1 /* 2 * fs/direct-io.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * O_DIRECT 7 * 8 * 04Jul2002 Andrew Morton 9 * Initial version 10 * 11Sep2002 janetinc@us.ibm.com 11 * added readv/writev support. 12 * 29Oct2002 Andrew Morton 13 * rewrote bio_add_page() support. 14 * 30Oct2002 pbadari@us.ibm.com 15 * added support for non-aligned IO. 16 * 06Nov2002 pbadari@us.ibm.com 17 * added asynchronous IO support. 18 * 21Jul2003 nathans@sgi.com 19 * added IO completion notifier. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/types.h> 25 #include <linux/fs.h> 26 #include <linux/mm.h> 27 #include <linux/slab.h> 28 #include <linux/highmem.h> 29 #include <linux/pagemap.h> 30 #include <linux/task_io_accounting_ops.h> 31 #include <linux/bio.h> 32 #include <linux/wait.h> 33 #include <linux/err.h> 34 #include <linux/blkdev.h> 35 #include <linux/buffer_head.h> 36 #include <linux/rwsem.h> 37 #include <linux/uio.h> 38 #include <linux/atomic.h> 39 #include <linux/prefetch.h> 40 41 /* 42 * How many user pages to map in one call to get_user_pages(). This determines 43 * the size of a structure in the slab cache 44 */ 45 #define DIO_PAGES 64 46 47 /* 48 * This code generally works in units of "dio_blocks". A dio_block is 49 * somewhere between the hard sector size and the filesystem block size. it 50 * is determined on a per-invocation basis. When talking to the filesystem 51 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity 52 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted 53 * to bio_block quantities by shifting left by blkfactor. 54 * 55 * If blkfactor is zero then the user's request was aligned to the filesystem's 56 * blocksize. 57 */ 58 59 /* dio_state only used in the submission path */ 60 61 struct dio_submit { 62 struct bio *bio; /* bio under assembly */ 63 unsigned blkbits; /* doesn't change */ 64 unsigned blkfactor; /* When we're using an alignment which 65 is finer than the filesystem's soft 66 blocksize, this specifies how much 67 finer. blkfactor=2 means 1/4-block 68 alignment. Does not change */ 69 unsigned start_zero_done; /* flag: sub-blocksize zeroing has 70 been performed at the start of a 71 write */ 72 int pages_in_io; /* approximate total IO pages */ 73 sector_t block_in_file; /* Current offset into the underlying 74 file in dio_block units. */ 75 unsigned blocks_available; /* At block_in_file. changes */ 76 int reap_counter; /* rate limit reaping */ 77 sector_t final_block_in_request;/* doesn't change */ 78 int boundary; /* prev block is at a boundary */ 79 get_block_t *get_block; /* block mapping function */ 80 dio_submit_t *submit_io; /* IO submition function */ 81 82 loff_t logical_offset_in_bio; /* current first logical block in bio */ 83 sector_t final_block_in_bio; /* current final block in bio + 1 */ 84 sector_t next_block_for_io; /* next block to be put under IO, 85 in dio_blocks units */ 86 87 /* 88 * Deferred addition of a page to the dio. These variables are 89 * private to dio_send_cur_page(), submit_page_section() and 90 * dio_bio_add_page(). 91 */ 92 struct page *cur_page; /* The page */ 93 unsigned cur_page_offset; /* Offset into it, in bytes */ 94 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ 95 sector_t cur_page_block; /* Where it starts */ 96 loff_t cur_page_fs_offset; /* Offset in file */ 97 98 struct iov_iter *iter; 99 /* 100 * Page queue. These variables belong to dio_refill_pages() and 101 * dio_get_page(). 102 */ 103 unsigned head; /* next page to process */ 104 unsigned tail; /* last valid page + 1 */ 105 size_t from, to; 106 }; 107 108 /* dio_state communicated between submission path and end_io */ 109 struct dio { 110 int flags; /* doesn't change */ 111 int op; 112 int op_flags; 113 blk_qc_t bio_cookie; 114 struct block_device *bio_bdev; 115 struct inode *inode; 116 loff_t i_size; /* i_size when submitted */ 117 dio_iodone_t *end_io; /* IO completion function */ 118 119 void *private; /* copy from map_bh.b_private */ 120 121 /* BIO completion state */ 122 spinlock_t bio_lock; /* protects BIO fields below */ 123 int page_errors; /* errno from get_user_pages() */ 124 int is_async; /* is IO async ? */ 125 bool defer_completion; /* defer AIO completion to workqueue? */ 126 bool should_dirty; /* if pages should be dirtied */ 127 int io_error; /* IO error in completion path */ 128 unsigned long refcount; /* direct_io_worker() and bios */ 129 struct bio *bio_list; /* singly linked via bi_private */ 130 struct task_struct *waiter; /* waiting task (NULL if none) */ 131 132 /* AIO related stuff */ 133 struct kiocb *iocb; /* kiocb */ 134 ssize_t result; /* IO result */ 135 136 /* 137 * pages[] (and any fields placed after it) are not zeroed out at 138 * allocation time. Don't add new fields after pages[] unless you 139 * wish that they not be zeroed. 140 */ 141 union { 142 struct page *pages[DIO_PAGES]; /* page buffer */ 143 struct work_struct complete_work;/* deferred AIO completion */ 144 }; 145 } ____cacheline_aligned_in_smp; 146 147 static struct kmem_cache *dio_cache __read_mostly; 148 149 /* 150 * How many pages are in the queue? 