1 /* 2 * fs/direct-io.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * O_DIRECT 7 * 8 * 04Jul2002 akpm@zip.com.au 9 * Initial version 10 * 11Sep2002 janetinc@us.ibm.com 11 * added readv/writev support. 12 * 29Oct2002 akpm@zip.com.au 13 * rewrote bio_add_page() support. 14 * 30Oct2002 pbadari@us.ibm.com 15 * added support for non-aligned IO. 16 * 06Nov2002 pbadari@us.ibm.com 17 * added asynchronous IO support. 18 * 21Jul2003 nathans@sgi.com 19 * added IO completion notifier. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/types.h> 25 #include <linux/fs.h> 26 #include <linux/mm.h> 27 #include <linux/slab.h> 28 #include <linux/highmem.h> 29 #include <linux/pagemap.h> 30 #include <linux/bio.h> 31 #include <linux/wait.h> 32 #include <linux/err.h> 33 #include <linux/blkdev.h> 34 #include <linux/buffer_head.h> 35 #include <linux/rwsem.h> 36 #include <linux/uio.h> 37 #include <asm/atomic.h> 38 39 /* 40 * How many user pages to map in one call to get_user_pages(). This determines 41 * the size of a structure on the stack. 42 */ 43 #define DIO_PAGES 64 44 45 /* 46 * This code generally works in units of "dio_blocks". A dio_block is 47 * somewhere between the hard sector size and the filesystem block size. it 48 * is determined on a per-invocation basis. When talking to the filesystem 49 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity 50 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted 51 * to bio_block quantities by shifting left by blkfactor. 52 * 53 * If blkfactor is zero then the user's request was aligned to the filesystem's 54 * blocksize. 55 * 56 * lock_type is DIO_LOCKING for regular files on direct-IO-naive filesystems. 57 * This determines whether we need to do the fancy locking which prevents 58 * direct-IO from being able to read uninitialised disk blocks. If its zero 59 * (blockdev) this locking is not done, and if it is DIO_OWN_LOCKING i_mutex is 60 * not held for the entire direct write (taken briefly, initially, during a 61 * direct read though, but its never held for the duration of a direct-IO). 62 */ 63 64 struct dio { 65 /* BIO submission state */ 66 struct bio *bio; /* bio under assembly */ 67 struct inode *inode; 68 int rw; 69 loff_t i_size; /* i_size when submitted */ 70 int lock_type; /* doesn't change */ 71 unsigned blkbits; /* doesn't change */ 72 unsigned blkfactor; /* When we're using an alignment which 73 is finer than the filesystem's soft 74 blocksize, this specifies how much 75 finer. blkfactor=2 means 1/4-block 76 alignment. Does not change */ 77 unsigned start_zero_done; /* flag: sub-blocksize zeroing has 78 been performed at the start of a 79 write */ 80 int pages_in_io; /* approximate total IO pages */ 81 size_t size; /* total request size (doesn't change)*/ 82 sector_t block_in_file; /* Current offset into the underlying 83 file in dio_block units. */ 84 unsigned blocks_available; /* At block_in_file. changes */ 85 sector_t final_block_in_request;/* doesn't change */ 86 unsigned first_block_in_page; /* doesn't change, Used only once */ 87 int boundary; /* prev block is at a boundary */ 88 int reap_counter; /* rate limit reaping */ 89 get_blocks_t *get_blocks; /* block mapping function */ 90 dio_iodone_t *end_io; /* IO completion function */ 91 sector_t final_block_in_bio; /* current final block in bio + 1 */ 92 sector_t next_block_for_io; /* next block to be put under IO, 93 in dio_blocks units */ 94 struct buffer_head map_bh; /* last get_blocks() result */ 95 96 /* 97 * Deferred addition of a page to the dio. These variables are 98 * private to dio_send_cur_page(), submit_page_section() and 99 * dio_bio_add_page(). 100 */ 101 struct page *cur_page; /* The page */ 102 unsigned cur_page_offset; /* Offset into it, in bytes */ 103 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ 104 sector_t cur_page_block; /* Where it starts */ 105 106 /* 107 * Page fetching state. These variables belong to dio_refill_pages(). 108 */ 109 int curr_page; /* changes */ 110 int total_pages; /* doesn't change */ 111 unsigned long curr_user_address;/* changes */ 112 113 /* 114 * Page queue. These variables belong to dio_refill_pages() and 115 * dio_get_page(). 116 */ 117 struct page *pages[DIO_PAGES]; /* page buffer */ 118 unsigned head; /* next page to process */ 119 unsigned tail; /* last valid page + 1 */ 120 int page_errors; /* errno from get_user_pages() */ 121 122 /* BIO completion state */ 123 spinlock_t bio_lock; /* protects BIO fields below */ 124 int bio_count; /* nr bios to be completed */ 125 int bios_in_flight; /* nr bios in flight */ 126 struct bio *bio_list; /* singly linked via bi_private */ 127 struct task_struct *waiter; /* waiting task (NULL if none) */ 128 129 /* AIO related stuff */ 130 struct kiocb *iocb; /* kiocb */ 131 int is_async; /* is IO async ? */ 132 ssize_t result; /* IO result */ 133 }; 134 135 /* 136 * How many pages are in the queue? 