xref: /openbmc/linux/fs/direct-io.c (revision 7211ec63)
1 /*
2  * fs/direct-io.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * O_DIRECT
7  *
8  * 04Jul2002	Andrew Morton
9  *		Initial version
10  * 11Sep2002	janetinc@us.ibm.com
11  * 		added readv/writev support.
12  * 29Oct2002	Andrew Morton
13  *		rewrote bio_add_page() support.
14  * 30Oct2002	pbadari@us.ibm.com
15  *		added support for non-aligned IO.
16  * 06Nov2002	pbadari@us.ibm.com
17  *		added asynchronous IO support.
18  * 21Jul2003	nathans@sgi.com
19  *		added IO completion notifier.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <linux/atomic.h>
39 #include <linux/prefetch.h>
40 
41 /*
42  * How many user pages to map in one call to get_user_pages().  This determines
43  * the size of a structure in the slab cache
44  */
45 #define DIO_PAGES	64
46 
47 /*
48  * This code generally works in units of "dio_blocks".  A dio_block is
49  * somewhere between the hard sector size and the filesystem block size.  it
50  * is determined on a per-invocation basis.   When talking to the filesystem
51  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
52  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
53  * to bio_block quantities by shifting left by blkfactor.
54  *
55  * If blkfactor is zero then the user's request was aligned to the filesystem's
56  * blocksize.
57  */
58 
59 /* dio_state only used in the submission path */
60 
61 struct dio_submit {
62 	struct bio *bio;		/* bio under assembly */
63 	unsigned blkbits;		/* doesn't change */
64 	unsigned blkfactor;		/* When we're using an alignment which
65 					   is finer than the filesystem's soft
66 					   blocksize, this specifies how much
67 					   finer.  blkfactor=2 means 1/4-block
68 					   alignment.  Does not change */
69 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
70 					   been performed at the start of a
71 					   write */
72 	int pages_in_io;		/* approximate total IO pages */
73 	sector_t block_in_file;		/* Current offset into the underlying
74 					   file in dio_block units. */
75 	unsigned blocks_available;	/* At block_in_file.  changes */
76 	int reap_counter;		/* rate limit reaping */
77 	sector_t final_block_in_request;/* doesn't change */
78 	int boundary;			/* prev block is at a boundary */
79 	get_block_t *get_block;		/* block mapping function */
80 	dio_submit_t *submit_io;	/* IO submition function */
81 
82 	loff_t logical_offset_in_bio;	/* current first logical block in bio */
83 	sector_t final_block_in_bio;	/* current final block in bio + 1 */
84 	sector_t next_block_for_io;	/* next block to be put under IO,
85 					   in dio_blocks units */
86 
87 	/*
88 	 * Deferred addition of a page to the dio.  These variables are
89 	 * private to dio_send_cur_page(), submit_page_section() and
90 	 * dio_bio_add_page().
91 	 */
92 	struct page *cur_page;		/* The page */
93 	unsigned cur_page_offset;	/* Offset into it, in bytes */
94 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
95 	sector_t cur_page_block;	/* Where it starts */
96 	loff_t cur_page_fs_offset;	/* Offset in file */
97 
98 	struct iov_iter *iter;
99 	/*
100 	 * Page queue.  These variables belong to dio_refill_pages() and
101 	 * dio_get_page().
102 	 */
103 	unsigned head;			/* next page to process */
104 	unsigned tail;			/* last valid page + 1 */
105 	size_t from, to;
106 };
107 
108 /* dio_state communicated between submission path and end_io */
109 struct dio {
110 	int flags;			/* doesn't change */
111 	int op;
112 	int op_flags;
113 	blk_qc_t bio_cookie;
114 	struct gendisk *bio_disk;
115 	struct inode *inode;
116 	loff_t i_size;			/* i_size when submitted */
117 	dio_iodone_t *end_io;		/* IO completion function */
118 
119 	void *private;			/* copy from map_bh.b_private */
120 
121 	/* BIO completion state */
122 	spinlock_t bio_lock;		/* protects BIO fields below */
123 	int page_errors;		/* errno from get_user_pages() */
124 	int is_async;			/* is IO async ? */
125 	bool defer_completion;		/* defer AIO completion to workqueue? */
126 	bool should_dirty;		/* if pages should be dirtied */
127 	int io_error;			/* IO error in completion path */
128 	unsigned long refcount;		/* direct_io_worker() and bios */
129 	struct bio *bio_list;		/* singly linked via bi_private */
130 	struct task_struct *waiter;	/* waiting task (NULL if none) */
131 
132 	/* AIO related stuff */
133 	struct kiocb *iocb;		/* kiocb */
134 	ssize_t result;                 /* IO result */
135 
136 	/*
137 	 * pages[] (and any fields placed after it) are not zeroed out at
138 	 * allocation time.  Don't add new fields after pages[] unless you
139 	 * wish that they not be zeroed.
140 	 */
141 	union {
142 		struct page *pages[DIO_PAGES];	/* page buffer */
143 		struct work_struct complete_work;/* deferred AIO completion */
144 	};
145 } ____cacheline_aligned_in_smp;
146 
147 static struct kmem_cache *dio_cache __read_mostly;
148 
149 /*
150  * How many pages are in the queue?
151  */
152 static inline unsigned dio_pages_present(struct dio_submit *sdio)
153 {
154 	return sdio->tail - sdio->head;
155 }
156 
157 /*
158  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
159  */
160 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
161 {
162 	ssize_t ret;
163 
164 	ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
165 				&sdio->from);
166 
167 	if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) {
168 		struct page *page = ZERO_PAGE(0);
169 		/*
170 		 * A memory fault, but the filesystem has some outstanding
171 		 * mapped blocks.  We need to use those blocks up to avoid
172 		 * leaking stale data in the file.