151 */ 152 static inline unsigned dio_pages_present(struct dio_submit *sdio) 153 { 154 return sdio->tail - sdio->head; 155 } 156 157 /* 158 * Go grab and pin some userspace pages. Typically we'll get 64 at a time. 159 */ 160 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio) 161 { 162 ssize_t ret; 163 164 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES, 165 &sdio->from); 166 167 if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) { 168 struct page *page = ZERO_PAGE(0); 169 /* 170 * A memory fault, but the filesystem has some outstanding 171 * mapped blocks. We need to use those blocks up to avoid 172 * leaking stale data in the file. 173 */ 174 if (dio->page_errors == 0) 175 dio->page_errors = ret; 176 get_page(page); 177 dio->pages[0] = page; 178 sdio->head = 0; 179 sdio->tail = 1; 180 sdio->from = 0; 181 sdio->to = PAGE_SIZE; 182 return 0; 183 } 184 185 if (ret >= 0) { 186 iov_iter_advance(sdio->iter, ret); 187 ret += sdio->from; 188 sdio->head = 0; 189 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE; 190 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1; 191 return 0; 192 } 193 return ret; 194 } 195 196 /* 197 * Get another userspace page. Returns an ERR_PTR on error. Pages are 198 * buffered inside the dio so that we can call get_user_pages() against a 199 * decent number of pages, less frequently. To provide nicer use of the 200 * L1 cache. 201 */ 202 static inline struct page *dio_get_page(struct dio *dio, 203 struct dio_submit *sdio) 204 { 205 if (dio_pages_present(sdio) == 0) { 206 int ret; 207 208 ret = dio_refill_pages(dio, sdio); 209 if (ret) 210 return ERR_PTR(ret); 211 BUG_ON(dio_pages_present(sdio) == 0); 212 } 213 return dio->pages[sdio->head]; 214 } 215 216 /** 217 * dio_complete() - called when all DIO BIO I/O has been completed 218 * @offset: the byte offset in the file of the completed operation 219 * 220 * This drops i_dio_count, lets interested parties know that a DIO operation 221 * has completed, and calculates the resulting return code for the operation. 222 * 223 * It lets the filesystem know if it registered an interest earlier via 224 * get_block. Pass the private field of the map buffer_head so that 225 * filesystems can use it to hold additional state between get_block calls and 226 * dio_complete. 227 */ 228 static ssize_t dio_complete(struct dio *dio, ssize_t ret, bool is_async) 229 { 230 loff_t offset = dio->iocb->ki_pos; 231 ssize_t transferred = 0; 232 233 /* 234 * AIO submission can race with bio completion to get here while 235 * expecting to have the last io completed by bio completion. 236 * In that case -EIOCBQUEUED is in fact not an error we want 237 * to preserve through this call. 238 */ 239 if (ret == -EIOCBQUEUED) 240 ret = 0; 241 242 if (dio->result) { 243 transferred = dio->result; 244 245 /* Check for short read case */ 246 if ((dio->op == REQ_OP_READ) && 247 ((offset + transferred) > dio->i_size)) 248 transferred = dio->i_size - offset; 249 /* ignore EFAULT if some IO has been done */ 250 if (unlikely(ret == -EFAULT) && transferred) 251 ret = 0; 252 } 253 254 if (ret == 0) 255 ret = dio->page_errors; 256 if (ret == 0) 257 ret = dio->io_error; 258 if (ret == 0) 259 ret = transferred; 260 261 if (dio->end_io) { 262 int err; 263 264 // XXX: ki_pos?? 265 err = dio->end_io(dio->iocb, offset, ret, dio->private); 266 if (err) 267 ret = err; 268 } 269 270 if (!(dio->flags & DIO_SKIP_DIO_COUNT)) 271 inode_dio_end(dio->inode); 272 273 if (is_async) { 274 /* 275 * generic_write_sync expects ki_pos to have been updated 276 * already, but the submission path only does this for 277 * synchronous I/O. 278 */ 279 dio->iocb->ki_pos += transferred; 280 281 if (dio->op == REQ_OP_WRITE) 282 ret = generic_write_sync(dio->iocb, transferred); 283 dio->iocb->ki_complete(dio->iocb, ret, 0); 284 } 285 286 kmem_cache_free(dio_cache, dio); 287 return ret; 288 } 289 290 static void dio_aio_complete_work(struct work_struct *work) 291 { 292 struct dio *dio = container_of(work, struct dio, complete_work); 293 294 dio_complete(dio, 0, true); 295 } 296 297 static int dio_bio_complete(struct dio *dio, struct bio *bio); 298 299 /* 300 * Asynchronous IO callback. 301 */ 302 static void dio_bio_end_aio(struct bio *bio) 303 { 304 struct dio *dio = bio->bi_private; 305 unsigned long remaining; 306 unsigned long flags; 307 308 /* cleanup the bio */ 309 dio_bio_complete(dio, bio); 310 311 spin_lock_irqsave(&dio->bio_lock, flags); 312 remaining = --dio->refcount; 313 if (remaining == 1 && dio->waiter) 314 wake_up_process(dio->waiter); 315 spin_unlock_irqrestore(&dio->bio_lock, flags); 316 317 if (remaining == 0) { 318 if (dio->result && dio->defer_completion) { 319 INIT_WORK(&dio->complete_work, dio_aio_complete_work); 320 queue_work(dio->inode->i_sb->s_dio_done_wq, 321 &dio->complete_work); 322 } else { 323 dio_complete(dio, 0, true); 324 } 325 } 326 } 327 328 /* 329 * The BIO completion handler simply queues the BIO up for the process-context 330 * handler. 