xref: /openbmc/linux/fs/direct-io.c (revision 87c2ce3b)
1 /*
2  * fs/direct-io.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * O_DIRECT
7  *
8  * 04Jul2002	akpm@zip.com.au
9  *		Initial version
10  * 11Sep2002	janetinc@us.ibm.com
11  * 		added readv/writev support.
12  * 29Oct2002	akpm@zip.com.au
13  *		rewrote bio_add_page() support.
14  * 30Oct2002	pbadari@us.ibm.com
15  *		added support for non-aligned IO.
16  * 06Nov2002	pbadari@us.ibm.com
17  *		added asynchronous IO support.
18  * 21Jul2003	nathans@sgi.com
19  *		added IO completion notifier.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/bio.h>
31 #include <linux/wait.h>
32 #include <linux/err.h>
33 #include <linux/blkdev.h>
34 #include <linux/buffer_head.h>
35 #include <linux/rwsem.h>
36 #include <linux/uio.h>
37 #include <asm/atomic.h>
38 
39 /*
40  * How many user pages to map in one call to get_user_pages().  This determines
41  * the size of a structure on the stack.
42  */
43 #define DIO_PAGES	64
44 
45 /*
46  * This code generally works in units of "dio_blocks".  A dio_block is
47  * somewhere between the hard sector size and the filesystem block size.  it
48  * is determined on a per-invocation basis.   When talking to the filesystem
49  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
50  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
51  * to bio_block quantities by shifting left by blkfactor.
52  *
53  * If blkfactor is zero then the user's request was aligned to the filesystem's
54  * blocksize.
55  *
56  * lock_type is DIO_LOCKING for regular files on direct-IO-naive filesystems.
57  * This determines whether we need to do the fancy locking which prevents
58  * direct-IO from being able to read uninitialised disk blocks.  If its zero
59  * (blockdev) this locking is not done, and if it is DIO_OWN_LOCKING i_mutex is
60  * not held for the entire direct write (taken briefly, initially, during a
61  * direct read though, but its never held for the duration of a direct-IO).
62  */
63 
64 struct dio {
65 	/* BIO submission state */
66 	struct bio *bio;		/* bio under assembly */
67 	struct inode *inode;
68 	int rw;
69 	loff_t i_size;			/* i_size when submitted */
70 	int lock_type;			/* doesn't change */
71 	unsigned blkbits;		/* doesn't change */
72 	unsigned blkfactor;		/* When we're using an alignment which
73 					   is finer than the filesystem's soft
74 					   blocksize, this specifies how much
75 					   finer.  blkfactor=2 means 1/4-block
76 					   alignment.  Does not change */
77 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
78 					   been performed at the start of a
79 					   write */
80 	int pages_in_io;		/* approximate total IO pages */
81 	size_t	size;			/* total request size (doesn't change)*/
82 	sector_t block_in_file;		/* Current offset into the underlying
83 					   file in dio_block units. */
84 	unsigned blocks_available;	/* At block_in_file.  changes */
85 	sector_t final_block_in_request;/* doesn't change */
86 	unsigned first_block_in_page;	/* doesn't change, Used only once */
87 	int boundary;			/* prev block is at a boundary */
88 	int reap_counter;		/* rate limit reaping */
89 	get_blocks_t *get_blocks;	/* block mapping function */
90 	dio_iodone_t *end_io;		/* IO completion function */
91 	sector_t final_block_in_bio;	/* current final block in bio + 1 */
92 	sector_t next_block_for_io;	/* next block to be put under IO,
93 					   in dio_blocks units */
94 	struct buffer_head map_bh;	/* last get_blocks() result */
95 
96 	/*
97 	 * Deferred addition of a page to the dio.  These variables are
98 	 * private to dio_send_cur_page(), submit_page_section() and
99 	 * dio_bio_add_page().
100 	 */
101 	struct page *cur_page;		/* The page */
102 	unsigned cur_page_offset;	/* Offset into it, in bytes */
103 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
104 	sector_t cur_page_block;	/* Where it starts */
105 
106 	/*
107 	 * Page fetching state. These variables belong to dio_refill_pages().
108 	 */
109 	int curr_page;			/* changes */
110 	int total_pages;		/* doesn't change */
111 	unsigned long curr_user_address;/* changes */
112 
113 	/*
114 	 * Page queue.  These variables belong to dio_refill_pages() and
115 	 * dio_get_page().
116 	 */
117 	struct page *pages[DIO_PAGES];	/* page buffer */
118 	unsigned head;			/* next page to process */
119 	unsigned tail;			/* last valid page + 1 */
120 	int page_errors;		/* errno from get_user_pages() */
121 
122 	/* BIO completion state */
123 	spinlock_t bio_lock;		/* protects BIO fields below */
124 	int bio_count;			/* nr bios to be completed */
125 	int bios_in_flight;		/* nr bios in flight */
126 	struct bio *bio_list;		/* singly linked via bi_private */
127 	struct task_struct *waiter;	/* waiting task (NULL if none) */
128 
129 	/* AIO related stuff */
130 	struct kiocb *iocb;		/* kiocb */
131 	int is_async;			/* is IO async ? */
132 	ssize_t result;                 /* IO result */
133 };
134 
135 /*
136  * How many pages are in the queue?
