1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/direct-io.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * O_DIRECT 8 * 9 * 04Jul2002 Andrew Morton 10 * Initial version 11 * 11Sep2002 janetinc@us.ibm.com 12 * added readv/writev support. 13 * 29Oct2002 Andrew Morton 14 * rewrote bio_add_page() support. 15 * 30Oct2002 pbadari@us.ibm.com 16 * added support for non-aligned IO. 17 * 06Nov2002 pbadari@us.ibm.com 18 * added asynchronous IO support. 19 * 21Jul2003 nathans@sgi.com 20 * added IO completion notifier. 21 */ 22 23 #include <linux/kernel.h> 24 #include <linux/module.h> 25 #include <linux/types.h> 26 #include <linux/fs.h> 27 #include <linux/mm.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/pagemap.h> 31 #include <linux/task_io_accounting_ops.h> 32 #include <linux/bio.h> 33 #include <linux/wait.h> 34 #include <linux/err.h> 35 #include <linux/blkdev.h> 36 #include <linux/buffer_head.h> 37 #include <linux/rwsem.h> 38 #include <linux/uio.h> 39 #include <linux/atomic.h> 40 #include <linux/prefetch.h> 41 42 #include "internal.h" 43 44 /* 45 * How many user pages to map in one call to iov_iter_extract_pages(). This 46 * determines the size of a structure in the slab cache 47 */ 48 #define DIO_PAGES 64 49 50 /* 51 * Flags for dio_complete() 52 */ 53 #define DIO_COMPLETE_ASYNC 0x01 /* This is async IO */ 54 #define DIO_COMPLETE_INVALIDATE 0x02 /* Can invalidate pages */ 55 56 /* 57 * This code generally works in units of "dio_blocks". A dio_block is 58 * somewhere between the hard sector size and the filesystem block size. it 59 * is determined on a per-invocation basis. When talking to the filesystem 60 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity 61 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted 62 * to bio_block quantities by shifting left by blkfactor. 63 * 64 * If blkfactor is zero then the user's request was aligned to the filesystem's 65 * blocksize. 66 */ 67 68 /* dio_state only used in the submission path */ 69 70 struct dio_submit { 71 struct bio *bio; /* bio under assembly */ 72 unsigned blkbits; /* doesn't change */ 73 unsigned blkfactor; /* When we're using an alignment which 74 is finer than the filesystem's soft 75 blocksize, this specifies how much 76 finer. blkfactor=2 means 1/4-block 77 alignment. Does not change */ 78 unsigned start_zero_done; /* flag: sub-blocksize zeroing has 79 been performed at the start of a 80 write */ 81 int pages_in_io; /* approximate total IO pages */ 82 sector_t block_in_file; /* Current offset into the underlying 83 file in dio_block units. */ 84 unsigned blocks_available; /* At block_in_file. changes */ 85 int reap_counter; /* rate limit reaping */ 86 sector_t final_block_in_request;/* doesn't change */ 87 int boundary; /* prev block is at a boundary */ 88 get_block_t *get_block; /* block mapping function */ 89 90 loff_t logical_offset_in_bio; /* current first logical block in bio */ 91 sector_t final_block_in_bio; /* current final block in bio + 1 */ 92 sector_t next_block_for_io; /* next block to be put under IO, 93 in dio_blocks units */ 94 95 /* 96 * Deferred addition of a page to the dio. These variables are 97 * private to dio_send_cur_page(), submit_page_section() and 98 * dio_bio_add_page(). 99 */ 100 struct page *cur_page; /* The page */ 101 unsigned cur_page_offset; /* Offset into it, in bytes */ 102 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ 103 sector_t cur_page_block; /* Where it starts */ 104 loff_t cur_page_fs_offset; /* Offset in file */ 105 106 struct iov_iter *iter; 107 /* 108 * Page queue. These variables belong to dio_refill_pages() and 109 * dio_get_page(). 110 */ 111 unsigned head; /* next page to process */ 112 unsigned tail; /* last valid page + 1 */ 113 size_t from, to; 114 }; 115 116 /* dio_state communicated between submission path and end_io */ 117 struct dio { 118 int flags; /* doesn't change */ 119 blk_opf_t opf; /* request operation type and flags */ 120 struct gendisk *bio_disk; 121 struct inode *inode; 122 loff_t i_size; /* i_size when submitted */ 123 dio_iodone_t *end_io; /* IO completion function */ 124 bool is_pinned; /* T if we have pins on the pages */ 125 126 void *private; /* copy from map_bh.b_private */ 127 128 /* BIO completion state */ 129 spinlock_t bio_lock; /* protects BIO fields below */ 130 int page_errors; /* err from iov_iter_extract_pages() */ 131 int is_async; /* is IO async ? */ 132 bool defer_completion; /* defer AIO completion to workqueue? */ 133 bool should_dirty; /* if pages should be dirtied */ 134 int io_error; /* IO error in completion path */ 135 unsigned long refcount; /* direct_io_worker() and bios */ 136 struct bio *bio_list; /* singly linked via bi_private */ 137 struct task_struct *waiter; /* waiting task (NULL if none) */ 138 139 /* AIO related stuff */ 140 struct kiocb *iocb; /* kiocb */ 141 ssize_t result; /* IO result */ 142 143 /* 144 * pages[] (and any fields placed after it) are not zeroed out at 145 * allocation time. Don't add new fields after pages[] unless you 146 * wish that they not be zeroed. 147 */ 148 union { 149 struct page *pages[DIO_PAGES]; /* page buffer */ 150 struct work_struct complete_work;/* deferred AIO completion */ 151 }; 152 } ____cacheline_aligned_in_smp; 153 154 static struct kmem_cache *dio_cache __read_mostly; 155 156 /* 157 * How many pages are in the queue? 