331 * 332 * During I/O bi_private points at the dio. After I/O, bi_private is used to 333 * implement a singly-linked list of completed BIOs, at dio->bio_list. 334 */ 335 static void dio_bio_end_io(struct bio *bio) 336 { 337 struct dio *dio = bio->bi_private; 338 unsigned long flags; 339 340 spin_lock_irqsave(&dio->bio_lock, flags); 341 bio->bi_private = dio->bio_list; 342 dio->bio_list = bio; 343 if (--dio->refcount == 1 && dio->waiter) 344 wake_up_process(dio->waiter); 345 spin_unlock_irqrestore(&dio->bio_lock, flags); 346 } 347 348 /** 349 * dio_end_io - handle the end io action for the given bio 350 * @bio: The direct io bio thats being completed 351 * @error: Error if there was one 352 * 353 * This is meant to be called by any filesystem that uses their own dio_submit_t 354 * so that the DIO specific endio actions are dealt with after the filesystem 355 * has done it's completion work. 356 */ 357 void dio_end_io(struct bio *bio, int error) 358 { 359 struct dio *dio = bio->bi_private; 360 361 if (dio->is_async) 362 dio_bio_end_aio(bio); 363 else 364 dio_bio_end_io(bio); 365 } 366 EXPORT_SYMBOL_GPL(dio_end_io); 367 368 static inline void 369 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio, 370 struct block_device *bdev, 371 sector_t first_sector, int nr_vecs) 372 { 373 struct bio *bio; 374 375 /* 376 * bio_alloc() is guaranteed to return a bio when called with 377 * __GFP_RECLAIM and we request a valid number of vectors. 378 */ 379 bio = bio_alloc(GFP_KERNEL, nr_vecs); 380 381 bio->bi_bdev = bdev; 382 bio->bi_iter.bi_sector = first_sector; 383 bio_set_op_attrs(bio, dio->op, dio->op_flags); 384 if (dio->is_async) 385 bio->bi_end_io = dio_bio_end_aio; 386 else 387 bio->bi_end_io = dio_bio_end_io; 388 389 sdio->bio = bio; 390 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset; 391 } 392 393 /* 394 * In the AIO read case we speculatively dirty the pages before starting IO. 395 * During IO completion, any of these pages which happen to have been written 396 * back will be redirtied by bio_check_pages_dirty(). 397 * 398 * bios hold a dio reference between submit_bio and ->end_io. 399 */ 400 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio) 401 { 402 struct bio *bio = sdio->bio; 403 unsigned long flags; 404 405 bio->bi_private = dio; 406 407 spin_lock_irqsave(&dio->bio_lock, flags); 408 dio->refcount++; 409 spin_unlock_irqrestore(&dio->bio_lock, flags); 410 411 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) 412 bio_set_pages_dirty(bio); 413 414 dio->bio_bdev = bio->bi_bdev; 415 416 if (sdio->submit_io) { 417 sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio); 418 dio->bio_cookie = BLK_QC_T_NONE; 419 } else 420 dio->bio_cookie = submit_bio(bio); 421 422 sdio->bio = NULL; 423 sdio->boundary = 0; 424 sdio->logical_offset_in_bio = 0; 425 } 426 427 /* 428 * Release any resources in case of a failure 429 */ 430 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio) 431 { 432 while (sdio->head < sdio->tail) 433 put_page(dio->pages[sdio->head++]); 434 } 435 436 /* 437 * Wait for the next BIO to complete. Remove it and return it. NULL is 438 * returned once all BIOs have been completed. This must only be called once 439 * all bios have been issued so that dio->refcount can only decrease. This 440 * requires that that the caller hold a reference on the dio. 441 */ 442 static struct bio *dio_await_one(struct dio *dio) 443 { 444 unsigned long flags; 445 struct bio *bio = NULL; 446 447 spin_lock_irqsave(&dio->bio_lock, flags); 448 449 /* 450 * Wait as long as the list is empty and there are bios in flight. bio 451 * completion drops the count, maybe adds to the list, and wakes while 452 * holding the bio_lock so we don't need set_current_state()'s barrier 453 * and can call it after testing our condition. 454 */ 455 while (dio->refcount > 1 && dio->bio_list == NULL) { 456 __set_current_state(TASK_UNINTERRUPTIBLE); 457 dio->waiter = current; 458 spin_unlock_irqrestore(&dio->bio_lock, flags); 459 if (!(dio->iocb->ki_flags & IOCB_HIPRI) || 460 !blk_poll(bdev_get_queue(dio->bio_bdev), dio->bio_cookie)) 461 io_schedule(); 462 /* wake up sets us TASK_RUNNING */ 463 spin_lock_irqsave(&dio->bio_lock, flags); 464 dio->waiter = NULL; 465 } 466 if (dio->bio_list) { 467 bio = dio->bio_list; 468 dio->bio_list = bio->bi_private; 469 } 470 spin_unlock_irqrestore(&dio->bio_lock, flags); 471 return bio; 472 } 473 474 /* 475 * Process one completed BIO. No locks are held. 476 */ 477 static int dio_bio_complete(struct dio *dio, struct bio *bio) 478 { 479 struct bio_vec *bvec; 480 unsigned i; 481 int err; 482 483 if (bio->bi_error) 484 dio->io_error = -EIO; 485 486 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) { 487 err = bio->bi_error; 488 bio_check_pages_dirty(bio); /* transfers ownership */ 489 } else { 490 bio_for_each_segment_all(bvec, bio, i) { 491 struct page *page = bvec->bv_page; 492 493 if (dio->op == REQ_OP_READ && !PageCompound(page) && 494 dio->should_dirty) 495 set_page_dirty_lock(page); 496 put_page(page); 497 } 498 err = bio->bi_error; 499 bio_put(bio); 500 } 501 return err; 502 } 503 504 /* 505 * Wait on and process all in-flight BIOs. This must only be called once 506 * all bios have been issued so that the refcount can only decrease. 507 * This just waits for all bios to make it through dio_bio_complete. IO 508 * errors are propagated through dio->io_error and should be propagated via 509 * dio_complete(). 510 */ 511 static void dio_await_completion(struct dio *dio) 512 { 513 struct bio *bio; 514 do { 515 bio = dio_await_one(dio); 516 if (bio) 517 dio_bio_complete(dio, bio); 518 } while (bio); 519 } 520 521 /* 522 * A really large O_DIRECT read or write can generate a lot of BIOs. So 523 * to keep the memory consumption sane we periodically reap any completed BIOs 524 * during the BIO generation phase. 