1 /* 2 * fs/direct-io.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * O_DIRECT 7 * 8 * 04Jul2002 Andrew Morton 9 * Initial version 10 * 11Sep2002 janetinc@us.ibm.com 11 * added readv/writev support. 12 * 29Oct2002 Andrew Morton 13 * rewrote bio_add_page() support. 14 * 30Oct2002 pbadari@us.ibm.com 15 * added support for non-aligned IO. 16 * 06Nov2002 pbadari@us.ibm.com 17 * added asynchronous IO support. 18 * 21Jul2003 nathans@sgi.com 19 * added IO completion notifier. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/types.h> 25 #include <linux/fs.h> 26 #include <linux/mm.h> 27 #include <linux/slab.h> 28 #include <linux/highmem.h> 29 #include <linux/pagemap.h> 30 #include <linux/task_io_accounting_ops.h> 31 #include <linux/bio.h> 32 #include <linux/wait.h> 33 #include <linux/err.h> 34 #include <linux/blkdev.h> 35 #include <linux/buffer_head.h> 36 #include <linux/rwsem.h> 37 #include <linux/uio.h> 38 #include <linux/atomic.h> 39 #include <linux/prefetch.h> 40 41 /* 42 * How many user pages to map in one call to get_user_pages(). This determines 43 * the size of a structure in the slab cache 44 */ 45 #define DIO_PAGES 64 46 47 /* 48 * This code generally works in units of "dio_blocks". A dio_block is 49 * somewhere between the hard sector size and the filesystem block size. it 50 * is determined on a per-invocation basis. When talking to the filesystem 51 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity 52 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted 53 * to bio_block quantities by shifting left by blkfactor. 54 * 55 * If blkfactor is zero then the user's request was aligned to the filesystem's 56 * blocksize. 57 */ 58 59 /* dio_state only used in the submission path */ 60 61 struct dio_submit { 62 struct bio *bio; /* bio under assembly */ 63 unsigned blkbits; /* doesn't change */ 64 unsigned blkfactor; /* When we're using an alignment which 65 is finer than the filesystem's soft 66 blocksize, this specifies how much 67 finer. blkfactor=2 means 1/4-block 68 alignment. Does not change */ 69 unsigned start_zero_done; /* flag: sub-blocksize zeroing has 70 been performed at the start of a 71 write */ 72 int pages_in_io; /* approximate total IO pages */ 73 sector_t block_in_file; /* Current offset into the underlying 74 file in dio_block units. */ 75 unsigned blocks_available; /* At block_in_file. changes */ 76 int reap_counter; /* rate limit reaping */ 77 sector_t final_block_in_request;/* doesn't change */ 78 int boundary; /* prev block is at a boundary */ 79 get_block_t *get_block; /* block mapping function */ 80 dio_submit_t *submit_io; /* IO submition function */ 81 82 loff_t logical_offset_in_bio; /* current first logical block in bio */ 83 sector_t final_block_in_bio; /* current final block in bio + 1 */ 84 sector_t next_block_for_io; /* next block to be put under IO, 85 in dio_blocks units */ 86 87 /* 88 * Deferred addition of a page to the dio. These variables are 89 * private to dio_send_cur_page(), submit_page_section() and 90 * dio_bio_add_page(). 91 */ 92 struct page *cur_page; /* The page */ 93 unsigned cur_page_offset; /* Offset into it, in bytes */ 94 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ 95 sector_t cur_page_block; /* Where it starts */ 96 loff_t cur_page_fs_offset; /* Offset in file */ 97 98 struct iov_iter *iter; 99 /* 100 * Page queue. These variables belong to dio_refill_pages() and 101 * dio_get_page(). 102 */ 103 unsigned head; /* next page to process */ 104 unsigned tail; /* last valid page + 1 */ 105 size_t from, to; 106 }; 107 108 /* dio_state communicated between submission path and end_io */ 109 struct dio { 110 int flags; /* doesn't change */ 111 int op; 112 int op_flags; 113 blk_qc_t bio_cookie; 114 struct gendisk *bio_disk; 115 struct inode *inode; 116 loff_t i_size; /* i_size when submitted */ 117 dio_iodone_t *end_io; /* IO completion function */ 118 119 void *private; /* copy from map_bh.b_private */ 120 121 /* BIO completion state */ 122 spinlock_t bio_lock; /* protects BIO fields below */ 123 int page_errors; /* errno from get_user_pages() */ 124 int is_async; /* is IO async ? */ 125 bool defer_completion; /* defer AIO completion to workqueue? */ 126 bool should_dirty; /* if pages should be dirtied */ 127 int io_error; /* IO error in completion path */ 128 unsigned long refcount; /* direct_io_worker() and bios */ 129 struct bio *bio_list; /* singly linked via bi_private */ 130 struct task_struct *waiter; /* waiting task (NULL if none) */ 131 132 /* AIO related stuff */ 133 struct kiocb *iocb; /* kiocb */ 134 ssize_t result; /* IO result */ 135 136 /* 137 * pages[] (and any fields placed after it) are not zeroed out at 138 * allocation time. Don't add new fields after pages[] unless you 139 * wish that they not be zeroed. 140 */ 141 union { 142 struct page *pages[DIO_PAGES]; /* page buffer */ 143 struct work_struct complete_work;/* deferred AIO completion */ 144 }; 145 } ____cacheline_aligned_in_smp; 146 147 static struct kmem_cache *dio_cache __read_mostly; 148 149 /* 150 * How many pages are in the queue? 