173 		 */
174 		if (dio->page_errors == 0)
175 			dio->page_errors = ret;
176 		get_page(page);
177 		dio->pages[0] = page;
178 		sdio->head = 0;
179 		sdio->tail = 1;
180 		sdio->from = 0;
181 		sdio->to = PAGE_SIZE;
182 		return 0;
183 	}
184 
185 	if (ret >= 0) {
186 		iov_iter_advance(sdio->iter, ret);
187 		ret += sdio->from;
188 		sdio->head = 0;
189 		sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
190 		sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
191 		return 0;
192 	}
193 	return ret;
194 }
195 
196 /*
197  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
198  * buffered inside the dio so that we can call get_user_pages() against a
199  * decent number of pages, less frequently.  To provide nicer use of the
200  * L1 cache.
201  */
202 static inline struct page *dio_get_page(struct dio *dio,
203 					struct dio_submit *sdio)
204 {
205 	if (dio_pages_present(sdio) == 0) {
206 		int ret;
207 
208 		ret = dio_refill_pages(dio, sdio);
209 		if (ret)
210 			return ERR_PTR(ret);
211 		BUG_ON(dio_pages_present(sdio) == 0);
212 	}
213 	return dio->pages[sdio->head];
214 }
215 
216 /**
217  * dio_complete() - called when all DIO BIO I/O has been completed
218  * @offset: the byte offset in the file of the completed operation
219  *
220  * This drops i_dio_count, lets interested parties know that a DIO operation
221  * has completed, and calculates the resulting return code for the operation.
222  *
223  * It lets the filesystem know if it registered an interest earlier via
224  * get_block.  Pass the private field of the map buffer_head so that
225  * filesystems can use it to hold additional state between get_block calls and
226  * dio_complete.
227  */
228 static ssize_t dio_complete(struct dio *dio, ssize_t ret, bool is_async)
229 {
230 	loff_t offset = dio->iocb->ki_pos;
231 	ssize_t transferred = 0;
232 	int err;
233 
234 	/*
235 	 * AIO submission can race with bio completion to get here while
236 	 * expecting to have the last io completed by bio completion.
237 	 * In that case -EIOCBQUEUED is in fact not an error we want
238 	 * to preserve through this call.
239 	 */
240 	if (ret == -EIOCBQUEUED)
241 		ret = 0;
242 
243 	if (dio->result) {
244 		transferred = dio->result;
245 
246 		/* Check for short read case */
247 		if ((dio->op == REQ_OP_READ) &&
248 		    ((offset + transferred) > dio->i_size))
249 			transferred = dio->i_size - offset;
250 		/* ignore EFAULT if some IO has been done */
251 		if (unlikely(ret == -EFAULT) && transferred)
252 			ret = 0;
253 	}
254 
255 	if (ret == 0)
256 		ret = dio->page_errors;
257 	if (ret == 0)
258 		ret = dio->io_error;
259 	if (ret == 0)
260 		ret = transferred;
261 
262 	/*
263 	 * Try again to invalidate clean pages which might have been cached by
264 	 * non-direct readahead, or faulted in by get_user_pages() if the source
265 	 * of the write was an mmap'ed region of the file we're writing.  Either
266 	 * one is a pretty crazy thing to do, so we don't support it 100%.  If
267 	 * this invalidation fails, tough, the write still worked...
268 	 */
269 	if (ret > 0 && dio->op == REQ_OP_WRITE &&
270 	    dio->inode->i_mapping->nrpages) {
271 		err = invalidate_inode_pages2_range(dio->inode->i_mapping,
272 					offset >> PAGE_SHIFT,
273 					(offset + ret - 1) >> PAGE_SHIFT);
274 		WARN_ON_ONCE(err);
275 	}
276 
277 	if (dio->end_io) {
278 
279 		// XXX: ki_pos??
280 		err = dio->end_io(dio->iocb, offset, ret, dio->private);
281 		if (err)
282 			ret = err;
283 	}
284 
285 	if (!(dio->flags & DIO_SKIP_DIO_COUNT))
286 		inode_dio_end(dio->inode);
287 
288 	if (is_async) {
289 		/*
290 		 * generic_write_sync expects ki_pos to have been updated
291 		 * already, but the submission path only does this for
292 		 * synchronous I/O.
293 		 */
294 		dio->iocb->ki_pos += transferred;
295 
296 		if (dio->op == REQ_OP_WRITE)
297 			ret = generic_write_sync(dio->iocb,  transferred);
298 		dio->iocb->ki_complete(dio->iocb, ret, 0);
299 	}
300 
301 	kmem_cache_free(dio_cache, dio);
302 	return ret;
303 }
304 
305 static void dio_aio_complete_work(struct work_struct *work)
306 {
307 	struct dio *dio = container_of(work, struct dio, complete_work);
308 
309 	dio_complete(dio, 0, true);
310 }
311 
312 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
313 
314 /*
315  * Asynchronous IO callback.
316  */
317 static void dio_bio_end_aio(struct bio *bio)
318 {
319 	struct dio *dio = bio->bi_private;
320 	unsigned long remaining;
321 	unsigned long flags;
322 	bool defer_completion = false;
323 
324 	/* cleanup the bio */
325 	dio_bio_complete(dio, bio);
326 
327 	spin_lock_irqsave(&dio->bio_lock, flags);
328 	remaining = --dio->refcount;
329 	if (remaining == 1 && dio->waiter)
330 		wake_up_process(dio->waiter);
331 	spin_unlock_irqrestore(&dio->bio_lock, flags);
332 
333 	if (remaining == 0) {
334 		/*
335 		 * Defer completion when defer_completion is set or
336 		 * when the inode has pages mapped and this is AIO write.
337 		 * We need to invalidate those pages because there is a
338 		 * chance they contain stale data in the case buffered IO
339 		 * went in between AIO submission and completion into the
340 		 * same region.
341 		 */
342 		if (dio->result)
343 			defer_completion = dio->defer_completion ||
344 					   (dio->op == REQ_OP_WRITE &&
345 					    dio->inode->i_mapping->nrpages);
346 		if (defer_completion) {
347 			INIT_WORK(&dio->complete_work, dio_aio_complete_work);
348 			queue_work(dio->inode->i_sb->s_dio_done_wq,
349 				   &dio->complete_work);
350 		} else {
351 			dio_complete(dio, 0, true);
352 		}
353 	}
354 }
355 
356 /*
357  * The BIO completion handler simply queues the BIO up for the process-context
358  * handler.