137 */ 138 static inline unsigned dio_pages_present(struct dio *dio) 139 { 140 return dio->tail - dio->head; 141 } 142 143 /* 144 * Go grab and pin some userspace pages. Typically we'll get 64 at a time. 145 */ 146 static int dio_refill_pages(struct dio *dio) 147 { 148 int ret; 149 int nr_pages; 150 151 nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES); 152 down_read(¤t->mm->mmap_sem); 153 ret = get_user_pages( 154 current, /* Task for fault acounting */ 155 current->mm, /* whose pages? */ 156 dio->curr_user_address, /* Where from? */ 157 nr_pages, /* How many pages? */ 158 dio->rw == READ, /* Write to memory? */ 159 0, /* force (?) */ 160 &dio->pages[0], 161 NULL); /* vmas */ 162 up_read(¤t->mm->mmap_sem); 163 164 if (ret < 0 && dio->blocks_available && (dio->rw == WRITE)) { 165 struct page *page = ZERO_PAGE(dio->curr_user_address); 166 /* 167 * A memory fault, but the filesystem has some outstanding 168 * mapped blocks. We need to use those blocks up to avoid 169 * leaking stale data in the file. 170 */ 171 if (dio->page_errors == 0) 172 dio->page_errors = ret; 173 page_cache_get(page); 174 dio->pages[0] = page; 175 dio->head = 0; 176 dio->tail = 1; 177 ret = 0; 178 goto out; 179 } 180 181 if (ret >= 0) { 182 dio->curr_user_address += ret * PAGE_SIZE; 183 dio->curr_page += ret; 184 dio->head = 0; 185 dio->tail = ret; 186 ret = 0; 187 } 188 out: 189 return ret; 190 } 191 192 /* 193 * Get another userspace page. Returns an ERR_PTR on error. Pages are 194 * buffered inside the dio so that we can call get_user_pages() against a 195 * decent number of pages, less frequently. To provide nicer use of the 196 * L1 cache. 197 */ 198 static struct page *dio_get_page(struct dio *dio) 199 { 200 if (dio_pages_present(dio) == 0) { 201 int ret; 202 203 ret = dio_refill_pages(dio); 204 if (ret) 205 return ERR_PTR(ret); 206 BUG_ON(dio_pages_present(dio) == 0); 207 } 208 return dio->pages[dio->head++]; 209 } 210 211 /* 212 * Called when all DIO BIO I/O has been completed - let the filesystem 213 * know, if it registered an interest earlier via get_blocks. Pass the 214 * private field of the map buffer_head so that filesystems can use it 215 * to hold additional state between get_blocks calls and dio_complete. 216 */ 217 static void dio_complete(struct dio *dio, loff_t offset, ssize_t bytes) 218 { 219 if (dio->end_io && dio->result) 220 dio->end_io(dio->iocb, offset, bytes, dio->map_bh.b_private); 221 if (dio->lock_type == DIO_LOCKING) 222 up_read(&dio->inode->i_alloc_sem); 223 } 224 225 /* 226 * Called when a BIO has been processed. If the count goes to zero then IO is 227 * complete and we can signal this to the AIO layer. 228 */ 229 static void finished_one_bio(struct dio *dio) 230 { 231 unsigned long flags; 232 233 spin_lock_irqsave(&dio->bio_lock, flags); 234 if (dio->bio_count == 1) { 235 if (dio->is_async) { 236 ssize_t transferred; 237 loff_t offset; 238 239 /* 240 * Last reference to the dio is going away. 241 * Drop spinlock and complete the DIO. 242 */ 243 spin_unlock_irqrestore(&dio->bio_lock, flags); 244 245 /* Check for short read case */ 246 transferred = dio->result; 247 offset = dio->iocb->ki_pos; 248 249 if ((dio->rw == READ) && 250 ((offset + transferred) > dio->i_size)) 251 transferred = dio->i_size - offset; 252 253 dio_complete(dio, offset, transferred); 254 255 /* Complete AIO later if falling back to buffered i/o */ 256 if (dio->result == dio->size || 257 ((dio->rw == READ) && dio->result)) { 258 aio_complete(dio->iocb, transferred, 0); 259 kfree(dio); 260 return; 261 } else { 262 /* 263 * Falling back to buffered 264 */ 265 spin_lock_irqsave(&dio->bio_lock, flags); 266 dio->bio_count--; 267 if (dio->waiter) 268 wake_up_process(dio->waiter); 269 spin_unlock_irqrestore(&dio->bio_lock, flags); 270 return; 271 } 272 } 273 } 274 dio->bio_count--; 275 spin_unlock_irqrestore(&dio->bio_lock, flags); 276 } 277 278 static int dio_bio_complete(struct dio *dio, struct bio *bio); 279 /* 280 * Asynchronous IO callback. 281 */ 282 static int dio_bio_end_aio(struct bio *bio, unsigned int bytes_done, int error) 283 { 284 struct dio *dio = bio->bi_private; 285 286 if (bio->bi_size) 287 return 1; 288 289 /* cleanup the bio */ 290 dio_bio_complete(dio, bio); 291 return 0; 292 } 293 294 /* 295 * The BIO completion handler simply queues the BIO up for the process-context 296 * handler. 