137  */
138 static inline unsigned dio_pages_present(struct dio *dio)
139 {
140 	return dio->tail - dio->head;
141 }
142 
143 /*
144  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
145  */
146 static int dio_refill_pages(struct dio *dio)
147 {
148 	int ret;
149 	int nr_pages;
150 
151 	nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES);
152 	down_read(&current->mm->mmap_sem);
153 	ret = get_user_pages(
154 		current,			/* Task for fault acounting */
155 		current->mm,			/* whose pages? */
156 		dio->curr_user_address,		/* Where from? */
157 		nr_pages,			/* How many pages? */
158 		dio->rw == READ,		/* Write to memory? */
159 		0,				/* force (?) */
160 		&dio->pages[0],
161 		NULL);				/* vmas */
162 	up_read(&current->mm->mmap_sem);
163 
164 	if (ret < 0 && dio->blocks_available && (dio->rw == WRITE)) {
165 		struct page *page = ZERO_PAGE(dio->curr_user_address);
166 		/*
167 		 * A memory fault, but the filesystem has some outstanding
168 		 * mapped blocks.  We need to use those blocks up to avoid
169 		 * leaking stale data in the file.
170 		 */
171 		if (dio->page_errors == 0)
172 			dio->page_errors = ret;
173 		page_cache_get(page);
174 		dio->pages[0] = page;
175 		dio->head = 0;
176 		dio->tail = 1;
177 		ret = 0;
178 		goto out;
179 	}
180 
181 	if (ret >= 0) {
182 		dio->curr_user_address += ret * PAGE_SIZE;
183 		dio->curr_page += ret;
184 		dio->head = 0;
185 		dio->tail = ret;
186 		ret = 0;
187 	}
188 out:
189 	return ret;
190 }
191 
192 /*
193  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
194  * buffered inside the dio so that we can call get_user_pages() against a
195  * decent number of pages, less frequently.  To provide nicer use of the
196  * L1 cache.
197  */
198 static struct page *dio_get_page(struct dio *dio)
199 {
200 	if (dio_pages_present(dio) == 0) {
201 		int ret;
202 
203 		ret = dio_refill_pages(dio);
204 		if (ret)
205 			return ERR_PTR(ret);
206 		BUG_ON(dio_pages_present(dio) == 0);
207 	}
208 	return dio->pages[dio->head++];
209 }
210 
211 /*
212  * Called when all DIO BIO I/O has been completed - let the filesystem
213  * know, if it registered an interest earlier via get_blocks.  Pass the
214  * private field of the map buffer_head so that filesystems can use it
215  * to hold additional state between get_blocks calls and dio_complete.
216  */
217 static void dio_complete(struct dio *dio, loff_t offset, ssize_t bytes)
218 {
219 	if (dio->end_io && dio->result)
220 		dio->end_io(dio->iocb, offset, bytes, dio->map_bh.b_private);
221 	if (dio->lock_type == DIO_LOCKING)
222 		up_read(&dio->inode->i_alloc_sem);
223 }
224 
225 /*
226  * Called when a BIO has been processed.  If the count goes to zero then IO is
227  * complete and we can signal this to the AIO layer.
228  */
229 static void finished_one_bio(struct dio *dio)
230 {
231 	unsigned long flags;
232 
233 	spin_lock_irqsave(&dio->bio_lock, flags);
234 	if (dio->bio_count == 1) {
235 		if (dio->is_async) {
236 			ssize_t transferred;
237 			loff_t offset;
238 
239 			/*
240 			 * Last reference to the dio is going away.
241 			 * Drop spinlock and complete the DIO.
242 			 */
243 			spin_unlock_irqrestore(&dio->bio_lock, flags);
244 
245 			/* Check for short read case */
246 			transferred = dio->result;
247 			offset = dio->iocb->ki_pos;
248 
249 			if ((dio->rw == READ) &&
250 			    ((offset + transferred) > dio->i_size))
251 				transferred = dio->i_size - offset;
252 
253 			dio_complete(dio, offset, transferred);
254 
255 			/* Complete AIO later if falling back to buffered i/o */
256 			if (dio->result == dio->size ||
257 				((dio->rw == READ) && dio->result)) {
258 				aio_complete(dio->iocb, transferred, 0);
259 				kfree(dio);
260 				return;
261 			} else {
262 				/*
263 				 * Falling back to buffered
264 				 */
265 				spin_lock_irqsave(&dio->bio_lock, flags);
266 				dio->bio_count--;
267 				if (dio->waiter)
268 					wake_up_process(dio->waiter);
269 				spin_unlock_irqrestore(&dio->bio_lock, flags);
270 				return;
271 			}
272 		}
273 	}
274 	dio->bio_count--;
275 	spin_unlock_irqrestore(&dio->bio_lock, flags);
276 }
277 
278 static int dio_bio_complete(struct dio *dio, struct bio *bio);
279 /*
280  * Asynchronous IO callback.
281  */
282 static int dio_bio_end_aio(struct bio *bio, unsigned int bytes_done, int error)
283 {
284 	struct dio *dio = bio->bi_private;
285 
286 	if (bio->bi_size)
287 		return 1;
288 
289 	/* cleanup the bio */
290 	dio_bio_complete(dio, bio);
291 	return 0;
292 }
293 
294 /*
295  * The BIO completion handler simply queues the BIO up for the process-context
296  * handler.
297  *
298  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
299  * implement a singly-linked list of completed BIOs, at dio->bio_list.
300  */
301 static int dio_bio_end_io(struct bio *bio, unsigned int bytes_done, int error)
302 {
303 	struct dio *dio = bio->bi_private;
304 	unsigned long flags;
305 
306 	if (bio->bi_size)
307 		return 1;
308 
309 	spin_lock_irqsave(&dio->bio_lock, flags);
310 	bio->bi_private = dio->bio_list;
311 	dio->bio_list = bio;
312 	dio->bios_in_flight--;
313 	if (dio->waiter && dio->bios_in_flight == 0)
314 		wake_up_process(dio->waiter);
315 	spin_unlock_irqrestore(&dio->bio_lock, flags);
316 	return 0;
317 }
318 
319 static int
320 dio_bio_alloc(struct dio *dio, struct block_device *bdev,
321 		sector_t first_sector, int nr_vecs)
322 {
323 	struct bio *bio;
324 
325 	bio = bio_alloc(GFP_KERNEL, nr_vecs);
326 	if (bio == NULL)
327 		return -ENOMEM;
328 
329 	bio->bi_bdev = bdev;
330 	bio->bi_sector = first_sector;
331 	if (dio->is_async)
332 		bio->bi_end_io = dio_bio_end_aio;
333 	else
334 		bio->bi_end_io = dio_bio_end_io;
335 
336 	dio->bio = bio;
337 	return 0;
338 }
339 
340 /*
341  * In the AIO read case we speculatively dirty the pages before starting IO.