158 */ 159 static inline unsigned dio_pages_present(struct dio_submit *sdio) 160 { 161 return sdio->tail - sdio->head; 162 } 163 164 /* 165 * Go grab and pin some userspace pages. Typically we'll get 64 at a time. 166 */ 167 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio) 168 { 169 struct page **pages = dio->pages; 170 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 171 ssize_t ret; 172 173 ret = iov_iter_extract_pages(sdio->iter, &pages, LONG_MAX, 174 DIO_PAGES, 0, &sdio->from); 175 176 if (ret < 0 && sdio->blocks_available && dio_op == REQ_OP_WRITE) { 177 /* 178 * A memory fault, but the filesystem has some outstanding 179 * mapped blocks. We need to use those blocks up to avoid 180 * leaking stale data in the file. 181 */ 182 if (dio->page_errors == 0) 183 dio->page_errors = ret; 184 dio->pages[0] = ZERO_PAGE(0); 185 sdio->head = 0; 186 sdio->tail = 1; 187 sdio->from = 0; 188 sdio->to = PAGE_SIZE; 189 return 0; 190 } 191 192 if (ret >= 0) { 193 ret += sdio->from; 194 sdio->head = 0; 195 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE; 196 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1; 197 return 0; 198 } 199 return ret; 200 } 201 202 /* 203 * Get another userspace page. Returns an ERR_PTR on error. Pages are 204 * buffered inside the dio so that we can call iov_iter_extract_pages() 205 * against a decent number of pages, less frequently. To provide nicer use of 206 * the L1 cache. 207 */ 208 static inline struct page *dio_get_page(struct dio *dio, 209 struct dio_submit *sdio) 210 { 211 if (dio_pages_present(sdio) == 0) { 212 int ret; 213 214 ret = dio_refill_pages(dio, sdio); 215 if (ret) 216 return ERR_PTR(ret); 217 BUG_ON(dio_pages_present(sdio) == 0); 218 } 219 return dio->pages[sdio->head]; 220 } 221 222 static void dio_pin_page(struct dio *dio, struct page *page) 223 { 224 if (dio->is_pinned) 225 folio_add_pin(page_folio(page)); 226 } 227 228 static void dio_unpin_page(struct dio *dio, struct page *page) 229 { 230 if (dio->is_pinned) 231 unpin_user_page(page); 232 } 233 234 /* 235 * dio_complete() - called when all DIO BIO I/O has been completed 236 * 237 * This drops i_dio_count, lets interested parties know that a DIO operation 238 * has completed, and calculates the resulting return code for the operation. 239 * 240 * It lets the filesystem know if it registered an interest earlier via 241 * get_block. Pass the private field of the map buffer_head so that 242 * filesystems can use it to hold additional state between get_block calls and 243 * dio_complete. 244 */ 245 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags) 246 { 247 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 248 loff_t offset = dio->iocb->ki_pos; 249 ssize_t transferred = 0; 250 int err; 251 252 /* 253 * AIO submission can race with bio completion to get here while 254 * expecting to have the last io completed by bio completion. 255 * In that case -EIOCBQUEUED is in fact not an error we want 256 * to preserve through this call. 257 */ 258 if (ret == -EIOCBQUEUED) 259 ret = 0; 260 261 if (dio->result) { 262 transferred = dio->result; 263 264 /* Check for short read case */ 265 if (dio_op == REQ_OP_READ && 266 ((offset + transferred) > dio->i_size)) 267 transferred = dio->i_size - offset; 268 /* ignore EFAULT if some IO has been done */ 269 if (unlikely(ret == -EFAULT) && transferred) 270 ret = 0; 271 } 272 273 if (ret == 0) 274 ret = dio->page_errors; 275 if (ret == 0) 276 ret = dio->io_error; 277 if (ret == 0) 278 ret = transferred; 279 280 if (dio->end_io) { 281 // XXX: ki_pos?? 282 err = dio->end_io(dio->iocb, offset, ret, dio->private); 283 if (err) 284 ret = err; 285 } 286 287 /* 288 * Try again to invalidate clean pages which might have been cached by 289 * non-direct readahead, or faulted in by get_user_pages() if the source 290 * of the write was an mmap'ed region of the file we're writing. Either 291 * one is a pretty crazy thing to do, so we don't support it 100%. If 292 * this invalidation fails, tough, the write still worked... 293 * 294 * And this page cache invalidation has to be after dio->end_io(), as 295 * some filesystems convert unwritten extents to real allocations in 296 * end_io() when necessary, otherwise a racing buffer read would cache 297 * zeros from unwritten extents. 298 */ 299 if (flags & DIO_COMPLETE_INVALIDATE && 300 ret > 0 && dio_op == REQ_OP_WRITE && 301 dio->inode->i_mapping->nrpages) { 302 err = invalidate_inode_pages2_range(dio->inode->i_mapping, 303 offset >> PAGE_SHIFT, 304 (offset + ret - 1) >> PAGE_SHIFT); 305 if (err) 306 dio_warn_stale_pagecache(dio->iocb->ki_filp); 307 } 308 309 inode_dio_end(dio->inode); 310 311 if (flags & DIO_COMPLETE_ASYNC) { 312 /* 313 * generic_write_sync expects ki_pos to have been updated 314 * already, but the submission path only does this for 315 * synchronous I/O. 316 */ 317 dio->iocb->ki_pos += transferred; 318 319 if (ret > 0 && dio_op == REQ_OP_WRITE) 320 ret = generic_write_sync(dio->iocb, ret); 321 dio->iocb->ki_complete(dio->iocb, ret); 322 } 323 324 kmem_cache_free(dio_cache, dio); 325 return ret; 326 } 327 328 static void dio_aio_complete_work(struct work_struct *work) 329 { 330 struct dio *dio = container_of(work, struct dio, complete_work); 331 332 dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE); 333 } 334 335 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio); 336 337 /* 338 * Asynchronous IO callback. 