151 */ 152 static inline unsigned dio_pages_present(struct dio_submit *sdio) 153 { 154 return sdio->tail - sdio->head; 155 } 156 157 /* 158 * Go grab and pin some userspace pages. Typically we'll get 64 at a time. 159 */ 160 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio) 161 { 162 ssize_t ret; 163 164 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES, 165 &sdio->from); 166 167 if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) { 168 struct page *page = ZERO_PAGE(0); 169 /* 170 * A memory fault, but the filesystem has some outstanding 171 * mapped blocks. We need to use those blocks up to avoid 172 * leaking stale data in the file. 173 */ 174 if (dio->page_errors == 0) 175 dio->page_errors = ret; 176 get_page(page); 177 dio->pages[0] = page; 178 sdio->head = 0; 179 sdio->tail = 1; 180 sdio->from = 0; 181 sdio->to = PAGE_SIZE; 182 return 0; 183 } 184 185 if (ret >= 0) { 186 iov_iter_advance(sdio->iter, ret); 187 ret += sdio->from; 188 sdio->head = 0; 189 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE; 190 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1; 191 return 0; 192 } 193 return ret; 194 } 195 196 /* 197 * Get another userspace page. Returns an ERR_PTR on error. Pages are 198 * buffered inside the dio so that we can call get_user_pages() against a 199 * decent number of pages, less frequently. To provide nicer use of the 200 * L1 cache. 201 */ 202 static inline struct page *dio_get_page(struct dio *dio, 203 struct dio_submit *sdio) 204 { 205 if (dio_pages_present(sdio) == 0) { 206 int ret; 207 208 ret = dio_refill_pages(dio, sdio); 209 if (ret) 210 return ERR_PTR(ret); 211 BUG_ON(dio_pages_present(sdio) == 0); 212 } 213 return dio->pages[sdio->head]; 214 } 215 216 /** 217 * dio_complete() - called when all DIO BIO I/O has been completed 218 * @offset: the byte offset in the file of the completed operation 219 * 220 * This drops i_dio_count, lets interested parties know that a DIO operation 221 * has completed, and calculates the resulting return code for the operation. 222 * 223 * It lets the filesystem know if it registered an interest earlier via 224 * get_block. Pass the private field of the map buffer_head so that 225 * filesystems can use it to hold additional state between get_block calls and 226 * dio_complete. 227 */ 228 static ssize_t dio_complete(struct dio *dio, ssize_t ret, bool is_async) 229 { 230 loff_t offset = dio->iocb->ki_pos; 231 ssize_t transferred = 0; 232 int err; 233 234 /* 235 * AIO submission can race with bio completion to get here while 236 * expecting to have the last io completed by bio completion. 237 * In that case -EIOCBQUEUED is in fact not an error we want 238 * to preserve through this call. 239 */ 240 if (ret == -EIOCBQUEUED) 241 ret = 0; 242 243 if (dio->result) { 244 transferred = dio->result; 245 246 /* Check for short read case */ 247 if ((dio->op == REQ_OP_READ) && 248 ((offset + transferred) > dio->i_size)) 249 transferred = dio->i_size - offset; 250 /* ignore EFAULT if some IO has been done */ 251 if (unlikely(ret == -EFAULT) && transferred) 252 ret = 0; 253 } 254 255 if (ret == 0) 256 ret = dio->page_errors; 257 if (ret == 0) 258 ret = dio->io_error; 259 if (ret == 0) 260 ret = transferred; 261 262 /* 263 * Try again to invalidate clean pages which might have been cached by 264 * non-direct readahead, or faulted in by get_user_pages() if the source 265 * of the write was an mmap'ed region of the file we're writing. Either 266 * one is a pretty crazy thing to do, so we don't support it 100%. If 267 * this invalidation fails, tough, the write still worked... 268 */ 269 if (ret > 0 && dio->op == REQ_OP_WRITE && 270 dio->inode->i_mapping->nrpages) { 271 err = invalidate_inode_pages2_range(dio->inode->i_mapping, 272 offset >> PAGE_SHIFT, 273 (offset + ret - 1) >> PAGE_SHIFT); 274 WARN_ON_ONCE(err); 275 } 276 277 if (dio->end_io) { 278 279 // XXX: ki_pos?? 280 err = dio->end_io(dio->iocb, offset, ret, dio->private); 281 if (err) 282 ret = err; 283 } 284 285 if (!(dio->flags & DIO_SKIP_DIO_COUNT)) 286 inode_dio_end(dio->inode); 287 288 if (is_async) { 289 /* 290 * generic_write_sync expects ki_pos to have been updated 291 * already, but the submission path only does this for 292 * synchronous I/O. 293 */ 294 dio->iocb->ki_pos += transferred; 295 296 if (dio->op == REQ_OP_WRITE) 297 ret = generic_write_sync(dio->iocb, transferred); 298 dio->iocb->ki_complete(dio->iocb, ret, 0); 299 } 300 301 kmem_cache_free(dio_cache, dio); 302 return ret; 303 } 304 305 static void dio_aio_complete_work(struct work_struct *work) 306 { 307 struct dio *dio = container_of(work, struct dio, complete_work); 308 309 dio_complete(dio, 0, true); 310 } 311 312 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio); 313 314 /* 315 * Asynchronous IO callback. 316 */ 317 static void dio_bio_end_aio(struct bio *bio) 318 { 319 struct dio *dio = bio->bi_private; 320 unsigned long remaining; 321 unsigned long flags; 322 bool defer_completion = false; 323 324 /* cleanup the bio */ 325 dio_bio_complete(dio, bio); 326 327 spin_lock_irqsave(&dio->bio_lock, flags); 328 remaining = --dio->refcount; 329 if (remaining == 1 && dio->waiter) 330 wake_up_process(dio->waiter); 331 spin_unlock_irqrestore(&dio->bio_lock, flags); 332 333 if (remaining == 0) { 334 /* 335 * Defer completion when defer_completion is set or 336 * when the inode has pages mapped and this is AIO write. 337 * We need to invalidate those pages because there is a 338 * chance they contain stale data in the case buffered IO 339 * went in between AIO submission and completion into the 340 * same region. 