xref: /openbmc/linux/fs/direct-io.c (revision 6aeadf78)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/direct-io.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * O_DIRECT
8  *
9  * 04Jul2002	Andrew Morton
10  *		Initial version
11  * 11Sep2002	janetinc@us.ibm.com
12  * 		added readv/writev support.
13  * 29Oct2002	Andrew Morton
14  *		rewrote bio_add_page() support.
15  * 30Oct2002	pbadari@us.ibm.com
16  *		added support for non-aligned IO.
17  * 06Nov2002	pbadari@us.ibm.com
18  *		added asynchronous IO support.
19  * 21Jul2003	nathans@sgi.com
20  *		added IO completion notifier.
21  */
22 
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/mm.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/pagemap.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/bio.h>
33 #include <linux/wait.h>
34 #include <linux/err.h>
35 #include <linux/blkdev.h>
36 #include <linux/buffer_head.h>
37 #include <linux/rwsem.h>
38 #include <linux/uio.h>
39 #include <linux/atomic.h>
40 #include <linux/prefetch.h>
41 
42 #include "internal.h"
43 
44 /*
45  * How many user pages to map in one call to iov_iter_extract_pages().  This
46  * determines the size of a structure in the slab cache
47  */
48 #define DIO_PAGES	64
49 
50 /*
51  * Flags for dio_complete()
52  */
53 #define DIO_COMPLETE_ASYNC		0x01	/* This is async IO */
54 #define DIO_COMPLETE_INVALIDATE		0x02	/* Can invalidate pages */
55 
56 /*
57  * This code generally works in units of "dio_blocks".  A dio_block is
58  * somewhere between the hard sector size and the filesystem block size.  it
59  * is determined on a per-invocation basis.   When talking to the filesystem
60  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
61  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
62  * to bio_block quantities by shifting left by blkfactor.
63  *
64  * If blkfactor is zero then the user's request was aligned to the filesystem's
65  * blocksize.
66  */
67 
68 /* dio_state only used in the submission path */
69 
70 struct dio_submit {
71 	struct bio *bio;		/* bio under assembly */
72 	unsigned blkbits;		/* doesn't change */
73 	unsigned blkfactor;		/* When we're using an alignment which
74 					   is finer than the filesystem's soft
75 					   blocksize, this specifies how much
76 					   finer.  blkfactor=2 means 1/4-block
77 					   alignment.  Does not change */
78 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
79 					   been performed at the start of a
80 					   write */
81 	int pages_in_io;		/* approximate total IO pages */
82 	sector_t block_in_file;		/* Current offset into the underlying
83 					   file in dio_block units. */
84 	unsigned blocks_available;	/* At block_in_file.  changes */
85 	int reap_counter;		/* rate limit reaping */
86 	sector_t final_block_in_request;/* doesn't change */
87 	int boundary;			/* prev block is at a boundary */
88 	get_block_t *get_block;		/* block mapping function */
89 
90 	loff_t logical_offset_in_bio;	/* current first logical block in bio */
91 	sector_t final_block_in_bio;	/* current final block in bio + 1 */
92 	sector_t next_block_for_io;	/* next block to be put under IO,
93 					   in dio_blocks units */
94 
95 	/*
96 	 * Deferred addition of a page to the dio.  These variables are
97 	 * private to dio_send_cur_page(), submit_page_section() and
98 	 * dio_bio_add_page().
99 	 */
100 	struct page *cur_page;		/* The page */
101 	unsigned cur_page_offset;	/* Offset into it, in bytes */
102 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
103 	sector_t cur_page_block;	/* Where it starts */
104 	loff_t cur_page_fs_offset;	/* Offset in file */
105 
106 	struct iov_iter *iter;
107 	/*
108 	 * Page queue.  These variables belong to dio_refill_pages() and
109 	 * dio_get_page().
110 	 */
111 	unsigned head;			/* next page to process */
112 	unsigned tail;			/* last valid page + 1 */
113 	size_t from, to;
114 };
115 
116 /* dio_state communicated between submission path and end_io */
117 struct dio {
118 	int flags;			/* doesn't change */
119 	blk_opf_t opf;			/* request operation type and flags */
120 	struct gendisk *bio_disk;
121 	struct inode *inode;
122 	loff_t i_size;			/* i_size when submitted */
123 	dio_iodone_t *end_io;		/* IO completion function */
124 	bool is_pinned;			/* T if we have pins on the pages */
125 
126 	void *private;			/* copy from map_bh.b_private */
127 
128 	/* BIO completion state */
129 	spinlock_t bio_lock;		/* protects BIO fields below */
130 	int page_errors;		/* err from iov_iter_extract_pages() */
131 	int is_async;			/* is IO async ? */
132 	bool defer_completion;		/* defer AIO completion to workqueue? */
133 	bool should_dirty;		/* if pages should be dirtied */
134 	int io_error;			/* IO error in completion path */
135 	unsigned long refcount;		/* direct_io_worker() and bios */
136 	struct bio *bio_list;		/* singly linked via bi_private */
137 	struct task_struct *waiter;	/* waiting task (NULL if none) */
138 
139 	/* AIO related stuff */
140 	struct kiocb *iocb;		/* kiocb */
141 	ssize_t result;                 /* IO result */
142 
143 	/*
144 	 * pages[] (and any fields placed after it) are not zeroed out at
145 	 * allocation time.  Don't add new fields after pages[] unless you
146 	 * wish that they not be zeroed.
