xref: /openbmc/linux/fs/direct-io.c (revision 75f25bd3)
1 /*
2  * fs/direct-io.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * O_DIRECT
7  *
8  * 04Jul2002	Andrew Morton
9  *		Initial version
10  * 11Sep2002	janetinc@us.ibm.com
11  * 		added readv/writev support.
12  * 29Oct2002	Andrew Morton
13  *		rewrote bio_add_page() support.
14  * 30Oct2002	pbadari@us.ibm.com
15  *		added support for non-aligned IO.
16  * 06Nov2002	pbadari@us.ibm.com
17  *		added asynchronous IO support.
18  * 21Jul2003	nathans@sgi.com
19  *		added IO completion notifier.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <linux/atomic.h>
39 
40 /*
41  * How many user pages to map in one call to get_user_pages().  This determines
42  * the size of a structure on the stack.
43  */
44 #define DIO_PAGES	64
45 
46 /*
47  * This code generally works in units of "dio_blocks".  A dio_block is
48  * somewhere between the hard sector size and the filesystem block size.  it
49  * is determined on a per-invocation basis.   When talking to the filesystem
50  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
51  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
52  * to bio_block quantities by shifting left by blkfactor.
53  *
54  * If blkfactor is zero then the user's request was aligned to the filesystem's
55  * blocksize.
56  */
57 
58 struct dio {
59 	/* BIO submission state */
60 	struct bio *bio;		/* bio under assembly */
61 	struct inode *inode;
62 	int rw;
63 	loff_t i_size;			/* i_size when submitted */
64 	int flags;			/* doesn't change */
65 	unsigned blkbits;		/* doesn't change */
66 	unsigned blkfactor;		/* When we're using an alignment which
67 					   is finer than the filesystem's soft
68 					   blocksize, this specifies how much
69 					   finer.  blkfactor=2 means 1/4-block
70 					   alignment.  Does not change */
71 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
72 					   been performed at the start of a
73 					   write */
74 	int pages_in_io;		/* approximate total IO pages */
75 	size_t	size;			/* total request size (doesn't change)*/
76 	sector_t block_in_file;		/* Current offset into the underlying
77 					   file in dio_block units. */
78 	unsigned blocks_available;	/* At block_in_file.  changes */
79 	sector_t final_block_in_request;/* doesn't change */
80 	unsigned first_block_in_page;	/* doesn't change, Used only once */
81 	int boundary;			/* prev block is at a boundary */
82 	int reap_counter;		/* rate limit reaping */
83 	get_block_t *get_block;		/* block mapping function */
84 	dio_iodone_t *end_io;		/* IO completion function */
85 	dio_submit_t *submit_io;	/* IO submition function */
86 	loff_t logical_offset_in_bio;	/* current first logical block in bio */
87 	sector_t final_block_in_bio;	/* current final block in bio + 1 */
88 	sector_t next_block_for_io;	/* next block to be put under IO,
89 					   in dio_blocks units */
90 	struct buffer_head map_bh;	/* last get_block() result */
91 
92 	/*
93 	 * Deferred addition of a page to the dio.  These variables are
94 	 * private to dio_send_cur_page(), submit_page_section() and
95 	 * dio_bio_add_page().
96 	 */
97 	struct page *cur_page;		/* The page */
98 	unsigned cur_page_offset;	/* Offset into it, in bytes */
99 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
100 	sector_t cur_page_block;	/* Where it starts */
101 	loff_t cur_page_fs_offset;	/* Offset in file */
102 
103 	/* BIO completion state */
104 	spinlock_t bio_lock;		/* protects BIO fields below */
105 	unsigned long refcount;		/* direct_io_worker() and bios */
106 	struct bio *bio_list;		/* singly linked via bi_private */
107 	struct task_struct *waiter;	/* waiting task (NULL if none) */
108 
109 	/* AIO related stuff */
110 	struct kiocb *iocb;		/* kiocb */
111 	int is_async;			/* is IO async ? */
112 	int io_error;			/* IO error in completion path */
113 	ssize_t result;                 /* IO result */
114 
115 	/*
116 	 * Page fetching state. These variables belong to dio_refill_pages().
117 	 */
118 	int curr_page;			/* changes */
119 	int total_pages;		/* doesn't change */
120 	unsigned long curr_user_address;/* changes */
121 
122 	/*
123 	 * Page queue.  These variables belong to dio_refill_pages() and
124 	 * dio_get_page().
125 	 */
126 	unsigned head;			/* next page to process */
127 	unsigned tail;			/* last valid page + 1 */
128 	int page_errors;		/* errno from get_user_pages() */
129 
130 	/*
131 	 * pages[] (and any fields placed after it) are not zeroed out at
132 	 * allocation time.  Don't add new fields after pages[] unless you
133 	 * wish that they not be zeroed.
134 	 */
135 	struct page *pages[DIO_PAGES];	/* page buffer */
136 };
137 
138 static void __inode_dio_wait(struct inode *inode)
139 {
140 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
141 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
142 
143 	do {
144 		prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
145 		if (atomic_read(&inode->i_dio_count))
146 			schedule();
147 	} while (atomic_read(&inode->i_dio_count));
148 	finish_wait(wq, &q.wait);
149 }
150 
151 /**
152  * inode_dio_wait - wait for outstanding DIO requests to finish
153  * @inode: inode to wait for
154  *
155  * Waits for all pending direct I/O requests to finish so that we can
156  * proceed with a truncate or equivalent operation.
157  *
158  * Must be called under a lock that serializes taking new references
159  * to i_dio_count, usually by inode->i_mutex.