341 */ 342 if (dio->result) 343 defer_completion = dio->defer_completion || 344 (dio->op == REQ_OP_WRITE && 345 dio->inode->i_mapping->nrpages); 346 if (defer_completion) { 347 INIT_WORK(&dio->complete_work, dio_aio_complete_work); 348 queue_work(dio->inode->i_sb->s_dio_done_wq, 349 &dio->complete_work); 350 } else { 351 dio_complete(dio, 0, true); 352 } 353 } 354 } 355 356 /* 357 * The BIO completion handler simply queues the BIO up for the process-context 358 * handler. 359 * 360 * During I/O bi_private points at the dio. After I/O, bi_private is used to 361 * implement a singly-linked list of completed BIOs, at dio->bio_list. 362 */ 363 static void dio_bio_end_io(struct bio *bio) 364 { 365 struct dio *dio = bio->bi_private; 366 unsigned long flags; 367 368 spin_lock_irqsave(&dio->bio_lock, flags); 369 bio->bi_private = dio->bio_list; 370 dio->bio_list = bio; 371 if (--dio->refcount == 1 && dio->waiter) 372 wake_up_process(dio->waiter); 373 spin_unlock_irqrestore(&dio->bio_lock, flags); 374 } 375 376 /** 377 * dio_end_io - handle the end io action for the given bio 378 * @bio: The direct io bio thats being completed 379 * 380 * This is meant to be called by any filesystem that uses their own dio_submit_t 381 * so that the DIO specific endio actions are dealt with after the filesystem 382 * has done it's completion work. 383 */ 384 void dio_end_io(struct bio *bio) 385 { 386 struct dio *dio = bio->bi_private; 387 388 if (dio->is_async) 389 dio_bio_end_aio(bio); 390 else 391 dio_bio_end_io(bio); 392 } 393 EXPORT_SYMBOL_GPL(dio_end_io); 394 395 static inline void 396 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio, 397 struct block_device *bdev, 398 sector_t first_sector, int nr_vecs) 399 { 400 struct bio *bio; 401 402 /* 403 * bio_alloc() is guaranteed to return a bio when called with 404 * __GFP_RECLAIM and we request a valid number of vectors. 405 */ 406 bio = bio_alloc(GFP_KERNEL, nr_vecs); 407 408 bio_set_dev(bio, bdev); 409 bio->bi_iter.bi_sector = first_sector; 410 bio_set_op_attrs(bio, dio->op, dio->op_flags); 411 if (dio->is_async) 412 bio->bi_end_io = dio_bio_end_aio; 413 else 414 bio->bi_end_io = dio_bio_end_io; 415 416 bio->bi_write_hint = dio->iocb->ki_hint; 417 418 sdio->bio = bio; 419 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset; 420 } 421 422 /* 423 * In the AIO read case we speculatively dirty the pages before starting IO. 424 * During IO completion, any of these pages which happen to have been written 425 * back will be redirtied by bio_check_pages_dirty(). 426 * 427 * bios hold a dio reference between submit_bio and ->end_io. 428 */ 429 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio) 430 { 431 struct bio *bio = sdio->bio; 432 unsigned long flags; 433 434 bio->bi_private = dio; 435 436 spin_lock_irqsave(&dio->bio_lock, flags); 437 dio->refcount++; 438 spin_unlock_irqrestore(&dio->bio_lock, flags); 439 440 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) 441 bio_set_pages_dirty(bio); 442 443 dio->bio_disk = bio->bi_disk; 444 445 if (sdio->submit_io) { 446 sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio); 447 dio->bio_cookie = BLK_QC_T_NONE; 448 } else 449 dio->bio_cookie = submit_bio(bio); 450 451 sdio->bio = NULL; 452 sdio->boundary = 0; 453 sdio->logical_offset_in_bio = 0; 454 } 455 456 /* 457 * Release any resources in case of a failure 458 */ 459 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio) 460 { 461 while (sdio->head < sdio->tail) 462 put_page(dio->pages[sdio->head++]); 463 } 464 465 /* 466 * Wait for the next BIO to complete. Remove it and return it. NULL is 467 * returned once all BIOs have been completed. This must only be called once 468 * all bios have been issued so that dio->refcount can only decrease. This 469 * requires that that the caller hold a reference on the dio. 470 */ 471 static struct bio *dio_await_one(struct dio *dio) 472 { 473 unsigned long flags; 474 struct bio *bio = NULL; 475 476 spin_lock_irqsave(&dio->bio_lock, flags); 477 478 /* 479 * Wait as long as the list is empty and there are bios in flight. bio 480 * completion drops the count, maybe adds to the list, and wakes while 481 * holding the bio_lock so we don't need set_current_state()'s barrier 482 * and can call it after testing our condition. 483 */ 484 while (dio->refcount > 1 && dio->bio_list == NULL) { 485 __set_current_state(TASK_UNINTERRUPTIBLE); 486 dio->waiter = current; 487 spin_unlock_irqrestore(&dio->bio_lock, flags); 488 if (!(dio->iocb->ki_flags & IOCB_HIPRI) || 489 !blk_mq_poll(dio->bio_disk->queue, dio->bio_cookie)) 490 io_schedule(); 491 /* wake up sets us TASK_RUNNING */ 492 spin_lock_irqsave(&dio->bio_lock, flags); 493 dio->waiter = NULL; 494 } 495 if (dio->bio_list) { 496 bio = dio->bio_list; 497 dio->bio_list = bio->bi_private; 498 } 499 spin_unlock_irqrestore(&dio->bio_lock, flags); 500 return bio; 501 } 502 503 /* 504 * Process one completed BIO. No locks are held. 505 */ 506 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio) 507 { 508 struct bio_vec *bvec; 509 unsigned i; 510 blk_status_t err = bio->bi_status; 511 512 if (err) { 513 if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT)) 514 dio->io_error = -EAGAIN; 515 else 516 dio->io_error = -EIO; 517 } 518 519 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) { 520 bio_check_pages_dirty(bio); /* transfers ownership */ 521 } else { 522 bio_for_each_segment_all(bvec, bio, i) { 523 struct page *page = bvec->bv_page; 524 525 if (dio->op == REQ_OP_READ && !PageCompound(page) && 526 dio->should_dirty) 527 set_page_dirty_lock(page); 528 put_page(page); 529 } 530 bio_put(bio); 531 } 532 return err; 533 } 534 535 /* 536 * Wait on and process all in-flight BIOs. This must only be called once 537 * all bios have been issued so that the refcount can only decrease. 