339 */ 340 static void dio_bio_end_aio(struct bio *bio) 341 { 342 struct dio *dio = bio->bi_private; 343 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 344 unsigned long remaining; 345 unsigned long flags; 346 bool defer_completion = false; 347 348 /* cleanup the bio */ 349 dio_bio_complete(dio, bio); 350 351 spin_lock_irqsave(&dio->bio_lock, flags); 352 remaining = --dio->refcount; 353 if (remaining == 1 && dio->waiter) 354 wake_up_process(dio->waiter); 355 spin_unlock_irqrestore(&dio->bio_lock, flags); 356 357 if (remaining == 0) { 358 /* 359 * Defer completion when defer_completion is set or 360 * when the inode has pages mapped and this is AIO write. 361 * We need to invalidate those pages because there is a 362 * chance they contain stale data in the case buffered IO 363 * went in between AIO submission and completion into the 364 * same region. 365 */ 366 if (dio->result) 367 defer_completion = dio->defer_completion || 368 (dio_op == REQ_OP_WRITE && 369 dio->inode->i_mapping->nrpages); 370 if (defer_completion) { 371 INIT_WORK(&dio->complete_work, dio_aio_complete_work); 372 queue_work(dio->inode->i_sb->s_dio_done_wq, 373 &dio->complete_work); 374 } else { 375 dio_complete(dio, 0, DIO_COMPLETE_ASYNC); 376 } 377 } 378 } 379 380 /* 381 * The BIO completion handler simply queues the BIO up for the process-context 382 * handler. 383 * 384 * During I/O bi_private points at the dio. After I/O, bi_private is used to 385 * implement a singly-linked list of completed BIOs, at dio->bio_list. 386 */ 387 static void dio_bio_end_io(struct bio *bio) 388 { 389 struct dio *dio = bio->bi_private; 390 unsigned long flags; 391 392 spin_lock_irqsave(&dio->bio_lock, flags); 393 bio->bi_private = dio->bio_list; 394 dio->bio_list = bio; 395 if (--dio->refcount == 1 && dio->waiter) 396 wake_up_process(dio->waiter); 397 spin_unlock_irqrestore(&dio->bio_lock, flags); 398 } 399 400 static inline void 401 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio, 402 struct block_device *bdev, 403 sector_t first_sector, int nr_vecs) 404 { 405 struct bio *bio; 406 407 /* 408 * bio_alloc() is guaranteed to return a bio when allowed to sleep and 409 * we request a valid number of vectors. 410 */ 411 bio = bio_alloc(bdev, nr_vecs, dio->opf, GFP_KERNEL); 412 bio->bi_iter.bi_sector = first_sector; 413 if (dio->is_async) 414 bio->bi_end_io = dio_bio_end_aio; 415 else 416 bio->bi_end_io = dio_bio_end_io; 417 if (dio->is_pinned) 418 bio_set_flag(bio, BIO_PAGE_PINNED); 419 sdio->bio = bio; 420 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset; 421 } 422 423 /* 424 * In the AIO read case we speculatively dirty the pages before starting IO. 425 * During IO completion, any of these pages which happen to have been written 426 * back will be redirtied by bio_check_pages_dirty(). 427 * 428 * bios hold a dio reference between submit_bio and ->end_io. 429 */ 430 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio) 431 { 432 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 433 struct bio *bio = sdio->bio; 434 unsigned long flags; 435 436 bio->bi_private = dio; 437 438 spin_lock_irqsave(&dio->bio_lock, flags); 439 dio->refcount++; 440 spin_unlock_irqrestore(&dio->bio_lock, flags); 441 442 if (dio->is_async && dio_op == REQ_OP_READ && dio->should_dirty) 443 bio_set_pages_dirty(bio); 444 445 dio->bio_disk = bio->bi_bdev->bd_disk; 446 447 submit_bio(bio); 448 449 sdio->bio = NULL; 450 sdio->boundary = 0; 451 sdio->logical_offset_in_bio = 0; 452 } 453 454 /* 455 * Release any resources in case of a failure 456 */ 457 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio) 458 { 459 if (dio->is_pinned) 460 unpin_user_pages(dio->pages + sdio->head, 461 sdio->tail - sdio->head); 462 sdio->head = sdio->tail; 463 } 464 465 /* 466 * Wait for the next BIO to complete. Remove it and return it. NULL is 467 * returned once all BIOs have been completed. This must only be called once 468 * all bios have been issued so that dio->refcount can only decrease. This 469 * requires that the caller hold a reference on the dio. 470 */ 471 static struct bio *dio_await_one(struct dio *dio) 472 { 473 unsigned long flags; 474 struct bio *bio = NULL; 475 476 spin_lock_irqsave(&dio->bio_lock, flags); 477 478 /* 479 * Wait as long as the list is empty and there are bios in flight. bio 480 * completion drops the count, maybe adds to the list, and wakes while 481 * holding the bio_lock so we don't need set_current_state()'s barrier 482 * and can call it after testing our condition. 