147 	 */
148 	union {
149 		struct page *pages[DIO_PAGES];	/* page buffer */
150 		struct work_struct complete_work;/* deferred AIO completion */
151 	};
152 } ____cacheline_aligned_in_smp;
153 
154 static struct kmem_cache *dio_cache __read_mostly;
155 
156 /*
157  * How many pages are in the queue?
158  */
159 static inline unsigned dio_pages_present(struct dio_submit *sdio)
160 {
161 	return sdio->tail - sdio->head;
162 }
163 
164 /*
165  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
166  */
167 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
168 {
169 	struct page **pages = dio->pages;
170 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
171 	ssize_t ret;
172 
173 	ret = iov_iter_extract_pages(sdio->iter, &pages, LONG_MAX,
174 				     DIO_PAGES, 0, &sdio->from);
175 
176 	if (ret < 0 && sdio->blocks_available && dio_op == REQ_OP_WRITE) {
177 		/*
178 		 * A memory fault, but the filesystem has some outstanding
179 		 * mapped blocks.  We need to use those blocks up to avoid
180 		 * leaking stale data in the file.
181 		 */
182 		if (dio->page_errors == 0)
183 			dio->page_errors = ret;
184 		dio->pages[0] = ZERO_PAGE(0);
185 		sdio->head = 0;
186 		sdio->tail = 1;
187 		sdio->from = 0;
188 		sdio->to = PAGE_SIZE;
189 		return 0;
190 	}
191 
192 	if (ret >= 0) {
193 		ret += sdio->from;
194 		sdio->head = 0;
195 		sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
196 		sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
197 		return 0;
198 	}
199 	return ret;
200 }
201 
202 /*
203  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
204  * buffered inside the dio so that we can call iov_iter_extract_pages()
205  * against a decent number of pages, less frequently.  To provide nicer use of
206  * the L1 cache.
207  */
208 static inline struct page *dio_get_page(struct dio *dio,
209 					struct dio_submit *sdio)
210 {
211 	if (dio_pages_present(sdio) == 0) {
212 		int ret;
213 
214 		ret = dio_refill_pages(dio, sdio);
215 		if (ret)
216 			return ERR_PTR(ret);
217 		BUG_ON(dio_pages_present(sdio) == 0);
218 	}
219 	return dio->pages[sdio->head];
220 }
221 
222 static void dio_pin_page(struct dio *dio, struct page *page)
223 {
224 	if (dio->is_pinned)
225 		folio_add_pin(page_folio(page));
226 }
227 
228 static void dio_unpin_page(struct dio *dio, struct page *page)
229 {
230 	if (dio->is_pinned)
231 		unpin_user_page(page);
232 }
233 
234 /*
235  * dio_complete() - called when all DIO BIO I/O has been completed
236  *
237  * This drops i_dio_count, lets interested parties know that a DIO operation
238  * has completed, and calculates the resulting return code for the operation.
239  *
240  * It lets the filesystem know if it registered an interest earlier via
241  * get_block.  Pass the private field of the map buffer_head so that
242  * filesystems can use it to hold additional state between get_block calls and
243  * dio_complete.
244  */
245 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
246 {
247 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
248 	loff_t offset = dio->iocb->ki_pos;
249 	ssize_t transferred = 0;
250 	int err;
251 
252 	/*
253 	 * AIO submission can race with bio completion to get here while
254 	 * expecting to have the last io completed by bio completion.
255 	 * In that case -EIOCBQUEUED is in fact not an error we want
256 	 * to preserve through this call.
257 	 */
258 	if (ret == -EIOCBQUEUED)
259 		ret = 0;
260 
261 	if (dio->result) {
262 		transferred = dio->result;
263 
264 		/* Check for short read case */
265 		if (dio_op == REQ_OP_READ &&
266 		    ((offset + transferred) > dio->i_size))
267 			transferred = dio->i_size - offset;
268 		/* ignore EFAULT if some IO has been done */
269 		if (unlikely(ret == -EFAULT) && transferred)
270 			ret = 0;
271 	}
272 
273 	if (ret == 0)
274 		ret = dio->page_errors;
275 	if (ret == 0)
276 		ret = dio->io_error;
277 	if (ret == 0)
278 		ret = transferred;
279 
280 	if (dio->end_io) {
281 		// XXX: ki_pos??