342  * During IO completion, any of these pages which happen to have been written
343  * back will be redirtied by bio_check_pages_dirty().
344  */
345 static void dio_bio_submit(struct dio *dio)
346 {
347 	struct bio *bio = dio->bio;
348 	unsigned long flags;
349 
350 	bio->bi_private = dio;
351 	spin_lock_irqsave(&dio->bio_lock, flags);
352 	dio->bio_count++;
353 	dio->bios_in_flight++;
354 	spin_unlock_irqrestore(&dio->bio_lock, flags);
355 	if (dio->is_async && dio->rw == READ)
356 		bio_set_pages_dirty(bio);
357 	submit_bio(dio->rw, bio);
358 
359 	dio->bio = NULL;
360 	dio->boundary = 0;
361 }
362 
363 /*
364  * Release any resources in case of a failure
365  */
366 static void dio_cleanup(struct dio *dio)
367 {
368 	while (dio_pages_present(dio))
369 		page_cache_release(dio_get_page(dio));
370 }
371 
372 /*
373  * Wait for the next BIO to complete.  Remove it and return it.
374  */
375 static struct bio *dio_await_one(struct dio *dio)
376 {
377 	unsigned long flags;
378 	struct bio *bio;
379 
380 	spin_lock_irqsave(&dio->bio_lock, flags);
381 	while (dio->bio_list == NULL) {
382 		set_current_state(TASK_UNINTERRUPTIBLE);
383 		if (dio->bio_list == NULL) {
384 			dio->waiter = current;
385 			spin_unlock_irqrestore(&dio->bio_lock, flags);
386 			blk_run_address_space(dio->inode->i_mapping);
387 			io_schedule();
388 			spin_lock_irqsave(&dio->bio_lock, flags);
389 			dio->waiter = NULL;
390 		}
391 		set_current_state(TASK_RUNNING);
392 	}
393 	bio = dio->bio_list;
394 	dio->bio_list = bio->bi_private;
395 	spin_unlock_irqrestore(&dio->bio_lock, flags);
396 	return bio;
397 }
398 
399 /*
400  * Process one completed BIO.  No locks are held.
401  */
402 static int dio_bio_complete(struct dio *dio, struct bio *bio)
403 {
404 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
405 	struct bio_vec *bvec = bio->bi_io_vec;
406 	int page_no;
407 
408 	if (!uptodate)
409 		dio->result = -EIO;
410 
411 	if (dio->is_async && dio->rw == READ) {
412 		bio_check_pages_dirty(bio);	/* transfers ownership */
413 	} else {
414 		for (page_no = 0; page_no < bio->bi_vcnt; page_no++) {
415 			struct page *page = bvec[page_no].bv_page;
416 
417 			if (dio->rw == READ && !PageCompound(page))
418 				set_page_dirty_lock(page);
419 			page_cache_release(page);
420 		}
421 		bio_put(bio);
422 	}
423 	finished_one_bio(dio);
424 	return uptodate ? 0 : -EIO;
425 }
426 
427 /*
428  * Wait on and process all in-flight BIOs.
429  */
430 static int dio_await_completion(struct dio *dio)
431 {
432 	int ret = 0;
433 
434 	if (dio->bio)
435 		dio_bio_submit(dio);
436 
437 	/*
438 	 * The bio_lock is not held for the read of bio_count.
439 	 * This is ok since it is the dio_bio_complete() that changes
440 	 * bio_count.
441 	 */
442 	while (dio->bio_count) {
443 		struct bio *bio = dio_await_one(dio);
444 		int ret2;
445 
446 		ret2 = dio_bio_complete(dio, bio);
447 		if (ret == 0)
448 			ret = ret2;
449 	}
450 	return ret;
451 }
452 
453 /*
454  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
455  * to keep the memory consumption sane we periodically reap any completed BIOs
456  * during the BIO generation phase.
457  *
458  * This also helps to limit the peak amount of pinned userspace memory.
459  */
460 static int dio_bio_reap(struct dio *dio)
461 {
462 	int ret = 0;
463 
464 	if (dio->reap_counter++ >= 64) {
465 		while (dio->bio_list) {
466 			unsigned long flags;
467 			struct bio *bio;
468 			int ret2;
469 
470 			spin_lock_irqsave(&dio->bio_lock, flags);
471 			bio = dio->bio_list;
472 			dio->bio_list = bio->bi_private;
473 			spin_unlock_irqrestore(&dio->bio_lock, flags);
474 			ret2 = dio_bio_complete(dio, bio);
475 			if (ret == 0)
476 				ret = ret2;
477 		}
478 		dio->reap_counter = 0;
479 	}
480 	return ret;
481 }
482 
483 /*
484  * Call into the fs to map some more disk blocks.  We record the current number
485  * of available blocks at dio->blocks_available.  These are in units of the
486  * fs blocksize, (1 << inode->i_blkbits).
487  *
488  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
489  * it uses the passed inode-relative block number as the file offset, as usual.
490  *
491  * get_blocks() is passed the number of i_blkbits-sized blocks which direct_io
492  * has remaining to do.  The fs should not map more than this number of blocks.
493  *
494  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
495  * indicate how much contiguous disk space has been made available at
496  * bh->b_blocknr.
