 * be the next logical offset in the bio, submit the bio we 803 * have. 804 */ 805 if (sdio->final_block_in_bio != sdio->cur_page_block || 806 cur_offset != bio_next_offset) 807 dio_bio_submit(dio, sdio); 808 } 809 810 if (sdio->bio == NULL) { 811 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 812 if (ret) 813 goto out; 814 } 815 816 if (dio_bio_add_page(sdio) != 0) { 817 dio_bio_submit(dio, sdio); 818 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 819 if (ret == 0) { 820 ret = dio_bio_add_page(sdio); 821 BUG_ON(ret != 0); 822 } 823 } 824 out: 825 return ret; 826 } 827 828 /* 829 * An autonomous function to put a chunk of a page under deferred IO. 830 * 831 * The caller doesn't actually know (or care) whether this piece of page is in 832 * a BIO, or is under IO or whatever. We just take care of all possible 833 * situations here. The separation between the logic of do_direct_IO() and 834 * that of submit_page_section() is important for clarity. Please don't break. 835 * 836 * The chunk of page starts on-disk at blocknr. 837 * 838 * We perform deferred IO, by recording the last-submitted page inside our 839 * private part of the dio structure. If possible, we just expand the IO 840 * across that page here. 841 * 842 * If that doesn't work out then we put the old page into the bio and add this 843 * page to the dio instead. 844 */ 845 static inline int 846 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page, 847 unsigned offset, unsigned len, sector_t blocknr, 848 struct buffer_head *map_bh) 849 { 850 int ret = 0; 851 852 if (dio->op == REQ_OP_WRITE) { 853 /* 854 * Read accounting is performed in submit_bio() 855 */ 856 task_io_account_write(len); 857 } 858 859 /* 860 * Can we just grow the current page's presence in the dio? 861 */ 862 if (sdio->cur_page == page && 863 sdio->cur_page_offset + sdio->cur_page_len == offset && 864 sdio->cur_page_block + 865 (sdio->cur_page_len >> sdio->blkbits) == blocknr) { 866 sdio->cur_page_len += len; 867 goto out; 868 } 869 870 /* 871 * If there's a deferred page already there then send it. 872 */ 873 if (sdio->cur_page) { 874 ret = dio_send_cur_page(dio, sdio, map_bh); 875 put_page(sdio->cur_page); 876 sdio->cur_page = NULL; 877 if (ret) 878 return ret; 879 } 880 881 get_page(page); /* It is in dio */ 882 sdio->cur_page = page; 883 sdio->cur_page_offset = offset; 884 sdio->cur_page_len = len; 885 sdio->cur_page_block = blocknr; 886 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits; 887 out: 888 /* 889 * If sdio->boundary then we want to schedule the IO now to 890 * avoid metadata seeks. 891 */ 892 if (sdio->boundary) { 893 ret = dio_send_cur_page(dio, sdio, map_bh); 894 if (sdio->bio) 895 dio_bio_submit(dio, sdio); 896 put_page(sdio->cur_page); 897 sdio->cur_page = NULL; 898 } 899 return ret; 900 } 901 902 /* 903 * If we are not writing the entire block and get_block() allocated 904 * the block for us, we need to fill-in the unused portion of the 905 * block with zeros. This happens only if user-buffer, fileoffset or 906 * io length is not filesystem block-size multiple. 907 * 908 * `end' is zero if we're doing the start of the IO, 1 at the end of the 909 * IO. 910 */ 911 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio, 912 int end, struct buffer_head *map_bh) 913 { 914 unsigned dio_blocks_per_fs_block; 915 unsigned this_chunk_blocks; /* In dio_blocks */ 916 unsigned this_chunk_bytes; 917 struct page *page; 918 919 sdio->start_zero_done = 1; 920 if (!sdio->blkfactor || !buffer_new(map_bh)) 921 return; 922 923 dio_blocks_per_fs_block = 1 << sdio->blkfactor; 924 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1); 925 926 if (!this_chunk_blocks) 927 return; 928 929 /* 930 * We need to zero out part of an fs block. It is either at the 931 * beginning or the end of the fs block. 