525 * 526 * This also helps to limit the peak amount of pinned userspace memory. 527 */ 528 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio) 529 { 530 int ret = 0; 531 532 if (sdio->reap_counter++ >= 64) { 533 while (dio->bio_list) { 534 unsigned long flags; 535 struct bio *bio; 536 int ret2; 537 538 spin_lock_irqsave(&dio->bio_lock, flags); 539 bio = dio->bio_list; 540 dio->bio_list = bio->bi_private; 541 spin_unlock_irqrestore(&dio->bio_lock, flags); 542 ret2 = dio_bio_complete(dio, bio); 543 if (ret == 0) 544 ret = ret2; 545 } 546 sdio->reap_counter = 0; 547 } 548 return ret; 549 } 550 551 /* 552 * Create workqueue for deferred direct IO completions. We allocate the 553 * workqueue when it's first needed. This avoids creating workqueue for 554 * filesystems that don't need it and also allows us to create the workqueue 555 * late enough so the we can include s_id in the name of the workqueue. 556 */ 557 static int sb_init_dio_done_wq(struct super_block *sb) 558 { 559 struct workqueue_struct *old; 560 struct workqueue_struct *wq = alloc_workqueue("dio/%s", 561 WQ_MEM_RECLAIM, 0, 562 sb->s_id); 563 if (!wq) 564 return -ENOMEM; 565 /* 566 * This has to be atomic as more DIOs can race to create the workqueue 567 */ 568 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq); 569 /* Someone created workqueue before us? Free ours... */ 570 if (old) 571 destroy_workqueue(wq); 572 return 0; 573 } 574 575 static int dio_set_defer_completion(struct dio *dio) 576 { 577 struct super_block *sb = dio->inode->i_sb; 578 579 if (dio->defer_completion) 580 return 0; 581 dio->defer_completion = true; 582 if (!sb->s_dio_done_wq) 583 return sb_init_dio_done_wq(sb); 584 return 0; 585 } 586 587 /* 588 * Call into the fs to map some more disk blocks. We record the current number 589 * of available blocks at sdio->blocks_available. These are in units of the 590 * fs blocksize, (1 << inode->i_blkbits). 591 * 592 * The fs is allowed to map lots of blocks at once. If it wants to do that, 593 * it uses the passed inode-relative block number as the file offset, as usual. 594 * 595 * get_block() is passed the number of i_blkbits-sized blocks which direct_io 596 * has remaining to do. The fs should not map more than this number of blocks. 597 * 598 * If the fs has mapped a lot of blocks, it should populate bh->b_size to 599 * indicate how much contiguous disk space has been made available at 600 * bh->b_blocknr. 601 * 602 * If *any* of the mapped blocks are new, then the fs must set buffer_new(). 603 * This isn't very efficient... 604 * 605 * In the case of filesystem holes: the fs may return an arbitrarily-large 606 * hole by returning an appropriate value in b_size and by clearing 607 * buffer_mapped(). However the direct-io code will only process holes one 608 * block at a time - it will repeatedly call get_block() as it walks the hole. 609 */ 610 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio, 611 struct buffer_head *map_bh) 612 { 613 int ret; 614 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ 615 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */ 616 unsigned long fs_count; /* Number of filesystem-sized blocks */ 617 int create; 618 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor; 619 620 /* 621 * If there was a memory error and we've overwritten all the 622 * mapped blocks then we can now return that memory error 623 */ 624 ret = dio->page_errors; 625 if (ret == 0) { 626 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request); 627 fs_startblk = sdio->block_in_file >> sdio->blkfactor; 628 fs_endblk = (sdio->final_block_in_request - 1) >> 629 sdio->blkfactor; 630 fs_count = fs_endblk - fs_startblk + 1; 631 632 map_bh->b_state = 0; 633 map_bh->b_size = fs_count << i_blkbits; 634 635 /* 636 * For writes that could fill holes inside i_size on a 637 * DIO_SKIP_HOLES filesystem we forbid block creations: only 638 * overwrites are permitted. We will return early to the caller 639 * once we see an unmapped buffer head returned, and the caller 640 * will fall back to buffered I/O. 641 * 642 * Otherwise the decision is left to the get_blocks method, 643 * which may decide to handle it or also return an unmapped 644 * buffer head. 645 */ 646 create = dio->op == REQ_OP_WRITE; 647 if (dio->flags & DIO_SKIP_HOLES) { 648 if (fs_startblk <= ((i_size_read(dio->inode) - 1) >> 649 i_blkbits)) 650 create = 0; 651 } 652 653 ret = (*sdio->get_block)(dio->inode, fs_startblk, 654 map_bh, create); 655 656 /* Store for completion */ 657 dio->private = map_bh->b_private; 658 659 if (ret == 0 && buffer_defer_completion(map_bh)) 660 ret = dio_set_defer_completion(dio); 661 } 662 return ret; 663 } 664 665 /* 666 * There is no bio. Make one now. 667 */ 668 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio, 669 sector_t start_sector, struct buffer_head *map_bh) 670 { 671 sector_t sector; 672 int ret, nr_pages; 673 674 ret = dio_bio_reap(dio, sdio); 675 if (ret) 676 goto out; 677 sector = start_sector << (sdio->blkbits - 9); 678 nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES); 679 BUG_ON(nr_pages <= 0); 680 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages); 681 sdio->boundary = 0; 682 out: 683 return ret; 684 } 685 686 /* 687 * Attempt to put the current chunk of 'cur_page' into the current BIO. If 688 * that was successful then update final_block_in_bio and take a ref against 689 * the just-added page. 690 * 691 * Return zero on success. Non-zero means the caller needs to start a new BIO. 692 */ 693 static inline int dio_bio_add_page(struct dio_submit *sdio) 694 { 695 int ret; 696 697 ret = bio_add_page(sdio->bio, sdio->cur_page, 698 sdio->cur_page_len, sdio->cur_page_offset); 699 if (ret == sdio->cur_page_len) { 700 /* 701 * Decrement count only, if we are done with this page 702 */ 703 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE) 704 sdio->pages_in_io--; 705 get_page(sdio->cur_page); 706 sdio->final_block_in_bio = sdio->cur_page_block + 707 (sdio->cur_page_len >> sdio->blkbits); 708 ret = 0; 709 } else { 710 ret = 1; 711 } 712 return ret; 713 } 714 715 /* 716 * Put cur_page under IO. The section of cur_page which is described by 717 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page 718 * starts on-disk at cur_page_block. 719 * 720 * We take a ref against the page here (on behalf of its presence in the bio). 721 * 722 * The caller of this function is responsible for removing cur_page from the 723 * dio, and for dropping the refcount which came from that presence. 724 */ 725 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio, 726 struct buffer_head *map_bh) 727 { 728 int ret = 0; 729 730 if (sdio->bio) { 731 loff_t cur_offset = sdio->cur_page_fs_offset; 732 loff_t bio_next_offset = sdio->logical_offset_in_bio + 733 sdio->bio->bi_iter.bi_size; 734 735 /* 736 * See whether this new request is contiguous with the old. 737 * 738 * Btrfs cannot handle having logically non-contiguous requests 739 * submitted. For example if you have 740 * 741 * Logical: [0-4095][HOLE][8192-12287] 742 * Physical: [0-4095] [4096-8191] 743 * 744 * We cannot submit those pages together as one BIO. So if our 745 * current logical offset in the file does not equal what would 746 * be the next logical offset in the bio, submit the bio we 747 * have. 748 */ 749 if (sdio->final_block_in_bio != sdio->cur_page_block || 750 cur_offset != bio_next_offset) 751 dio_bio_submit(dio, sdio); 752 } 753 754 if (sdio->bio == NULL) { 755 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 756 if (ret) 757 goto out; 758 } 759 760 if (dio_bio_add_page(sdio) != 0) { 761 dio_bio_submit(dio, sdio); 762 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 763 if (ret == 0) { 764 ret = dio_bio_add_page(sdio); 765 BUG_ON(ret != 0); 766 } 767 } 768 out: 769 return ret; 770 } 771 772 /* 773 * An autonomous function to put a chunk of a page under deferred IO. 774 * 775 * The caller doesn't actually know (or care) whether this piece of page is in 776 * a BIO, or is under IO or whatever. We just take care of all possible 777 * situations here. The separation between the logic of do_direct_IO() and 778 * that of submit_page_section() is important for clarity. Please don't break. 779 * 780 * The chunk of page starts on-disk at blocknr. 781 * 782 * We perform deferred IO, by recording the last-submitted page inside our 783 * private part of the dio structure. If possible, we just expand the IO 784 * across that page here. 785 * 786 * If that doesn't work out then we put the old page into the bio and add this 787 * page to the dio instead. 788 */ 789 static inline int 790 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page, 791 unsigned offset, unsigned len, sector_t blocknr, 792 struct buffer_head *map_bh) 793 { 794 int ret = 0; 795 796 if (dio->op == REQ_OP_WRITE) { 797 /* 798 * Read accounting is performed in submit_bio() 799 */ 800 task_io_account_write(len); 801 } 802 803 /* 804 * Can we just grow the current page's presence in the dio? 805 */ 806 if (sdio->cur_page == page && 807 sdio->cur_page_offset + sdio->cur_page_len == offset && 808 sdio->cur_page_block + 809 (sdio->cur_page_len >> sdio->blkbits) == blocknr) { 810 sdio->cur_page_len += len; 811 goto out; 812 } 813 814 /* 815 * If there's a deferred page already there then send it. 816 */ 817 if (sdio->cur_page) { 818 ret = dio_send_cur_page(dio, sdio, map_bh); 819 put_page(sdio->cur_page); 820 sdio->cur_page = NULL; 821 if (ret) 822 return ret; 823 } 824 825 get_page(page); /* It is in dio */ 826 sdio->cur_page = page; 827 sdio->cur_page_offset = offset; 828 sdio->cur_page_len = len; 829 sdio->cur_page_block = blocknr; 830 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits; 831 out: 832 /* 833 * If sdio->boundary then we want to schedule the IO now to 834 * avoid metadata seeks. 835 */ 836 if (sdio->boundary) { 837 ret = dio_send_cur_page(dio, sdio, map_bh); 838 dio_bio_submit(dio, sdio); 839 put_page(sdio->cur_page); 840 sdio->cur_page = NULL; 841 } 842 return ret; 843 } 844 845 /* 846 * Clean any dirty buffers in the blockdev mapping which alias newly-created 847 * file blocks. Only called for S_ISREG files - blockdevs do not set 848 * buffer_new 849 */ 850 static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh) 851 { 852 unsigned i; 853 unsigned nblocks; 854 855 nblocks = map_bh->b_size >> dio->inode->i_blkbits; 856 857 for (i = 0; i < nblocks; i++) { 858 unmap_underlying_metadata(map_bh->b_bdev, 859 map_bh->b_blocknr + i); 860 } 861 } 862 863 /* 864 * If we are not writing the entire block and get_block() allocated 865 * the block for us, we need to fill-in the unused portion of the 866 * block with zeros. This happens only if user-buffer, fileoffset or 867 * io length is not filesystem block-size multiple. 