359  *
360  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
361  * implement a singly-linked list of completed BIOs, at dio->bio_list.
362  */
363 static void dio_bio_end_io(struct bio *bio)
364 {
365 	struct dio *dio = bio->bi_private;
366 	unsigned long flags;
367 
368 	spin_lock_irqsave(&dio->bio_lock, flags);
369 	bio->bi_private = dio->bio_list;
370 	dio->bio_list = bio;
371 	if (--dio->refcount == 1 && dio->waiter)
372 		wake_up_process(dio->waiter);
373 	spin_unlock_irqrestore(&dio->bio_lock, flags);
374 }
375 
376 /**
377  * dio_end_io - handle the end io action for the given bio
378  * @bio: The direct io bio thats being completed
379  *
380  * This is meant to be called by any filesystem that uses their own dio_submit_t
381  * so that the DIO specific endio actions are dealt with after the filesystem
382  * has done it's completion work.
383  */
384 void dio_end_io(struct bio *bio)
385 {
386 	struct dio *dio = bio->bi_private;
387 
388 	if (dio->is_async)
389 		dio_bio_end_aio(bio);
390 	else
391 		dio_bio_end_io(bio);
392 }
393 EXPORT_SYMBOL_GPL(dio_end_io);
394 
395 static inline void
396 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
397 	      struct block_device *bdev,
398 	      sector_t first_sector, int nr_vecs)
399 {
400 	struct bio *bio;
401 
402 	/*
403 	 * bio_alloc() is guaranteed to return a bio when called with
404 	 * __GFP_RECLAIM and we request a valid number of vectors.
405 	 */
406 	bio = bio_alloc(GFP_KERNEL, nr_vecs);
407 
408 	bio_set_dev(bio, bdev);
409 	bio->bi_iter.bi_sector = first_sector;
410 	bio_set_op_attrs(bio, dio->op, dio->op_flags);
411 	if (dio->is_async)
412 		bio->bi_end_io = dio_bio_end_aio;
413 	else
414 		bio->bi_end_io = dio_bio_end_io;
415 
416 	bio->bi_write_hint = dio->iocb->ki_hint;
417 
418 	sdio->bio = bio;
419 	sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
420 }
421 
422 /*
423  * In the AIO read case we speculatively dirty the pages before starting IO.
424  * During IO completion, any of these pages which happen to have been written
425  * back will be redirtied by bio_check_pages_dirty().
426  *
427  * bios hold a dio reference between submit_bio and ->end_io.
428  */
429 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
430 {
431 	struct bio *bio = sdio->bio;
432 	unsigned long flags;
433 
434 	bio->bi_private = dio;
435 
436 	spin_lock_irqsave(&dio->bio_lock, flags);
437 	dio->refcount++;
438 	spin_unlock_irqrestore(&dio->bio_lock, flags);
439 
440 	if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty)
441 		bio_set_pages_dirty(bio);
442 
443 	dio->bio_disk = bio->bi_disk;
444 
445 	if (sdio->submit_io) {
446 		sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
447 		dio->bio_cookie = BLK_QC_T_NONE;
448 	} else
449 		dio->bio_cookie = submit_bio(bio);
450 
451 	sdio->bio = NULL;
452 	sdio->boundary = 0;
453 	sdio->logical_offset_in_bio = 0;
454 }
455 
456 /*
457  * Release any resources in case of a failure
458  */
459 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
460 {
461 	while (sdio->head < sdio->tail)
462 		put_page(dio->pages[sdio->head++]);
463 }
464 
465 /*
466  * Wait for the next BIO to complete.  Remove it and return it.  NULL is
467  * returned once all BIOs have been completed.  This must only be called once
468  * all bios have been issued so that dio->refcount can only decrease.  This
469  * requires that that the caller hold a reference on the dio.
470  */
471 static struct bio *dio_await_one(struct dio *dio)
472 {
473 	unsigned long flags;
474 	struct bio *bio = NULL;
475 
476 	spin_lock_irqsave(&dio->bio_lock, flags);
477 
478 	/*
479 	 * Wait as long as the list is empty and there are bios in flight.  bio
480 	 * completion drops the count, maybe adds to the list, and wakes while
481 	 * holding the bio_lock so we don't need set_current_state()'s barrier
482 	 * and can call it after testing our condition.
483 	 */
484 	while (dio->refcount > 1 && dio->bio_list == NULL) {
485 		__set_current_state(TASK_UNINTERRUPTIBLE);
486 		dio->waiter = current;
487 		spin_unlock_irqrestore(&dio->bio_lock, flags);
488 		if (!(dio->iocb->ki_flags & IOCB_HIPRI) ||
489 		    !blk_mq_poll(dio->bio_disk->queue, dio->bio_cookie))
490 			io_schedule();
491 		/* wake up sets us TASK_RUNNING */
492 		spin_lock_irqsave(&dio->bio_lock, flags);
493 		dio->waiter = NULL;
494 	}
495 	if (dio->bio_list) {
496 		bio = dio->bio_list;
497 		dio->bio_list = bio->bi_private;
498 	}
499 	spin_unlock_irqrestore(&dio->bio_lock, flags);
500 	return bio;
501 }
502 
503 /*
504  * Process one completed BIO.  No locks are held.
505  */
506 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
507 {
508 	struct bio_vec *bvec;
509 	unsigned i;
510 	blk_status_t err = bio->bi_status;
511 
512 	if (err) {
513 		if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
514 			dio->io_error = -EAGAIN;
515 		else
516 			dio->io_error = -EIO;
517 	}
518 
519 	if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) {
520 		bio_check_pages_dirty(bio);	/* transfers ownership */
521 	} else {
522 		bio_for_each_segment_all(bvec, bio, i) {
523 			struct page *page = bvec->bv_page;
524 
525 			if (dio->op == REQ_OP_READ && !PageCompound(page) &&
526 					dio->should_dirty)
527 				set_page_dirty_lock(page);
528 			put_page(page);
529 		}
530 		bio_put(bio);
531 	}
532 	return err;
533 }
534 
535 /*
536  * Wait on and process all in-flight BIOs.  This must only be called once
537  * all bios have been issued so that the refcount can only decrease.