483 */ 484 while (dio->refcount > 1 && dio->bio_list == NULL) { 485 __set_current_state(TASK_UNINTERRUPTIBLE); 486 dio->waiter = current; 487 spin_unlock_irqrestore(&dio->bio_lock, flags); 488 blk_io_schedule(); 489 /* wake up sets us TASK_RUNNING */ 490 spin_lock_irqsave(&dio->bio_lock, flags); 491 dio->waiter = NULL; 492 } 493 if (dio->bio_list) { 494 bio = dio->bio_list; 495 dio->bio_list = bio->bi_private; 496 } 497 spin_unlock_irqrestore(&dio->bio_lock, flags); 498 return bio; 499 } 500 501 /* 502 * Process one completed BIO. No locks are held. 503 */ 504 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio) 505 { 506 blk_status_t err = bio->bi_status; 507 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 508 bool should_dirty = dio_op == REQ_OP_READ && dio->should_dirty; 509 510 if (err) { 511 if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT)) 512 dio->io_error = -EAGAIN; 513 else 514 dio->io_error = -EIO; 515 } 516 517 if (dio->is_async && should_dirty) { 518 bio_check_pages_dirty(bio); /* transfers ownership */ 519 } else { 520 bio_release_pages(bio, should_dirty); 521 bio_put(bio); 522 } 523 return err; 524 } 525 526 /* 527 * Wait on and process all in-flight BIOs. This must only be called once 528 * all bios have been issued so that the refcount can only decrease. 529 * This just waits for all bios to make it through dio_bio_complete. IO 530 * errors are propagated through dio->io_error and should be propagated via 531 * dio_complete(). 532 */ 533 static void dio_await_completion(struct dio *dio) 534 { 535 struct bio *bio; 536 do { 537 bio = dio_await_one(dio); 538 if (bio) 539 dio_bio_complete(dio, bio); 540 } while (bio); 541 } 542 543 /* 544 * A really large O_DIRECT read or write can generate a lot of BIOs. So 545 * to keep the memory consumption sane we periodically reap any completed BIOs 546 * during the BIO generation phase. 547 * 548 * This also helps to limit the peak amount of pinned userspace memory. 549 */ 550 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio) 551 { 552 int ret = 0; 553 554 if (sdio->reap_counter++ >= 64) { 555 while (dio->bio_list) { 556 unsigned long flags; 557 struct bio *bio; 558 int ret2; 559 560 spin_lock_irqsave(&dio->bio_lock, flags); 561 bio = dio->bio_list; 562 dio->bio_list = bio->bi_private; 563 spin_unlock_irqrestore(&dio->bio_lock, flags); 564 ret2 = blk_status_to_errno(dio_bio_complete(dio, bio)); 565 if (ret == 0) 566 ret = ret2; 567 } 568 sdio->reap_counter = 0; 569 } 570 return ret; 571 } 572 573 static int dio_set_defer_completion(struct dio *dio) 574 { 575 struct super_block *sb = dio->inode->i_sb; 576 577 if (dio->defer_completion) 578 return 0; 579 dio->defer_completion = true; 580 if (!sb->s_dio_done_wq) 581 return sb_init_dio_done_wq(sb); 582 return 0; 583 } 584 585 /* 586 * Call into the fs to map some more disk blocks. We record the current number 587 * of available blocks at sdio->blocks_available. These are in units of the 588 * fs blocksize, i_blocksize(inode). 589 * 590 * The fs is allowed to map lots of blocks at once. If it wants to do that, 591 * it uses the passed inode-relative block number as the file offset, as usual. 592 * 593 * get_block() is passed the number of i_blkbits-sized blocks which direct_io 594 * has remaining to do. The fs should not map more than this number of blocks. 595 * 596 * If the fs has mapped a lot of blocks, it should populate bh->b_size to 597 * indicate how much contiguous disk space has been made available at 598 * bh->b_blocknr. 599 * 600 * If *any* of the mapped blocks are new, then the fs must set buffer_new(). 601 * This isn't very efficient... 602 * 603 * In the case of filesystem holes: the fs may return an arbitrarily-large 604 * hole by returning an appropriate value in b_size and by clearing 605 * buffer_mapped(). However the direct-io code will only process holes one 606 * block at a time - it will repeatedly call get_block() as it walks the hole. 607 */ 608 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio, 609 struct buffer_head *map_bh) 610 { 611 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 612 int ret; 613 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ 614 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */ 615 unsigned long fs_count; /* Number of filesystem-sized blocks */ 616 int create; 617 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor; 618 loff_t i_size; 619 620 /* 621 * If there was a memory error and we've overwritten all the 622 * mapped blocks then we can now return that memory error 623 */ 624 ret = dio->page_errors; 625 if (ret == 0) { 626 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request); 627 fs_startblk = sdio->block_in_file >> sdio->blkfactor; 628 fs_endblk = (sdio->final_block_in_request - 1) >> 629 sdio->blkfactor; 630 fs_count = fs_endblk - fs_startblk + 1; 631 632 map_bh->b_state = 0; 633 map_bh->b_size = fs_count << i_blkbits; 634 635 /* 636 * For writes that could fill holes inside i_size on a 637 * DIO_SKIP_HOLES filesystem we forbid block creations: only 638 * overwrites are permitted. We will return early to the caller 639 * once we see an unmapped buffer head returned, and the caller 640 * will fall back to buffered I/O. 641 * 642 * Otherwise the decision is left to the get_blocks method, 643 * which may decide to handle it or also return an unmapped 644 * buffer head. 645 */ 646 create = dio_op == REQ_OP_WRITE; 647 if (dio->flags & DIO_SKIP_HOLES) { 648 i_size = i_size_read(dio->inode); 649 if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits) 650 create = 0; 651 } 652 653 ret = (*sdio->get_block)(dio->inode, fs_startblk, 654 map_bh, create); 655 656 /* Store for completion */ 657 dio->private = map_bh->b_private; 658 659 if (ret == 0 && buffer_defer_completion(map_bh)) 660 ret = dio_set_defer_completion(dio); 661 } 662 return ret; 