497  *
498  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
499  * This isn't very efficient...
500  *
501  * In the case of filesystem holes: the fs may return an arbitrarily-large
502  * hole by returning an appropriate value in b_size and by clearing
503  * buffer_mapped().  However the direct-io code will only process holes one
504  * block at a time - it will repeatedly call get_blocks() as it walks the hole.
505  */
506 static int get_more_blocks(struct dio *dio)
507 {
508 	int ret;
509 	struct buffer_head *map_bh = &dio->map_bh;
510 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
511 	unsigned long fs_count;	/* Number of filesystem-sized blocks */
512 	unsigned long dio_count;/* Number of dio_block-sized blocks */
513 	unsigned long blkmask;
514 	int create;
515 
516 	/*
517 	 * If there was a memory error and we've overwritten all the
518 	 * mapped blocks then we can now return that memory error
519 	 */
520 	ret = dio->page_errors;
521 	if (ret == 0) {
522 		map_bh->b_state = 0;
523 		map_bh->b_size = 0;
524 		BUG_ON(dio->block_in_file >= dio->final_block_in_request);
525 		fs_startblk = dio->block_in_file >> dio->blkfactor;
526 		dio_count = dio->final_block_in_request - dio->block_in_file;
527 		fs_count = dio_count >> dio->blkfactor;
528 		blkmask = (1 << dio->blkfactor) - 1;
529 		if (dio_count & blkmask)
530 			fs_count++;
531 
532 		create = dio->rw == WRITE;
533 		if (dio->lock_type == DIO_LOCKING) {
534 			if (dio->block_in_file < (i_size_read(dio->inode) >>
535 							dio->blkbits))
536 				create = 0;
537 		} else if (dio->lock_type == DIO_NO_LOCKING) {
538 			create = 0;
539 		}
540 		/*
541 		 * For writes inside i_size we forbid block creations: only
542 		 * overwrites are permitted.  We fall back to buffered writes
543 		 * at a higher level for inside-i_size block-instantiating
544 		 * writes.
545 		 */
546 		ret = (*dio->get_blocks)(dio->inode, fs_startblk, fs_count,
547 						map_bh, create);
548 	}
549 	return ret;
550 }
551 
552 /*
553  * There is no bio.  Make one now.
554  */
555 static int dio_new_bio(struct dio *dio, sector_t start_sector)
556 {
557 	sector_t sector;
558 	int ret, nr_pages;
559 
560 	ret = dio_bio_reap(dio);
561 	if (ret)
562 		goto out;
563 	sector = start_sector << (dio->blkbits - 9);
564 	nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev));
565 	BUG_ON(nr_pages <= 0);
566 	ret = dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages);
567 	dio->boundary = 0;
568 out:
569 	return ret;
570 }
571 
572 /*
573  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
574  * that was successful then update final_block_in_bio and take a ref against
575  * the just-added page.
576  *
577  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
578  */
579 static int dio_bio_add_page(struct dio *dio)
580 {
581 	int ret;
582 
583 	ret = bio_add_page(dio->bio, dio->cur_page,
584 			dio->cur_page_len, dio->cur_page_offset);
585 	if (ret == dio->cur_page_len) {
586 		/*
587 		 * Decrement count only, if we are done with this page
588 		 */
589 		if ((dio->cur_page_len + dio->cur_page_offset) == PAGE_SIZE)
590 			dio->pages_in_io--;
591 		page_cache_get(dio->cur_page);
592 		dio->final_block_in_bio = dio->cur_page_block +
593 			(dio->cur_page_len >> dio->blkbits);
594 		ret = 0;
595 	} else {
596 		ret = 1;
597 	}
598 	return ret;
599 }
600 
601 /*
602  * Put cur_page under IO.  The section of cur_page which is described by
603  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
604  * starts on-disk at cur_page_block.
605  *
606  * We take a ref against the page here (on behalf of its presence in the bio).
607  *
608  * The caller of this function is responsible for removing cur_page from the
609  * dio, and for dropping the refcount which came from that presence.
610  */
611 static int dio_send_cur_page(struct dio *dio)
612 {
613 	int ret = 0;
614 
615 	if (dio->bio) {
616 		/*
617 		 * See whether this new request is contiguous with the old
618 		 */
619 		if (dio->final_block_in_bio != dio->cur_page_block)
620 			dio_bio_submit(dio);
621 		/*
622 		 * Submit now if the underlying fs is about to perform a
623 		 * metadata read
624 		 */
625 		if (dio->boundary)
626 			dio_bio_submit(dio);
627 	}
628 
629 	if (dio->bio == NULL) {
630 		ret = dio_new_bio(dio, dio->cur_page_block);
631 		if (ret)
632 			goto out;
633 	}
634 
635 	if (dio_bio_add_page(dio) != 0) {
636 		dio_bio_submit(dio);
637 		ret = dio_new_bio(dio, dio->cur_page_block);
638 		if (ret == 0) {
639 			ret = dio_bio_add_page(dio);
640 			BUG_ON(ret != 0);
641 		}
642 	}
643 out:
644 	return ret;
645 }
646 
647 /*
648  * An autonomous function to put a chunk of a page under deferred IO.
649  *
650  * The caller doesn't actually know (or care) whether this piece of page is in
651  * a BIO, or is under IO or whatever.  We just take care of all possible
652  * situations here.  The separation between the logic of do_direct_IO() and
653  * that of submit_page_section() is important for clarity.  Please don't break.
654  *
655  * The chunk of page starts on-disk at blocknr.
656  *
657  * We perform deferred IO, by recording the last-submitted page inside our
658  * private part of the dio structure.  If possible, we just expand the IO
659  * across that page here.
660  *
661  * If that doesn't work out then we put the old page into the bio and add this
662  * page to the dio instead.