538 * This just waits for all bios to make it through dio_bio_complete. IO 539 * errors are propagated through dio->io_error and should be propagated via 540 * dio_complete(). 541 */ 542 static void dio_await_completion(struct dio *dio) 543 { 544 struct bio *bio; 545 do { 546 bio = dio_await_one(dio); 547 if (bio) 548 dio_bio_complete(dio, bio); 549 } while (bio); 550 } 551 552 /* 553 * A really large O_DIRECT read or write can generate a lot of BIOs. So 554 * to keep the memory consumption sane we periodically reap any completed BIOs 555 * during the BIO generation phase. 556 * 557 * This also helps to limit the peak amount of pinned userspace memory. 558 */ 559 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio) 560 { 561 int ret = 0; 562 563 if (sdio->reap_counter++ >= 64) { 564 while (dio->bio_list) { 565 unsigned long flags; 566 struct bio *bio; 567 int ret2; 568 569 spin_lock_irqsave(&dio->bio_lock, flags); 570 bio = dio->bio_list; 571 dio->bio_list = bio->bi_private; 572 spin_unlock_irqrestore(&dio->bio_lock, flags); 573 ret2 = blk_status_to_errno(dio_bio_complete(dio, bio)); 574 if (ret == 0) 575 ret = ret2; 576 } 577 sdio->reap_counter = 0; 578 } 579 return ret; 580 } 581 582 /* 583 * Create workqueue for deferred direct IO completions. We allocate the 584 * workqueue when it's first needed. This avoids creating workqueue for 585 * filesystems that don't need it and also allows us to create the workqueue 586 * late enough so the we can include s_id in the name of the workqueue. 587 */ 588 int sb_init_dio_done_wq(struct super_block *sb) 589 { 590 struct workqueue_struct *old; 591 struct workqueue_struct *wq = alloc_workqueue("dio/%s", 592 WQ_MEM_RECLAIM, 0, 593 sb->s_id); 594 if (!wq) 595 return -ENOMEM; 596 /* 597 * This has to be atomic as more DIOs can race to create the workqueue 598 */ 599 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq); 600 /* Someone created workqueue before us? Free ours... */ 601 if (old) 602 destroy_workqueue(wq); 603 return 0; 604 } 605 606 static int dio_set_defer_completion(struct dio *dio) 607 { 608 struct super_block *sb = dio->inode->i_sb; 609 610 if (dio->defer_completion) 611 return 0; 612 dio->defer_completion = true; 613 if (!sb->s_dio_done_wq) 614 return sb_init_dio_done_wq(sb); 615 return 0; 616 } 617 618 /* 619 * Call into the fs to map some more disk blocks. We record the current number 620 * of available blocks at sdio->blocks_available. These are in units of the 621 * fs blocksize, i_blocksize(inode). 622 * 623 * The fs is allowed to map lots of blocks at once. If it wants to do that, 624 * it uses the passed inode-relative block number as the file offset, as usual. 625 * 626 * get_block() is passed the number of i_blkbits-sized blocks which direct_io 627 * has remaining to do. The fs should not map more than this number of blocks. 628 * 629 * If the fs has mapped a lot of blocks, it should populate bh->b_size to 630 * indicate how much contiguous disk space has been made available at 631 * bh->b_blocknr. 632 * 633 * If *any* of the mapped blocks are new, then the fs must set buffer_new(). 634 * This isn't very efficient... 635 * 636 * In the case of filesystem holes: the fs may return an arbitrarily-large 637 * hole by returning an appropriate value in b_size and by clearing 638 * buffer_mapped(). However the direct-io code will only process holes one 639 * block at a time - it will repeatedly call get_block() as it walks the hole. 640 */ 641 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio, 642 struct buffer_head *map_bh) 643 { 644 int ret; 645 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ 646 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */ 647 unsigned long fs_count; /* Number of filesystem-sized blocks */ 648 int create; 649 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor; 650 651 /* 652 * If there was a memory error and we've overwritten all the 653 * mapped blocks then we can now return that memory error 654 */ 655 ret = dio->page_errors; 656 if (ret == 0) { 657 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request); 658 fs_startblk = sdio->block_in_file >> sdio->blkfactor; 659 fs_endblk = (sdio->final_block_in_request - 1) >> 660 sdio->blkfactor; 661 fs_count = fs_endblk - fs_startblk + 1; 662 663 map_bh->b_state = 0; 664 map_bh->b_size = fs_count << i_blkbits; 665 666 /* 667 * For writes that could fill holes inside i_size on a 668 * DIO_SKIP_HOLES filesystem we forbid block creations: only 669 * overwrites are permitted. We will return early to the caller 670 * once we see an unmapped buffer head returned, and the caller 671 * will fall back to buffered I/O. 672 * 673 * Otherwise the decision is left to the get_blocks method, 674 * which may decide to handle it or also return an unmapped 675 * buffer head. 676 */ 677 create = dio->op == REQ_OP_WRITE; 678 if (dio->flags & DIO_SKIP_HOLES) { 679 if (fs_startblk <= ((i_size_read(dio->inode) - 1) >> 680 i_blkbits)) 681 create = 0; 682 } 683 684 ret = (*sdio->get_block)(dio->inode, fs_startblk, 685 map_bh, create); 686 687 /* Store for completion */ 688 dio->private = map_bh->b_private; 689 690 if (ret == 0 && buffer_defer_completion(map_bh)) 691 ret = dio_set_defer_completion(dio); 692 } 693 return ret; 694 } 695 696 /* 697 * There is no bio. Make one now. 698 */ 699 