282 		err = dio->end_io(dio->iocb, offset, ret, dio->private);
283 		if (err)
284 			ret = err;
285 	}
286 
287 	/*
288 	 * Try again to invalidate clean pages which might have been cached by
289 	 * non-direct readahead, or faulted in by get_user_pages() if the source
290 	 * of the write was an mmap'ed region of the file we're writing.  Either
291 	 * one is a pretty crazy thing to do, so we don't support it 100%.  If
292 	 * this invalidation fails, tough, the write still worked...
293 	 *
294 	 * And this page cache invalidation has to be after dio->end_io(), as
295 	 * some filesystems convert unwritten extents to real allocations in
296 	 * end_io() when necessary, otherwise a racing buffer read would cache
297 	 * zeros from unwritten extents.
298 	 */
299 	if (flags & DIO_COMPLETE_INVALIDATE &&
300 	    ret > 0 && dio_op == REQ_OP_WRITE &&
301 	    dio->inode->i_mapping->nrpages) {
302 		err = invalidate_inode_pages2_range(dio->inode->i_mapping,
303 					offset >> PAGE_SHIFT,
304 					(offset + ret - 1) >> PAGE_SHIFT);
305 		if (err)
306 			dio_warn_stale_pagecache(dio->iocb->ki_filp);
307 	}
308 
309 	inode_dio_end(dio->inode);
310 
311 	if (flags & DIO_COMPLETE_ASYNC) {
312 		/*
313 		 * generic_write_sync expects ki_pos to have been updated
314 		 * already, but the submission path only does this for
315 		 * synchronous I/O.
316 		 */
317 		dio->iocb->ki_pos += transferred;
318 
319 		if (ret > 0 && dio_op == REQ_OP_WRITE)
320 			ret = generic_write_sync(dio->iocb, ret);
321 		dio->iocb->ki_complete(dio->iocb, ret);
322 	}
323 
324 	kmem_cache_free(dio_cache, dio);
325 	return ret;
326 }
327 
328 static void dio_aio_complete_work(struct work_struct *work)
329 {
330 	struct dio *dio = container_of(work, struct dio, complete_work);
331 
332 	dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
333 }
334 
335 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
336 
337 /*
338  * Asynchronous IO callback.
339  */
340 static void dio_bio_end_aio(struct bio *bio)
341 {
342 	struct dio *dio = bio->bi_private;
343 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
344 	unsigned long remaining;
345 	unsigned long flags;
346 	bool defer_completion = false;
347 
348 	/* cleanup the bio */
349 	dio_bio_complete(dio, bio);
350 
351 	spin_lock_irqsave(&dio->bio_lock, flags);
352 	remaining = --dio->refcount;
353 	if (remaining == 1 && dio->waiter)
354 		wake_up_process(dio->waiter);
355 	spin_unlock_irqrestore(&dio->bio_lock, flags);
356 
357 	if (remaining == 0) {
358 		/*
359 		 * Defer completion when defer_completion is set or
360 		 * when the inode has pages mapped and this is AIO write.
361 		 * We need to invalidate those pages because there is a
362 		 * chance they contain stale data in the case buffered IO
363 		 * went in between AIO submission and completion into the
364 		 * same region.
365 		 */
366 		if (dio->result)
367 			defer_completion = dio->defer_completion ||
368 					   (dio_op == REQ_OP_WRITE &&
369 					    dio->inode->i_mapping->nrpages);
370 		if (defer_completion) {
371 			INIT_WORK(&dio->complete_work, dio_aio_complete_work);
372 			queue_work(dio->inode->i_sb->s_dio_done_wq,
373 				   &dio->complete_work);
374 		} else {
375 			dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
376 		}
377 	}
378 }
379 
380 /*
381  * The BIO completion handler simply queues the BIO up for the process-context
382  * handler.
383  *
384  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
385  * implement a singly-linked list of completed BIOs, at dio->bio_list.
386  */
387 static void dio_bio_end_io(struct bio *bio)
388 {
389 	struct dio *dio = bio->bi_private;
390 	unsigned long flags;
391 
392 	spin_lock_irqsave(&dio->bio_lock, flags);
393 	bio->bi_private = dio->bio_list;
394 	dio->bio_list = bio;
395 	if (--dio->refcount == 1 && dio->waiter)
396 		wake_up_process(dio->waiter);
397 	spin_unlock_irqrestore(&dio->bio_lock, flags);
398 }
399 
400 static inline void
401 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
402 	      struct block_device *bdev,
403 	      sector_t first_sector, int nr_vecs)
404 {
405 	struct bio *bio;
406 
407 	/*
408 	 * bio_alloc() is guaranteed to return a bio when allowed to sleep and
409 	 * we request a valid number of vectors.