160  */
161 void inode_dio_wait(struct inode *inode)
162 {
163 	if (atomic_read(&inode->i_dio_count))
164 		__inode_dio_wait(inode);
165 }
166 EXPORT_SYMBOL_GPL(inode_dio_wait);
167 
168 /*
169  * inode_dio_done - signal finish of a direct I/O requests
170  * @inode: inode the direct I/O happens on
171  *
172  * This is called once we've finished processing a direct I/O request,
173  * and is used to wake up callers waiting for direct I/O to be quiesced.
174  */
175 void inode_dio_done(struct inode *inode)
176 {
177 	if (atomic_dec_and_test(&inode->i_dio_count))
178 		wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
179 }
180 EXPORT_SYMBOL_GPL(inode_dio_done);
181 
182 /*
183  * How many pages are in the queue?
184  */
185 static inline unsigned dio_pages_present(struct dio *dio)
186 {
187 	return dio->tail - dio->head;
188 }
189 
190 /*
191  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
192  */
193 static int dio_refill_pages(struct dio *dio)
194 {
195 	int ret;
196 	int nr_pages;
197 
198 	nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES);
199 	ret = get_user_pages_fast(
200 		dio->curr_user_address,		/* Where from? */
201 		nr_pages,			/* How many pages? */
202 		dio->rw == READ,		/* Write to memory? */
203 		&dio->pages[0]);		/* Put results here */
204 
205 	if (ret < 0 && dio->blocks_available && (dio->rw & WRITE)) {
206 		struct page *page = ZERO_PAGE(0);
207 		/*
208 		 * A memory fault, but the filesystem has some outstanding
209 		 * mapped blocks.  We need to use those blocks up to avoid
210 		 * leaking stale data in the file.
211 		 */
212 		if (dio->page_errors == 0)
213 			dio->page_errors = ret;
214 		page_cache_get(page);
215 		dio->pages[0] = page;
216 		dio->head = 0;
217 		dio->tail = 1;
218 		ret = 0;
219 		goto out;
220 	}
221 
222 	if (ret >= 0) {
223 		dio->curr_user_address += ret * PAGE_SIZE;
224 		dio->curr_page += ret;
225 		dio->head = 0;
226 		dio->tail = ret;
227 		ret = 0;
228 	}
229 out:
230 	return ret;
231 }
232 
233 /*
234  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
235  * buffered inside the dio so that we can call get_user_pages() against a
236  * decent number of pages, less frequently.  To provide nicer use of the
237  * L1 cache.
238  */
239 static struct page *dio_get_page(struct dio *dio)
240 {
241 	if (dio_pages_present(dio) == 0) {
242 		int ret;
243 
244 		ret = dio_refill_pages(dio);
245 		if (ret)
246 			return ERR_PTR(ret);
247 		BUG_ON(dio_pages_present(dio) == 0);
248 	}
249 	return dio->pages[dio->head++];
250 }
251 
252 /**
253  * dio_complete() - called when all DIO BIO I/O has been completed
254  * @offset: the byte offset in the file of the completed operation
255  *
256  * This releases locks as dictated by the locking type, lets interested parties
257  * know that a DIO operation has completed, and calculates the resulting return
258  * code for the operation.
259  *
260  * It lets the filesystem know if it registered an interest earlier via
261  * get_block.  Pass the private field of the map buffer_head so that
262  * filesystems can use it to hold additional state between get_block calls and
263  * dio_complete.
264  */
265 static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret, bool is_async)
266 {
267 	ssize_t transferred = 0;
268 
269 	/*
270 	 * AIO submission can race with bio completion to get here while
271 	 * expecting to have the last io completed by bio completion.
272 	 * In that case -EIOCBQUEUED is in fact not an error we want
273 	 * to preserve through this call.
274 	 */
275 	if (ret == -EIOCBQUEUED)
276 		ret = 0;
277 
278 	if (dio->result) {
279 		transferred = dio->result;
280 
281 		/* Check for short read case */
282 		if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
283 			transferred = dio->i_size - offset;
284 	}
285 
286 	if (ret == 0)
287 		ret = dio->page_errors;
288 	if (ret == 0)
289 		ret = dio->io_error;
290 	if (ret == 0)
291 		ret = transferred;
292 
293 	if (dio->end_io && dio->result) {
294 		dio->end_io(dio->iocb, offset, transferred,
295 			    dio->map_bh.b_private, ret, is_async);
296 	} else {
297 		if (is_async)
298 			aio_complete(dio->iocb, ret, 0);
299 		inode_dio_done(dio->inode);
300 	}
301 
302 	return ret;
303 }
304 
305 static int dio_bio_complete(struct dio *dio, struct bio *bio);
306 /*
307  * Asynchronous IO callback.
308  */
309 static void dio_bio_end_aio(struct bio *bio, int error)
310 {
311 	struct dio *dio = bio->bi_private;
312 	unsigned long remaining;
313 	unsigned long flags;
314 
315 	/* cleanup the bio */
316 	dio_bio_complete(dio, bio);
317 
318 	spin_lock_irqsave(&dio->bio_lock, flags);
319 	remaining = --dio->refcount;
320 	if (remaining == 1 && dio->waiter)
321 		wake_up_process(dio->waiter);
322 	spin_unlock_irqrestore(&dio->bio_lock, flags);
323 
324 	if (remaining == 0) {
325 		dio_complete(dio, dio->iocb->ki_pos, 0, true);
326 		kfree(dio);
327 	}
328 }
329 
330 /*
331  * The BIO completion handler simply queues the BIO up for the process-context
332  * handler.
333  *
334  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
335  * implement a singly-linked list of completed BIOs, at dio->bio_list.