297 * 298 * During I/O bi_private points at the dio. After I/O, bi_private is used to 299 * implement a singly-linked list of completed BIOs, at dio->bio_list. 300 */ 301 static int dio_bio_end_io(struct bio *bio, unsigned int bytes_done, int error) 302 { 303 struct dio *dio = bio->bi_private; 304 unsigned long flags; 305 306 if (bio->bi_size) 307 return 1; 308 309 spin_lock_irqsave(&dio->bio_lock, flags); 310 bio->bi_private = dio->bio_list; 311 dio->bio_list = bio; 312 dio->bios_in_flight--; 313 if (dio->waiter && dio->bios_in_flight == 0) 314 wake_up_process(dio->waiter); 315 spin_unlock_irqrestore(&dio->bio_lock, flags); 316 return 0; 317 } 318 319 static int 320 dio_bio_alloc(struct dio *dio, struct block_device *bdev, 321 sector_t first_sector, int nr_vecs) 322 { 323 struct bio *bio; 324 325 bio = bio_alloc(GFP_KERNEL, nr_vecs); 326 if (bio == NULL) 327 return -ENOMEM; 328 329 bio->bi_bdev = bdev; 330 bio->bi_sector = first_sector; 331 if (dio->is_async) 332 bio->bi_end_io = dio_bio_end_aio; 333 else 334 bio->bi_end_io = dio_bio_end_io; 335 336 dio->bio = bio; 337 return 0; 338 } 339 340 /* 341 * In the AIO read case we speculatively dirty the pages before starting IO. 342 * During IO completion, any of these pages which happen to have been written 343 * back will be redirtied by bio_check_pages_dirty(). 344 */ 345 static void dio_bio_submit(struct dio *dio) 346 { 347 struct bio *bio = dio->bio; 348 unsigned long flags; 349 350 bio->bi_private = dio; 351 spin_lock_irqsave(&dio->bio_lock, flags); 352 dio->bio_count++; 353 dio->bios_in_flight++; 354 spin_unlock_irqrestore(&dio->bio_lock, flags); 355 if (dio->is_async && dio->rw == READ) 356 bio_set_pages_dirty(bio); 357 submit_bio(dio->rw, bio); 358 359 dio->bio = NULL; 360 dio->boundary = 0; 361 } 362 363 /* 364 * Release any resources in case of a failure 365 */ 366 static void dio_cleanup(struct dio *dio) 367 { 368 while (dio_pages_present(dio)) 369 page_cache_release(dio_get_page(dio)); 370 } 371 372 /* 373 * Wait for the next BIO to complete. Remove it and return it. 374 */ 375 static struct bio *dio_await_one(struct dio *dio) 376 { 377 unsigned long flags; 378 struct bio *bio; 379 380 spin_lock_irqsave(&dio->bio_lock, flags); 381 while (dio->bio_list == NULL) { 382 set_current_state(TASK_UNINTERRUPTIBLE); 383 if (dio->bio_list == NULL) { 384 dio->waiter = current; 385 spin_unlock_irqrestore(&dio->bio_lock, flags); 386 blk_run_address_space(dio->inode->i_mapping); 387 io_schedule(); 388 spin_lock_irqsave(&dio->bio_lock, flags); 389 dio->waiter = NULL; 390 } 391 set_current_state(TASK_RUNNING); 392 } 393 bio = dio->bio_list; 394 dio->bio_list = bio->bi_private; 395 spin_unlock_irqrestore(&dio->bio_lock, flags); 396 return bio; 397 } 398 399 /* 400 * Process one completed BIO. No locks are held. 401 */ 402 static int dio_bio_complete(struct dio *dio, struct bio *bio) 403 { 404 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 405 struct bio_vec *bvec = bio->bi_io_vec; 406 int page_no; 407 408 if (!uptodate) 409 dio->result = -EIO; 410 411 if (dio->is_async && dio->rw == READ) { 412 bio_check_pages_dirty(bio); /* transfers ownership */ 413 } else { 414 for (page_no = 0; page_no < bio->bi_vcnt; page_no++) { 415 struct page *page = bvec[page_no].bv_page; 416 417 if (dio->rw == READ && !PageCompound(page)) 418 set_page_dirty_lock(page); 419 page_cache_release(page); 420 } 421 bio_put(bio); 422 } 423 finished_one_bio(dio); 424 return uptodate ? 0 : -EIO; 425 } 426 427 /* 428 * Wait on and process all in-flight BIOs. 429 */ 430 static int dio_await_completion(struct dio *dio) 431 { 432 int ret = 0; 433 434 if (dio->bio) 435 dio_bio_submit(dio); 436 437 /* 438 * The bio_lock is not held for the read of bio_count. 439 * This is ok since it is the dio_bio_complete() that changes 440 * bio_count. 441 */ 442 while (dio->bio_count) { 443 struct bio *bio = dio_await_one(dio); 444 int ret2; 445 446 ret2 = dio_bio_complete(dio, bio); 447 if (ret == 0) 448 ret = ret2; 449 } 450 return ret; 451 } 452 453 /* 454 * A really large O_DIRECT read or write can generate a lot of BIOs. So 455 * to keep the memory consumption sane we periodically reap any completed BIOs 456 * during the BIO generation phase. 457 * 458 * This also helps to limit the peak amount of pinned userspace memory. 459 */ 460 static int dio_bio_reap(struct dio *dio) 461 { 462 int ret = 0; 463 464 if (dio->reap_counter++ >= 64) { 465 while (dio->bio_list) { 466 unsigned long flags; 467 struct bio *bio; 468 int ret2; 469 470 spin_lock_irqsave(&dio->bio_lock, flags); 471 bio = dio->bio_list; 472 dio->bio_list = bio->bi_private; 473 spin_unlock_irqrestore(&dio->bio_lock, flags); 474 ret2 = dio_bio_complete(dio, bio); 475 if (ret == 0) 476 ret = ret2; 477 } 478 dio->reap_counter = 0; 479 } 480 return ret; 481 } 482 483 /* 484 * Call into the fs to map some more disk blocks. We record the current number 485 * of available blocks at dio->blocks_available. These are in units of the 486 * fs blocksize, (1 << inode->i_blkbits). 