663  */
664 static int
665 submit_page_section(struct dio *dio, struct page *page,
666 		unsigned offset, unsigned len, sector_t blocknr)
667 {
668 	int ret = 0;
669 
670 	/*
671 	 * Can we just grow the current page's presence in the dio?
672 	 */
673 	if (	(dio->cur_page == page) &&
674 		(dio->cur_page_offset + dio->cur_page_len == offset) &&
675 		(dio->cur_page_block +
676 			(dio->cur_page_len >> dio->blkbits) == blocknr)) {
677 		dio->cur_page_len += len;
678 
679 		/*
680 		 * If dio->boundary then we want to schedule the IO now to
681 		 * avoid metadata seeks.
682 		 */
683 		if (dio->boundary) {
684 			ret = dio_send_cur_page(dio);
685 			page_cache_release(dio->cur_page);
686 			dio->cur_page = NULL;
687 		}
688 		goto out;
689 	}
690 
691 	/*
692 	 * If there's a deferred page already there then send it.
693 	 */
694 	if (dio->cur_page) {
695 		ret = dio_send_cur_page(dio);
696 		page_cache_release(dio->cur_page);
697 		dio->cur_page = NULL;
698 		if (ret)
699 			goto out;
700 	}
701 
702 	page_cache_get(page);		/* It is in dio */
703 	dio->cur_page = page;
704 	dio->cur_page_offset = offset;
705 	dio->cur_page_len = len;
706 	dio->cur_page_block = blocknr;
707 out:
708 	return ret;
709 }
710 
711 /*
712  * Clean any dirty buffers in the blockdev mapping which alias newly-created
713  * file blocks.  Only called for S_ISREG files - blockdevs do not set
714  * buffer_new
715  */
716 static void clean_blockdev_aliases(struct dio *dio)
717 {
718 	unsigned i;
719 	unsigned nblocks;
720 
721 	nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits;
722 
723 	for (i = 0; i < nblocks; i++) {
724 		unmap_underlying_metadata(dio->map_bh.b_bdev,
725 					dio->map_bh.b_blocknr + i);
726 	}
727 }
728 
729 /*
730  * If we are not writing the entire block and get_block() allocated
731  * the block for us, we need to fill-in the unused portion of the
732  * block with zeros. This happens only if user-buffer, fileoffset or
733  * io length is not filesystem block-size multiple.
734  *
735  * `end' is zero if we're doing the start of the IO, 1 at the end of the
736  * IO.
737  */
738 static void dio_zero_block(struct dio *dio, int end)
739 {
740 	unsigned dio_blocks_per_fs_block;
741 	unsigned this_chunk_blocks;	/* In dio_blocks */
742 	unsigned this_chunk_bytes;
743 	struct page *page;
744 
745 	dio->start_zero_done = 1;
746 	if (!dio->blkfactor || !buffer_new(&dio->map_bh))
747 		return;
748 
749 	dio_blocks_per_fs_block = 1 << dio->blkfactor;
750 	this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1);
751 
752 	if (!this_chunk_blocks)
753 		return;
754 
755 	/*
756 	 * We need to zero out part of an fs block.  It is either at the
757 	 * beginning or the end of the fs block.
758 	 */
759 	if (end)
760 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
761 
762 	this_chunk_bytes = this_chunk_blocks << dio->blkbits;
763 
764 	page = ZERO_PAGE(dio->curr_user_address);
765 	if (submit_page_section(dio, page, 0, this_chunk_bytes,
766 				dio->next_block_for_io))
767 		return;
768 
769 	dio->next_block_for_io += this_chunk_blocks;
770 }
771 
772 /*
773  * Walk the user pages, and the file, mapping blocks to disk and generating
774  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
775  * into submit_page_section(), which takes care of the next stage of submission
776  *
777  * Direct IO against a blockdev is different from a file.  Because we can
778  * happily perform page-sized but 512-byte aligned IOs.  It is important that
779  * blockdev IO be able to have fine alignment and large sizes.
780  *
781  * So what we do is to permit the ->get_blocks function to populate bh.b_size
782  * with the size of IO which is permitted at this offset and this i_blkbits.
783  *
784  * For best results, the blockdev should be set up with 512-byte i_blkbits and
785  * it should set b_size to PAGE_SIZE or more inside get_blocks().  This gives
786  * fine alignment but still allows this function to work in PAGE_SIZE units.