336  */
337 static void dio_bio_end_io(struct bio *bio, int error)
338 {
339 	struct dio *dio = bio->bi_private;
340 	unsigned long flags;
341 
342 	spin_lock_irqsave(&dio->bio_lock, flags);
343 	bio->bi_private = dio->bio_list;
344 	dio->bio_list = bio;
345 	if (--dio->refcount == 1 && dio->waiter)
346 		wake_up_process(dio->waiter);
347 	spin_unlock_irqrestore(&dio->bio_lock, flags);
348 }
349 
350 /**
351  * dio_end_io - handle the end io action for the given bio
352  * @bio: The direct io bio thats being completed
353  * @error: Error if there was one
354  *
355  * This is meant to be called by any filesystem that uses their own dio_submit_t
356  * so that the DIO specific endio actions are dealt with after the filesystem
357  * has done it's completion work.
358  */
359 void dio_end_io(struct bio *bio, int error)
360 {
361 	struct dio *dio = bio->bi_private;
362 
363 	if (dio->is_async)
364 		dio_bio_end_aio(bio, error);
365 	else
366 		dio_bio_end_io(bio, error);
367 }
368 EXPORT_SYMBOL_GPL(dio_end_io);
369 
370 static void
371 dio_bio_alloc(struct dio *dio, struct block_device *bdev,
372 		sector_t first_sector, int nr_vecs)
373 {
374 	struct bio *bio;
375 
376 	/*
377 	 * bio_alloc() is guaranteed to return a bio when called with
378 	 * __GFP_WAIT and we request a valid number of vectors.
379 	 */
380 	bio = bio_alloc(GFP_KERNEL, nr_vecs);
381 
382 	bio->bi_bdev = bdev;
383 	bio->bi_sector = first_sector;
384 	if (dio->is_async)
385 		bio->bi_end_io = dio_bio_end_aio;
386 	else
387 		bio->bi_end_io = dio_bio_end_io;
388 
389 	dio->bio = bio;
390 	dio->logical_offset_in_bio = dio->cur_page_fs_offset;
391 }
392 
393 /*
394  * In the AIO read case we speculatively dirty the pages before starting IO.
395  * During IO completion, any of these pages which happen to have been written
396  * back will be redirtied by bio_check_pages_dirty().
397  *
398  * bios hold a dio reference between submit_bio and ->end_io.
399  */
400 static void dio_bio_submit(struct dio *dio)
401 {
402 	struct bio *bio = dio->bio;
403 	unsigned long flags;
404 
405 	bio->bi_private = dio;
406 
407 	spin_lock_irqsave(&dio->bio_lock, flags);
408 	dio->refcount++;
409 	spin_unlock_irqrestore(&dio->bio_lock, flags);
410 
411 	if (dio->is_async && dio->rw == READ)
412 		bio_set_pages_dirty(bio);
413 
414 	if (dio->submit_io)
415 		dio->submit_io(dio->rw, bio, dio->inode,
416 			       dio->logical_offset_in_bio);
417 	else
418 		submit_bio(dio->rw, bio);
419 
420 	dio->bio = NULL;
421 	dio->boundary = 0;
422 	dio->logical_offset_in_bio = 0;
423 }
424 
425 /*
426  * Release any resources in case of a failure
427  */
428 static void dio_cleanup(struct dio *dio)
429 {
430 	while (dio_pages_present(dio))
431 		page_cache_release(dio_get_page(dio));
432 }
433 
434 /*
435  * Wait for the next BIO to complete.  Remove it and return it.  NULL is
436  * returned once all BIOs have been completed.  This must only be called once
437  * all bios have been issued so that dio->refcount can only decrease.  This
438  * requires that that the caller hold a reference on the dio.
439  */
440 static struct bio *dio_await_one(struct dio *dio)
441 {
442 	unsigned long flags;
443 	struct bio *bio = NULL;
444 
445 	spin_lock_irqsave(&dio->bio_lock, flags);
446 
447 	/*
448 	 * Wait as long as the list is empty and there are bios in flight.  bio
449 	 * completion drops the count, maybe adds to the list, and wakes while
450 	 * holding the bio_lock so we don't need set_current_state()'s barrier
451 	 * and can call it after testing our condition.
452 	 */
453 	while (dio->refcount > 1 && dio->bio_list == NULL) {
454 		__set_current_state(TASK_UNINTERRUPTIBLE);
455 		dio->waiter = current;
456 		spin_unlock_irqrestore(&dio->bio_lock, flags);
457 		io_schedule();
458 		/* wake up sets us TASK_RUNNING */
459 		spin_lock_irqsave(&dio->bio_lock, flags);
460 		dio->waiter = NULL;
461 	}
462 	if (dio->bio_list) {
463 		bio = dio->bio_list;
464 		dio->bio_list = bio->bi_private;
465 	}
466 	spin_unlock_irqrestore(&dio->bio_lock, flags);
467 	return bio;
468 }
469 
470 /*
471  * Process one completed BIO.  No locks are held.
472  */
473 static int dio_bio_complete(struct dio *dio, struct bio *bio)
474 {
475 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
476 	struct bio_vec *bvec = bio->bi_io_vec;
477 	int page_no;
478 
479 	if (!uptodate)
480 		dio->io_error = -EIO;
481 
482 	if (dio->is_async && dio->rw == READ) {
483 		bio_check_pages_dirty(bio);	/* transfers ownership */
484 	} else {
485 		for (page_no = 0; page_no < bio->bi_vcnt; page_no++) {
486 			struct page *page = bvec[page_no].bv_page;
487 
488 			if (dio->rw == READ && !PageCompound(page))
489 				set_page_dirty_lock(page);
490 			page_cache_release(page);
491 		}
492 		bio_put(bio);
493 	}
494 	return uptodate ? 0 : -EIO;
495 }
496 
497 /*
498  * Wait on and process all in-flight BIOs.  This must only be called once
499  * all bios have been issued so that the refcount can only decrease.
500  * This just waits for all bios to make it through dio_bio_complete.  IO
501  * errors are propagated through dio->io_error and should be propagated via
502  * dio_complete().