538  * This just waits for all bios to make it through dio_bio_complete.  IO
539  * errors are propagated through dio->io_error and should be propagated via
540  * dio_complete().
541  */
542 static void dio_await_completion(struct dio *dio)
543 {
544 	struct bio *bio;
545 	do {
546 		bio = dio_await_one(dio);
547 		if (bio)
548 			dio_bio_complete(dio, bio);
549 	} while (bio);
550 }
551 
552 /*
553  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
554  * to keep the memory consumption sane we periodically reap any completed BIOs
555  * during the BIO generation phase.
556  *
557  * This also helps to limit the peak amount of pinned userspace memory.
558  */
559 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
560 {
561 	int ret = 0;
562 
563 	if (sdio->reap_counter++ >= 64) {
564 		while (dio->bio_list) {
565 			unsigned long flags;
566 			struct bio *bio;
567 			int ret2;
568 
569 			spin_lock_irqsave(&dio->bio_lock, flags);
570 			bio = dio->bio_list;
571 			dio->bio_list = bio->bi_private;
572 			spin_unlock_irqrestore(&dio->bio_lock, flags);
573 			ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
574 			if (ret == 0)
575 				ret = ret2;
576 		}
577 		sdio->reap_counter = 0;
578 	}
579 	return ret;
580 }
581 
582 /*
583  * Create workqueue for deferred direct IO completions. We allocate the
584  * workqueue when it's first needed. This avoids creating workqueue for
585  * filesystems that don't need it and also allows us to create the workqueue
586  * late enough so the we can include s_id in the name of the workqueue.
587  */
588 int sb_init_dio_done_wq(struct super_block *sb)
589 {
590 	struct workqueue_struct *old;
591 	struct workqueue_struct *wq = alloc_workqueue("dio/%s",
592 						      WQ_MEM_RECLAIM, 0,
593 						      sb->s_id);
594 	if (!wq)
595 		return -ENOMEM;
596 	/*
597 	 * This has to be atomic as more DIOs can race to create the workqueue
598 	 */
599 	old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
600 	/* Someone created workqueue before us? Free ours... */
601 	if (old)
602 		destroy_workqueue(wq);
603 	return 0;
604 }
605 
606 static int dio_set_defer_completion(struct dio *dio)
607 {
608 	struct super_block *sb = dio->inode->i_sb;
609 
610 	if (dio->defer_completion)
611 		return 0;
612 	dio->defer_completion = true;
613 	if (!sb->s_dio_done_wq)
614 		return sb_init_dio_done_wq(sb);
615 	return 0;
616 }
617 
618 /*
619  * Call into the fs to map some more disk blocks.  We record the current number
620  * of available blocks at sdio->blocks_available.  These are in units of the
621  * fs blocksize, i_blocksize(inode).
622  *
623  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
624  * it uses the passed inode-relative block number as the file offset, as usual.
625  *
626  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
627  * has remaining to do.  The fs should not map more than this number of blocks.
628  *
629  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
630  * indicate how much contiguous disk space has been made available at
631  * bh->b_blocknr.
632  *
633  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
634  * This isn't very efficient...
635  *
636  * In the case of filesystem holes: the fs may return an arbitrarily-large
637  * hole by returning an appropriate value in b_size and by clearing
638  * buffer_mapped().  However the direct-io code will only process holes one
639  * block at a time - it will repeatedly call get_block() as it walks the hole.
640  */
641 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
642 			   struct buffer_head *map_bh)
643 {
644 	int ret;
645 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
646 	sector_t fs_endblk;	/* Into file, in filesystem-sized blocks */
647 	unsigned long fs_count;	/* Number of filesystem-sized blocks */
648 	int create;
649 	unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
650 
651 	/*
652 	 * If there was a memory error and we've overwritten all the
653 	 * mapped blocks then we can now return that memory error
654 	 */
655 	ret = dio->page_errors;
656 	if (ret == 0) {
657 		BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
658 		fs_startblk = sdio->block_in_file >> sdio->blkfactor;
659 		fs_endblk = (sdio->final_block_in_request - 1) >>
660 					sdio->blkfactor;
661 		fs_count = fs_endblk - fs_startblk + 1;
662 
663 		map_bh->b_state = 0;
664 		map_bh->b_size = fs_count << i_blkbits;
665 
666 		/*
667 		 * For writes that could fill holes inside i_size on a
668 		 * DIO_SKIP_HOLES filesystem we forbid block creations: only
669 		 * overwrites are permitted. We will return early to the caller
670 		 * once we see an unmapped buffer head returned, and the caller
671 		 * will fall back to buffered I/O.
672 		 *
673 		 * Otherwise the decision is left to the get_blocks method,
674 		 * which may decide to handle it or also return an unmapped
675 		 * buffer head.
676 		 */
677 		create = dio->op == REQ_OP_WRITE;
678 		if (dio->flags & DIO_SKIP_HOLES) {
679 			if (fs_startblk <= ((i_size_read(dio->inode) - 1) >>
680 							i_blkbits))
681 				create = 0;
682 		}
683 
684 		ret = (*sdio->get_block)(dio->inode, fs_startblk,
685 						map_bh, create);
686 
687 		/* Store for completion */
688 		dio->private = map_bh->b_private;
689 
690 		if (ret == 0 && buffer_defer_completion(map_bh))
691 			ret = dio_set_defer_completion(dio);
692 	}
693 	return ret;
694 }
695 
696 /*
697  * There is no bio.  Make one now.
698  */
699 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
700 		sector_t start_sector, struct buffer_head *map_bh)
701 {
702 	sector_t sector;
703 	int ret, nr_pages;
704 
705 	ret = dio_bio_reap(dio, sdio);
706 	if (ret)
707 		goto out;
708 	sector = start_sector << (sdio->blkbits - 9);
709 	nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
710 	BUG_ON(nr_pages <= 0);
711 	dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
712 	sdio->boundary = 0;
713 out:
714 	return ret;
715 }
716 
717 /*
718  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
719  * that was successful then update final_block_in_bio and take a ref against
720  * the just-added page.