487 * 488 * The fs is allowed to map lots of blocks at once. If it wants to do that, 489 * it uses the passed inode-relative block number as the file offset, as usual. 490 * 491 * get_blocks() is passed the number of i_blkbits-sized blocks which direct_io 492 * has remaining to do. The fs should not map more than this number of blocks. 493 * 494 * If the fs has mapped a lot of blocks, it should populate bh->b_size to 495 * indicate how much contiguous disk space has been made available at 496 * bh->b_blocknr. 497 * 498 * If *any* of the mapped blocks are new, then the fs must set buffer_new(). 499 * This isn't very efficient... 500 * 501 * In the case of filesystem holes: the fs may return an arbitrarily-large 502 * hole by returning an appropriate value in b_size and by clearing 503 * buffer_mapped(). However the direct-io code will only process holes one 504 * block at a time - it will repeatedly call get_blocks() as it walks the hole. 505 */ 506 static int get_more_blocks(struct dio *dio) 507 { 508 int ret; 509 struct buffer_head *map_bh = &dio->map_bh; 510 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ 511 unsigned long fs_count; /* Number of filesystem-sized blocks */ 512 unsigned long dio_count;/* Number of dio_block-sized blocks */ 513 unsigned long blkmask; 514 int create; 515 516 /* 517 * If there was a memory error and we've overwritten all the 518 * mapped blocks then we can now return that memory error 519 */ 520 ret = dio->page_errors; 521 if (ret == 0) { 522 map_bh->b_state = 0; 523 map_bh->b_size = 0; 524 BUG_ON(dio->block_in_file >= dio->final_block_in_request); 525 fs_startblk = dio->block_in_file >> dio->blkfactor; 526 dio_count = dio->final_block_in_request - dio->block_in_file; 527 fs_count = dio_count >> dio->blkfactor; 528 blkmask = (1 << dio->blkfactor) - 1; 529 if (dio_count & blkmask) 530 fs_count++; 531 532 create = dio->rw == WRITE; 533 if (dio->lock_type == DIO_LOCKING) { 534 if (dio->block_in_file < (i_size_read(dio->inode) >> 535 dio->blkbits)) 536 create = 0; 537 } else if (dio->lock_type == DIO_NO_LOCKING) { 538 create = 0; 539 } 540 /* 541 * For writes inside i_size we forbid block creations: only 542 * overwrites are permitted. We fall back to buffered writes 543 * at a higher level for inside-i_size block-instantiating 544 * writes. 545 */ 546 ret = (*dio->get_blocks)(dio->inode, fs_startblk, fs_count, 547 map_bh, create); 548 } 549 return ret; 550 } 551 552 /* 553 * There is no bio. Make one now. 554 */ 555 static int dio_new_bio(struct dio *dio, sector_t start_sector) 556 { 557 sector_t sector; 558 int ret, nr_pages; 559 560 ret = dio_bio_reap(dio); 561 if (ret) 562 goto out; 563 sector = start_sector << (dio->blkbits - 9); 564 nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev)); 565 BUG_ON(nr_pages <= 0); 566 ret = dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages); 567 dio->boundary = 0; 568 out: 569 return ret; 570 } 571 572 /* 573 * Attempt to put the current chunk of 'cur_page' into the current BIO. If 574 * that was successful then update final_block_in_bio and take a ref against 575 * the just-added page. 576 * 577 * Return zero on success. Non-zero means the caller needs to start a new BIO. 578 */ 579 static int dio_bio_add_page(struct dio *dio) 580 { 581 int ret; 582 583 ret = bio_add_page(dio->bio, dio->cur_page, 584 dio->cur_page_len, dio->cur_page_offset); 585 if (ret == dio->cur_page_len) { 586 /* 587 * Decrement count only, if we are done with this page 588 */ 589 if ((dio->cur_page_len + dio->cur_page_offset) == PAGE_SIZE) 590 dio->pages_in_io--; 591 page_cache_get(dio->cur_page); 592 dio->final_block_in_bio = dio->cur_page_block + 593 (dio->cur_page_len >> dio->blkbits); 594 ret = 0; 595 } else { 596 ret = 1; 597 } 598 return ret; 599 } 600 601 /* 602 * Put cur_page under IO. The section of cur_page which is described by 603 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page 604 * starts on-disk at cur_page_block. 605 * 606 * We take a ref against the page here (on behalf of its presence in the bio). 607 * 608 * The caller of this function is responsible for removing cur_page from the 609 * dio, and for dropping the refcount which came from that presence. 610 */ 611 static int dio_send_cur_page(struct dio *dio) 612 { 613 int ret = 0; 614 615 if (dio->bio) { 616 /* 617 * See whether this new request is contiguous with the old 618 */ 619 if (dio->final_block_in_bio != dio->cur_page_block) 620 dio_bio_submit(dio); 621 /* 622 * Submit now if the underlying fs is about to perform a 623 * metadata read 624 */ 625 if (dio->boundary) 626 dio_bio_submit(dio); 627 } 628 629 if (dio->bio == NULL) { 630 ret = dio_new_bio(dio, dio->cur_page_block); 631 if (ret) 632 goto out; 633 } 634 635 if (dio_bio_add_page(dio) != 0) { 636 dio_bio_submit(dio); 637 ret = dio_new_bio(dio, dio->cur_page_block); 638 if (ret == 0) { 639 ret = dio_bio_add_page(dio); 640 BUG_ON(ret != 0); 641 } 642 } 643 out: 644 return ret; 645 } 646 647 /* 648 * An autonomous function to put a chunk of a page under deferred IO. 649 * 650 * The caller doesn't actually know (or care) whether this piece of page is in 651 * a BIO, or is under IO or whatever. We just take care of all possible 652 * situations here. The separation between the logic of do_direct_IO() and 653 * that of submit_page_section() is important for clarity. Please don't break. 