503  */
504 static void dio_await_completion(struct dio *dio)
505 {
506 	struct bio *bio;
507 	do {
508 		bio = dio_await_one(dio);
509 		if (bio)
510 			dio_bio_complete(dio, bio);
511 	} while (bio);
512 }
513 
514 /*
515  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
516  * to keep the memory consumption sane we periodically reap any completed BIOs
517  * during the BIO generation phase.
518  *
519  * This also helps to limit the peak amount of pinned userspace memory.
520  */
521 static int dio_bio_reap(struct dio *dio)
522 {
523 	int ret = 0;
524 
525 	if (dio->reap_counter++ >= 64) {
526 		while (dio->bio_list) {
527 			unsigned long flags;
528 			struct bio *bio;
529 			int ret2;
530 
531 			spin_lock_irqsave(&dio->bio_lock, flags);
532 			bio = dio->bio_list;
533 			dio->bio_list = bio->bi_private;
534 			spin_unlock_irqrestore(&dio->bio_lock, flags);
535 			ret2 = dio_bio_complete(dio, bio);
536 			if (ret == 0)
537 				ret = ret2;
538 		}
539 		dio->reap_counter = 0;
540 	}
541 	return ret;
542 }
543 
544 /*
545  * Call into the fs to map some more disk blocks.  We record the current number
546  * of available blocks at dio->blocks_available.  These are in units of the
547  * fs blocksize, (1 << inode->i_blkbits).
548  *
549  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
550  * it uses the passed inode-relative block number as the file offset, as usual.
551  *
552  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
553  * has remaining to do.  The fs should not map more than this number of blocks.
554  *
555  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
556  * indicate how much contiguous disk space has been made available at
557  * bh->b_blocknr.
558  *
559  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
560  * This isn't very efficient...
561  *
562  * In the case of filesystem holes: the fs may return an arbitrarily-large
563  * hole by returning an appropriate value in b_size and by clearing
564  * buffer_mapped().  However the direct-io code will only process holes one
565  * block at a time - it will repeatedly call get_block() as it walks the hole.
566  */
567 static int get_more_blocks(struct dio *dio)
568 {
569 	int ret;
570 	struct buffer_head *map_bh = &dio->map_bh;
571 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
572 	unsigned long fs_count;	/* Number of filesystem-sized blocks */
573 	unsigned long dio_count;/* Number of dio_block-sized blocks */
574 	unsigned long blkmask;
575 	int create;
576 
577 	/*
578 	 * If there was a memory error and we've overwritten all the
579 	 * mapped blocks then we can now return that memory error
580 	 */
581 	ret = dio->page_errors;
582 	if (ret == 0) {
583 		BUG_ON(dio->block_in_file >= dio->final_block_in_request);
584 		fs_startblk = dio->block_in_file >> dio->blkfactor;
585 		dio_count = dio->final_block_in_request - dio->block_in_file;
586 		fs_count = dio_count >> dio->blkfactor;
587 		blkmask = (1 << dio->blkfactor) - 1;
588 		if (dio_count & blkmask)
589 			fs_count++;
590 
591 		map_bh->b_state = 0;
592 		map_bh->b_size = fs_count << dio->inode->i_blkbits;
593 
594 		/*
595 		 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
596 		 * forbid block creations: only overwrites are permitted.
597 		 * We will return early to the caller once we see an
598 		 * unmapped buffer head returned, and the caller will fall
599 		 * back to buffered I/O.
600 		 *
601 		 * Otherwise the decision is left to the get_blocks method,
602 		 * which may decide to handle it or also return an unmapped
603 		 * buffer head.
604 		 */
605 		create = dio->rw & WRITE;
606 		if (dio->flags & DIO_SKIP_HOLES) {
607 			if (dio->block_in_file < (i_size_read(dio->inode) >>
608 							dio->blkbits))
609 				create = 0;
610 		}
611 
612 		ret = (*dio->get_block)(dio->inode, fs_startblk,
613 						map_bh, create);
614 	}
615 	return ret;
616 }
617 
618 /*
619  * There is no bio.  Make one now.
620  */
621 static int dio_new_bio(struct dio *dio, sector_t start_sector)
622 {
623 	sector_t sector;
624 	int ret, nr_pages;
625 
626 	ret = dio_bio_reap(dio);
627 	if (ret)
628 		goto out;
629 	sector = start_sector << (dio->blkbits - 9);
630 	nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev));
631 	nr_pages = min(nr_pages, BIO_MAX_PAGES);
632 	BUG_ON(nr_pages <= 0);
633 	dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages);
634 	dio->boundary = 0;
635 out:
636 	return ret;
637 }
638 
639 /*
640  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
641  * that was successful then update final_block_in_bio and take a ref against
642  * the just-added page.
643  *
644  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
645  */
646 static int dio_bio_add_page(struct dio *dio)
647 {
648 	int ret;
649 
650 	ret = bio_add_page(dio->bio, dio->cur_page,
651 			dio->cur_page_len, dio->cur_page_offset);
652 	if (ret == dio->cur_page_len) {
653 		/*
654 		 * Decrement count only, if we are done with this page
655 		 */
656 		if ((dio->cur_page_len + dio->cur_page_offset) == PAGE_SIZE)
657 			dio->pages_in_io--;
658 		page_cache_get(dio->cur_page);
659 		dio->final_block_in_bio = dio->cur_page_block +
660 			(dio->cur_page_len >> dio->blkbits);
661 		ret = 0;
662 	} else {
663 		ret = 1;
664 	}
665 	return ret;
666 }
667 
668 /*
669  * Put cur_page under IO.  The section of cur_page which is described by
670  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
671  * starts on-disk at cur_page_block.