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio, 700 sector_t start_sector, struct buffer_head *map_bh) 701 { 702 sector_t sector; 703 int ret, nr_pages; 704 705 ret = dio_bio_reap(dio, sdio); 706 if (ret) 707 goto out; 708 sector = start_sector << (sdio->blkbits - 9); 709 nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES); 710 BUG_ON(nr_pages <= 0); 711 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages); 712 sdio->boundary = 0; 713 out: 714 return ret; 715 } 716 717 /* 718 * Attempt to put the current chunk of 'cur_page' into the current BIO. If 719 * that was successful then update final_block_in_bio and take a ref against 720 * the just-added page. 721 * 722 * Return zero on success. Non-zero means the caller needs to start a new BIO. 723 */ 724 static inline int dio_bio_add_page(struct dio_submit *sdio) 725 { 726 int ret; 727 728 ret = bio_add_page(sdio->bio, sdio->cur_page, 729 sdio->cur_page_len, sdio->cur_page_offset); 730 if (ret == sdio->cur_page_len) { 731 /* 732 * Decrement count only, if we are done with this page 733 */ 734 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE) 735 sdio->pages_in_io--; 736 get_page(sdio->cur_page); 737 sdio->final_block_in_bio = sdio->cur_page_block + 738 (sdio->cur_page_len >> sdio->blkbits); 739 ret = 0; 740 } else { 741 ret = 1; 742 } 743 return ret; 744 } 745 746 /* 747 * Put cur_page under IO. The section of cur_page which is described by 748 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page 749 * starts on-disk at cur_page_block. 750 * 751 * We take a ref against the page here (on behalf of its presence in the bio). 752 * 753 * The caller of this function is responsible for removing cur_page from the 754 * dio, and for dropping the refcount which came from that presence. 755 */ 756 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio, 757 struct buffer_head *map_bh) 758 { 759 int ret = 0; 760 761 if (sdio->bio) { 762 loff_t cur_offset = sdio->cur_page_fs_offset; 763 loff_t bio_next_offset = sdio->logical_offset_in_bio + 764 sdio->bio->bi_iter.bi_size; 765 766 /* 767 * See whether this new request is contiguous with the old. 768 * 769 * Btrfs cannot handle having logically non-contiguous requests 770 * submitted. For example if you have 771 * 772 * Logical: [0-4095][HOLE][8192-12287] 773 * Physical: [0-4095] [4096-8191] 774 * 775 * We cannot submit those pages together as one BIO. So if our 776 * current logical offset in the file does not equal what would 777 * be the next logical offset in the bio, submit the bio we 778 * have. 779 */ 780 if (sdio->final_block_in_bio != sdio->cur_page_block || 781 cur_offset != bio_next_offset) 782 dio_bio_submit(dio, sdio); 783 } 784 785 if (sdio->bio == NULL) { 786 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 787 if (ret) 788 goto out; 789 } 790 791 if (dio_bio_add_page(sdio) != 0) { 792 dio_bio_submit(dio, sdio); 793 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 794 if (ret == 0) { 795 ret = dio_bio_add_page(sdio); 796 BUG_ON(ret != 0); 797 } 798 } 799 out: 800 return ret; 801 } 802 803 /* 804 * An autonomous function to put a chunk of a page under deferred IO. 805 * 806 * The caller doesn't actually know (or care) whether this piece of page is in 807 * a BIO, or is under IO or whatever. We just take care of all possible 808 * situations here. The separation between the logic of do_direct_IO() and 809 * that of submit_page_section() is important for clarity. Please don't break. 810 * 811 * The chunk of page starts on-disk at blocknr. 812 * 813 * We perform deferred IO, by recording the last-submitted page inside our 814 * private part of the dio structure. If possible, we just expand the IO 815 * across that page here. 816 * 817 * If that doesn't work out then we put the old page into the bio and add this 818 * page to the dio instead. 819 */ 820 static inline int 821 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page, 822 unsigned offset, unsigned len, sector_t blocknr, 823 struct buffer_head *map_bh) 824 { 825 int ret = 0; 826 827 if (dio->op == REQ_OP_WRITE) { 828 /* 829 * Read accounting is performed in submit_bio() 830 */ 831 task_io_account_write(len); 832 } 833 834 /* 835 * Can we just grow the current page's presence in the dio? 836 */ 837 if (sdio->cur_page == page && 838 sdio->cur_page_offset + sdio->cur_page_len == offset && 839 sdio->cur_page_block + 840 (sdio->cur_page_len >> sdio->blkbits) == blocknr) { 841 sdio->cur_page_len += len; 842 goto out; 843 } 844 845 /* 846 * If there's a deferred page already there then send it. 847 */ 848 if (sdio->cur_page) { 849 ret = dio_send_cur_page(dio, sdio, map_bh); 850 put_page(sdio->cur_page); 851 sdio->cur_page = NULL; 852 if (ret) 853 return ret; 854 } 855 856 get_page(page); /* It is in dio */ 857 sdio->cur_page = page; 858 sdio->cur_page_offset = offset; 859 sdio->cur_page_len = len; 860 sdio->cur_page_block = blocknr; 861 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits; 862 out: 863 /* 864 * If sdio->boundary then we want to schedule the IO now to 865 * avoid metadata seeks. 866 */ 867 if (sdio->boundary) { 868 ret = dio_send_cur_page(dio, sdio, map_bh); 869 dio_bio_submit(dio, sdio); 870 put_page(sdio->cur_page); 871 sdio->cur_page = NULL; 872 } 873 return ret; 874 } 875 876 /* 877 * If we are not writing the entire block and get_block() allocated 878 * the block for us, we need to fill-in the unused portion of the 879 * block with zeros. This happens only if user-buffer, fileoffset or 880 * io length is not filesystem block-size multiple. 