663 } 664 665 /* 666 * There is no bio. Make one now. 667 */ 668 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio, 669 sector_t start_sector, struct buffer_head *map_bh) 670 { 671 sector_t sector; 672 int ret, nr_pages; 673 674 ret = dio_bio_reap(dio, sdio); 675 if (ret) 676 goto out; 677 sector = start_sector << (sdio->blkbits - 9); 678 nr_pages = bio_max_segs(sdio->pages_in_io); 679 BUG_ON(nr_pages <= 0); 680 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages); 681 sdio->boundary = 0; 682 out: 683 return ret; 684 } 685 686 /* 687 * Attempt to put the current chunk of 'cur_page' into the current BIO. If 688 * that was successful then update final_block_in_bio and take a ref against 689 * the just-added page. 690 * 691 * Return zero on success. Non-zero means the caller needs to start a new BIO. 692 */ 693 static inline int dio_bio_add_page(struct dio *dio, struct dio_submit *sdio) 694 { 695 int ret; 696 697 ret = bio_add_page(sdio->bio, sdio->cur_page, 698 sdio->cur_page_len, sdio->cur_page_offset); 699 if (ret == sdio->cur_page_len) { 700 /* 701 * Decrement count only, if we are done with this page 702 */ 703 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE) 704 sdio->pages_in_io--; 705 dio_pin_page(dio, sdio->cur_page); 706 sdio->final_block_in_bio = sdio->cur_page_block + 707 (sdio->cur_page_len >> sdio->blkbits); 708 ret = 0; 709 } else { 710 ret = 1; 711 } 712 return ret; 713 } 714 715 /* 716 * Put cur_page under IO. The section of cur_page which is described by 717 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page 718 * starts on-disk at cur_page_block. 719 * 720 * We take a ref against the page here (on behalf of its presence in the bio). 721 * 722 * The caller of this function is responsible for removing cur_page from the 723 * dio, and for dropping the refcount which came from that presence. 724 */ 725 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio, 726 struct buffer_head *map_bh) 727 { 728 int ret = 0; 729 730 if (sdio->bio) { 731 loff_t cur_offset = sdio->cur_page_fs_offset; 732 loff_t bio_next_offset = sdio->logical_offset_in_bio + 733 sdio->bio->bi_iter.bi_size; 734 735 /* 736 * See whether this new request is contiguous with the old. 737 * 738 * Btrfs cannot handle having logically non-contiguous requests 739 * submitted. For example if you have 740 * 741 * Logical: [0-4095][HOLE][8192-12287] 742 * Physical: [0-4095] [4096-8191] 743 * 744 * We cannot submit those pages together as one BIO. So if our 745 * current logical offset in the file does not equal what would 746 * be the next logical offset in the bio, submit the bio we 747 * have. 748 */ 749 if (sdio->final_block_in_bio != sdio->cur_page_block || 750 cur_offset != bio_next_offset) 751 dio_bio_submit(dio, sdio); 752 } 753 754 if (sdio->bio == NULL) { 755 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 756 if (ret) 757 goto out; 758 } 759 760 if (dio_bio_add_page(dio, sdio) != 0) { 761 dio_bio_submit(dio, sdio); 762 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 763 if (ret == 0) { 764 ret = dio_bio_add_page(dio, sdio); 765 BUG_ON(ret != 0); 766 } 767 } 768 out: 769 return ret; 770 } 771 772 /* 773 * An autonomous function to put a chunk of a page under deferred IO. 774 * 775 * The caller doesn't actually know (or care) whether this piece of page is in 776 * a BIO, or is under IO or whatever. We just take care of all possible 777 * situations here. The separation between the logic of do_direct_IO() and 778 * that of submit_page_section() is important for clarity. Please don't break. 779 * 780 * The chunk of page starts on-disk at blocknr. 781 * 782 * We perform deferred IO, by recording the last-submitted page inside our 783 * private part of the dio structure. If possible, we just expand the IO 784 * across that page here. 785 * 786 * If that doesn't work out then we put the old page into the bio and add this 787 * page to the dio instead. 788 */ 789 static inline int 790 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page, 791 unsigned offset, unsigned len, sector_t blocknr, 792 struct buffer_head *map_bh) 793 { 794 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 795 int ret = 0; 796 int boundary = sdio->boundary; /* dio_send_cur_page may clear it */ 797 798 if (dio_op == REQ_OP_WRITE) { 799 /* 800 * Read accounting is performed in submit_bio() 801 */ 802 task_io_account_write(len); 803 } 804 805 /* 806 * Can we just grow the current page's presence in the dio? 807 */ 808 if (sdio->cur_page == page && 809 sdio->cur_page_offset + sdio->cur_page_len == offset && 810 sdio->cur_page_block + 811 (sdio->cur_page_len >> sdio->blkbits) == blocknr) { 812 sdio->cur_page_len += len; 813 goto out; 814 } 815 816 /* 817 * If there's a deferred page already there then send it. 818 */ 819 if (sdio->cur_page) { 820 ret = dio_send_cur_page(dio, sdio, map_bh); 821 dio_unpin_page(dio, sdio->cur_page); 822 sdio->cur_page = NULL; 823 if (ret) 824 return ret; 825 } 826 827 dio_pin_page(dio, page); /* It is in dio */ 828 sdio->cur_page = page; 829 sdio->cur_page_offset = offset; 830 sdio->cur_page_len = len; 831 sdio->cur_page_block = blocknr; 832 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits; 833 out: 834 /* 835 * If boundary then we want to schedule the IO now to 836 * avoid metadata seeks. 