672  *
673  * We take a ref against the page here (on behalf of its presence in the bio).
674  *
675  * The caller of this function is responsible for removing cur_page from the
676  * dio, and for dropping the refcount which came from that presence.
677  */
678 static int dio_send_cur_page(struct dio *dio)
679 {
680 	int ret = 0;
681 
682 	if (dio->bio) {
683 		loff_t cur_offset = dio->cur_page_fs_offset;
684 		loff_t bio_next_offset = dio->logical_offset_in_bio +
685 			dio->bio->bi_size;
686 
687 		/*
688 		 * See whether this new request is contiguous with the old.
689 		 *
690 		 * Btrfs cannot handle having logically non-contiguous requests
691 		 * submitted.  For example if you have
692 		 *
693 		 * Logical:  [0-4095][HOLE][8192-12287]
694 		 * Physical: [0-4095]      [4096-8191]
695 		 *
696 		 * We cannot submit those pages together as one BIO.  So if our
697 		 * current logical offset in the file does not equal what would
698 		 * be the next logical offset in the bio, submit the bio we
699 		 * have.
700 		 */
701 		if (dio->final_block_in_bio != dio->cur_page_block ||
702 		    cur_offset != bio_next_offset)
703 			dio_bio_submit(dio);
704 		/*
705 		 * Submit now if the underlying fs is about to perform a
706 		 * metadata read
707 		 */
708 		else if (dio->boundary)
709 			dio_bio_submit(dio);
710 	}
711 
712 	if (dio->bio == NULL) {
713 		ret = dio_new_bio(dio, dio->cur_page_block);
714 		if (ret)
715 			goto out;
716 	}
717 
718 	if (dio_bio_add_page(dio) != 0) {
719 		dio_bio_submit(dio);
720 		ret = dio_new_bio(dio, dio->cur_page_block);
721 		if (ret == 0) {
722 			ret = dio_bio_add_page(dio);
723 			BUG_ON(ret != 0);
724 		}
725 	}
726 out:
727 	return ret;
728 }
729 
730 /*
731  * An autonomous function to put a chunk of a page under deferred IO.
732  *
733  * The caller doesn't actually know (or care) whether this piece of page is in
734  * a BIO, or is under IO or whatever.  We just take care of all possible
735  * situations here.  The separation between the logic of do_direct_IO() and
736  * that of submit_page_section() is important for clarity.  Please don't break.
737  *
738  * The chunk of page starts on-disk at blocknr.
739  *
740  * We perform deferred IO, by recording the last-submitted page inside our
741  * private part of the dio structure.  If possible, we just expand the IO
742  * across that page here.
743  *
744  * If that doesn't work out then we put the old page into the bio and add this
745  * page to the dio instead.
746  */
747 static int
748 submit_page_section(struct dio *dio, struct page *page,
749 		unsigned offset, unsigned len, sector_t blocknr)
750 {
751 	int ret = 0;
752 
753 	if (dio->rw & WRITE) {
754 		/*
755 		 * Read accounting is performed in submit_bio()
756 		 */
757 		task_io_account_write(len);
758 	}
759 
760 	/*
761 	 * Can we just grow the current page's presence in the dio?
762 	 */
763 	if (	(dio->cur_page == page) &&
764 		(dio->cur_page_offset + dio->cur_page_len == offset) &&
765 		(dio->cur_page_block +
766 			(dio->cur_page_len >> dio->blkbits) == blocknr)) {
767 		dio->cur_page_len += len;
768 
769 		/*
770 		 * If dio->boundary then we want to schedule the IO now to
771 		 * avoid metadata seeks.
772 		 */
773 		if (dio->boundary) {
774 			ret = dio_send_cur_page(dio);
775 			page_cache_release(dio->cur_page);
776 			dio->cur_page = NULL;
777 		}
778 		goto out;
779 	}
780 
781 	/*
782 	 * If there's a deferred page already there then send it.
783 	 */
784 	if (dio->cur_page) {
785 		ret = dio_send_cur_page(dio);
786 		page_cache_release(dio->cur_page);
787 		dio->cur_page = NULL;
788 		if (ret)
789 			goto out;
790 	}
791 
792 	page_cache_get(page);		/* It is in dio */
793 	dio->cur_page = page;
794 	dio->cur_page_offset = offset;
795 	dio->cur_page_len = len;
796 	dio->cur_page_block = blocknr;
797 	dio->cur_page_fs_offset = dio->block_in_file << dio->blkbits;
798 out:
799 	return ret;
800 }
801 
802 /*
803  * Clean any dirty buffers in the blockdev mapping which alias newly-created
804  * file blocks.  Only called for S_ISREG files - blockdevs do not set
805  * buffer_new
806  */
807 static void clean_blockdev_aliases(struct dio *dio)
808 {
809 	unsigned i;
810 	unsigned nblocks;
811 
812 	nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits;
813 
814 	for (i = 0; i < nblocks; i++) {
815 		unmap_underlying_metadata(dio->map_bh.b_bdev,
816 					dio->map_bh.b_blocknr + i);
817 	}
818 }
819 
820 /*
821  * If we are not writing the entire block and get_block() allocated
822  * the block for us, we need to fill-in the unused portion of the
823  * block with zeros. This happens only if user-buffer, fileoffset or
824  * io length is not filesystem block-size multiple.
825  *
826  * `end' is zero if we're doing the start of the IO, 1 at the end of the
827  * IO.
828  */
829 static void dio_zero_block(struct dio *dio, int end)
830 {
831 	unsigned dio_blocks_per_fs_block;
832 	unsigned this_chunk_blocks;	/* In dio_blocks */
833 	unsigned this_chunk_bytes;
834 	struct page *page;
835 
836 	dio->start_zero_done = 1;
837 	if (!dio->blkfactor || !buffer_new(&dio->map_bh))
838 		return;
839 
840 	dio_blocks_per_fs_block = 1 << dio->blkfactor;
841 	this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1);
842 
843 	if (!this_chunk_blocks)
844 		return;
845 
846 	/*
847 	 * We need to zero out part of an fs block.  It is either at the
848 	 * beginning or the end of the fs block.