721  *
722  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
723  */
724 static inline int dio_bio_add_page(struct dio_submit *sdio)
725 {
726 	int ret;
727 
728 	ret = bio_add_page(sdio->bio, sdio->cur_page,
729 			sdio->cur_page_len, sdio->cur_page_offset);
730 	if (ret == sdio->cur_page_len) {
731 		/*
732 		 * Decrement count only, if we are done with this page
733 		 */
734 		if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
735 			sdio->pages_in_io--;
736 		get_page(sdio->cur_page);
737 		sdio->final_block_in_bio = sdio->cur_page_block +
738 			(sdio->cur_page_len >> sdio->blkbits);
739 		ret = 0;
740 	} else {
741 		ret = 1;
742 	}
743 	return ret;
744 }
745 
746 /*
747  * Put cur_page under IO.  The section of cur_page which is described by
748  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
749  * starts on-disk at cur_page_block.
750  *
751  * We take a ref against the page here (on behalf of its presence in the bio).
752  *
753  * The caller of this function is responsible for removing cur_page from the
754  * dio, and for dropping the refcount which came from that presence.
755  */
756 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
757 		struct buffer_head *map_bh)
758 {
759 	int ret = 0;
760 
761 	if (sdio->bio) {
762 		loff_t cur_offset = sdio->cur_page_fs_offset;
763 		loff_t bio_next_offset = sdio->logical_offset_in_bio +
764 			sdio->bio->bi_iter.bi_size;
765 
766 		/*
767 		 * See whether this new request is contiguous with the old.
768 		 *
769 		 * Btrfs cannot handle having logically non-contiguous requests
770 		 * submitted.  For example if you have
771 		 *
772 		 * Logical:  [0-4095][HOLE][8192-12287]
773 		 * Physical: [0-4095]      [4096-8191]
774 		 *
775 		 * We cannot submit those pages together as one BIO.  So if our
776 		 * current logical offset in the file does not equal what would
777 		 * be the next logical offset in the bio, submit the bio we
778 		 * have.
779 		 */
780 		if (sdio->final_block_in_bio != sdio->cur_page_block ||
781 		    cur_offset != bio_next_offset)
782 			dio_bio_submit(dio, sdio);
783 	}
784 
785 	if (sdio->bio == NULL) {
786 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
787 		if (ret)
788 			goto out;
789 	}
790 
791 	if (dio_bio_add_page(sdio) != 0) {
792 		dio_bio_submit(dio, sdio);
793 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
794 		if (ret == 0) {
795 			ret = dio_bio_add_page(sdio);
796 			BUG_ON(ret != 0);
797 		}
798 	}
799 out:
800 	return ret;
801 }
802 
803 /*
804  * An autonomous function to put a chunk of a page under deferred IO.
805  *
806  * The caller doesn't actually know (or care) whether this piece of page is in
807  * a BIO, or is under IO or whatever.  We just take care of all possible
808  * situations here.  The separation between the logic of do_direct_IO() and
809  * that of submit_page_section() is important for clarity.  Please don't break.
810  *
811  * The chunk of page starts on-disk at blocknr.
812  *
813  * We perform deferred IO, by recording the last-submitted page inside our
814  * private part of the dio structure.  If possible, we just expand the IO
815  * across that page here.
816  *
817  * If that doesn't work out then we put the old page into the bio and add this
818  * page to the dio instead.
819  */
820 static inline int
821 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
822 		    unsigned offset, unsigned len, sector_t blocknr,
823 		    struct buffer_head *map_bh)
824 {
825 	int ret = 0;
826 
827 	if (dio->op == REQ_OP_WRITE) {
828 		/*
829 		 * Read accounting is performed in submit_bio()
830 		 */
831 		task_io_account_write(len);
832 	}
833 
834 	/*
835 	 * Can we just grow the current page's presence in the dio?
836 	 */
837 	if (sdio->cur_page == page &&
838 	    sdio->cur_page_offset + sdio->cur_page_len == offset &&
839 	    sdio->cur_page_block +
840 	    (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
841 		sdio->cur_page_len += len;
842 		goto out;
843 	}
844 
845 	/*
846 	 * If there's a deferred page already there then send it.
847 	 */
848 	if (sdio->cur_page) {
849 		ret = dio_send_cur_page(dio, sdio, map_bh);
850 		put_page(sdio->cur_page);
851 		sdio->cur_page = NULL;
852 		if (ret)
853 			return ret;
854 	}
855 
856 	get_page(page);		/* It is in dio */
857 	sdio->cur_page = page;
858 	sdio->cur_page_offset = offset;
859 	sdio->cur_page_len = len;
860 	sdio->cur_page_block = blocknr;
861 	sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
862 out:
863 	/*
864 	 * If sdio->boundary then we want to schedule the IO now to
865 	 * avoid metadata seeks.
866 	 */
867 	if (sdio->boundary) {
868 		ret = dio_send_cur_page(dio, sdio, map_bh);
869 		dio_bio_submit(dio, sdio);
870 		put_page(sdio->cur_page);
871 		sdio->cur_page = NULL;
872 	}
873 	return ret;
874 }
875 
876 /*
877  * If we are not writing the entire block and get_block() allocated
878  * the block for us, we need to fill-in the unused portion of the
879  * block with zeros. This happens only if user-buffer, fileoffset or
880  * io length is not filesystem block-size multiple.
881  *
882  * `end' is zero if we're doing the start of the IO, 1 at the end of the
883  * IO.
884  */
885 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
886 		int end, struct buffer_head *map_bh)
887 {
888 	unsigned dio_blocks_per_fs_block;
889 	unsigned this_chunk_blocks;	/* In dio_blocks */
890 	unsigned this_chunk_bytes;
891 	struct page *page;
892 
893 	sdio->start_zero_done = 1;
894 	if (!sdio->blkfactor || !buffer_new(map_bh))
895 		return;
896 
897 	dio_blocks_per_fs_block = 1 << sdio->blkfactor;
898 	this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
899 
900 	if (!this_chunk_blocks)
901 		return;
902 
903 	/*
904 	 * We need to zero out part of an fs block.  It is either at the
905 	 * beginning or the end of the fs block.