654 * 655 * The chunk of page starts on-disk at blocknr. 656 * 657 * We perform deferred IO, by recording the last-submitted page inside our 658 * private part of the dio structure. If possible, we just expand the IO 659 * across that page here. 660 * 661 * If that doesn't work out then we put the old page into the bio and add this 662 * page to the dio instead. 663 */ 664 static int 665 submit_page_section(struct dio *dio, struct page *page, 666 unsigned offset, unsigned len, sector_t blocknr) 667 { 668 int ret = 0; 669 670 /* 671 * Can we just grow the current page's presence in the dio? 672 */ 673 if ( (dio->cur_page == page) && 674 (dio->cur_page_offset + dio->cur_page_len == offset) && 675 (dio->cur_page_block + 676 (dio->cur_page_len >> dio->blkbits) == blocknr)) { 677 dio->cur_page_len += len; 678 679 /* 680 * If dio->boundary then we want to schedule the IO now to 681 * avoid metadata seeks. 682 */ 683 if (dio->boundary) { 684 ret = dio_send_cur_page(dio); 685 page_cache_release(dio->cur_page); 686 dio->cur_page = NULL; 687 } 688 goto out; 689 } 690 691 /* 692 * If there's a deferred page already there then send it. 693 */ 694 if (dio->cur_page) { 695 ret = dio_send_cur_page(dio); 696 page_cache_release(dio->cur_page); 697 dio->cur_page = NULL; 698 if (ret) 699 goto out; 700 } 701 702 page_cache_get(page); /* It is in dio */ 703 dio->cur_page = page; 704 dio->cur_page_offset = offset; 705 dio->cur_page_len = len; 706 dio->cur_page_block = blocknr; 707 out: 708 return ret; 709 } 710 711 /* 712 * Clean any dirty buffers in the blockdev mapping which alias newly-created 713 * file blocks. Only called for S_ISREG files - blockdevs do not set 714 * buffer_new 715 */ 716 static void clean_blockdev_aliases(struct dio *dio) 717 { 718 unsigned i; 719 unsigned nblocks; 720 721 nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits; 722 723 for (i = 0; i < nblocks; i++) { 724 unmap_underlying_metadata(dio->map_bh.b_bdev, 725 dio->map_bh.b_blocknr + i); 726 } 727 } 728 729 /* 730 * If we are not writing the entire block and get_block() allocated 731 * the block for us, we need to fill-in the unused portion of the 732 * block with zeros. This happens only if user-buffer, fileoffset or 733 * io length is not filesystem block-size multiple. 734 * 735 * `end' is zero if we're doing the start of the IO, 1 at the end of the 736 * IO. 737 */ 738 static void dio_zero_block(struct dio *dio, int end) 739 { 740 unsigned dio_blocks_per_fs_block; 741 unsigned this_chunk_blocks; /* In dio_blocks */ 742 unsigned this_chunk_bytes; 743 struct page *page; 744 745 dio->start_zero_done = 1; 746 if (!dio->blkfactor || !buffer_new(&dio->map_bh)) 747 return; 748 749 dio_blocks_per_fs_block = 1 << dio->blkfactor; 750 this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1); 751 752 if (!this_chunk_blocks) 753 return; 754 755 /* 756 * We need to zero out part of an fs block. It is either at the 757 * beginning or the end of the fs block. 758 */ 759 if (end) 760 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; 761 762 this_chunk_bytes = this_chunk_blocks << dio->blkbits; 763 764 page = ZERO_PAGE(dio->curr_user_address); 765 if (submit_page_section(dio, page, 0, this_chunk_bytes, 766 dio->next_block_for_io)) 767 return; 768 769 dio->next_block_for_io += this_chunk_blocks; 770 } 771 772 /* 773 * Walk the user pages, and the file, mapping blocks to disk and generating 774 * a sequence of (page,offset,len,block) mappings. These mappings are injected 775 * into submit_page_section(), which takes care of the next stage of submission 776 * 777 * Direct IO against a blockdev is different from a file. Because we can 778 * happily perform page-sized but 512-byte aligned IOs. It is important that 779 * blockdev IO be able to have fine alignment and large sizes. 780 * 781 * So what we do is to permit the ->get_blocks function to populate bh.b_size 782 * with the size of IO which is permitted at this offset and this i_blkbits. 783 * 784 * For best results, the blockdev should be set up with 512-byte i_blkbits and 785 * it should set b_size to PAGE_SIZE or more inside get_blocks(). This gives 786 * fine alignment but still allows this function to work in PAGE_SIZE units. 