849 	 */
850 	if (end)
851 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
852 
853 	this_chunk_bytes = this_chunk_blocks << dio->blkbits;
854 
855 	page = ZERO_PAGE(0);
856 	if (submit_page_section(dio, page, 0, this_chunk_bytes,
857 				dio->next_block_for_io))
858 		return;
859 
860 	dio->next_block_for_io += this_chunk_blocks;
861 }
862 
863 /*
864  * Walk the user pages, and the file, mapping blocks to disk and generating
865  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
866  * into submit_page_section(), which takes care of the next stage of submission
867  *
868  * Direct IO against a blockdev is different from a file.  Because we can
869  * happily perform page-sized but 512-byte aligned IOs.  It is important that
870  * blockdev IO be able to have fine alignment and large sizes.
871  *
872  * So what we do is to permit the ->get_block function to populate bh.b_size
873  * with the size of IO which is permitted at this offset and this i_blkbits.
874  *
875  * For best results, the blockdev should be set up with 512-byte i_blkbits and
876  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
877  * fine alignment but still allows this function to work in PAGE_SIZE units.
878  */
879 static int do_direct_IO(struct dio *dio)
880 {
881 	const unsigned blkbits = dio->blkbits;
882 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
883 	struct page *page;
884 	unsigned block_in_page;
885 	struct buffer_head *map_bh = &dio->map_bh;
886 	int ret = 0;
887 
888 	/* The I/O can start at any block offset within the first page */
889 	block_in_page = dio->first_block_in_page;
890 
891 	while (dio->block_in_file < dio->final_block_in_request) {
892 		page = dio_get_page(dio);
893 		if (IS_ERR(page)) {
894 			ret = PTR_ERR(page);
895 			goto out;
896 		}
897 
898 		while (block_in_page < blocks_per_page) {
899 			unsigned offset_in_page = block_in_page << blkbits;
900 			unsigned this_chunk_bytes;	/* # of bytes mapped */
901 			unsigned this_chunk_blocks;	/* # of blocks */
902 			unsigned u;
903 
904 			if (dio->blocks_available == 0) {
905 				/*
906 				 * Need to go and map some more disk
907 				 */
908 				unsigned long blkmask;
909 				unsigned long dio_remainder;
910 
911 				ret = get_more_blocks(dio);
912 				if (ret) {
913 					page_cache_release(page);
914 					goto out;
915 				}
916 				if (!buffer_mapped(map_bh))
917 					goto do_holes;
918 
919 				dio->blocks_available =
920 						map_bh->b_size >> dio->blkbits;
921 				dio->next_block_for_io =
922 					map_bh->b_blocknr << dio->blkfactor;
923 				if (buffer_new(map_bh))
924 					clean_blockdev_aliases(dio);
925 
926 				if (!dio->blkfactor)
927 					goto do_holes;
928 
929 				blkmask = (1 << dio->blkfactor) - 1;
930 				dio_remainder = (dio->block_in_file & blkmask);
931 
932 				/*
933 				 * If we are at the start of IO and that IO
934 				 * starts partway into a fs-block,
935 				 * dio_remainder will be non-zero.  If the IO
936 				 * is a read then we can simply advance the IO
937 				 * cursor to the first block which is to be
938 				 * read.  But if the IO is a write and the
939 				 * block was newly allocated we cannot do that;
940 				 * the start of the fs block must be zeroed out
941 				 * on-disk
942 				 */
943 				if (!buffer_new(map_bh))
944 					dio->next_block_for_io += dio_remainder;
945 				dio->blocks_available -= dio_remainder;
946 			}
947 do_holes:
948 			/* Handle holes */
949 			if (!buffer_mapped(map_bh)) {
950 				loff_t i_size_aligned;
951 
952 				/* AKPM: eargh, -ENOTBLK is a hack */
953 				if (dio->rw & WRITE) {
954 					page_cache_release(page);
955 					return -ENOTBLK;
956 				}
957 
958 				/*
959 				 * Be sure to account for a partial block as the
960 				 * last block in the file
961 				 */
962 				i_size_aligned = ALIGN(i_size_read(dio->inode),
963 							1 << blkbits);
964 				if (dio->block_in_file >=
965 						i_size_aligned >> blkbits) {
966 					/* We hit eof */
967 					page_cache_release(page);
968 					goto out;
969 				}
970 				zero_user(page, block_in_page << blkbits,
971 						1 << blkbits);
972 				dio->block_in_file++;
973 				block_in_page++;
974 				goto next_block;
975 			}
976 
977 			/*
978 			 * If we're performing IO which has an alignment which
979 			 * is finer than the underlying fs, go check to see if
980 			 * we must zero out the start of this block.