906 	 */
907 	if (end)
908 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
909 
910 	this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
911 
912 	page = ZERO_PAGE(0);
913 	if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
914 				sdio->next_block_for_io, map_bh))
915 		return;
916 
917 	sdio->next_block_for_io += this_chunk_blocks;
918 }
919 
920 /*
921  * Walk the user pages, and the file, mapping blocks to disk and generating
922  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
923  * into submit_page_section(), which takes care of the next stage of submission
924  *
925  * Direct IO against a blockdev is different from a file.  Because we can
926  * happily perform page-sized but 512-byte aligned IOs.  It is important that
927  * blockdev IO be able to have fine alignment and large sizes.
928  *
929  * So what we do is to permit the ->get_block function to populate bh.b_size
930  * with the size of IO which is permitted at this offset and this i_blkbits.
931  *
932  * For best results, the blockdev should be set up with 512-byte i_blkbits and
933  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
934  * fine alignment but still allows this function to work in PAGE_SIZE units.
935  */
936 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
937 			struct buffer_head *map_bh)
938 {
939 	const unsigned blkbits = sdio->blkbits;
940 	const unsigned i_blkbits = blkbits + sdio->blkfactor;
941 	int ret = 0;
942 
943 	while (sdio->block_in_file < sdio->final_block_in_request) {
944 		struct page *page;
945 		size_t from, to;
946 
947 		page = dio_get_page(dio, sdio);
948 		if (IS_ERR(page)) {
949 			ret = PTR_ERR(page);
950 			goto out;
951 		}
952 		from = sdio->head ? 0 : sdio->from;
953 		to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
954 		sdio->head++;
955 
956 		while (from < to) {
957 			unsigned this_chunk_bytes;	/* # of bytes mapped */
958 			unsigned this_chunk_blocks;	/* # of blocks */
959 			unsigned u;
960 
961 			if (sdio->blocks_available == 0) {
962 				/*
963 				 * Need to go and map some more disk
964 				 */
965 				unsigned long blkmask;
966 				unsigned long dio_remainder;
967 
968 				ret = get_more_blocks(dio, sdio, map_bh);
969 				if (ret) {
970 					put_page(page);
971 					goto out;
972 				}
973 				if (!buffer_mapped(map_bh))
974 					goto do_holes;
975 
976 				sdio->blocks_available =
977 						map_bh->b_size >> blkbits;
978 				sdio->next_block_for_io =
979 					map_bh->b_blocknr << sdio->blkfactor;
980 				if (buffer_new(map_bh)) {
981 					clean_bdev_aliases(
982 						map_bh->b_bdev,
983 						map_bh->b_blocknr,
984 						map_bh->b_size >> i_blkbits);
985 				}
986 
987 				if (!sdio->blkfactor)
988 					goto do_holes;
989 
990 				blkmask = (1 << sdio->blkfactor) - 1;
991 				dio_remainder = (sdio->block_in_file & blkmask);
992 
993 				/*
994 				 * If we are at the start of IO and that IO
995 				 * starts partway into a fs-block,
996 				 * dio_remainder will be non-zero.  If the IO
997 				 * is a read then we can simply advance the IO
998 				 * cursor to the first block which is to be
999 				 * read.  But if the IO is a write and the
1000 				 * block was newly allocated we cannot do that;
1001 				 * the start of the fs block must be zeroed out
1002 				 * on-disk
1003 				 */
1004 				if (!buffer_new(map_bh))
1005 					sdio->next_block_for_io += dio_remainder;
1006 				sdio->blocks_available -= dio_remainder;
1007 			}
1008 do_holes:
1009 			/* Handle holes */
1010 			if (!buffer_mapped(map_bh)) {
1011 				loff_t i_size_aligned;
1012 
1013 				/* AKPM: eargh, -ENOTBLK is a hack */
1014 				if (dio->op == REQ_OP_WRITE) {
1015 					put_page(page);
1016 					return -ENOTBLK;
1017 				}
1018 
1019 				/*
1020 				 * Be sure to account for a partial block as the
1021 				 * last block in the file
1022 				 */
1023 				i_size_aligned = ALIGN(i_size_read(dio->inode),
1024 							1 << blkbits);
1025 				if (sdio->block_in_file >=
1026 						i_size_aligned >> blkbits) {
1027 					/* We hit eof */
1028 					put_page(page);
1029 					goto out;
1030 				}
1031 				zero_user(page, from, 1 << blkbits);
1032 				sdio->block_in_file++;
1033 				from += 1 << blkbits;
1034 				dio->result += 1 << blkbits;
1035 				goto next_block;
1036 			}
1037 
1038 			/*
1039 			 * If we're performing IO which has an alignment which
1040 			 * is finer than the underlying fs, go check to see if
1041 			 * we must zero out the start of this block.
1042 			 */
1043 			if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1044 				dio_zero_block(dio, sdio, 0, map_bh);
1045 
1046 			/*
1047 			 * Work out, in this_chunk_blocks, how much disk we
1048 			 * can add to this page
1049 			 */
1050 			this_chunk_blocks = sdio->blocks_available;
1051 			u = (to - from) >> blkbits;
1052 			if (this_chunk_blocks > u)
1053 				this_chunk_blocks = u;
1054 			u = sdio->final_block_in_request - sdio->block_in_file;
1055 			if (this_chunk_blocks > u)
1056 				this_chunk_blocks = u;
1057 			this_chunk_bytes = this_chunk_blocks << blkbits;
1058 			BUG_ON(this_chunk_bytes == 0);
1059 
1060 			if (this_chunk_blocks == sdio->blocks_available)
1061 				sdio->boundary = buffer_boundary(map_bh);
1062 			ret = submit_page_section(dio, sdio, page,
1063 						  from,
1064 						  this_chunk_bytes,
1065 						  sdio->next_block_for_io,
1066 						  map_bh);
1067 			if (ret) {
1068 				put_page(page);
1069 				goto out;
1070 			}
1071 			sdio->next_block_for_io += this_chunk_blocks;
1072 
1073 			sdio->block_in_file += this_chunk_blocks;
1074 			from += this_chunk_bytes;
1075 			dio->result += this_chunk_bytes;
1076 			sdio->blocks_available -= this_chunk_blocks;
1077 next_block:
1078 			BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1079 			if (sdio->block_in_file == sdio->final_block_in_request)
1080 				break;
1081 		}
1082 
1083 		/* Drop the ref which was taken in get_user_pages() */
1084 		put_page(page);
1085 	}
1086 out:
1087 	return ret;
1088 }
1089 
1090 static inline int drop_refcount(struct dio *dio)
1091 {
1092 	int ret2;
1093 	unsigned long flags;
1094 
1095 	/*
1096 	 * Sync will always be dropping the final ref and completing the
1097 	 * operation.  AIO can if it was a broken operation described above or
1098 	 * in fact if all the bios race to complete before we get here.  In
1099 	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1100 	 * return code that the caller will hand to ->complete().