787  */
788 static int do_direct_IO(struct dio *dio)
789 {
790 	const unsigned blkbits = dio->blkbits;
791 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
792 	struct page *page;
793 	unsigned block_in_page;
794 	struct buffer_head *map_bh = &dio->map_bh;
795 	int ret = 0;
796 
797 	/* The I/O can start at any block offset within the first page */
798 	block_in_page = dio->first_block_in_page;
799 
800 	while (dio->block_in_file < dio->final_block_in_request) {
801 		page = dio_get_page(dio);
802 		if (IS_ERR(page)) {
803 			ret = PTR_ERR(page);
804 			goto out;
805 		}
806 
807 		while (block_in_page < blocks_per_page) {
808 			unsigned offset_in_page = block_in_page << blkbits;
809 			unsigned this_chunk_bytes;	/* # of bytes mapped */
810 			unsigned this_chunk_blocks;	/* # of blocks */
811 			unsigned u;
812 
813 			if (dio->blocks_available == 0) {
814 				/*
815 				 * Need to go and map some more disk
816 				 */
817 				unsigned long blkmask;
818 				unsigned long dio_remainder;
819 
820 				ret = get_more_blocks(dio);
821 				if (ret) {
822 					page_cache_release(page);
823 					goto out;
824 				}
825 				if (!buffer_mapped(map_bh))
826 					goto do_holes;
827 
828 				dio->blocks_available =
829 						map_bh->b_size >> dio->blkbits;
830 				dio->next_block_for_io =
831 					map_bh->b_blocknr << dio->blkfactor;
832 				if (buffer_new(map_bh))
833 					clean_blockdev_aliases(dio);
834 
835 				if (!dio->blkfactor)
836 					goto do_holes;
837 
838 				blkmask = (1 << dio->blkfactor) - 1;
839 				dio_remainder = (dio->block_in_file & blkmask);
840 
841 				/*
842 				 * If we are at the start of IO and that IO
843 				 * starts partway into a fs-block,
844 				 * dio_remainder will be non-zero.  If the IO
845 				 * is a read then we can simply advance the IO
846 				 * cursor to the first block which is to be
847 				 * read.  But if the IO is a write and the
848 				 * block was newly allocated we cannot do that;
849 				 * the start of the fs block must be zeroed out
850 				 * on-disk
851 				 */
852 				if (!buffer_new(map_bh))
853 					dio->next_block_for_io += dio_remainder;
854 				dio->blocks_available -= dio_remainder;
855 			}
856 do_holes:
857 			/* Handle holes */
858 			if (!buffer_mapped(map_bh)) {
859 				char *kaddr;
860 
861 				/* AKPM: eargh, -ENOTBLK is a hack */
862 				if (dio->rw == WRITE) {
863 					page_cache_release(page);
864 					return -ENOTBLK;
865 				}
866 
867 				if (dio->block_in_file >=
868 					i_size_read(dio->inode)>>blkbits) {
869 					/* We hit eof */
870 					page_cache_release(page);
871 					goto out;
872 				}
873 				kaddr = kmap_atomic(page, KM_USER0);
874 				memset(kaddr + (block_in_page << blkbits),
875 						0, 1 << blkbits);
876 				flush_dcache_page(page);
877 				kunmap_atomic(kaddr, KM_USER0);
878 				dio->block_in_file++;
879 				block_in_page++;
880 				goto next_block;
881 			}
882 
883 			/*
884 			 * If we're performing IO which has an alignment which
885 			 * is finer than the underlying fs, go check to see if
886 			 * we must zero out the start of this block.
887 			 */
888 			if (unlikely(dio->blkfactor && !dio->start_zero_done))
889 				dio_zero_block(dio, 0);
890 
891 			/*
892 			 * Work out, in this_chunk_blocks, how much disk we
893 			 * can add to this page
894 			 */
895 			this_chunk_blocks = dio->blocks_available;
896 			u = (PAGE_SIZE - offset_in_page) >> blkbits;
897 			if (this_chunk_blocks > u)
898 				this_chunk_blocks = u;
899 			u = dio->final_block_in_request - dio->block_in_file;
900 			if (this_chunk_blocks > u)
901 				this_chunk_blocks = u;
902 			this_chunk_bytes = this_chunk_blocks << blkbits;
903 			BUG_ON(this_chunk_bytes == 0);
904 
905 			dio->boundary = buffer_boundary(map_bh);
906 			ret = submit_page_section(dio, page, offset_in_page,
907 				this_chunk_bytes, dio->next_block_for_io);
908 			if (ret) {
909 				page_cache_release(page);
910 				goto out;
911 			}
912 			dio->next_block_for_io += this_chunk_blocks;
913 
914 			dio->block_in_file += this_chunk_blocks;
915 			block_in_page += this_chunk_blocks;
916 			dio->blocks_available -= this_chunk_blocks;
917 next_block:
918 			if (dio->block_in_file > dio->final_block_in_request)
919 				BUG();
920 			if (dio->block_in_file == dio->final_block_in_request)
921 				break;
922 		}
923 
924 		/* Drop the ref which was taken in get_user_pages() */
925 		page_cache_release(page);
926 		block_in_page = 0;
927 	}
928 out:
929 	return ret;
930 }
931 
932 /*
933  * Releases both i_mutex and i_alloc_sem
934  */
935 static ssize_t
936 direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode,
937 	const struct iovec *iov, loff_t offset, unsigned long nr_segs,
938 	unsigned blkbits, get_blocks_t get_blocks, dio_iodone_t end_io,
939 	struct dio *dio)
940 {
941 	unsigned long user_addr;
942 	int seg;
943 	ssize_t ret = 0;
944 	ssize_t ret2;
945 	size_t bytes;
946 
947 	dio->bio = NULL;
948 	dio->inode = inode;
949 	dio->rw = rw;
950 	dio->blkbits = blkbits;
951 	dio->blkfactor = inode->i_blkbits - blkbits;
952 	dio->start_zero_done = 0;
953 	dio->size = 0;
954 	dio->block_in_file = offset >> blkbits;
955 	dio->blocks_available = 0;
956 	dio->cur_page = NULL;
957 
958 	dio->boundary = 0;
959 	dio->reap_counter = 0;
960 	dio->get_blocks = get_blocks;
961 	dio->end_io = end_io;
962 	dio->map_bh.b_private = NULL;
963 	dio->final_block_in_bio = -1;
964 	dio->next_block_for_io = -1;
965 
966 	dio->page_errors = 0;
967 	dio->result = 0;
968 	dio->iocb = iocb;
969 	dio->i_size = i_size_read(inode);
970 
971 	/*
972 	 * BIO completion state.
973 	 *
974 	 * ->bio_count starts out at one, and we decrement it to zero after all
975 	 * BIOs are submitted.  This to avoid the situation where a really fast
976 	 * (or synchronous) device could take the count to zero while we're
977 	 * still submitting BIOs.
978 	 */
979 	dio->bio_count = 1;
980 	dio->bios_in_flight = 0;
981 	spin_lock_init(&dio->bio_lock);
982 	dio->bio_list = NULL;
983 	dio->waiter = NULL;
984 
985 	/*
986 	 * In case of non-aligned buffers, we may need 2 more
987 	 * pages since we need to zero out first and last block.