981 			 */
982 			if (unlikely(dio->blkfactor && !dio->start_zero_done))
983 				dio_zero_block(dio, 0);
984 
985 			/*
986 			 * Work out, in this_chunk_blocks, how much disk we
987 			 * can add to this page
988 			 */
989 			this_chunk_blocks = dio->blocks_available;
990 			u = (PAGE_SIZE - offset_in_page) >> blkbits;
991 			if (this_chunk_blocks > u)
992 				this_chunk_blocks = u;
993 			u = dio->final_block_in_request - dio->block_in_file;
994 			if (this_chunk_blocks > u)
995 				this_chunk_blocks = u;
996 			this_chunk_bytes = this_chunk_blocks << blkbits;
997 			BUG_ON(this_chunk_bytes == 0);
998 
999 			dio->boundary = buffer_boundary(map_bh);
1000 			ret = submit_page_section(dio, page, offset_in_page,
1001 				this_chunk_bytes, dio->next_block_for_io);
1002 			if (ret) {
1003 				page_cache_release(page);
1004 				goto out;
1005 			}
1006 			dio->next_block_for_io += this_chunk_blocks;
1007 
1008 			dio->block_in_file += this_chunk_blocks;
1009 			block_in_page += this_chunk_blocks;
1010 			dio->blocks_available -= this_chunk_blocks;
1011 next_block:
1012 			BUG_ON(dio->block_in_file > dio->final_block_in_request);
1013 			if (dio->block_in_file == dio->final_block_in_request)
1014 				break;
1015 		}
1016 
1017 		/* Drop the ref which was taken in get_user_pages() */
1018 		page_cache_release(page);
1019 		block_in_page = 0;
1020 	}
1021 out:
1022 	return ret;
1023 }
1024 
1025 static ssize_t
1026 direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode,
1027 	const struct iovec *iov, loff_t offset, unsigned long nr_segs,
1028 	unsigned blkbits, get_block_t get_block, dio_iodone_t end_io,
1029 	dio_submit_t submit_io, struct dio *dio)
1030 {
1031 	unsigned long user_addr;
1032 	unsigned long flags;
1033 	int seg;
1034 	ssize_t ret = 0;
1035 	ssize_t ret2;
1036 	size_t bytes;
1037 
1038 	dio->inode = inode;
1039 	dio->rw = rw;
1040 	dio->blkbits = blkbits;
1041 	dio->blkfactor = inode->i_blkbits - blkbits;
1042 	dio->block_in_file = offset >> blkbits;
1043 
1044 	dio->get_block = get_block;
1045 	dio->end_io = end_io;
1046 	dio->submit_io = submit_io;
1047 	dio->final_block_in_bio = -1;
1048 	dio->next_block_for_io = -1;
1049 
1050 	dio->iocb = iocb;
1051 	dio->i_size = i_size_read(inode);
1052 
1053 	spin_lock_init(&dio->bio_lock);
1054 	dio->refcount = 1;
1055 
1056 	/*
1057 	 * In case of non-aligned buffers, we may need 2 more
1058 	 * pages since we need to zero out first and last block.
1059 	 */
1060 	if (unlikely(dio->blkfactor))
1061 		dio->pages_in_io = 2;
1062 
1063 	for (seg = 0; seg < nr_segs; seg++) {
1064 		user_addr = (unsigned long)iov[seg].iov_base;
1065 		dio->pages_in_io +=
1066 			((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE
1067 				- user_addr/PAGE_SIZE);
1068 	}
1069 
1070 	for (seg = 0; seg < nr_segs; seg++) {
1071 		user_addr = (unsigned long)iov[seg].iov_base;
1072 		dio->size += bytes = iov[seg].iov_len;
1073 
1074 		/* Index into the first page of the first block */
1075 		dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
1076 		dio->final_block_in_request = dio->block_in_file +
1077 						(bytes >> blkbits);
1078 		/* Page fetching state */
1079 		dio->head = 0;
1080 		dio->tail = 0;
1081 		dio->curr_page = 0;
1082 
1083 		dio->total_pages = 0;
1084 		if (user_addr & (PAGE_SIZE-1)) {
1085 			dio->total_pages++;
1086 			bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
1087 		}
1088 		dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1089 		dio->curr_user_address = user_addr;
1090 
1091 		ret = do_direct_IO(dio);
1092 
1093 		dio->result += iov[seg].iov_len -
1094 			((dio->final_block_in_request - dio->block_in_file) <<
1095 					blkbits);
1096 
1097 		if (ret) {
1098 			dio_cleanup(dio);
1099 			break;
1100 		}
1101 	} /* end iovec loop */
1102 
1103 	if (ret == -ENOTBLK) {
1104 		/*
1105 		 * The remaining part of the request will be
1106 		 * be handled by buffered I/O when we return
1107 		 */
1108 		ret = 0;
1109 	}
1110 	/*
1111 	 * There may be some unwritten disk at the end of a part-written
1112 	 * fs-block-sized block.  Go zero that now.
1113 	 */
1114 	dio_zero_block(dio, 1);
1115 
1116 	if (dio->cur_page) {
1117 		ret2 = dio_send_cur_page(dio);
1118 		if (ret == 0)
1119 			ret = ret2;
1120 		page_cache_release(dio->cur_page);
1121 		dio->cur_page = NULL;
1122 	}
1123 	if (dio->bio)
1124 		dio_bio_submit(dio);
1125 
1126 	/*
1127 	 * It is possible that, we return short IO due to end of file.
1128 	 * In that case, we need to release all the pages we got hold on.
1129 	 */
1130 	dio_cleanup(dio);
1131 
1132 	/*
1133 	 * All block lookups have been performed. For READ requests
1134 	 * we can let i_mutex go now that its achieved its purpose
1135 	 * of protecting us from looking up uninitialized blocks.
1136 	 */
1137 	if (rw == READ && (dio->flags & DIO_LOCKING))
1138 		mutex_unlock(&dio->inode->i_mutex);
1139 
1140 	/*
1141 	 * The only time we want to leave bios in flight is when a successful
1142 	 * partial aio read or full aio write have been setup.  In that case
1143 	 * bio completion will call aio_complete.  The only time it's safe to
1144 	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1145 	 * This had *better* be the only place that raises -EIOCBQUEUED.