932 */ 933 if (end) 934 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; 935 936 this_chunk_bytes = this_chunk_blocks << sdio->blkbits; 937 938 page = ZERO_PAGE(0); 939 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes, 940 sdio->next_block_for_io, map_bh)) 941 return; 942 943 sdio->next_block_for_io += this_chunk_blocks; 944 } 945 946 /* 947 * Walk the user pages, and the file, mapping blocks to disk and generating 948 * a sequence of (page,offset,len,block) mappings. These mappings are injected 949 * into submit_page_section(), which takes care of the next stage of submission 950 * 951 * Direct IO against a blockdev is different from a file. Because we can 952 * happily perform page-sized but 512-byte aligned IOs. It is important that 953 * blockdev IO be able to have fine alignment and large sizes. 954 * 955 * So what we do is to permit the ->get_block function to populate bh.b_size 956 * with the size of IO which is permitted at this offset and this i_blkbits. 957 * 958 * For best results, the blockdev should be set up with 512-byte i_blkbits and 959 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives 960 * fine alignment but still allows this function to work in PAGE_SIZE units. 961 */ 962 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio, 963 struct buffer_head *map_bh) 964 { 965 const unsigned blkbits = sdio->blkbits; 966 const unsigned i_blkbits = blkbits + sdio->blkfactor; 967 int ret = 0; 968 969 while (sdio->block_in_file < sdio->final_block_in_request) { 970 struct page *page; 971 size_t from, to; 972 973 page = dio_get_page(dio, sdio); 974 if (IS_ERR(page)) { 975 ret = PTR_ERR(page); 976 goto out; 977 } 978 from = sdio->head ? 0 : sdio->from; 979 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE; 980 sdio->head++; 981 982 while (from < to) { 983 unsigned this_chunk_bytes; /* # of bytes mapped */ 984 unsigned this_chunk_blocks; /* # of blocks */ 985 unsigned u; 986 987 if (sdio->blocks_available == 0) { 988 /* 989 * Need to go and map some more disk 990 */ 991 unsigned long blkmask; 992 unsigned long dio_remainder; 993 994 ret = get_more_blocks(dio, sdio, map_bh); 995 if (ret) { 996 put_page(page); 997 goto out; 998 } 999 if (!buffer_mapped(map_bh)) 1000 goto do_holes; 1001 1002 sdio->blocks_available = 1003 map_bh->b_size >> blkbits; 1004 sdio->next_block_for_io = 1005 map_bh->b_blocknr << sdio->blkfactor; 1006 if (buffer_new(map_bh)) { 1007 clean_bdev_aliases( 1008 map_bh->b_bdev, 1009 map_bh->b_blocknr, 1010 map_bh->b_size >> i_blkbits); 1011 } 1012 1013 if (!sdio->blkfactor) 1014 goto do_holes; 1015 1016 blkmask = (1 << sdio->blkfactor) - 1; 1017 dio_remainder = (sdio->block_in_file & blkmask); 1018 1019 /* 1020 * If we are at the start of IO and that IO 1021 * starts partway into a fs-block, 1022 * dio_remainder will be non-zero. If the IO 1023 * is a read then we can simply advance the IO 1024 * cursor to the first block which is to be 1025 * read. But if the IO is a write and the 1026 * block was newly allocated we cannot do that; 1027 * the start of the fs block must be zeroed out 1028 * on-disk 1029 */ 1030 if (!buffer_new(map_bh)) 1031 sdio->next_block_for_io += dio_remainder; 1032 sdio->blocks_available -= dio_remainder; 1033 } 1034 do_holes: 1035 /* Handle holes */ 1036 if (!buffer_mapped(map_bh)) { 1037 loff_t i_size_aligned; 1038 1039 /* AKPM: eargh, -ENOTBLK is a hack */ 1040 if (dio->op == REQ_OP_WRITE) { 1041 put_page(page); 1042 return -ENOTBLK; 1043 } 1044 1045 /* 1046 * Be sure to account for a partial block as the 1047 * last block in the file 1048 */ 1049 i_size_aligned = ALIGN(i_size_read(dio->inode), 1050 1 << blkbits); 1051 if (sdio->block_in_file >= 1052 i_size_aligned >> blkbits) { 1053 /* We hit eof */ 1054 put_page(page); 1055 goto out; 1056 } 1057 zero_user(page, from, 1 << blkbits); 1058 sdio->block_in_file++; 1059 from += 1 << blkbits; 1060 dio->result += 1 << blkbits; 1061 goto next_block; 1062 } 1063 1064 /* 1065 * If we're performing IO which has an alignment which 1066 * is finer than the underlying fs, go check to see if 1067 * we must zero out the start of this block. 