868 * 869 * `end' is zero if we're doing the start of the IO, 1 at the end of the 870 * IO. 871 */ 872 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio, 873 int end, struct buffer_head *map_bh) 874 { 875 unsigned dio_blocks_per_fs_block; 876 unsigned this_chunk_blocks; /* In dio_blocks */ 877 unsigned this_chunk_bytes; 878 struct page *page; 879 880 sdio->start_zero_done = 1; 881 if (!sdio->blkfactor || !buffer_new(map_bh)) 882 return; 883 884 dio_blocks_per_fs_block = 1 << sdio->blkfactor; 885 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1); 886 887 if (!this_chunk_blocks) 888 return; 889 890 /* 891 * We need to zero out part of an fs block. It is either at the 892 * beginning or the end of the fs block. 893 */ 894 if (end) 895 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; 896 897 this_chunk_bytes = this_chunk_blocks << sdio->blkbits; 898 899 page = ZERO_PAGE(0); 900 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes, 901 sdio->next_block_for_io, map_bh)) 902 return; 903 904 sdio->next_block_for_io += this_chunk_blocks; 905 } 906 907 /* 908 * Walk the user pages, and the file, mapping blocks to disk and generating 909 * a sequence of (page,offset,len,block) mappings. These mappings are injected 910 * into submit_page_section(), which takes care of the next stage of submission 911 * 912 * Direct IO against a blockdev is different from a file. Because we can 913 * happily perform page-sized but 512-byte aligned IOs. It is important that 914 * blockdev IO be able to have fine alignment and large sizes. 915 * 916 * So what we do is to permit the ->get_block function to populate bh.b_size 917 * with the size of IO which is permitted at this offset and this i_blkbits. 918 * 919 * For best results, the blockdev should be set up with 512-byte i_blkbits and 920 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives 921 * fine alignment but still allows this function to work in PAGE_SIZE units. 922 */ 923 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio, 924 struct buffer_head *map_bh) 925 { 926 const unsigned blkbits = sdio->blkbits; 927 int ret = 0; 928 929 while (sdio->block_in_file < sdio->final_block_in_request) { 930 struct page *page; 931 size_t from, to; 932 933 page = dio_get_page(dio, sdio); 934 if (IS_ERR(page)) { 935 ret = PTR_ERR(page); 936 goto out; 937 } 938 from = sdio->head ? 0 : sdio->from; 939 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE; 940 sdio->head++; 941 942 while (from < to) { 943 unsigned this_chunk_bytes; /* # of bytes mapped */ 944 unsigned this_chunk_blocks; /* # of blocks */ 945 unsigned u; 946 947 if (sdio->blocks_available == 0) { 948 /* 949 * Need to go and map some more disk 950 */ 951 unsigned long blkmask; 952 unsigned long dio_remainder; 953 954 ret = get_more_blocks(dio, sdio, map_bh); 955 if (ret) { 956 put_page(page); 957 goto out; 958 } 959 if (!buffer_mapped(map_bh)) 960 goto do_holes; 961 962 sdio->blocks_available = 963 map_bh->b_size >> sdio->blkbits; 964 sdio->next_block_for_io = 965 map_bh->b_blocknr << sdio->blkfactor; 966 if (buffer_new(map_bh)) 967 clean_blockdev_aliases(dio, map_bh); 968 969 if (!sdio->blkfactor) 970 goto do_holes; 971 972 blkmask = (1 << sdio->blkfactor) - 1; 973 dio_remainder = (sdio->block_in_file & blkmask); 974 975 /* 976 * If we are at the start of IO and that IO 977 * starts partway into a fs-block, 978 * dio_remainder will be non-zero. If the IO 979 * is a read then we can simply advance the IO 980 * cursor to the first block which is to be 981 * read. But if the IO is a write and the 982 * block was newly allocated we cannot do that; 983 * the start of the fs block must be zeroed out 984 * on-disk 985 */ 986 if (!buffer_new(map_bh)) 987 sdio->next_block_for_io += dio_remainder; 988 sdio->blocks_available -= dio_remainder; 989 } 990 do_holes: 991 /* Handle holes */ 992 if (!buffer_mapped(map_bh)) { 993 loff_t i_size_aligned; 994 995 /* AKPM: eargh, -ENOTBLK is a hack */ 996 if (dio->op == REQ_OP_WRITE) { 997 put_page(page); 998 return -ENOTBLK; 999 } 1000 1001 /* 1002 * Be sure to account for a partial block as the 1003 * last block in the file 1004 */ 1005 i_size_aligned = ALIGN(i_size_read(dio->inode), 1006 1 << blkbits); 1007 if (sdio->block_in_file >= 1008 i_size_aligned >> blkbits) { 1009 /* We hit eof */ 1010 put_page(page); 1011 goto out; 1012 } 1013 zero_user(page, from, 1 << blkbits); 1014 sdio->block_in_file++; 1015 from += 1 << blkbits; 1016 dio->result += 1 << blkbits; 1017 goto next_block; 1018 } 1019 1020 /* 1021 * If we're performing IO which has an alignment which 1022 * is finer than the underlying fs, go check to see if 1023 * we must zero out the start of this block. 