1146 	 */
1147 	BUG_ON(ret == -EIOCBQUEUED);
1148 	if (dio->is_async && ret == 0 && dio->result &&
1149 	    ((rw & READ) || (dio->result == dio->size)))
1150 		ret = -EIOCBQUEUED;
1151 
1152 	if (ret != -EIOCBQUEUED)
1153 		dio_await_completion(dio);
1154 
1155 	/*
1156 	 * Sync will always be dropping the final ref and completing the
1157 	 * operation.  AIO can if it was a broken operation described above or
1158 	 * in fact if all the bios race to complete before we get here.  In
1159 	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1160 	 * return code that the caller will hand to aio_complete().
1161 	 *
1162 	 * This is managed by the bio_lock instead of being an atomic_t so that
1163 	 * completion paths can drop their ref and use the remaining count to
1164 	 * decide to wake the submission path atomically.
1165 	 */
1166 	spin_lock_irqsave(&dio->bio_lock, flags);
1167 	ret2 = --dio->refcount;
1168 	spin_unlock_irqrestore(&dio->bio_lock, flags);
1169 
1170 	if (ret2 == 0) {
1171 		ret = dio_complete(dio, offset, ret, false);
1172 		kfree(dio);
1173 	} else
1174 		BUG_ON(ret != -EIOCBQUEUED);
1175 
1176 	return ret;
1177 }
1178 
1179 /*
1180  * This is a library function for use by filesystem drivers.
1181  *
1182  * The locking rules are governed by the flags parameter:
1183  *  - if the flags value contains DIO_LOCKING we use a fancy locking
1184  *    scheme for dumb filesystems.
1185  *    For writes this function is called under i_mutex and returns with
1186  *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1187  *    taken and dropped again before returning.
1188  *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1189  *    internal locking but rather rely on the filesystem to synchronize
1190  *    direct I/O reads/writes versus each other and truncate.
1191  *
1192  * To help with locking against truncate we incremented the i_dio_count
1193  * counter before starting direct I/O, and decrement it once we are done.
1194  * Truncate can wait for it to reach zero to provide exclusion.  It is
1195  * expected that filesystem provide exclusion between new direct I/O
1196  * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1197  * but other filesystems need to take care of this on their own.
1198  */
1199 ssize_t
1200 __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1201 	struct block_device *bdev, const struct iovec *iov, loff_t offset,
1202 	unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1203 	dio_submit_t submit_io,	int flags)
1204 {
1205 	int seg;
1206 	size_t size;
1207 	unsigned long addr;
1208 	unsigned blkbits = inode->i_blkbits;
1209 	unsigned bdev_blkbits = 0;
1210 	unsigned blocksize_mask = (1 << blkbits) - 1;
1211 	ssize_t retval = -EINVAL;
1212 	loff_t end = offset;
1213 	struct dio *dio;
1214 
1215 	if (rw & WRITE)
1216 		rw = WRITE_ODIRECT;
1217 
1218 	if (bdev)
1219 		bdev_blkbits = blksize_bits(bdev_logical_block_size(bdev));
1220 
1221 	if (offset & blocksize_mask) {
1222 		if (bdev)
1223 			 blkbits = bdev_blkbits;
1224 		blocksize_mask = (1 << blkbits) - 1;
1225 		if (offset & blocksize_mask)
1226 			goto out;
1227 	}
1228 
1229 	/* Check the memory alignment.  Blocks cannot straddle pages */
1230 	for (seg = 0; seg < nr_segs; seg++) {
1231 		addr = (unsigned long)iov[seg].iov_base;
1232 		size = iov[seg].iov_len;
1233 		end += size;
1234 		if ((addr & blocksize_mask) || (size & blocksize_mask))  {
1235 			if (bdev)
1236 				 blkbits = bdev_blkbits;
1237 			blocksize_mask = (1 << blkbits) - 1;
1238 			if ((addr & blocksize_mask) || (size & blocksize_mask))
1239 				goto out;
1240 		}
1241 	}
1242 
1243 	/* watch out for a 0 len io from a tricksy fs */
1244 	if (rw == READ && end == offset)
1245 		return 0;
1246 
1247 	dio = kmalloc(sizeof(*dio), GFP_KERNEL);
1248 	retval = -ENOMEM;
1249 	if (!dio)
1250 		goto out;
1251 	/*
1252 	 * Believe it or not, zeroing out the page array caused a .5%
1253 	 * performance regression in a database benchmark.  So, we take
1254 	 * care to only zero out what's needed.
1255 	 */
1256 	memset(dio, 0, offsetof(struct dio, pages));
1257 
1258 	dio->flags = flags;
1259 	if (dio->flags & DIO_LOCKING) {
1260 		if (rw == READ) {
1261 			struct address_space *mapping =
1262 					iocb->ki_filp->f_mapping;
1263 
1264 			/* will be released by direct_io_worker */
1265 			mutex_lock(&inode->i_mutex);
1266 
1267 			retval = filemap_write_and_wait_range(mapping, offset,
1268 							      end - 1);
1269 			if (retval) {
1270 				mutex_unlock(&inode->i_mutex);
1271 				kfree(dio);
1272 				goto out;
1273 			}
1274 		}
1275 	}
1276 
1277 	/*
1278 	 * Will be decremented at I/O completion time.
1279 	 */
1280 	atomic_inc(&inode->i_dio_count);
1281 
1282 	/*
1283 	 * For file extending writes updating i_size before data
1284 	 * writeouts complete can expose uninitialized blocks. So
1285 	 * even for AIO, we need to wait for i/o to complete before
1286 	 * returning in this case.
1287 	 */
1288 	dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) &&
1289 		(end > i_size_read(inode)));
1290 
1291 	retval = direct_io_worker(rw, iocb, inode, iov, offset,
1292 				nr_segs, blkbits, get_block, end_io,
1293 				submit_io, dio);
1294 
1295 out:
1296 	return retval;
1297 }
1298 EXPORT_SYMBOL(__blockdev_direct_IO);
1299