881 * 882 * `end' is zero if we're doing the start of the IO, 1 at the end of the 883 * IO. 884 */ 885 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio, 886 int end, struct buffer_head *map_bh) 887 { 888 unsigned dio_blocks_per_fs_block; 889 unsigned this_chunk_blocks; /* In dio_blocks */ 890 unsigned this_chunk_bytes; 891 struct page *page; 892 893 sdio->start_zero_done = 1; 894 if (!sdio->blkfactor || !buffer_new(map_bh)) 895 return; 896 897 dio_blocks_per_fs_block = 1 << sdio->blkfactor; 898 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1); 899 900 if (!this_chunk_blocks) 901 return; 902 903 /* 904 * We need to zero out part of an fs block. It is either at the 905 * beginning or the end of the fs block. 906 */ 907 if (end) 908 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; 909 910 this_chunk_bytes = this_chunk_blocks << sdio->blkbits; 911 912 page = ZERO_PAGE(0); 913 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes, 914 sdio->next_block_for_io, map_bh)) 915 return; 916 917 sdio->next_block_for_io += this_chunk_blocks; 918 } 919 920 /* 921 * Walk the user pages, and the file, mapping blocks to disk and generating 922 * a sequence of (page,offset,len,block) mappings. These mappings are injected 923 * into submit_page_section(), which takes care of the next stage of submission 924 * 925 * Direct IO against a blockdev is different from a file. Because we can 926 * happily perform page-sized but 512-byte aligned IOs. It is important that 927 * blockdev IO be able to have fine alignment and large sizes. 928 * 929 * So what we do is to permit the ->get_block function to populate bh.b_size 930 * with the size of IO which is permitted at this offset and this i_blkbits. 931 * 932 * For best results, the blockdev should be set up with 512-byte i_blkbits and 933 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives 934 * fine alignment but still allows this function to work in PAGE_SIZE units. 935 */ 936 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio, 937 struct buffer_head *map_bh) 938 { 939 const unsigned blkbits = sdio->blkbits; 940 const unsigned i_blkbits = blkbits + sdio->blkfactor; 941 int ret = 0; 942 943 while (sdio->block_in_file < sdio->final_block_in_request) { 944 struct page *page; 945 size_t from, to; 946 947 page = dio_get_page(dio, sdio); 948 if (IS_ERR(page)) { 949 ret = PTR_ERR(page); 950 goto out; 951 } 952 from = sdio->head ? 0 : sdio->from; 953 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE; 954 sdio->head++; 955 956 while (from < to) { 957 unsigned this_chunk_bytes; /* # of bytes mapped */ 958 unsigned this_chunk_blocks; /* # of blocks */ 959 unsigned u; 960 961 if (sdio->blocks_available == 0) { 962 /* 963 * Need to go and map some more disk 964 */ 965 unsigned long blkmask; 966 unsigned long dio_remainder; 967 968 ret = get_more_blocks(dio, sdio, map_bh); 969 if (ret) { 970 put_page(page); 971 goto out; 972 } 973 if (!buffer_mapped(map_bh)) 974 goto do_holes; 975 976 sdio->blocks_available = 977 map_bh->b_size >> blkbits; 978 sdio->next_block_for_io = 979 map_bh->b_blocknr << sdio->blkfactor; 980 if (buffer_new(map_bh)) { 981 clean_bdev_aliases( 982 map_bh->b_bdev, 983 map_bh->b_blocknr, 984 map_bh->b_size >> i_blkbits); 985 } 986 987 if (!sdio->blkfactor) 988 goto do_holes; 989 990 blkmask = (1 << sdio->blkfactor) - 1; 991 dio_remainder = (sdio->block_in_file & blkmask); 992 993 /* 994 * If we are at the start of IO and that IO 995 * starts partway into a fs-block, 996 * dio_remainder will be non-zero. If the IO 997 * is a read then we can simply advance the IO 998 * cursor to the first block which is to be 999 * read. But if the IO is a write and the 1000 * block was newly allocated we cannot do that; 1001 * the start of the fs block must be zeroed out 1002 * on-disk 1003 */ 1004 if (!buffer_new(map_bh)) 1005 sdio->next_block_for_io += dio_remainder; 1006 sdio->blocks_available -= dio_remainder; 1007 } 1008 do_holes: 1009 /* Handle holes */ 1010 if (!buffer_mapped(map_bh)) { 1011 loff_t i_size_aligned; 1012 1013 /* AKPM: eargh, -ENOTBLK is a hack */ 1014 if (dio->op == REQ_OP_WRITE) { 1015 put_page(page); 1016 return -ENOTBLK; 1017 } 1018 1019 /* 1020 * Be sure to account for a partial block as the 1021 * last block in the file 1022 */ 1023 i_size_aligned = ALIGN(i_size_read(dio->inode), 1024 1 << blkbits); 1025 if (sdio->block_in_file >= 1026 i_size_aligned >> blkbits) { 1027 /* We hit eof */ 1028 put_page(page); 1029 goto out; 1030 } 1031 zero_user(page, from, 1 << blkbits); 1032 sdio->block_in_file++; 1033 from += 1 << blkbits; 1034 dio->result += 1 << blkbits; 1035 goto next_block; 1036 } 1037 1038 /* 1039 * If we're performing IO which has an alignment which 1040 * is finer than the underlying fs, go check to see if 1041 * we must zero out the start of this block. 