837 */ 838 if (boundary) { 839 ret = dio_send_cur_page(dio, sdio, map_bh); 840 if (sdio->bio) 841 dio_bio_submit(dio, sdio); 842 dio_unpin_page(dio, sdio->cur_page); 843 sdio->cur_page = NULL; 844 } 845 return ret; 846 } 847 848 /* 849 * If we are not writing the entire block and get_block() allocated 850 * the block for us, we need to fill-in the unused portion of the 851 * block with zeros. This happens only if user-buffer, fileoffset or 852 * io length is not filesystem block-size multiple. 853 * 854 * `end' is zero if we're doing the start of the IO, 1 at the end of the 855 * IO. 856 */ 857 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio, 858 int end, struct buffer_head *map_bh) 859 { 860 unsigned dio_blocks_per_fs_block; 861 unsigned this_chunk_blocks; /* In dio_blocks */ 862 unsigned this_chunk_bytes; 863 struct page *page; 864 865 sdio->start_zero_done = 1; 866 if (!sdio->blkfactor || !buffer_new(map_bh)) 867 return; 868 869 dio_blocks_per_fs_block = 1 << sdio->blkfactor; 870 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1); 871 872 if (!this_chunk_blocks) 873 return; 874 875 /* 876 * We need to zero out part of an fs block. It is either at the 877 * beginning or the end of the fs block. 878 */ 879 if (end) 880 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; 881 882 this_chunk_bytes = this_chunk_blocks << sdio->blkbits; 883 884 page = ZERO_PAGE(0); 885 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes, 886 sdio->next_block_for_io, map_bh)) 887 return; 888 889 sdio->next_block_for_io += this_chunk_blocks; 890 } 891 892 /* 893 * Walk the user pages, and the file, mapping blocks to disk and generating 894 * a sequence of (page,offset,len,block) mappings. These mappings are injected 895 * into submit_page_section(), which takes care of the next stage of submission 896 * 897 * Direct IO against a blockdev is different from a file. Because we can 898 * happily perform page-sized but 512-byte aligned IOs. It is important that 899 * blockdev IO be able to have fine alignment and large sizes. 900 * 901 * So what we do is to permit the ->get_block function to populate bh.b_size 902 * with the size of IO which is permitted at this offset and this i_blkbits. 903 * 904 * For best results, the blockdev should be set up with 512-byte i_blkbits and 905 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives 906 * fine alignment but still allows this function to work in PAGE_SIZE units. 907 */ 908 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio, 909 struct buffer_head *map_bh) 910 { 911 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 912 const unsigned blkbits = sdio->blkbits; 913 const unsigned i_blkbits = blkbits + sdio->blkfactor; 914 int ret = 0; 915 916 while (sdio->block_in_file < sdio->final_block_in_request) { 917 struct page *page; 918 size_t from, to; 919 920 page = dio_get_page(dio, sdio); 921 if (IS_ERR(page)) { 922 ret = PTR_ERR(page); 923 goto out; 924 } 925 from = sdio->head ? 0 : sdio->from; 926 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE; 927 sdio->head++; 928 929 while (from < to) { 930 unsigned this_chunk_bytes; /* # of bytes mapped */ 931 unsigned this_chunk_blocks; /* # of blocks */ 932 unsigned u; 933 934 if (sdio->blocks_available == 0) { 935 /* 936 * Need to go and map some more disk 937 */ 938 unsigned long blkmask; 939 unsigned long dio_remainder; 940 941 ret = get_more_blocks(dio, sdio, map_bh); 942 if (ret) { 943 dio_unpin_page(dio, page); 944 goto out; 945 } 946 if (!buffer_mapped(map_bh)) 947 goto do_holes; 948 949 sdio->blocks_available = 950 map_bh->b_size >> blkbits; 951 sdio->next_block_for_io = 952 map_bh->b_blocknr << sdio->blkfactor; 953 if (buffer_new(map_bh)) { 954 clean_bdev_aliases( 955 map_bh->b_bdev, 956 map_bh->b_blocknr, 957 map_bh->b_size >> i_blkbits); 958 } 959 960 if (!sdio->blkfactor) 961 goto do_holes; 962 963 blkmask = (1 << sdio->blkfactor) - 1; 964 dio_remainder = (sdio->block_in_file & blkmask); 965 966 /* 967 * If we are at the start of IO and that IO 968 * starts partway into a fs-block, 969 * dio_remainder will be non-zero. If the IO 970 * is a read then we can simply advance the IO 971 * cursor to the first block which is to be 972 * read. But if the IO is a write and the 973 * block was newly allocated we cannot do that; 974 * the start of the fs block must be zeroed out 975 * on-disk 976 */ 977 if (!buffer_new(map_bh)) 978 sdio->next_block_for_io += dio_remainder; 979 sdio->blocks_available -= dio_remainder; 980 } 981 do_holes: 982 /* Handle holes */ 983 if (!buffer_mapped(map_bh)) { 984 loff_t i_size_aligned; 985 986 /* AKPM: eargh, -ENOTBLK is a hack */ 987 if (dio_op == REQ_OP_WRITE) { 988 dio_unpin_page(dio, page); 989 return -ENOTBLK; 990 } 991 992 /* 993 * Be sure to account for a partial block as the 994 * last block in the file 995 */ 996 i_size_aligned = ALIGN(i_size_read(dio->inode), 997 1 << blkbits); 998 if (sdio->block_in_file >= 999 i_size_aligned >> blkbits) { 1000 /* We hit eof */ 1001 dio_unpin_page(dio, page); 1002 goto out; 1003 } 1004 zero_user(page, from, 1 << blkbits); 1005 sdio->block_in_file++; 1006 from += 1 << blkbits; 1007 dio->result += 1 << blkbits; 1008 goto next_block; 1009 } 1010 1011 /* 1012 * If we're performing IO which has an alignment which 1013 * is finer than the underlying fs, go check to see if 1014 * we must zero out the start of this block. 