988 	 */
989 	if (unlikely(dio->blkfactor))
990 		dio->pages_in_io = 2;
991 	else
992 		dio->pages_in_io = 0;
993 
994 	for (seg = 0; seg < nr_segs; seg++) {
995 		user_addr = (unsigned long)iov[seg].iov_base;
996 		dio->pages_in_io +=
997 			((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE
998 				- user_addr/PAGE_SIZE);
999 	}
1000 
1001 	for (seg = 0; seg < nr_segs; seg++) {
1002 		user_addr = (unsigned long)iov[seg].iov_base;
1003 		dio->size += bytes = iov[seg].iov_len;
1004 
1005 		/* Index into the first page of the first block */
1006 		dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
1007 		dio->final_block_in_request = dio->block_in_file +
1008 						(bytes >> blkbits);
1009 		/* Page fetching state */
1010 		dio->head = 0;
1011 		dio->tail = 0;
1012 		dio->curr_page = 0;
1013 
1014 		dio->total_pages = 0;
1015 		if (user_addr & (PAGE_SIZE-1)) {
1016 			dio->total_pages++;
1017 			bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
1018 		}
1019 		dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1020 		dio->curr_user_address = user_addr;
1021 
1022 		ret = do_direct_IO(dio);
1023 
1024 		dio->result += iov[seg].iov_len -
1025 			((dio->final_block_in_request - dio->block_in_file) <<
1026 					blkbits);
1027 
1028 		if (ret) {
1029 			dio_cleanup(dio);
1030 			break;
1031 		}
1032 	} /* end iovec loop */
1033 
1034 	if (ret == -ENOTBLK && rw == WRITE) {
1035 		/*
1036 		 * The remaining part of the request will be
1037 		 * be handled by buffered I/O when we return
1038 		 */
1039 		ret = 0;
1040 	}
1041 	/*
1042 	 * There may be some unwritten disk at the end of a part-written
1043 	 * fs-block-sized block.  Go zero that now.
1044 	 */
1045 	dio_zero_block(dio, 1);
1046 
1047 	if (dio->cur_page) {
1048 		ret2 = dio_send_cur_page(dio);
1049 		if (ret == 0)
1050 			ret = ret2;
1051 		page_cache_release(dio->cur_page);
1052 		dio->cur_page = NULL;
1053 	}
1054 	if (dio->bio)
1055 		dio_bio_submit(dio);
1056 
1057 	/*
1058 	 * It is possible that, we return short IO due to end of file.
1059 	 * In that case, we need to release all the pages we got hold on.
1060 	 */
1061 	dio_cleanup(dio);
1062 
1063 	/*
1064 	 * All block lookups have been performed. For READ requests
1065 	 * we can let i_mutex go now that its achieved its purpose
1066 	 * of protecting us from looking up uninitialized blocks.
1067 	 */
1068 	if ((rw == READ) && (dio->lock_type == DIO_LOCKING))
1069 		mutex_unlock(&dio->inode->i_mutex);
1070 
1071 	/*
1072 	 * OK, all BIOs are submitted, so we can decrement bio_count to truly
1073 	 * reflect the number of to-be-processed BIOs.
1074 	 */
1075 	if (dio->is_async) {
1076 		int should_wait = 0;
1077 
1078 		if (dio->result < dio->size && rw == WRITE) {
1079 			dio->waiter = current;
1080 			should_wait = 1;
1081 		}
1082 		if (ret == 0)
1083 			ret = dio->result;
1084 		finished_one_bio(dio);		/* This can free the dio */
1085 		blk_run_address_space(inode->i_mapping);
1086 		if (should_wait) {
1087 			unsigned long flags;
1088 			/*
1089 			 * Wait for already issued I/O to drain out and
1090 			 * release its references to user-space pages
1091 			 * before returning to fallback on buffered I/O
1092 			 */
1093 
1094 			spin_lock_irqsave(&dio->bio_lock, flags);
1095 			set_current_state(TASK_UNINTERRUPTIBLE);
1096 			while (dio->bio_count) {
1097 				spin_unlock_irqrestore(&dio->bio_lock, flags);
1098 				io_schedule();
1099 				spin_lock_irqsave(&dio->bio_lock, flags);
1100 				set_current_state(TASK_UNINTERRUPTIBLE);
1101 			}
1102 			spin_unlock_irqrestore(&dio->bio_lock, flags);
1103 			set_current_state(TASK_RUNNING);
1104 			kfree(dio);
1105 		}
1106 	} else {
1107 		ssize_t transferred = 0;
1108 
1109 		finished_one_bio(dio);
1110 		ret2 = dio_await_completion(dio);
1111 		if (ret == 0)
1112 			ret = ret2;
1113 		if (ret == 0)
1114 			ret = dio->page_errors;
1115 		if (dio->result) {
1116 			loff_t i_size = i_size_read(inode);
1117 
1118 			transferred = dio->result;
1119 			/*
1120 			 * Adjust the return value if the read crossed a
1121 			 * non-block-aligned EOF.
1122 			 */
1123 			if (rw == READ && (offset + transferred > i_size))
1124 				transferred = i_size - offset;
1125 		}
1126 		dio_complete(dio, offset, transferred);
1127 		if (ret == 0)
1128 			ret = transferred;
1129 
1130 		/* We could have also come here on an AIO file extend */
1131 		if (!is_sync_kiocb(iocb) && rw == WRITE &&
1132 		    ret >= 0 && dio->result == dio->size)
1133 			/*
1134 			 * For AIO writes where we have completed the
1135 			 * i/o, we have to mark the the aio complete.