1068 */ 1069 if (unlikely(sdio->blkfactor && !sdio->start_zero_done)) 1070 dio_zero_block(dio, sdio, 0, map_bh); 1071 1072 /* 1073 * Work out, in this_chunk_blocks, how much disk we 1074 * can add to this page 1075 */ 1076 this_chunk_blocks = sdio->blocks_available; 1077 u = (to - from) >> blkbits; 1078 if (this_chunk_blocks > u) 1079 this_chunk_blocks = u; 1080 u = sdio->final_block_in_request - sdio->block_in_file; 1081 if (this_chunk_blocks > u) 1082 this_chunk_blocks = u; 1083 this_chunk_bytes = this_chunk_blocks << blkbits; 1084 BUG_ON(this_chunk_bytes == 0); 1085 1086 if (this_chunk_blocks == sdio->blocks_available) 1087 sdio->boundary = buffer_boundary(map_bh); 1088 ret = submit_page_section(dio, sdio, page, 1089 from, 1090 this_chunk_bytes, 1091 sdio->next_block_for_io, 1092 map_bh); 1093 if (ret) { 1094 put_page(page); 1095 goto out; 1096 } 1097 sdio->next_block_for_io += this_chunk_blocks; 1098 1099 sdio->block_in_file += this_chunk_blocks; 1100 from += this_chunk_bytes; 1101 dio->result += this_chunk_bytes; 1102 sdio->blocks_available -= this_chunk_blocks; 1103 next_block: 1104 BUG_ON(sdio->block_in_file > sdio->final_block_in_request); 1105 if (sdio->block_in_file == sdio->final_block_in_request) 1106 break; 1107 } 1108 1109 /* Drop the ref which was taken in get_user_pages() */ 1110 put_page(page); 1111 } 1112 out: 1113 return ret; 1114 } 1115 1116 static inline int drop_refcount(struct dio *dio) 1117 { 1118 int ret2; 1119 unsigned long flags; 1120 1121 /* 1122 * Sync will always be dropping the final ref and completing the 1123 * operation. AIO can if it was a broken operation described above or 1124 * in fact if all the bios race to complete before we get here. In 1125 * that case dio_complete() translates the EIOCBQUEUED into the proper 1126 * return code that the caller will hand to ->complete(). 1127 * 1128 * This is managed by the bio_lock instead of being an atomic_t so that 1129 * completion paths can drop their ref and use the remaining count to 1130 * decide to wake the submission path atomically. 1131 */ 1132 spin_lock_irqsave(&dio->bio_lock, flags); 1133 ret2 = --dio->refcount; 1134 spin_unlock_irqrestore(&dio->bio_lock, flags); 1135 return ret2; 1136 } 1137 1138 /* 1139 * This is a library function for use by filesystem drivers. 1140 * 1141 * The locking rules are governed by the flags parameter: 1142 * - if the flags value contains DIO_LOCKING we use a fancy locking 1143 * scheme for dumb filesystems. 1144 * For writes this function is called under i_mutex and returns with 1145 * i_mutex held, for reads, i_mutex is not held on entry, but it is 1146 * taken and dropped again before returning. 1147 * - if the flags value does NOT contain DIO_LOCKING we don't use any 1148 * internal locking but rather rely on the filesystem to synchronize 1149 * direct I/O reads/writes versus each other and truncate. 1150 * 1151 * To help with locking against truncate we incremented the i_dio_count 1152 * counter before starting direct I/O, and decrement it once we are done. 1153 * Truncate can wait for it to reach zero to provide exclusion. It is 1154 * expected that filesystem provide exclusion between new direct I/O 1155 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex, 1156 * but other filesystems need to take care of this on their own. 1157 * 1158 * NOTE: if you pass "sdio" to anything by pointer make sure that function 1159 * is always inlined. Otherwise gcc is unable to split the structure into 1160 * individual fields and will generate much worse code. This is important 1161 * for the whole file. 1162 */ 1163 static inline ssize_t 1164 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1165 