1015 */ 1016 if (unlikely(sdio->blkfactor && !sdio->start_zero_done)) 1017 dio_zero_block(dio, sdio, 0, map_bh); 1018 1019 /* 1020 * Work out, in this_chunk_blocks, how much disk we 1021 * can add to this page 1022 */ 1023 this_chunk_blocks = sdio->blocks_available; 1024 u = (to - from) >> blkbits; 1025 if (this_chunk_blocks > u) 1026 this_chunk_blocks = u; 1027 u = sdio->final_block_in_request - sdio->block_in_file; 1028 if (this_chunk_blocks > u) 1029 this_chunk_blocks = u; 1030 this_chunk_bytes = this_chunk_blocks << blkbits; 1031 BUG_ON(this_chunk_bytes == 0); 1032 1033 if (this_chunk_blocks == sdio->blocks_available) 1034 sdio->boundary = buffer_boundary(map_bh); 1035 ret = submit_page_section(dio, sdio, page, 1036 from, 1037 this_chunk_bytes, 1038 sdio->next_block_for_io, 1039 map_bh); 1040 if (ret) { 1041 dio_unpin_page(dio, page); 1042 goto out; 1043 } 1044 sdio->next_block_for_io += this_chunk_blocks; 1045 1046 sdio->block_in_file += this_chunk_blocks; 1047 from += this_chunk_bytes; 1048 dio->result += this_chunk_bytes; 1049 sdio->blocks_available -= this_chunk_blocks; 1050 next_block: 1051 BUG_ON(sdio->block_in_file > sdio->final_block_in_request); 1052 if (sdio->block_in_file == sdio->final_block_in_request) 1053 break; 1054 } 1055 1056 /* Drop the pin which was taken in get_user_pages() */ 1057 dio_unpin_page(dio, page); 1058 } 1059 out: 1060 return ret; 1061 } 1062 1063 static inline int drop_refcount(struct dio *dio) 1064 { 1065 int ret2; 1066 unsigned long flags; 1067 1068 /* 1069 * Sync will always be dropping the final ref and completing the 1070 * operation. AIO can if it was a broken operation described above or 1071 * in fact if all the bios race to complete before we get here. In 1072 * that case dio_complete() translates the EIOCBQUEUED into the proper 1073 * return code that the caller will hand to ->complete(). 1074 * 1075 * This is managed by the bio_lock instead of being an atomic_t so that 1076 * completion paths can drop their ref and use the remaining count to 1077 * decide to wake the submission path atomically. 1078 */ 1079 spin_lock_irqsave(&dio->bio_lock, flags); 1080 ret2 = --dio->refcount; 1081 spin_unlock_irqrestore(&dio->bio_lock, flags); 1082 return ret2; 1083 } 1084 1085 /* 1086 * This is a library function for use by filesystem drivers. 1087 * 1088 * The locking rules are governed by the flags parameter: 1089 * - if the flags value contains DIO_LOCKING we use a fancy locking 1090 * scheme for dumb filesystems. 1091 * For writes this function is called under i_mutex and returns with 1092 * i_mutex held, for reads, i_mutex is not held on entry, but it is 1093 * taken and dropped again before returning. 1094 * - if the flags value does NOT contain DIO_LOCKING we don't use any 1095 * internal locking but rather rely on the filesystem to synchronize 1096 * direct I/O reads/writes versus each other and truncate. 1097 * 1098 * To help with locking against truncate we incremented the i_dio_count 1099 * counter before starting direct I/O, and decrement it once we are done. 1100 * Truncate can wait for it to reach zero to provide exclusion. It is 1101 * expected that filesystem provide exclusion between new direct I/O 1102 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex, 1103 * but other filesystems need to take care of this on their own. 1104 * 1105 * NOTE: if you pass "sdio" to anything by pointer make sure that function 1106 * is always inlined. Otherwise gcc is unable to split the structure into 1107 * individual fields and will generate much worse code. This is important 1108 * for the whole file. 1109 */ 1110 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1111 struct block_device *bdev, struct iov_iter *iter, 1112 get_block_t get_block, dio_iodone_t end_io, 1113 int flags) 1114 { 1115 unsigned i_blkbits = READ_ONCE(inode->i_blkbits); 1116 unsigned blkbits = i_blkbits; 1117 unsigned blocksize_mask = (1 << blkbits) - 1; 1118 ssize_t retval = -EINVAL; 1119 const size_t count = iov_iter_count(iter); 1120 loff_t offset = iocb->ki_pos; 1121 const loff_t end = offset + count; 1122 struct dio *dio; 1123 struct dio_submit sdio = { 0, }; 1124 struct buffer_head map_bh = { 0, }; 1125 struct blk_plug plug; 1126 unsigned long align = offset | iov_iter_alignment(iter); 1127 1128 /* 1129 * Avoid references to bdev if not absolutely needed to give 1130 * the early prefetch in the caller enough time. 1131 */ 1132 1133 /* watch out for a 0 len io from a tricksy fs */ 1134 if (iov_iter_rw(iter) == READ && !count) 1135 return 0; 1136 1137 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL); 1138 if (!dio) 1139 return -ENOMEM; 1140 /* 1141 * Believe it or not, zeroing out the page array caused a .5% 1142 * performance regression in a database benchmark. So, we take 1143 * care to only zero out what's needed. 