787 */ 788 static int do_direct_IO(struct dio *dio) 789 { 790 const unsigned blkbits = dio->blkbits; 791 const unsigned blocks_per_page = PAGE_SIZE >> blkbits; 792 struct page *page; 793 unsigned block_in_page; 794 struct buffer_head *map_bh = &dio->map_bh; 795 int ret = 0; 796 797 /* The I/O can start at any block offset within the first page */ 798 block_in_page = dio->first_block_in_page; 799 800 while (dio->block_in_file < dio->final_block_in_request) { 801 page = dio_get_page(dio); 802 if (IS_ERR(page)) { 803 ret = PTR_ERR(page); 804 goto out; 805 } 806 807 while (block_in_page < blocks_per_page) { 808 unsigned offset_in_page = block_in_page << blkbits; 809 unsigned this_chunk_bytes; /* # of bytes mapped */ 810 unsigned this_chunk_blocks; /* # of blocks */ 811 unsigned u; 812 813 if (dio->blocks_available == 0) { 814 /* 815 * Need to go and map some more disk 816 */ 817 unsigned long blkmask; 818 unsigned long dio_remainder; 819 820 ret = get_more_blocks(dio); 821 if (ret) { 822 page_cache_release(page); 823 goto out; 824 } 825 if (!buffer_mapped(map_bh)) 826 goto do_holes; 827 828 dio->blocks_available = 829 map_bh->b_size >> dio->blkbits; 830 dio->next_block_for_io = 831 map_bh->b_blocknr << dio->blkfactor; 832 if (buffer_new(map_bh)) 833 clean_blockdev_aliases(dio); 834 835 if (!dio->blkfactor) 836 goto do_holes; 837 838 blkmask = (1 << dio->blkfactor) - 1; 839 dio_remainder = (dio->block_in_file & blkmask); 840 841 /* 842 * If we are at the start of IO and that IO 843 * starts partway into a fs-block, 844 * dio_remainder will be non-zero. If the IO 845 * is a read then we can simply advance the IO 846 * cursor to the first block which is to be 847 * read. But if the IO is a write and the 848 * block was newly allocated we cannot do that; 849 * the start of the fs block must be zeroed out 850 * on-disk 851 */ 852 if (!buffer_new(map_bh)) 853 dio->next_block_for_io += dio_remainder; 854 dio->blocks_available -= dio_remainder; 855 } 856 do_holes: 857 /* Handle holes */ 858 if (!buffer_mapped(map_bh)) { 859 char *kaddr; 860 861 /* AKPM: eargh, -ENOTBLK is a hack */ 862 if (dio->rw == WRITE) { 863 page_cache_release(page); 864 return -ENOTBLK; 865 } 866 867 if (dio->block_in_file >= 868 i_size_read(dio->inode)>>blkbits) { 869 /* We hit eof */ 870 page_cache_release(page); 871 goto out; 872 } 873 kaddr = kmap_atomic(page, KM_USER0); 874 memset(kaddr + (block_in_page << blkbits), 875 0, 1 << blkbits); 876 flush_dcache_page(page); 877 kunmap_atomic(kaddr, KM_USER0); 878 dio->block_in_file++; 879 block_in_page++; 880 goto next_block; 881 } 882 883 /* 884 * If we're performing IO which has an alignment which 885 * is finer than the underlying fs, go check to see if 886 * we must zero out the start of this block. 887 */ 888 if (unlikely(dio->blkfactor && !dio->start_zero_done)) 889 dio_zero_block(dio, 0); 890 891 /* 892 * Work out, in this_chunk_blocks, how much disk we 893 * can add to this page 894 */ 895 this_chunk_blocks = dio->blocks_available; 896 u = (PAGE_SIZE - offset_in_page) >> blkbits; 897 if (this_chunk_blocks > u) 898 this_chunk_blocks = u; 899 u = dio->final_block_in_request - dio->block_in_file; 900 if (this_chunk_blocks > u) 901 this_chunk_blocks = u; 902 this_chunk_bytes = this_chunk_blocks << blkbits; 903 BUG_ON(this_chunk_bytes == 0); 904 905 dio->boundary = buffer_boundary(map_bh); 906 ret = submit_page_section(dio, page, offset_in_page, 907 this_chunk_bytes, dio->next_block_for_io); 908 if (ret) { 909 page_cache_release(page); 910 goto out; 911 } 912 dio->next_block_for_io += this_chunk_blocks; 913 914 dio->block_in_file += this_chunk_blocks; 915 block_in_page += this_chunk_blocks; 916 dio->blocks_available -= this_chunk_blocks; 917 next_block: 918 if (dio->block_in_file > dio->final_block_in_request) 919 BUG(); 920 if (dio->block_in_file == dio->final_block_in_request) 921 break; 922 } 923 924 /* Drop the ref which was taken in get_user_pages() */ 925 page_cache_release(page); 926 block_in_page = 0; 927 } 928 out: 929 return ret; 930 } 931 932 /* 933 * Releases both i_mutex and i_alloc_sem 934 */ 935 static ssize_t 936 direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode, 937 const struct iovec *iov, loff_t offset, unsigned long nr_segs, 938 unsigned blkbits, get_blocks_t get_blocks, dio_iodone_t end_io, 939 struct dio *dio) 940 { 941 unsigned long user_addr; 942 int seg; 943 ssize_t ret = 0; 944 ssize_t ret2; 945 size_t bytes; 946 947 dio->bio = NULL; 948 dio->inode = inode; 949 dio->rw = rw; 950 dio->blkbits = blkbits; 951 dio->blkfactor = inode->i_blkbits - blkbits; 952 dio->start_zero_done = 0; 953 dio->size = 0; 954 dio->block_in_file = offset >> blkbits; 955 dio->blocks_available = 0; 956 dio->cur_page = NULL; 957 958 dio->boundary = 0; 959 dio->reap_counter = 0; 960 dio->get_blocks = get_blocks; 961 dio->end_io = end_io; 962 dio->map_bh.b_private = NULL; 963 dio->final_block_in_bio = -1; 964 dio->next_block_for_io = -1; 965 966 dio->page_errors = 0; 967 dio->result = 0; 968 dio->iocb = iocb; 969 dio->i_size = i_size_read(inode); 970 971 /* 972 * BIO completion state. 