1024 */ 1025 if (unlikely(sdio->blkfactor && !sdio->start_zero_done)) 1026 dio_zero_block(dio, sdio, 0, map_bh); 1027 1028 /* 1029 * Work out, in this_chunk_blocks, how much disk we 1030 * can add to this page 1031 */ 1032 this_chunk_blocks = sdio->blocks_available; 1033 u = (to - from) >> blkbits; 1034 if (this_chunk_blocks > u) 1035 this_chunk_blocks = u; 1036 u = sdio->final_block_in_request - sdio->block_in_file; 1037 if (this_chunk_blocks > u) 1038 this_chunk_blocks = u; 1039 this_chunk_bytes = this_chunk_blocks << blkbits; 1040 BUG_ON(this_chunk_bytes == 0); 1041 1042 if (this_chunk_blocks == sdio->blocks_available) 1043 sdio->boundary = buffer_boundary(map_bh); 1044 ret = submit_page_section(dio, sdio, page, 1045 from, 1046 this_chunk_bytes, 1047 sdio->next_block_for_io, 1048 map_bh); 1049 if (ret) { 1050 put_page(page); 1051 goto out; 1052 } 1053 sdio->next_block_for_io += this_chunk_blocks; 1054 1055 sdio->block_in_file += this_chunk_blocks; 1056 from += this_chunk_bytes; 1057 dio->result += this_chunk_bytes; 1058 sdio->blocks_available -= this_chunk_blocks; 1059 next_block: 1060 BUG_ON(sdio->block_in_file > sdio->final_block_in_request); 1061 if (sdio->block_in_file == sdio->final_block_in_request) 1062 break; 1063 } 1064 1065 /* Drop the ref which was taken in get_user_pages() */ 1066 put_page(page); 1067 } 1068 out: 1069 return ret; 1070 } 1071 1072 static inline int drop_refcount(struct dio *dio) 1073 { 1074 int ret2; 1075 unsigned long flags; 1076 1077 /* 1078 * Sync will always be dropping the final ref and completing the 1079 * operation. AIO can if it was a broken operation described above or 1080 * in fact if all the bios race to complete before we get here. In 1081 * that case dio_complete() translates the EIOCBQUEUED into the proper 1082 * return code that the caller will hand to ->complete(). 1083 * 1084 * This is managed by the bio_lock instead of being an atomic_t so that 1085 * completion paths can drop their ref and use the remaining count to 1086 * decide to wake the submission path atomically. 1087 */ 1088 spin_lock_irqsave(&dio->bio_lock, flags); 1089 ret2 = --dio->refcount; 1090 spin_unlock_irqrestore(&dio->bio_lock, flags); 1091 return ret2; 1092 } 1093 1094 /* 1095 * This is a library function for use by filesystem drivers. 1096 * 1097 * The locking rules are governed by the flags parameter: 1098 * - if the flags value contains DIO_LOCKING we use a fancy locking 1099 * scheme for dumb filesystems. 1100 * For writes this function is called under i_mutex and returns with 1101 * i_mutex held, for reads, i_mutex is not held on entry, but it is 1102 * taken and dropped again before returning. 1103 * - if the flags value does NOT contain DIO_LOCKING we don't use any 1104 * internal locking but rather rely on the filesystem to synchronize 1105 * direct I/O reads/writes versus each other and truncate. 1106 * 1107 * To help with locking against truncate we incremented the i_dio_count 1108 * counter before starting direct I/O, and decrement it once we are done. 1109 * Truncate can wait for it to reach zero to provide exclusion. It is 1110 * expected that filesystem provide exclusion between new direct I/O 1111 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex, 1112 * but other filesystems need to take care of this on their own. 1113 * 1114 * NOTE: if you pass "sdio" to anything by pointer make sure that function 1115 * is always inlined. Otherwise gcc is unable to split the structure into 1116 * individual fields and will generate much worse code. This is important 1117 * for the whole file. 1118 */ 1119 static inline ssize_t 1120 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1121 struct block_device *bdev, struct iov_iter *iter, 1122 get_block_t get_block, dio_iodone_t end_io, 1123 dio_submit_t submit_io, int flags) 1124 { 1125 unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits); 1126 unsigned blkbits = i_blkbits; 1127 unsigned blocksize_mask = (1 << blkbits) - 1; 1128 ssize_t retval = -EINVAL; 1129 size_t count = iov_iter_count(iter); 1130 loff_t offset = iocb->ki_pos; 1131 loff_t end = offset + count; 1132 struct dio *dio; 1133 struct dio_submit sdio = { 0, }; 1134 struct buffer_head map_bh = { 0, }; 1135 struct blk_plug plug; 1136 unsigned long align = offset | iov_iter_alignment(iter); 1137 1138 /* 1139 * Avoid references to bdev if not absolutely needed to give 1140 * the early prefetch in the caller enough time. 1141 */ 1142 1143 if (align & blocksize_mask) { 1144 if (bdev) 1145 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 1146 blocksize_mask = (1 << blkbits) - 1; 1147 if (align & blocksize_mask) 1148 goto out; 1149 } 1150 1151 /* watch out for a 0 len io from a tricksy fs */ 1152 if (iov_iter_rw(iter) == READ && !iov_iter_count(iter)) 1153 return 0; 1154 1155 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL); 1156 retval = -ENOMEM; 1157 if (!dio) 1158 goto out; 1159 /* 1160 * Believe it or not, zeroing out the page array caused a .5% 1161 * performance regression in a database benchmark. So, we take 1162 * care to only zero out what's needed. 1163 */ 1164 memset(dio, 0, offsetof(struct dio, pages)); 1165 1166 dio->flags = flags; 1167 if (dio->flags & DIO_LOCKING) { 1168 if (iov_iter_rw(iter) == READ) { 1169 struct address_space *mapping = 1170 iocb->ki_filp->f_mapping; 1171 1172 /* will be released by direct_io_worker */ 1173 inode_lock(inode); 1174 1175 retval = filemap_write_and_wait_range(mapping, offset, 1176 end - 1); 1177 if (retval) { 1178 inode_unlock(inode); 1179 kmem_cache_free(dio_cache, dio); 1180 goto out; 1181 } 1182 } 1183 } 1184 1185 /* Once we sampled i_size check for reads beyond EOF */ 1186 dio->i_size = i_size_read(inode); 1187 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) { 1188 if (dio->flags & DIO_LOCKING) 1189 inode_unlock(inode); 1190 kmem_cache_free(dio_cache, dio); 1191 retval = 0; 1192 goto out; 1193 } 1194 1195 /* 1196 * For file extending writes updating i_size before data writeouts 1197 * complete can expose uninitialized blocks in dumb filesystems. 