1042 */ 1043 if (unlikely(sdio->blkfactor && !sdio->start_zero_done)) 1044 dio_zero_block(dio, sdio, 0, map_bh); 1045 1046 /* 1047 * Work out, in this_chunk_blocks, how much disk we 1048 * can add to this page 1049 */ 1050 this_chunk_blocks = sdio->blocks_available; 1051 u = (to - from) >> blkbits; 1052 if (this_chunk_blocks > u) 1053 this_chunk_blocks = u; 1054 u = sdio->final_block_in_request - sdio->block_in_file; 1055 if (this_chunk_blocks > u) 1056 this_chunk_blocks = u; 1057 this_chunk_bytes = this_chunk_blocks << blkbits; 1058 BUG_ON(this_chunk_bytes == 0); 1059 1060 if (this_chunk_blocks == sdio->blocks_available) 1061 sdio->boundary = buffer_boundary(map_bh); 1062 ret = submit_page_section(dio, sdio, page, 1063 from, 1064 this_chunk_bytes, 1065 sdio->next_block_for_io, 1066 map_bh); 1067 if (ret) { 1068 put_page(page); 1069 goto out; 1070 } 1071 sdio->next_block_for_io += this_chunk_blocks; 1072 1073 sdio->block_in_file += this_chunk_blocks; 1074 from += this_chunk_bytes; 1075 dio->result += this_chunk_bytes; 1076 sdio->blocks_available -= this_chunk_blocks; 1077 next_block: 1078 BUG_ON(sdio->block_in_file > sdio->final_block_in_request); 1079 if (sdio->block_in_file == sdio->final_block_in_request) 1080 break; 1081 } 1082 1083 /* Drop the ref which was taken in get_user_pages() */ 1084 put_page(page); 1085 } 1086 out: 1087 return ret; 1088 } 1089 1090 static inline int drop_refcount(struct dio *dio) 1091 { 1092 int ret2; 1093 unsigned long flags; 1094 1095 /* 1096 * Sync will always be dropping the final ref and completing the 1097 * operation. AIO can if it was a broken operation described above or 1098 * in fact if all the bios race to complete before we get here. In 1099 * that case dio_complete() translates the EIOCBQUEUED into the proper 1100 * return code that the caller will hand to ->complete(). 1101 * 1102 * This is managed by the bio_lock instead of being an atomic_t so that 1103 * completion paths can drop their ref and use the remaining count to 1104 * decide to wake the submission path atomically. 1105 */ 1106 spin_lock_irqsave(&dio->bio_lock, flags); 1107 ret2 = --dio->refcount; 1108 spin_unlock_irqrestore(&dio->bio_lock, flags); 1109 return ret2; 1110 } 1111 1112 /* 1113 * This is a library function for use by filesystem drivers. 1114 * 1115 * The locking rules are governed by the flags parameter: 1116 * - if the flags value contains DIO_LOCKING we use a fancy locking 1117 * scheme for dumb filesystems. 1118 * For writes this function is called under i_mutex and returns with 1119 * i_mutex held, for reads, i_mutex is not held on entry, but it is 1120 * taken and dropped again before returning. 1121 * - if the flags value does NOT contain DIO_LOCKING we don't use any 1122 * internal locking but rather rely on the filesystem to synchronize 1123 * direct I/O reads/writes versus each other and truncate. 1124 * 1125 * To help with locking against truncate we incremented the i_dio_count 1126 * counter before starting direct I/O, and decrement it once we are done. 1127 * Truncate can wait for it to reach zero to provide exclusion. It is 1128 * expected that filesystem provide exclusion between new direct I/O 1129 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex, 1130 * but other filesystems need to take care of this on their own. 1131 * 1132 * NOTE: if you pass "sdio" to anything by pointer make sure that function 1133 * is always inlined. Otherwise gcc is unable to split the structure into 1134 * individual fields and will generate much worse code. This is important 1135 * for the whole file. 1136 */ 1137 static inline ssize_t 1138 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1139 struct block_device *bdev, struct iov_iter *iter, 1140 get_block_t get_block, dio_iodone_t end_io, 1141 dio_submit_t submit_io, int flags) 1142 { 1143 unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits); 1144 unsigned blkbits = i_blkbits; 1145 unsigned blocksize_mask = (1 << blkbits) - 1; 1146 ssize_t retval = -EINVAL; 1147 size_t count = iov_iter_count(iter); 1148 loff_t offset = iocb->ki_pos; 1149 loff_t end = offset + count; 1150 struct dio *dio; 1151 struct dio_submit sdio = { 0, }; 1152 struct buffer_head map_bh = { 0, }; 1153 struct blk_plug plug; 1154 unsigned long align = offset | iov_iter_alignment(iter); 1155 1156 /* 1157 * Avoid references to bdev if not absolutely needed to give 1158 * the early prefetch in the caller enough time. 1159 */ 1160 1161 if (align & blocksize_mask) { 1162 if (bdev) 1163 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 1164 blocksize_mask = (1 << blkbits) - 1; 1165 if (align & blocksize_mask) 1166 goto out; 1167 } 1168 1169 /* watch out for a 0 len io from a tricksy fs */ 1170 if (iov_iter_rw(iter) == READ && !iov_iter_count(iter)) 1171 return 0; 1172 1173 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL); 1174 retval = -ENOMEM; 1175 if (!dio) 1176 goto out; 1177 /* 1178 * Believe it or not, zeroing out the page array caused a .5% 1179 * performance regression in a database benchmark. So, we take 1180 * care to only zero out what's needed. 1181 */ 1182 memset(dio, 0, offsetof(struct dio, pages)); 1183 1184 dio->flags = flags; 1185 if (dio->flags & DIO_LOCKING) { 1186 if (iov_iter_rw(iter) == READ) { 1187 struct address_space *mapping = 1188 iocb->ki_filp->f_mapping; 1189 1190 /* will be released by direct_io_worker */ 1191 inode_lock(inode); 1192 1193 retval = filemap_write_and_wait_range(mapping, offset, 1194 end - 1); 1195 if (retval) { 1196 inode_unlock(inode); 1197 kmem_cache_free(dio_cache, dio); 1198 goto out; 1199 } 1200 } 1201 } 1202 1203 /* Once we sampled i_size check for reads beyond EOF */ 1204 dio->i_size = i_size_read(inode); 1205 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) { 1206 if (dio->flags & DIO_LOCKING) 1207 inode_unlock(inode); 1208 kmem_cache_free(dio_cache, dio); 1209 retval = 0; 1210 goto out; 1211 } 1212 1213 /* 1214 * For file extending writes updating i_size before data writeouts 1215 * complete can expose uninitialized blocks in dumb filesystems. 