973 * 974 * ->bio_count starts out at one, and we decrement it to zero after all 975 * BIOs are submitted. This to avoid the situation where a really fast 976 * (or synchronous) device could take the count to zero while we're 977 * still submitting BIOs. 978 */ 979 dio->bio_count = 1; 980 dio->bios_in_flight = 0; 981 spin_lock_init(&dio->bio_lock); 982 dio->bio_list = NULL; 983 dio->waiter = NULL; 984 985 /* 986 * In case of non-aligned buffers, we may need 2 more 987 * pages since we need to zero out first and last block. 988 */ 989 if (unlikely(dio->blkfactor)) 990 dio->pages_in_io = 2; 991 else 992 dio->pages_in_io = 0; 993 994 for (seg = 0; seg < nr_segs; seg++) { 995 user_addr = (unsigned long)iov[seg].iov_base; 996 dio->pages_in_io += 997 ((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE 998 - user_addr/PAGE_SIZE); 999 } 1000 1001 for (seg = 0; seg < nr_segs; seg++) { 1002 user_addr = (unsigned long)iov[seg].iov_base; 1003 dio->size += bytes = iov[seg].iov_len; 1004 1005 /* Index into the first page of the first block */ 1006 dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits; 1007 dio->final_block_in_request = dio->block_in_file + 1008 (bytes >> blkbits); 1009 /* Page fetching state */ 1010 dio->head = 0; 1011 dio->tail = 0; 1012 dio->curr_page = 0; 1013 1014 dio->total_pages = 0; 1015 if (user_addr & (PAGE_SIZE-1)) { 1016 dio->total_pages++; 1017 bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1)); 1018 } 1019 dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE; 1020 dio->curr_user_address = user_addr; 1021 1022 ret = do_direct_IO(dio); 1023 1024 dio->result += iov[seg].iov_len - 1025 ((dio->final_block_in_request - dio->block_in_file) << 1026 blkbits); 1027 1028 if (ret) { 1029 dio_cleanup(dio); 1030 break; 1031 } 1032 } /* end iovec loop */ 1033 1034 if (ret == -ENOTBLK && rw == WRITE) { 1035 /* 1036 * The remaining part of the request will be 1037 * be handled by buffered I/O when we return 1038 */ 1039 ret = 0; 1040 } 1041 /* 1042 * There may be some unwritten disk at the end of a part-written 1043 * fs-block-sized block. Go zero that now. 1044 */ 1045 dio_zero_block(dio, 1); 1046 1047 if (dio->cur_page) { 1048 ret2 = dio_send_cur_page(dio); 1049 if (ret == 0) 1050 ret = ret2; 1051 page_cache_release(dio->cur_page); 1052 dio->cur_page = NULL; 1053 } 1054 if (dio->bio) 1055 dio_bio_submit(dio); 1056 1057 /* 1058 * It is possible that, we return short IO due to end of file. 1059 * In that case, we need to release all the pages we got hold on. 1060 */ 1061 dio_cleanup(dio); 1062 1063 /* 1064 * All block lookups have been performed. For READ requests 1065 * we can let i_mutex go now that its achieved its purpose 1066 * of protecting us from looking up uninitialized blocks. 1067 */ 1068 if ((rw == READ) && (dio->lock_type == DIO_LOCKING)) 1069 mutex_unlock(&dio->inode->i_mutex); 1070 1071 /* 1072 * OK, all BIOs are submitted, so we can decrement bio_count to truly 1073 * reflect the number of to-be-processed BIOs. 1074 */ 1075 if (dio->is_async) { 1076 int should_wait = 0; 1077 1078 if (dio->result < dio->size && rw == WRITE) { 1079 dio->waiter = current; 1080 should_wait = 1; 1081 } 1082 if (ret == 0) 1083 ret = dio->result; 1084 finished_one_bio(dio); /* This can free the dio */ 1085 blk_run_address_space(inode->i_mapping); 1086 if (should_wait) { 1087 unsigned long flags; 1088 /* 1089 * Wait for already issued I/O to drain out and 1090 * release its references to user-space pages 1091 * before returning to fallback on buffered I/O 1092 */ 1093 1094 spin_lock_irqsave(&dio->bio_lock, flags); 1095 set_current_state(TASK_UNINTERRUPTIBLE); 1096 while (dio->bio_count) { 1097 spin_unlock_irqrestore(&dio->bio_lock, flags); 1098 io_schedule(); 1099 spin_lock_irqsave(&dio->bio_lock, flags); 1100 set_current_state(TASK_UNINTERRUPTIBLE); 1101 } 1102 spin_unlock_irqrestore(&dio->bio_lock, flags); 1103 set_current_state(TASK_RUNNING); 1104 kfree(dio); 1105 } 1106 } else { 1107 ssize_t transferred = 0; 1108 1109 finished_one_bio(dio); 1110 ret2 = dio_await_completion(dio); 1111 if (ret == 0) 1112 ret = ret2; 1113 if (ret == 0) 1114 ret = dio->page_errors; 1115 if (dio->result) { 1116 loff_t i_size = i_size_read(inode); 1117 1118 transferred = dio->result; 1119 /* 1120 * Adjust the return value if the read crossed a 1121 * non-block-aligned EOF. 1122 */ 1123 if (rw == READ && (offset + transferred > i_size)) 1124 transferred = i_size - offset; 1125 } 1126 dio_complete(dio, offset, transferred); 1127 if (ret == 0) 1128 ret = transferred; 1129 1130 /* We could have also come here on an AIO file extend */ 1131 if (!is_sync_kiocb(iocb) && rw == WRITE && 1132 ret >= 0 && dio->result == dio->size) 1133 /* 1134 * For AIO writes where we have completed the 1135 * i/o, we have to mark the the aio complete. 