410 	 */
411 	bio = bio_alloc(bdev, nr_vecs, dio->opf, GFP_KERNEL);
412 	bio->bi_iter.bi_sector = first_sector;
413 	if (dio->is_async)
414 		bio->bi_end_io = dio_bio_end_aio;
415 	else
416 		bio->bi_end_io = dio_bio_end_io;
417 	if (dio->is_pinned)
418 		bio_set_flag(bio, BIO_PAGE_PINNED);
419 	sdio->bio = bio;
420 	sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
421 }
422 
423 /*
424  * In the AIO read case we speculatively dirty the pages before starting IO.
425  * During IO completion, any of these pages which happen to have been written
426  * back will be redirtied by bio_check_pages_dirty().
427  *
428  * bios hold a dio reference between submit_bio and ->end_io.
429  */
430 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
431 {
432 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
433 	struct bio *bio = sdio->bio;
434 	unsigned long flags;
435 
436 	bio->bi_private = dio;
437 
438 	spin_lock_irqsave(&dio->bio_lock, flags);
439 	dio->refcount++;
440 	spin_unlock_irqrestore(&dio->bio_lock, flags);
441 
442 	if (dio->is_async && dio_op == REQ_OP_READ && dio->should_dirty)
443 		bio_set_pages_dirty(bio);
444 
445 	dio->bio_disk = bio->bi_bdev->bd_disk;
446 
447 	submit_bio(bio);
448 
449 	sdio->bio = NULL;
450 	sdio->boundary = 0;
451 	sdio->logical_offset_in_bio = 0;
452 }
453 
454 /*
455  * Release any resources in case of a failure
456  */
457 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
458 {
459 	if (dio->is_pinned)
460 		unpin_user_pages(dio->pages + sdio->head,
461 				 sdio->tail - sdio->head);
462 	sdio->head = sdio->tail;
463 }
464 
465 /*
466  * Wait for the next BIO to complete.  Remove it and return it.  NULL is
467  * returned once all BIOs have been completed.  This must only be called once
468  * all bios have been issued so that dio->refcount can only decrease.  This
469  * requires that the caller hold a reference on the dio.
470  */
471 static struct bio *dio_await_one(struct dio *dio)
472 {
473 	unsigned long flags;
474 	struct bio *bio = NULL;
475 
476 	spin_lock_irqsave(&dio->bio_lock, flags);
477 
478 	/*
479 	 * Wait as long as the list is empty and there are bios in flight.  bio
480 	 * completion drops the count, maybe adds to the list, and wakes while
481 	 * holding the bio_lock so we don't need set_current_state()'s barrier
482 	 * and can call it after testing our condition.
483 	 */
484 	while (dio->refcount > 1 && dio->bio_list == NULL) {
485 		__set_current_state(TASK_UNINTERRUPTIBLE);
486 		dio->waiter = current;
487 		spin_unlock_irqrestore(&dio->bio_lock, flags);
488 		blk_io_schedule();
489 		/* wake up sets us TASK_RUNNING */
490 		spin_lock_irqsave(&dio->bio_lock, flags);
491 		dio->waiter = NULL;
492 	}
493 	if (dio->bio_list) {
494 		bio = dio->bio_list;
495 		dio->bio_list = bio->bi_private;
496 	}
497 	spin_unlock_irqrestore(&dio->bio_lock, flags);
498 	return bio;
499 }
500 
501 /*
502  * Process one completed BIO.  No locks are held.
503  */
504 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
505 {
506 	blk_status_t err = bio->bi_status;
507 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
508 	bool should_dirty = dio_op == REQ_OP_READ && dio->should_dirty;
509 
510 	if (err) {
511 		if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
512 			dio->io_error = -EAGAIN;
513 		else
514 			dio->io_error = -EIO;
515 	}
516 
517 	if (dio->is_async && should_dirty) {
518 		bio_check_pages_dirty(bio);	/* transfers ownership */
519 	} else {
520 		bio_release_pages(bio, should_dirty);
521 		bio_put(bio);
522 	}
523 	return err;
524 }
525 
526 /*
527  * Wait on and process all in-flight BIOs.  This must only be called once
528  * all bios have been issued so that the refcount can only decrease.
529  * This just waits for all bios to make it through dio_bio_complete.  IO
530  * errors are propagated through dio->io_error and should be propagated via
531  * dio_complete().
532  */
533 static void dio_await_completion(struct dio *dio)
534 {
535 	struct bio *bio;
536 	do {
537 		bio = dio_await_one(dio);
538 		if (bio)
539 			dio_bio_complete(dio, bio);
540 	} while (bio);
541 }
542 
543 /*
544  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
545  * to keep the memory consumption sane we periodically reap any completed BIOs
546  * during the BIO generation phase.
547  *
548  * This also helps to limit the peak amount of pinned userspace memory.