1216 * In that case we need to wait for I/O completion even if asked 1217 * for an asynchronous write. 1218 */ 1219 if (is_sync_kiocb(iocb)) 1220 dio->is_async = false; 1221 else if (!(dio->flags & DIO_ASYNC_EXTEND) && 1222 iov_iter_rw(iter) == WRITE && end > i_size_read(inode)) 1223 dio->is_async = false; 1224 else 1225 dio->is_async = true; 1226 1227 dio->inode = inode; 1228 if (iov_iter_rw(iter) == WRITE) { 1229 dio->op = REQ_OP_WRITE; 1230 dio->op_flags = REQ_SYNC | REQ_IDLE; 1231 if (iocb->ki_flags & IOCB_NOWAIT) 1232 dio->op_flags |= REQ_NOWAIT; 1233 } else { 1234 dio->op = REQ_OP_READ; 1235 } 1236 1237 /* 1238 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue 1239 * so that we can call ->fsync. 1240 */ 1241 if (dio->is_async && iov_iter_rw(iter) == WRITE) { 1242 retval = 0; 1243 if ((iocb->ki_filp->f_flags & O_DSYNC) || 1244 IS_SYNC(iocb->ki_filp->f_mapping->host)) 1245 retval = dio_set_defer_completion(dio); 1246 else if (!dio->inode->i_sb->s_dio_done_wq) { 1247 /* 1248 * In case of AIO write racing with buffered read we 1249 * need to defer completion. We can't decide this now, 1250 * however the workqueue needs to be initialized here. 1251 */ 1252 retval = sb_init_dio_done_wq(dio->inode->i_sb); 1253 } 1254 if (retval) { 1255 /* 1256 * We grab i_mutex only for reads so we don't have 1257 * to release it here 1258 */ 1259 kmem_cache_free(dio_cache, dio); 1260 goto out; 1261 } 1262 } 1263 1264 /* 1265 * Will be decremented at I/O completion time. 1266 */ 1267 if (!(dio->flags & DIO_SKIP_DIO_COUNT)) 1268 inode_dio_begin(inode); 1269 1270 retval = 0; 1271 sdio.blkbits = blkbits; 1272 sdio.blkfactor = i_blkbits - blkbits; 1273 sdio.block_in_file = offset >> blkbits; 1274 1275 sdio.get_block = get_block; 1276 dio->end_io = end_io; 1277 sdio.submit_io = submit_io; 1278 sdio.final_block_in_bio = -1; 1279 sdio.next_block_for_io = -1; 1280 1281 dio->iocb = iocb; 1282 1283 spin_lock_init(&dio->bio_lock); 1284 dio->refcount = 1; 1285 1286 dio->should_dirty = (iter->type == ITER_IOVEC); 1287 sdio.iter = iter; 1288 sdio.final_block_in_request = 1289 (offset + iov_iter_count(iter)) >> blkbits; 1290 1291 /* 1292 * In case of non-aligned buffers, we may need 2 more 1293 * pages since we need to zero out first and last block. 1294 */ 1295 if (unlikely(sdio.blkfactor)) 1296 sdio.pages_in_io = 2; 1297 1298 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX); 1299 1300 blk_start_plug(&plug); 1301 1302 retval = do_direct_IO(dio, &sdio, &map_bh); 1303 if (retval) 1304 dio_cleanup(dio, &sdio); 1305 1306 if (retval == -ENOTBLK) { 1307 /* 1308 * The remaining part of the request will be 1309 * be handled by buffered I/O when we return 1310 */ 1311 retval = 0; 1312 } 1313 /* 1314 * There may be some unwritten disk at the end of a part-written 1315 * fs-block-sized block. Go zero that now. 1316 */ 1317 dio_zero_block(dio, &sdio, 1, &map_bh); 1318 1319 if (sdio.cur_page) { 1320 ssize_t ret2; 1321 1322 ret2 = dio_send_cur_page(dio, &sdio, &map_bh); 1323 if (retval == 0) 1324 retval = ret2; 1325 put_page(sdio.cur_page); 1326 sdio.cur_page = NULL; 1327 } 1328 if (sdio.bio) 1329 dio_bio_submit(dio, &sdio); 1330 1331 blk_finish_plug(&plug); 1332 1333 /* 1334 * It is possible that, we return short IO due to end of file. 1335 * In that case, we need to release all the pages we got hold on. 1336 */ 1337 dio_cleanup(dio, &sdio); 1338 1339 /* 1340 * All block lookups have been performed. For READ requests 1341 * we can let i_mutex go now that its achieved its purpose 1342 * of protecting us from looking up uninitialized blocks. 1343 */ 1344 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING)) 1345 inode_unlock(dio->inode); 1346 1347 /* 1348 * The only time we want to leave bios in flight is when a successful 1349 * partial aio read or full aio write have been setup. In that case 1350 * bio completion will call aio_complete. The only time it's safe to 1351 * call aio_complete is when we return -EIOCBQUEUED, so we key on that. 1352 * This had *better* be the only place that raises -EIOCBQUEUED. 1353 */ 1354 BUG_ON(retval == -EIOCBQUEUED); 1355 if (dio->is_async && retval == 0 && dio->result && 1356 (iov_iter_rw(iter) == READ || dio->result == count)) 1357 retval = -EIOCBQUEUED; 1358 else 1359 dio_await_completion(dio); 1360 1361 if (drop_refcount(dio) == 0) { 1362 retval = dio_complete(dio, retval, false); 1363 } else 1364 BUG_ON(retval != -EIOCBQUEUED); 1365 1366 out: 1367 return retval; 1368 } 1369 1370 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1371 struct block_device *bdev, struct iov_iter *iter, 1372 get_block_t get_block, 1373 dio_iodone_t end_io, dio_submit_t submit_io, 1374 int flags) 1375 { 1376 /* 1377 * The block device state is needed in the end to finally 1378 * submit everything. Since it's likely to be cache cold 1379 * prefetch it here as first thing to hide some of the 1380 * latency. 1381 * 1382 * Attempt to prefetch the pieces we likely need later. 1383 */ 1384 prefetch(&bdev->bd_disk->part_tbl); 1385 prefetch(bdev->bd_queue); 1386 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES); 1387 1388 return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block, 1389 end_io, submit_io, flags); 1390 } 1391 1392 EXPORT_SYMBOL(__blockdev_direct_IO); 1393 1394 static __init int dio_init(void) 1395 { 1396 dio_cache = KMEM_CACHE(dio, SLAB_PANIC); 1397 return 0; 1398 } 1399 module_init(dio_init) 1400