1101 	 *
1102 	 * This is managed by the bio_lock instead of being an atomic_t so that
1103 	 * completion paths can drop their ref and use the remaining count to
1104 	 * decide to wake the submission path atomically.
1105 	 */
1106 	spin_lock_irqsave(&dio->bio_lock, flags);
1107 	ret2 = --dio->refcount;
1108 	spin_unlock_irqrestore(&dio->bio_lock, flags);
1109 	return ret2;
1110 }
1111 
1112 /*
1113  * This is a library function for use by filesystem drivers.
1114  *
1115  * The locking rules are governed by the flags parameter:
1116  *  - if the flags value contains DIO_LOCKING we use a fancy locking
1117  *    scheme for dumb filesystems.
1118  *    For writes this function is called under i_mutex and returns with
1119  *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1120  *    taken and dropped again before returning.
1121  *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1122  *    internal locking but rather rely on the filesystem to synchronize
1123  *    direct I/O reads/writes versus each other and truncate.
1124  *
1125  * To help with locking against truncate we incremented the i_dio_count
1126  * counter before starting direct I/O, and decrement it once we are done.
1127  * Truncate can wait for it to reach zero to provide exclusion.  It is
1128  * expected that filesystem provide exclusion between new direct I/O
1129  * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1130  * but other filesystems need to take care of this on their own.
1131  *
1132  * NOTE: if you pass "sdio" to anything by pointer make sure that function
1133  * is always inlined. Otherwise gcc is unable to split the structure into
1134  * individual fields and will generate much worse code. This is important
1135  * for the whole file.
1136  */
1137 static inline ssize_t
1138 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1139 		      struct block_device *bdev, struct iov_iter *iter,
1140 		      get_block_t get_block, dio_iodone_t end_io,
1141 		      dio_submit_t submit_io, int flags)
1142 {
1143 	unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits);
1144 	unsigned blkbits = i_blkbits;
1145 	unsigned blocksize_mask = (1 << blkbits) - 1;
1146 	ssize_t retval = -EINVAL;
1147 	size_t count = iov_iter_count(iter);
1148 	loff_t offset = iocb->ki_pos;
1149 	loff_t end = offset + count;
1150 	struct dio *dio;
1151 	struct dio_submit sdio = { 0, };
1152 	struct buffer_head map_bh = { 0, };
1153 	struct blk_plug plug;
1154 	unsigned long align = offset | iov_iter_alignment(iter);
1155 
1156 	/*
1157 	 * Avoid references to bdev if not absolutely needed to give
1158 	 * the early prefetch in the caller enough time.
1159 	 */
1160 
1161 	if (align & blocksize_mask) {
1162 		if (bdev)
1163 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
1164 		blocksize_mask = (1 << blkbits) - 1;
1165 		if (align & blocksize_mask)
1166 			goto out;
1167 	}
1168 
1169 	/* watch out for a 0 len io from a tricksy fs */
1170 	if (iov_iter_rw(iter) == READ && !iov_iter_count(iter))
1171 		return 0;
1172 
1173 	dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1174 	retval = -ENOMEM;
1175 	if (!dio)
1176 		goto out;
1177 	/*
1178 	 * Believe it or not, zeroing out the page array caused a .5%
1179 	 * performance regression in a database benchmark.  So, we take
1180 	 * care to only zero out what's needed.
1181 	 */
1182 	memset(dio, 0, offsetof(struct dio, pages));
1183 
1184 	dio->flags = flags;
1185 	if (dio->flags & DIO_LOCKING) {
1186 		if (iov_iter_rw(iter) == READ) {
1187 			struct address_space *mapping =
1188 					iocb->ki_filp->f_mapping;
1189 
1190 			/* will be released by direct_io_worker */
1191 			inode_lock(inode);
1192 
1193 			retval = filemap_write_and_wait_range(mapping, offset,
1194 							      end - 1);
1195 			if (retval) {
1196 				inode_unlock(inode);
1197 				kmem_cache_free(dio_cache, dio);
1198 				goto out;
1199 			}
1200 		}
1201 	}
1202 
1203 	/* Once we sampled i_size check for reads beyond EOF */
1204 	dio->i_size = i_size_read(inode);
1205 	if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1206 		if (dio->flags & DIO_LOCKING)
1207 			inode_unlock(inode);
1208 		kmem_cache_free(dio_cache, dio);
1209 		retval = 0;
1210 		goto out;
1211 	}
1212 
1213 	/*
1214 	 * For file extending writes updating i_size before data writeouts
1215 	 * complete can expose uninitialized blocks in dumb filesystems.
1216 	 * In that case we need to wait for I/O completion even if asked
1217 	 * for an asynchronous write.
1218 	 */
1219 	if (is_sync_kiocb(iocb))
1220 		dio->is_async = false;
1221 	else if (!(dio->flags & DIO_ASYNC_EXTEND) &&
1222 		 iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1223 		dio->is_async = false;
1224 	else
1225 		dio->is_async = true;
1226 
1227 	dio->inode = inode;
1228 	if (iov_iter_rw(iter) == WRITE) {
1229 		dio->op = REQ_OP_WRITE;
1230 		dio->op_flags = REQ_SYNC | REQ_IDLE;
1231 		if (iocb->ki_flags & IOCB_NOWAIT)
1232 			dio->op_flags |= REQ_NOWAIT;
1233 	} else {
1234 		dio->op = REQ_OP_READ;
1235 	}
1236 
1237 	/*
1238 	 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1239 	 * so that we can call ->fsync.