1144 */ 1145 memset(dio, 0, offsetof(struct dio, pages)); 1146 1147 dio->flags = flags; 1148 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) { 1149 /* will be released by direct_io_worker */ 1150 inode_lock(inode); 1151 } 1152 dio->is_pinned = iov_iter_extract_will_pin(iter); 1153 1154 /* Once we sampled i_size check for reads beyond EOF */ 1155 dio->i_size = i_size_read(inode); 1156 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) { 1157 retval = 0; 1158 goto fail_dio; 1159 } 1160 1161 if (align & blocksize_mask) { 1162 if (bdev) 1163 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 1164 blocksize_mask = (1 << blkbits) - 1; 1165 if (align & blocksize_mask) 1166 goto fail_dio; 1167 } 1168 1169 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) { 1170 struct address_space *mapping = iocb->ki_filp->f_mapping; 1171 1172 retval = filemap_write_and_wait_range(mapping, offset, end - 1); 1173 if (retval) 1174 goto fail_dio; 1175 } 1176 1177 /* 1178 * For file extending writes updating i_size before data writeouts 1179 * complete can expose uninitialized blocks in dumb filesystems. 1180 * In that case we need to wait for I/O completion even if asked 1181 * for an asynchronous write. 1182 */ 1183 if (is_sync_kiocb(iocb)) 1184 dio->is_async = false; 1185 else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode)) 1186 dio->is_async = false; 1187 else 1188 dio->is_async = true; 1189 1190 dio->inode = inode; 1191 if (iov_iter_rw(iter) == WRITE) { 1192 dio->opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE; 1193 if (iocb->ki_flags & IOCB_NOWAIT) 1194 dio->opf |= REQ_NOWAIT; 1195 } else { 1196 dio->opf = REQ_OP_READ; 1197 } 1198 1199 /* 1200 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue 1201 * so that we can call ->fsync. 1202 */ 1203 if (dio->is_async && iov_iter_rw(iter) == WRITE) { 1204 retval = 0; 1205 if (iocb_is_dsync(iocb)) 1206 retval = dio_set_defer_completion(dio); 1207 else if (!dio->inode->i_sb->s_dio_done_wq) { 1208 /* 1209 * In case of AIO write racing with buffered read we 1210 * need to defer completion. We can't decide this now, 1211 * however the workqueue needs to be initialized here. 1212 */ 1213 retval = sb_init_dio_done_wq(dio->inode->i_sb); 1214 } 1215 if (retval) 1216 goto fail_dio; 1217 } 1218 1219 /* 1220 * Will be decremented at I/O completion time. 1221 */ 1222 inode_dio_begin(inode); 1223 1224 retval = 0; 1225 sdio.blkbits = blkbits; 1226 sdio.blkfactor = i_blkbits - blkbits; 1227 sdio.block_in_file = offset >> blkbits; 1228 1229 sdio.get_block = get_block; 1230 dio->end_io = end_io; 1231 sdio.final_block_in_bio = -1; 1232 sdio.next_block_for_io = -1; 1233 1234 dio->iocb = iocb; 1235 1236 spin_lock_init(&dio->bio_lock); 1237 dio->refcount = 1; 1238 1239 dio->should_dirty = user_backed_iter(iter) && iov_iter_rw(iter) == READ; 1240 sdio.iter = iter; 1241 sdio.final_block_in_request = end >> blkbits; 1242 1243 /* 1244 * In case of non-aligned buffers, we may need 2 more 1245 * pages since we need to zero out first and last block. 1246 */ 1247 if (unlikely(sdio.blkfactor)) 1248 sdio.pages_in_io = 2; 1249 1250 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX); 1251 1252 blk_start_plug(&plug); 1253 1254 retval = do_direct_IO(dio, &sdio, &map_bh); 1255 if (retval) 1256 dio_cleanup(dio, &sdio); 1257 1258 if (retval == -ENOTBLK) { 1259 /* 1260 * The remaining part of the request will be 1261 * handled by buffered I/O when we return 1262 */ 1263 retval = 0; 1264 } 1265 /* 1266 * There may be some unwritten disk at the end of a part-written 1267 * fs-block-sized block. Go zero that now. 1268 */ 1269 dio_zero_block(dio, &sdio, 1, &map_bh); 1270 1271 if (sdio.cur_page) { 1272 ssize_t ret2; 1273 1274 ret2 = dio_send_cur_page(dio, &sdio, &map_bh); 1275 if (retval == 0) 1276 retval = ret2; 1277 dio_unpin_page(dio, sdio.cur_page); 1278 sdio.cur_page = NULL; 1279 } 1280 if (sdio.bio) 1281 dio_bio_submit(dio, &sdio); 1282 1283 blk_finish_plug(&plug); 1284 1285 /* 1286 * It is possible that, we return short IO due to end of file. 1287 * In that case, we need to release all the pages we got hold on. 1288 */ 1289 dio_cleanup(dio, &sdio); 1290 1291 /* 1292 * All block lookups have been performed. For READ requests 1293 * we can let i_mutex go now that its achieved its purpose 1294 * of protecting us from looking up uninitialized blocks. 1295 */ 1296 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING)) 1297 inode_unlock(dio->inode); 1298 1299 /* 1300 * The only time we want to leave bios in flight is when a successful 1301 * partial aio read or full aio write have been setup. In that case 1302 * bio completion will call aio_complete. The only time it's safe to 1303 * call aio_complete is when we return -EIOCBQUEUED, so we key on that. 1304 * This had *better* be the only place that raises -EIOCBQUEUED. 1305 */ 1306 BUG_ON(retval == -EIOCBQUEUED); 1307 if (dio->is_async && retval == 0 && dio->result && 1308 (iov_iter_rw(iter) == READ || dio->result == count)) 1309 retval = -EIOCBQUEUED; 1310 else 1311 dio_await_completion(dio); 1312 1313 if (drop_refcount(dio) == 0) { 1314 retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE); 1315 } else 1316 BUG_ON(retval != -EIOCBQUEUED); 1317 1318 return retval; 1319 1320 fail_dio: 1321 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) 1322 inode_unlock(inode); 1323 1324 kmem_cache_free(dio_cache, dio); 1325 return retval; 1326 } 1327 EXPORT_SYMBOL(__blockdev_direct_IO); 1328 1329 static __init int dio_init(void) 1330 { 1331 dio_cache = KMEM_CACHE(dio, SLAB_PANIC); 1332 return 0; 1333 } 1334 module_init(dio_init) 1335