1136 */ 1137 aio_complete(iocb, ret, 0); 1138 kfree(dio); 1139 } 1140 return ret; 1141 } 1142 1143 /* 1144 * This is a library function for use by filesystem drivers. 1145 * The locking rules are governed by the dio_lock_type parameter. 1146 * 1147 * DIO_NO_LOCKING (no locking, for raw block device access) 1148 * For writes, i_mutex is not held on entry; it is never taken. 1149 * 1150 * DIO_LOCKING (simple locking for regular files) 1151 * For writes we are called under i_mutex and return with i_mutex held, even though 1152 * it is internally dropped. 1153 * For reads, i_mutex is not held on entry, but it is taken and dropped before 1154 * returning. 1155 * 1156 * DIO_OWN_LOCKING (filesystem provides synchronisation and handling of 1157 * uninitialised data, allowing parallel direct readers and writers) 1158 * For writes we are called without i_mutex, return without it, never touch it. 1159 * For reads, i_mutex is held on entry and will be released before returning. 1160 * 1161 * Additional i_alloc_sem locking requirements described inline below. 1162 */ 1163 ssize_t 1164 __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode, 1165 struct block_device *bdev, const struct iovec *iov, loff_t offset, 1166 unsigned long nr_segs, get_blocks_t get_blocks, dio_iodone_t end_io, 1167 int dio_lock_type) 1168 { 1169 int seg; 1170 size_t size; 1171 unsigned long addr; 1172 unsigned blkbits = inode->i_blkbits; 1173 unsigned bdev_blkbits = 0; 1174 unsigned blocksize_mask = (1 << blkbits) - 1; 1175 ssize_t retval = -EINVAL; 1176 loff_t end = offset; 1177 struct dio *dio; 1178 int reader_with_isem = (rw == READ && dio_lock_type == DIO_OWN_LOCKING); 1179 1180 if (rw & WRITE) 1181 current->flags |= PF_SYNCWRITE; 1182 1183 if (bdev) 1184 bdev_blkbits = blksize_bits(bdev_hardsect_size(bdev)); 1185 1186 if (offset & blocksize_mask) { 1187 if (bdev) 1188 blkbits = bdev_blkbits; 1189 blocksize_mask = (1 << blkbits) - 1; 1190 if (offset & blocksize_mask) 1191 goto out; 1192 } 1193 1194 /* Check the memory alignment. Blocks cannot straddle pages */ 1195 for (seg = 0; seg < nr_segs; seg++) { 1196 addr = (unsigned long)iov[seg].iov_base; 1197 size = iov[seg].iov_len; 1198 end += size; 1199 if ((addr & blocksize_mask) || (size & blocksize_mask)) { 1200 if (bdev) 1201 blkbits = bdev_blkbits; 1202 blocksize_mask = (1 << blkbits) - 1; 1203 if ((addr & blocksize_mask) || (size & blocksize_mask)) 1204 goto out; 1205 } 1206 } 1207 1208 dio = kmalloc(sizeof(*dio), GFP_KERNEL); 1209 retval = -ENOMEM; 1210 if (!dio) 1211 goto out; 1212 1213 /* 1214 * For block device access DIO_NO_LOCKING is used, 1215 * neither readers nor writers do any locking at all 1216 * For regular files using DIO_LOCKING, 1217 * readers need to grab i_mutex and i_alloc_sem 1218 * writers need to grab i_alloc_sem only (i_mutex is already held) 1219 * For regular files using DIO_OWN_LOCKING, 1220 * neither readers nor writers take any locks here 1221 * (i_mutex is already held and release for writers here) 1222 */ 1223 dio->lock_type = dio_lock_type; 1224 if (dio_lock_type != DIO_NO_LOCKING) { 1225 /* watch out for a 0 len io from a tricksy fs */ 1226 if (rw == READ && end > offset) { 1227 struct address_space *mapping; 1228 1229 mapping = iocb->ki_filp->f_mapping; 1230 if (dio_lock_type != DIO_OWN_LOCKING) { 1231 mutex_lock(&inode->i_mutex); 1232 reader_with_isem = 1; 1233 } 1234 1235 retval = filemap_write_and_wait_range(mapping, offset, 1236 end - 1); 1237 if (retval) { 1238 kfree(dio); 1239 goto out; 1240 } 1241 1242 if (dio_lock_type == DIO_OWN_LOCKING) { 1243 mutex_unlock(&inode->i_mutex); 1244 reader_with_isem = 0; 1245 } 1246 } 1247 1248 if (dio_lock_type == DIO_LOCKING) 1249 down_read(&inode->i_alloc_sem); 1250 } 1251 1252 /* 1253 * For file extending writes updating i_size before data 1254 * writeouts complete can expose uninitialized blocks. So 1255 * even for AIO, we need to wait for i/o to complete before 1256 * returning in this case. 1257 */ 1258 dio->is_async = !is_sync_kiocb(iocb) && !((rw == WRITE) && 1259 (end > i_size_read(inode))); 1260 1261 retval = direct_io_worker(rw, iocb, inode, iov, offset, 1262 nr_segs, blkbits, get_blocks, end_io, dio); 1263 1264 if (rw == READ && dio_lock_type == DIO_LOCKING) 1265 reader_with_isem = 0; 1266 1267 out: 1268 if (reader_with_isem) 1269 mutex_unlock(&inode->i_mutex); 1270 if (rw & WRITE) 1271 current->flags &= ~PF_SYNCWRITE; 1272 return retval; 1273 } 1274 EXPORT_SYMBOL(__blockdev_direct_IO); 1275