struct block_device *bdev, struct iov_iter *iter, 1166 get_block_t get_block, dio_iodone_t end_io, 1167 dio_submit_t submit_io, int flags) 1168 { 1169 unsigned i_blkbits = READ_ONCE(inode->i_blkbits); 1170 unsigned blkbits = i_blkbits; 1171 unsigned blocksize_mask = (1 << blkbits) - 1; 1172 ssize_t retval = -EINVAL; 1173 const size_t count = iov_iter_count(iter); 1174 loff_t offset = iocb->ki_pos; 1175 const loff_t end = offset + count; 1176 struct dio *dio; 1177 struct dio_submit sdio = { 0, }; 1178 struct buffer_head map_bh = { 0, }; 1179 struct blk_plug plug; 1180 unsigned long align = offset | iov_iter_alignment(iter); 1181 1182 /* 1183 * Avoid references to bdev if not absolutely needed to give 1184 * the early prefetch in the caller enough time. 1185 */ 1186 1187 if (align & blocksize_mask) { 1188 if (bdev) 1189 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 1190 blocksize_mask = (1 << blkbits) - 1; 1191 if (align & blocksize_mask) 1192 goto out; 1193 } 1194 1195 /* watch out for a 0 len io from a tricksy fs */ 1196 if (iov_iter_rw(iter) == READ && !count) 1197 return 0; 1198 1199 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL); 1200 retval = -ENOMEM; 1201 if (!dio) 1202 goto out; 1203 /* 1204 * Believe it or not, zeroing out the page array caused a .5% 1205 * performance regression in a database benchmark. So, we take 1206 * care to only zero out what's needed. 1207 */ 1208 memset(dio, 0, offsetof(struct dio, pages)); 1209 1210 dio->flags = flags; 1211 if (dio->flags & DIO_LOCKING) { 1212 if (iov_iter_rw(iter) == READ) { 1213 struct address_space *mapping = 1214 iocb->ki_filp->f_mapping; 1215 1216 /* will be released by direct_io_worker */ 1217 inode_lock(inode); 1218 1219 retval = filemap_write_and_wait_range(mapping, offset, 1220 end - 1); 1221 if (retval) { 1222 inode_unlock(inode); 1223 kmem_cache_free(dio_cache, dio); 1224 goto out; 1225 } 1226 } 1227 } 1228 1229 /* Once we sampled i_size check for reads beyond EOF */ 1230 dio->i_size = i_size_read(inode); 1231 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) { 1232 if (dio->flags & DIO_LOCKING) 1233 inode_unlock(inode); 1234 kmem_cache_free(dio_cache, dio); 1235 retval = 0; 1236 goto out; 1237 } 1238 1239 /* 1240 * For file extending writes updating i_size before data writeouts 1241 * complete can expose uninitialized blocks in dumb filesystems. 1242 * In that case we need to wait for I/O completion even if asked 1243 * for an asynchronous write. 1244 */ 1245 if (is_sync_kiocb(iocb)) 1246 dio->is_async = false; 1247 else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode)) 1248 dio->is_async = false; 1249 else 1250 dio->is_async = true; 1251 1252 dio->inode = inode; 1253 if (iov_iter_rw(iter) == WRITE) { 1254 dio->op = REQ_OP_WRITE; 1255 dio->op_flags = REQ_SYNC | REQ_IDLE; 1256 if (iocb->ki_flags & IOCB_NOWAIT) 1257 dio->op_flags |= REQ_NOWAIT; 1258 } else { 1259 dio->op = REQ_OP_READ; 1260 } 1261 if (iocb->ki_flags & IOCB_HIPRI) 1262 dio->op_flags |= REQ_HIPRI; 1263 1264 /* 1265 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue 1266 * so that we can call ->fsync. 1267 */ 1268 if (dio->is_async && iov_iter_rw(iter) == WRITE) { 1269 retval = 0; 1270 if (iocb->ki_flags & IOCB_DSYNC) 1271 retval = dio_set_defer_completion(dio); 1272 else if (!dio->inode->i_sb->s_dio_done_wq) { 1273 /* 1274 * In case of AIO write racing with buffered read we 1275 * need to defer completion. We can't decide this now, 1276 * however the workqueue needs to be initialized here. 1277 */ 1278 retval = sb_init_dio_done_wq(dio->inode->i_sb); 1279 } 1280 if (retval) { 1281 /* 1282 * We grab i_mutex only for reads so we don't have 1283 * to release it here 1284 */ 1285 kmem_cache_free(dio_cache, dio); 1286 goto out; 1287 } 1288 } 1289 1290 /* 1291 * Will be decremented at I/O completion time. 1292 */ 1293 