549  */
550 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
551 {
552 	int ret = 0;
553 
554 	if (sdio->reap_counter++ >= 64) {
555 		while (dio->bio_list) {
556 			unsigned long flags;
557 			struct bio *bio;
558 			int ret2;
559 
560 			spin_lock_irqsave(&dio->bio_lock, flags);
561 			bio = dio->bio_list;
562 			dio->bio_list = bio->bi_private;
563 			spin_unlock_irqrestore(&dio->bio_lock, flags);
564 			ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
565 			if (ret == 0)
566 				ret = ret2;
567 		}
568 		sdio->reap_counter = 0;
569 	}
570 	return ret;
571 }
572 
573 static int dio_set_defer_completion(struct dio *dio)
574 {
575 	struct super_block *sb = dio->inode->i_sb;
576 
577 	if (dio->defer_completion)
578 		return 0;
579 	dio->defer_completion = true;
580 	if (!sb->s_dio_done_wq)
581 		return sb_init_dio_done_wq(sb);
582 	return 0;
583 }
584 
585 /*
586  * Call into the fs to map some more disk blocks.  We record the current number
587  * of available blocks at sdio->blocks_available.  These are in units of the
588  * fs blocksize, i_blocksize(inode).
589  *
590  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
591  * it uses the passed inode-relative block number as the file offset, as usual.
592  *
593  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
594  * has remaining to do.  The fs should not map more than this number of blocks.
595  *
596  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
597  * indicate how much contiguous disk space has been made available at
598  * bh->b_blocknr.
599  *
600  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
601  * This isn't very efficient...
602  *
603  * In the case of filesystem holes: the fs may return an arbitrarily-large
604  * hole by returning an appropriate value in b_size and by clearing
605  * buffer_mapped().  However the direct-io code will only process holes one
606  * block at a time - it will repeatedly call get_block() as it walks the hole.
607  */
608 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
609 			   struct buffer_head *map_bh)
610 {
611 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
612 	int ret;
613 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
614 	sector_t fs_endblk;	/* Into file, in filesystem-sized blocks */
615 	unsigned long fs_count;	/* Number of filesystem-sized blocks */
616 	int create;
617 	unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
618 	loff_t i_size;
619 
620 	/*
621 	 * If there was a memory error and we've overwritten all the
622 	 * mapped blocks then we can now return that memory error
623 	 */
624 	ret = dio->page_errors;
625 	if (ret == 0) {
626 		BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
627 		fs_startblk = sdio->block_in_file >> sdio->blkfactor;
628 		fs_endblk = (sdio->final_block_in_request - 1) >>
629 					sdio->blkfactor;
630 		fs_count = fs_endblk - fs_startblk + 1;
631 
632 		map_bh->b_state = 0;
633 		map_bh->b_size = fs_count << i_blkbits;
634 
635 		/*
636 		 * For writes that could fill holes inside i_size on a
637 		 * DIO_SKIP_HOLES filesystem we forbid block creations: only
638 		 * overwrites are permitted. We will return early to the caller
639 		 * once we see an unmapped buffer head returned, and the caller
640 		 * will fall back to buffered I/O.
641 		 *
642 		 * Otherwise the decision is left to the get_blocks method,
643 		 * which may decide to handle it or also return an unmapped
644 		 * buffer head.
645 		 */
646 		create = dio_op == REQ_OP_WRITE;
647 		if (dio->flags & DIO_SKIP_HOLES) {
648 			i_size = i_size_read(dio->inode);
649 			if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits)
650 				create = 0;
651 		}
652 
653 		ret = (*sdio->get_block)(dio->inode, fs_startblk,
654 						map_bh, create);
655 
656 		/* Store for completion */
657 		dio->private = map_bh->b_private;
658 
659 		if (ret == 0 && buffer_defer_completion(map_bh))
660 			ret = dio_set_defer_completion(dio);
661 	}
662 	return ret;
663 }
664 
665 /*
666  * There is no bio.  Make one now.
667  */
668 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
669 		sector_t start_sector, struct buffer_head *map_bh)
670 {
671 	sector_t sector;
672 	int ret, nr_pages;
673 
674 	ret = dio_bio_reap(dio, sdio);
675 	if (ret)
676 		goto out;
677 	sector = start_sector << (sdio->blkbits - 9);
678 	nr_pages = bio_max_segs(sdio->pages_in_io);
679 	BUG_ON(nr_pages <= 0);
680 	dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
681 	sdio->boundary = 0;
682 out:
683 	return ret;
684 }
685 
686 /*
687  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
688  * that was successful then update final_block_in_bio and take a ref against
689  * the just-added page.
690  *
691  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
692  */
693 static inline int dio_bio_add_page(struct dio *dio, struct dio_submit *sdio)
694 {
695 	int ret;
696 
697 	ret = bio_add_page(sdio->bio, sdio->cur_page,
698 			sdio->cur_page_len, sdio->cur_page_offset);
699 	if (ret == sdio->cur_page_len) {
700 		/*
701 		 * Decrement count only, if we are done with this page
702 		 */
703 		if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
704 			sdio->pages_in_io--;
705 		dio_pin_page(dio, sdio->cur_page);
706 		sdio->final_block_in_bio = sdio->cur_page_block +
707 			(sdio->cur_page_len >> sdio->blkbits);
708 		ret = 0;
709 	} else {
710 		ret = 1;
711 	}
712 	return ret;
713 }
714 
715 /*
716  * Put cur_page under IO.  The section of cur_page which is described by
717  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
718  * starts on-disk at cur_page_block.