1136 			 */
1137 			aio_complete(iocb, ret, 0);
1138 		kfree(dio);
1139 	}
1140 	return ret;
1141 }
1142 
1143 /*
1144  * This is a library function for use by filesystem drivers.
1145  * The locking rules are governed by the dio_lock_type parameter.
1146  *
1147  * DIO_NO_LOCKING (no locking, for raw block device access)
1148  * For writes, i_mutex is not held on entry; it is never taken.
1149  *
1150  * DIO_LOCKING (simple locking for regular files)
1151  * For writes we are called under i_mutex and return with i_mutex held, even though
1152  * it is internally dropped.
1153  * For reads, i_mutex is not held on entry, but it is taken and dropped before
1154  * returning.
1155  *
1156  * DIO_OWN_LOCKING (filesystem provides synchronisation and handling of
1157  *	uninitialised data, allowing parallel direct readers and writers)
1158  * For writes we are called without i_mutex, return without it, never touch it.
1159  * For reads, i_mutex is held on entry and will be released before returning.
1160  *
1161  * Additional i_alloc_sem locking requirements described inline below.
1162  */
1163 ssize_t
1164 __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1165 	struct block_device *bdev, const struct iovec *iov, loff_t offset,
1166 	unsigned long nr_segs, get_blocks_t get_blocks, dio_iodone_t end_io,
1167 	int dio_lock_type)
1168 {
1169 	int seg;
1170 	size_t size;
1171 	unsigned long addr;
1172 	unsigned blkbits = inode->i_blkbits;
1173 	unsigned bdev_blkbits = 0;
1174 	unsigned blocksize_mask = (1 << blkbits) - 1;
1175 	ssize_t retval = -EINVAL;
1176 	loff_t end = offset;
1177 	struct dio *dio;
1178 	int reader_with_isem = (rw == READ && dio_lock_type == DIO_OWN_LOCKING);
1179 
1180 	if (rw & WRITE)
1181 		current->flags |= PF_SYNCWRITE;
1182 
1183 	if (bdev)
1184 		bdev_blkbits = blksize_bits(bdev_hardsect_size(bdev));
1185 
1186 	if (offset & blocksize_mask) {
1187 		if (bdev)
1188 			 blkbits = bdev_blkbits;
1189 		blocksize_mask = (1 << blkbits) - 1;
1190 		if (offset & blocksize_mask)
1191 			goto out;
1192 	}
1193 
1194 	/* Check the memory alignment.  Blocks cannot straddle pages */
1195 	for (seg = 0; seg < nr_segs; seg++) {
1196 		addr = (unsigned long)iov[seg].iov_base;
1197 		size = iov[seg].iov_len;
1198 		end += size;
1199 		if ((addr & blocksize_mask) || (size & blocksize_mask))  {
1200 			if (bdev)
1201 				 blkbits = bdev_blkbits;
1202 			blocksize_mask = (1 << blkbits) - 1;
1203 			if ((addr & blocksize_mask) || (size & blocksize_mask))
1204 				goto out;
1205 		}
1206 	}
1207 
1208 	dio = kmalloc(sizeof(*dio), GFP_KERNEL);
1209 	retval = -ENOMEM;
1210 	if (!dio)
1211 		goto out;
1212 
1213 	/*
1214 	 * For block device access DIO_NO_LOCKING is used,
1215 	 *	neither readers nor writers do any locking at all
1216 	 * For regular files using DIO_LOCKING,
1217 	 *	readers need to grab i_mutex and i_alloc_sem
1218 	 *	writers need to grab i_alloc_sem only (i_mutex is already held)
1219 	 * For regular files using DIO_OWN_LOCKING,
1220 	 *	neither readers nor writers take any locks here
1221 	 *	(i_mutex is already held and release for writers here)
1222 	 */
1223 	dio->lock_type = dio_lock_type;
1224 	if (dio_lock_type != DIO_NO_LOCKING) {
1225 		/* watch out for a 0 len io from a tricksy fs */
1226 		if (rw == READ && end > offset) {
1227 			struct address_space *mapping;
1228 
1229 			mapping = iocb->ki_filp->f_mapping;
1230 			if (dio_lock_type != DIO_OWN_LOCKING) {
1231 				mutex_lock(&inode->i_mutex);
1232 				reader_with_isem = 1;
1233 			}
1234 
1235 			retval = filemap_write_and_wait_range(mapping, offset,
1236 							      end - 1);
1237 			if (retval) {
1238 				kfree(dio);
1239 				goto out;
1240 			}
1241 
1242 			if (dio_lock_type == DIO_OWN_LOCKING) {
1243 				mutex_unlock(&inode->i_mutex);
1244 				reader_with_isem = 0;
1245 			}
1246 		}
1247 
1248 		if (dio_lock_type == DIO_LOCKING)
1249 			down_read(&inode->i_alloc_sem);
1250 	}
1251 
1252 	/*
1253 	 * For file extending writes updating i_size before data
1254 	 * writeouts complete can expose uninitialized blocks. So
1255 	 * even for AIO, we need to wait for i/o to complete before
1256 	 * returning in this case.
1257 	 */
1258 	dio->is_async = !is_sync_kiocb(iocb) && !((rw == WRITE) &&
1259 		(end > i_size_read(inode)));
1260 
1261 	retval = direct_io_worker(rw, iocb, inode, iov, offset,
1262 				nr_segs, blkbits, get_blocks, end_io, dio);
1263 
1264 	if (rw == READ && dio_lock_type == DIO_LOCKING)
1265 		reader_with_isem = 0;
1266 
1267 out:
1268 	if (reader_with_isem)
1269 		mutex_unlock(&inode->i_mutex);
1270 	if (rw & WRITE)
1271 		current->flags &= ~PF_SYNCWRITE;
1272 	return retval;
1273 }
1274 EXPORT_SYMBOL(__blockdev_direct_IO);
1275