1240 	 */
1241 	if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1242 		retval = 0;
1243 		if ((iocb->ki_filp->f_flags & O_DSYNC) ||
1244 		    IS_SYNC(iocb->ki_filp->f_mapping->host))
1245 			retval = dio_set_defer_completion(dio);
1246 		else if (!dio->inode->i_sb->s_dio_done_wq) {
1247 			/*
1248 			 * In case of AIO write racing with buffered read we
1249 			 * need to defer completion. We can't decide this now,
1250 			 * however the workqueue needs to be initialized here.
1251 			 */
1252 			retval = sb_init_dio_done_wq(dio->inode->i_sb);
1253 		}
1254 		if (retval) {
1255 			/*
1256 			 * We grab i_mutex only for reads so we don't have
1257 			 * to release it here
1258 			 */
1259 			kmem_cache_free(dio_cache, dio);
1260 			goto out;
1261 		}
1262 	}
1263 
1264 	/*
1265 	 * Will be decremented at I/O completion time.
1266 	 */
1267 	if (!(dio->flags & DIO_SKIP_DIO_COUNT))
1268 		inode_dio_begin(inode);
1269 
1270 	retval = 0;
1271 	sdio.blkbits = blkbits;
1272 	sdio.blkfactor = i_blkbits - blkbits;
1273 	sdio.block_in_file = offset >> blkbits;
1274 
1275 	sdio.get_block = get_block;
1276 	dio->end_io = end_io;
1277 	sdio.submit_io = submit_io;
1278 	sdio.final_block_in_bio = -1;
1279 	sdio.next_block_for_io = -1;
1280 
1281 	dio->iocb = iocb;
1282 
1283 	spin_lock_init(&dio->bio_lock);
1284 	dio->refcount = 1;
1285 
1286 	dio->should_dirty = (iter->type == ITER_IOVEC);
1287 	sdio.iter = iter;
1288 	sdio.final_block_in_request =
1289 		(offset + iov_iter_count(iter)) >> blkbits;
1290 
1291 	/*
1292 	 * In case of non-aligned buffers, we may need 2 more
1293 	 * pages since we need to zero out first and last block.
1294 	 */
1295 	if (unlikely(sdio.blkfactor))
1296 		sdio.pages_in_io = 2;
1297 
1298 	sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1299 
1300 	blk_start_plug(&plug);
1301 
1302 	retval = do_direct_IO(dio, &sdio, &map_bh);
1303 	if (retval)
1304 		dio_cleanup(dio, &sdio);
1305 
1306 	if (retval == -ENOTBLK) {
1307 		/*
1308 		 * The remaining part of the request will be
1309 		 * be handled by buffered I/O when we return
1310 		 */
1311 		retval = 0;
1312 	}
1313 	/*
1314 	 * There may be some unwritten disk at the end of a part-written
1315 	 * fs-block-sized block.  Go zero that now.
1316 	 */
1317 	dio_zero_block(dio, &sdio, 1, &map_bh);
1318 
1319 	if (sdio.cur_page) {
1320 		ssize_t ret2;
1321 
1322 		ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1323 		if (retval == 0)
1324 			retval = ret2;
1325 		put_page(sdio.cur_page);
1326 		sdio.cur_page = NULL;
1327 	}
1328 	if (sdio.bio)
1329 		dio_bio_submit(dio, &sdio);
1330 
1331 	blk_finish_plug(&plug);
1332 
1333 	/*
1334 	 * It is possible that, we return short IO due to end of file.
1335 	 * In that case, we need to release all the pages we got hold on.
1336 	 */
1337 	dio_cleanup(dio, &sdio);
1338 
1339 	/*
1340 	 * All block lookups have been performed. For READ requests
1341 	 * we can let i_mutex go now that its achieved its purpose
1342 	 * of protecting us from looking up uninitialized blocks.
1343 	 */
1344 	if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1345 		inode_unlock(dio->inode);
1346 
1347 	/*
1348 	 * The only time we want to leave bios in flight is when a successful
1349 	 * partial aio read or full aio write have been setup.  In that case
1350 	 * bio completion will call aio_complete.  The only time it's safe to
1351 	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1352 	 * This had *better* be the only place that raises -EIOCBQUEUED.
1353 	 */
1354 	BUG_ON(retval == -EIOCBQUEUED);
1355 	if (dio->is_async && retval == 0 && dio->result &&
1356 	    (iov_iter_rw(iter) == READ || dio->result == count))
1357 		retval = -EIOCBQUEUED;
1358 	else
1359 		dio_await_completion(dio);
1360 
1361 	if (drop_refcount(dio) == 0) {
1362 		retval = dio_complete(dio, retval, false);
1363 	} else
1364 		BUG_ON(retval != -EIOCBQUEUED);
1365 
1366 out:
1367 	return retval;
1368 }
1369 
1370 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1371 			     struct block_device *bdev, struct iov_iter *iter,
1372 			     get_block_t get_block,
1373 			     dio_iodone_t end_io, dio_submit_t submit_io,
1374 			     int flags)
1375 {
1376 	/*
1377 	 * The block device state is needed in the end to finally
1378 	 * submit everything.  Since it's likely to be cache cold
1379 	 * prefetch it here as first thing to hide some of the
1380 	 * latency.
1381 	 *
1382 	 * Attempt to prefetch the pieces we likely need later.
1383 	 */
1384 	prefetch(&bdev->bd_disk->part_tbl);
1385 	prefetch(bdev->bd_queue);
1386 	prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1387 
1388 	return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block,
1389 				     end_io, submit_io, flags);
1390 }
1391 
1392 EXPORT_SYMBOL(__blockdev_direct_IO);
1393 
1394 static __init int dio_init(void)
1395 {
1396 	dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1397 	return 0;
1398 }
1399 module_init(dio_init)
1400