inode_dio_begin(inode); 1294 1295 retval = 0; 1296 sdio.blkbits = blkbits; 1297 sdio.blkfactor = i_blkbits - blkbits; 1298 sdio.block_in_file = offset >> blkbits; 1299 1300 sdio.get_block = get_block; 1301 dio->end_io = end_io; 1302 sdio.submit_io = submit_io; 1303 sdio.final_block_in_bio = -1; 1304 sdio.next_block_for_io = -1; 1305 1306 dio->iocb = iocb; 1307 1308 spin_lock_init(&dio->bio_lock); 1309 dio->refcount = 1; 1310 1311 dio->should_dirty = iter_is_iovec(iter) && iov_iter_rw(iter) == READ; 1312 sdio.iter = iter; 1313 sdio.final_block_in_request = end >> blkbits; 1314 1315 /* 1316 * In case of non-aligned buffers, we may need 2 more 1317 * pages since we need to zero out first and last block. 1318 */ 1319 if (unlikely(sdio.blkfactor)) 1320 sdio.pages_in_io = 2; 1321 1322 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX); 1323 1324 blk_start_plug(&plug); 1325 1326 retval = do_direct_IO(dio, &sdio, &map_bh); 1327 if (retval) 1328 dio_cleanup(dio, &sdio); 1329 1330 if (retval == -ENOTBLK) { 1331 /* 1332 * The remaining part of the request will be 1333 * be handled by buffered I/O when we return 1334 */ 1335 retval = 0; 1336 } 1337 /* 1338 * There may be some unwritten disk at the end of a part-written 1339 * fs-block-sized block. Go zero that now. 1340 */ 1341 dio_zero_block(dio, &sdio, 1, &map_bh); 1342 1343 if (sdio.cur_page) { 1344 ssize_t ret2; 1345 1346 ret2 = dio_send_cur_page(dio, &sdio, &map_bh); 1347 if (retval == 0) 1348 retval = ret2; 1349 put_page(sdio.cur_page); 1350 sdio.cur_page = NULL; 1351 } 1352 if (sdio.bio) 1353 dio_bio_submit(dio, &sdio); 1354 1355 blk_finish_plug(&plug); 1356 1357 /* 1358 * It is possible that, we return short IO due to end of file. 1359 * In that case, we need to release all the pages we got hold on. 1360 */ 1361 dio_cleanup(dio, &sdio); 1362 1363 /* 1364 * All block lookups have been performed. For READ requests 1365 * we can let i_mutex go now that its achieved its purpose 1366 * of protecting us from looking up uninitialized blocks. 1367 */ 1368 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING)) 1369 inode_unlock(dio->inode); 1370 1371 /* 1372 * The only time we want to leave bios in flight is when a successful 1373 * partial aio read or full aio write have been setup. In that case 1374 * bio completion will call aio_complete. The only time it's safe to 1375 * call aio_complete is when we return -EIOCBQUEUED, so we key on that. 1376 * This had *better* be the only place that raises -EIOCBQUEUED. 1377 */ 1378 BUG_ON(retval == -EIOCBQUEUED); 1379 if (dio->is_async && retval == 0 && dio->result && 1380 (iov_iter_rw(iter) == READ || dio->result == count)) 1381 retval = -EIOCBQUEUED; 1382 else 1383 dio_await_completion(dio); 1384 1385 if (drop_refcount(dio) == 0) { 1386 retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE); 1387 } else 1388 BUG_ON(retval != -EIOCBQUEUED); 1389 1390 out: 1391 return retval; 1392 } 1393 1394 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1395 struct block_device *bdev, struct iov_iter *iter, 1396 get_block_t get_block, 1397 dio_iodone_t end_io, dio_submit_t submit_io, 1398 int flags) 1399 { 1400 /* 1401 * The block device state is needed in the end to finally 1402 * submit everything. Since it's likely to be cache cold 1403 * prefetch it here as first thing to hide some of the 1404 * latency. 1405 * 1406 * Attempt to prefetch the pieces we likely need later. 1407 */ 1408 prefetch(&bdev->bd_disk->part_tbl); 1409 prefetch(bdev->bd_queue); 1410 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES); 1411 1412 return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block, 1413 end_io, submit_io, flags); 1414 } 1415 1416 EXPORT_SYMBOL(__blockdev_direct_IO); 1417 1418 static __init int dio_init(void) 1419 { 1420 dio_cache = KMEM_CACHE(dio, SLAB_PANIC); 1421 return 0; 1422 } 1423 module_init(dio_init) 1424