1198 * In that case we need to wait for I/O completion even if asked 1199 * for an asynchronous write. 1200 */ 1201 if (is_sync_kiocb(iocb)) 1202 dio->is_async = false; 1203 else if (!(dio->flags & DIO_ASYNC_EXTEND) && 1204 iov_iter_rw(iter) == WRITE && end > i_size_read(inode)) 1205 dio->is_async = false; 1206 else 1207 dio->is_async = true; 1208 1209 dio->inode = inode; 1210 if (iov_iter_rw(iter) == WRITE) { 1211 dio->op = REQ_OP_WRITE; 1212 dio->op_flags = WRITE_ODIRECT; 1213 } else { 1214 dio->op = REQ_OP_READ; 1215 } 1216 1217 /* 1218 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue 1219 * so that we can call ->fsync. 1220 */ 1221 if (dio->is_async && iov_iter_rw(iter) == WRITE && 1222 ((iocb->ki_filp->f_flags & O_DSYNC) || 1223 IS_SYNC(iocb->ki_filp->f_mapping->host))) { 1224 retval = dio_set_defer_completion(dio); 1225 if (retval) { 1226 /* 1227 * We grab i_mutex only for reads so we don't have 1228 * to release it here 1229 */ 1230 kmem_cache_free(dio_cache, dio); 1231 goto out; 1232 } 1233 } 1234 1235 /* 1236 * Will be decremented at I/O completion time. 1237 */ 1238 if (!(dio->flags & DIO_SKIP_DIO_COUNT)) 1239 inode_dio_begin(inode); 1240 1241 retval = 0; 1242 sdio.blkbits = blkbits; 1243 sdio.blkfactor = i_blkbits - blkbits; 1244 sdio.block_in_file = offset >> blkbits; 1245 1246 sdio.get_block = get_block; 1247 dio->end_io = end_io; 1248 sdio.submit_io = submit_io; 1249 sdio.final_block_in_bio = -1; 1250 sdio.next_block_for_io = -1; 1251 1252 dio->iocb = iocb; 1253 1254 spin_lock_init(&dio->bio_lock); 1255 dio->refcount = 1; 1256 1257 dio->should_dirty = (iter->type == ITER_IOVEC); 1258 sdio.iter = iter; 1259 sdio.final_block_in_request = 1260 (offset + iov_iter_count(iter)) >> blkbits; 1261 1262 /* 1263 * In case of non-aligned buffers, we may need 2 more 1264 * pages since we need to zero out first and last block. 1265 */ 1266 if (unlikely(sdio.blkfactor)) 1267 sdio.pages_in_io = 2; 1268 1269 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX); 1270 1271 blk_start_plug(&plug); 1272 1273 retval = do_direct_IO(dio, &sdio, &map_bh); 1274 if (retval) 1275 dio_cleanup(dio, &sdio); 1276 1277 if (retval == -ENOTBLK) { 1278 /* 1279 * The remaining part of the request will be 1280 * be handled by buffered I/O when we return 1281 */ 1282 retval = 0; 1283 } 1284 /* 1285 * There may be some unwritten disk at the end of a part-written 1286 * fs-block-sized block. Go zero that now. 1287 */ 1288 dio_zero_block(dio, &sdio, 1, &map_bh); 1289 1290 if (sdio.cur_page) { 1291 ssize_t ret2; 1292 1293 ret2 = dio_send_cur_page(dio, &sdio, &map_bh); 1294 if (retval == 0) 1295 retval = ret2; 1296 put_page(sdio.cur_page); 1297 sdio.cur_page = NULL; 1298 } 1299 if (sdio.bio) 1300 dio_bio_submit(dio, &sdio); 1301 1302 blk_finish_plug(&plug); 1303 1304 /* 1305 * It is possible that, we return short IO due to end of file. 1306 * In that case, we need to release all the pages we got hold on. 1307 */ 1308 dio_cleanup(dio, &sdio); 1309 1310 /* 1311 * All block lookups have been performed. For READ requests 1312 * we can let i_mutex go now that its achieved its purpose 1313 * of protecting us from looking up uninitialized blocks. 1314 */ 1315 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING)) 1316 inode_unlock(dio->inode); 1317 1318 /* 1319 * The only time we want to leave bios in flight is when a successful 1320 * partial aio read or full aio write have been setup. In that case 1321 * bio completion will call aio_complete. The only time it's safe to 1322 * call aio_complete is when we return -EIOCBQUEUED, so we key on that. 1323 * This had *better* be the only place that raises -EIOCBQUEUED. 1324 */ 1325 BUG_ON(retval == -EIOCBQUEUED); 1326 if (dio->is_async && retval == 0 && dio->result && 1327 (iov_iter_rw(iter) == READ || dio->result == count)) 1328 retval = -EIOCBQUEUED; 1329 else 1330 dio_await_completion(dio); 1331 1332 if (drop_refcount(dio) == 0) { 1333 retval = dio_complete(dio, retval, false); 1334 } else 1335 BUG_ON(retval != -EIOCBQUEUED); 1336 1337 out: 1338 return retval; 1339 } 1340 1341 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1342 struct block_device *bdev, struct iov_iter *iter, 1343 get_block_t get_block, 1344 dio_iodone_t end_io, dio_submit_t submit_io, 1345 int flags) 1346 { 1347 /* 1348 * The block device state is needed in the end to finally 1349 * submit everything. Since it's likely to be cache cold 1350 * prefetch it here as first thing to hide some of the 1351 * latency. 1352 * 1353 * Attempt to prefetch the pieces we likely need later. 1354 */ 1355 prefetch(&bdev->bd_disk->part_tbl); 1356 prefetch(bdev->bd_queue); 1357 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES); 1358 1359 return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block, 1360 end_io, submit_io, flags); 1361 } 1362 1363 EXPORT_SYMBOL(__blockdev_direct_IO); 1364 1365 static __init int dio_init(void) 1366 { 1367 dio_cache = KMEM_CACHE(dio, SLAB_PANIC); 1368 return 0; 1369 } 1370 module_init(dio_init) 1371