719  *
720  * We take a ref against the page here (on behalf of its presence in the bio).
721  *
722  * The caller of this function is responsible for removing cur_page from the
723  * dio, and for dropping the refcount which came from that presence.
724  */
725 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
726 		struct buffer_head *map_bh)
727 {
728 	int ret = 0;
729 
730 	if (sdio->bio) {
731 		loff_t cur_offset = sdio->cur_page_fs_offset;
732 		loff_t bio_next_offset = sdio->logical_offset_in_bio +
733 			sdio->bio->bi_iter.bi_size;
734 
735 		/*
736 		 * See whether this new request is contiguous with the old.
737 		 *
738 		 * Btrfs cannot handle having logically non-contiguous requests
739 		 * submitted.  For example if you have
740 		 *
741 		 * Logical:  [0-4095][HOLE][8192-12287]
742 		 * Physical: [0-4095]      [4096-8191]
743 		 *
744 		 * We cannot submit those pages together as one BIO.  So if our
745 		 * current logical offset in the file does not equal what would
746 		 * be the next logical offset in the bio, submit the bio we
747 		 * have.
748 		 */
749 		if (sdio->final_block_in_bio != sdio->cur_page_block ||
750 		    cur_offset != bio_next_offset)
751 			dio_bio_submit(dio, sdio);
752 	}
753 
754 	if (sdio->bio == NULL) {
755 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
756 		if (ret)
757 			goto out;
758 	}
759 
760 	if (dio_bio_add_page(dio, sdio) != 0) {
761 		dio_bio_submit(dio, sdio);
762 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
763 		if (ret == 0) {
764 			ret = dio_bio_add_page(dio, sdio);
765 			BUG_ON(ret != 0);
766 		}
767 	}
768 out:
769 	return ret;
770 }
771 
772 /*
773  * An autonomous function to put a chunk of a page under deferred IO.
774  *
775  * The caller doesn't actually know (or care) whether this piece of page is in
776  * a BIO, or is under IO or whatever.  We just take care of all possible
777  * situations here.  The separation between the logic of do_direct_IO() and
778  * that of submit_page_section() is important for clarity.  Please don't break.
779  *
780  * The chunk of page starts on-disk at blocknr.
781  *
782  * We perform deferred IO, by recording the last-submitted page inside our
783  * private part of the dio structure.  If possible, we just expand the IO
784  * across that page here.
785  *
786  * If that doesn't work out then we put the old page into the bio and add this
787  * page to the dio instead.
788  */
789 static inline int
790 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
791 		    unsigned offset, unsigned len, sector_t blocknr,
792 		    struct buffer_head *map_bh)
793 {
794 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
795 	int ret = 0;
796 	int boundary = sdio->boundary;	/* dio_send_cur_page may clear it */
797 
798 	if (dio_op == REQ_OP_WRITE) {
799 		/*
800 		 * Read accounting is performed in submit_bio()
801 		 */
802 		task_io_account_write(len);
803 	}
804 
805 	/*
806 	 * Can we just grow the current page's presence in the dio?
807 	 */
808 	if (sdio->cur_page == page &&
809 	    sdio->cur_page_offset + sdio->cur_page_len == offset &&
810 	    sdio->cur_page_block +
811 	    (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
812 		sdio->cur_page_len += len;
813 		goto out;
814 	}
815 
816 	/*
817 	 * If there's a deferred page already there then send it.
818 	 */
819 	if (sdio->cur_page) {
820 		ret = dio_send_cur_page(dio, sdio, map_bh);
821 		dio_unpin_page(dio, sdio->cur_page);
822 		sdio->cur_page = NULL;
823 		if (ret)
824 			return ret;
825 	}
826 
827 	dio_pin_page(dio, page);		/* It is in dio */
828 	sdio->cur_page = page;
829 	sdio->cur_page_offset = offset;
830 	sdio->cur_page_len = len;
831 	sdio->cur_page_block = blocknr;
832 	sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
833 out:
834 	/*
835 	 * If boundary then we want to schedule the IO now to
836 	 * avoid metadata seeks.
837 	 */
838 	if (boundary) {
839 		ret = dio_send_cur_page(dio, sdio, map_bh);
840 		if (sdio->bio)
841 			dio_bio_submit(dio, sdio);
842 		dio_unpin_page(dio, sdio->cur_page);
843 		sdio->cur_page = NULL;
844 	}
845 	return ret;
846 }
847 
848 /*
849  * If we are not writing the entire block and get_block() allocated
850  * the block for us, we need to fill-in the unused portion of the
851  * block with zeros. This happens only if user-buffer, fileoffset or
852  * io length is not filesystem block-size multiple.
853  *
854  * `end' is zero if we're doing the start of the IO, 1 at the end of the
855  * IO.
856  */
857 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
858 		int end, struct buffer_head *map_bh)
859 {
860 	unsigned dio_blocks_per_fs_block;
861 	unsigned this_chunk_blocks;	/* In dio_blocks */
862 	unsigned this_chunk_bytes;
863 	struct page *page;
864 
865 	sdio->start_zero_done = 1;
866 	if (!sdio->blkfactor || !buffer_new(map_bh))
867 		return;
868 
869 	dio_blocks_per_fs_block = 1 << sdio->blkfactor;
870 	this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
871 
872 	if (!this_chunk_blocks)
873 		return;
874 
875 	/*
876 	 * We need to zero out part of an fs block.  It is either at the
877 	 * beginning or the end of the fs block.
878 	 */
879 	if (end)
880 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
881 
882 	this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
883 
884 	page = ZERO_PAGE(0);
885 	if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
886 				sdio->next_block_for_io, map_bh))
887 		return;
888 
889 	sdio->next_block_for_io += this_chunk_blocks;
890 }
891 
892 /*
893  * Walk the user pages, and the file, mapping blocks to disk and generating
894  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
895  * into submit_page_section(), which takes care of the next stage of submission
896  *
897  * Direct IO against a blockdev is different from a file.  Because we can
898  * happily perform page-sized but 512-byte aligned IOs.  It is important that
899  * blockdev IO be able to have fine alignment and large sizes.
900  *
901  * So what we do is to permit the ->get_block function to populate bh.b_size
902  * with the size of IO which is permitted at this offset and this i_blkbits.
903  *
904  * For best results, the blockdev should be set up with 512-byte i_blkbits and
905  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
906  * fine alignment but still allows this function to work in PAGE_SIZE units.
907  */
908 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
909 			struct buffer_head *map_bh)
910 {
911 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
912 	const unsigned blkbits = sdio->blkbits;
913 	const unsigned i_blkbits = blkbits + sdio->blkfactor;
914 	int ret = 0;
915 
916 	while (sdio->block_in_file < sdio->final_block_in_request) {
917 		struct page *page;
918 		size_t from, to;
919 
920 		page = dio_get_page(dio, sdio);
921 		if (IS_ERR(page)) {
922 			ret = PTR_ERR(page);
923 			goto out;
924 		}
925 		from = sdio->head ? 0 : sdio->from;
926 		to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
927 		sdio->head++;
928 
929 		while (from < to) {
930 			unsigned this_chunk_bytes;	/* # of bytes mapped */
931 			unsigned this_chunk_blocks;	/* # of blocks */
932 			unsigned u;
933 
934 			if (sdio->blocks_available == 0) {
935 				/*
936 				 * Need to go and map some more disk
937 				 */
938 				unsigned long blkmask;
939 				unsigned long dio_remainder;
940 
941 				ret = get_more_blocks(dio, sdio, map_bh);
942 				if (ret) {
943 					dio_unpin_page(dio, page);
944 					goto out;
945 				}
946 				if (!buffer_mapped(map_bh))
947 					goto do_holes;
948 
949 				sdio->blocks_available =
950 						map_bh->b_size >> blkbits;
951 				sdio->next_block_for_io =
952 					map_bh->b_blocknr << sdio->blkfactor;
953 				if (buffer_new(map_bh)) {
954 					clean_bdev_aliases(
955 						map_bh->b_bdev,
956 						map_bh->b_blocknr,
957 						map_bh->b_size >> i_blkbits);
958 				}
959 
960 				if (!sdio->blkfactor)
961 					goto do_holes;
962 
963 				blkmask = (1 << sdio->blkfactor) - 1;
964 				dio_remainder = (sdio->block_in_file & blkmask);
965 
966 				/*
967 				 * If we are at the start of IO and that IO
968 				 * starts partway into a fs-block,
969 				 * dio_remainder will be non-zero.  If the IO
970 				 * is a read then we can simply advance the IO
971 				 * cursor to the first block which is to be
972 				 * read.  But if the IO is a write and the
973 				 * block was newly allocated we cannot do that;
974 				 * the start of the fs block must be zeroed out
975 				 * on-disk
976 				 */
977 				if (!buffer_new(map_bh))
978 					sdio->next_block_for_io += dio_remainder;
979 				sdio->blocks_available -= dio_remainder;
980 			}
981 do_holes:
982 			/* Handle holes */
983 			if (!buffer_mapped(map_bh)) {
984 				loff_t i_size_aligned;
985 
986 				/* AKPM: eargh, -ENOTBLK is a hack */
987 				if (dio_op == REQ_OP_WRITE) {
988 					dio_unpin_page(dio, page);
989 					return -ENOTBLK;
990 				}
991 
992 				/*
993 				 * Be sure to account for a partial block as the
994 				 * last block in the file
995 				 */
996 				i_size_aligned = ALIGN(i_size_read(dio->inode),
997 							1 << blkbits);
998 				if (sdio->block_in_file >=
999 						i_size_aligned >> blkbits) {
1000 					/* We hit eof */
1001 					dio_unpin_page(dio, page);
1002 					goto out;
1003 				}
1004 				zero_user(page, from, 1 << blkbits);
1005 				sdio->block_in_file++;
1006 				from += 1 << blkbits;
1007 				dio->result += 1 << blkbits;
1008 				goto next_block;
1009 			}
1010 
1011 			/*
1012 			 * If we're performing IO which has an alignment which
1013 			 * is finer than the underlying fs, go check to see if
1014 			 * we must zero out the start of this block.
1015 			 */
1016 			if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1017 				dio_zero_block(dio, sdio, 0, map_bh);
1018 
1019 			/*
1020 			 * Work out, in this_chunk_blocks, how much disk we
1021 			 * can add to this page
1022 			 */
1023 			this_chunk_blocks = sdio->blocks_available;
1024 			u = (to - from) >> blkbits;
1025 			if (this_chunk_blocks > u)
1026 				this_chunk_blocks = u;
1027 			u = sdio->final_block_in_request - sdio->block_in_file;
1028 			if (this_chunk_blocks > u)
1029 				this_chunk_blocks = u;
1030 			this_chunk_bytes = this_chunk_blocks << blkbits;
1031 			BUG_ON(this_chunk_bytes == 0);
1032 
1033 			if (this_chunk_blocks == sdio->blocks_available)
1034 				sdio->boundary = buffer_boundary(map_bh);
1035 			ret = submit_page_section(dio, sdio, page,
1036 						  from,
1037 						  this_chunk_bytes,
1038 						  sdio->next_block_for_io,
1039 						  map_bh);
1040 			if (ret) {
1041 				dio_unpin_page(dio, page);
1042 				goto out;
1043 			}
1044 			sdio->next_block_for_io += this_chunk_blocks;
1045 
1046 			sdio->block_in_file += this_chunk_blocks;
1047 			from += this_chunk_bytes;
1048 			dio->result += this_chunk_bytes;
1049 			sdio->blocks_available -= this_chunk_blocks;
1050 next_block:
1051 			BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1052 			if (sdio->block_in_file == sdio->final_block_in_request)
1053 				break;
1054 		}
1055 
1056 		/* Drop the pin which was taken in get_user_pages() */
1057 		dio_unpin_page(dio, page);
1058 	}
1059 out:
1060 	return ret;
1061 }
1062 
1063 static inline int drop_refcount(struct dio *dio)
1064 {
1065 	int ret2;
1066 	unsigned long flags;
1067 
1068 	/*
1069 	 * Sync will always be dropping the final ref and completing the
1070 	 * operation.  AIO can if it was a broken operation described above or
1071 	 * in fact if all the bios race to complete before we get here.  In
1072 	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1073 	 * return code that the caller will hand to ->complete().
1074 	 *
1075 	 * This is managed by the bio_lock instead of being an atomic_t so that
1076 	 * completion paths can drop their ref and use the remaining count to
1077 	 * decide to wake the submission path atomically.
1078 	 */
1079 	spin_lock_irqsave(&dio->bio_lock, flags);
1080 	ret2 = --dio->refcount;
1081 	spin_unlock_irqrestore(&dio->bio_lock, flags);
1082 	return ret2;
1083 }
1084 
1085 /*
1086  * This is a library function for use by filesystem drivers.
1087  *
1088  * The locking rules are governed by the flags parameter:
1089  *  - if the flags value contains DIO_LOCKING we use a fancy locking
1090  *    scheme for dumb filesystems.
1091  *    For writes this function is called under i_mutex and returns with
1092  *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1093  *    taken and dropped again before returning.
1094  *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1095  *    internal locking but rather rely on the filesystem to synchronize
1096  *    direct I/O reads/writes versus each other and truncate.
1097  *
1098  * To help with locking against truncate we incremented the i_dio_count
1099  * counter before starting direct I/O, and decrement it once we are done.
1100  * Truncate can wait for it to reach zero to provide exclusion.  It is
1101  * expected that filesystem provide exclusion between new direct I/O
1102  * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1103  * but other filesystems need to take care of this on their own.
1104  *
1105  * NOTE: if you pass "sdio" to anything by pointer make sure that function
1106  * is always inlined. Otherwise gcc is unable to split the structure into
1107  * individual fields and will generate much worse code. This is important
1108  * for the whole file.
1109  */
1110 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1111 		struct block_device *bdev, struct iov_iter *iter,
1112 		get_block_t get_block, dio_iodone_t end_io,
1113 		int flags)
1114 {
1115 	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
1116 	unsigned blkbits = i_blkbits;
1117 	unsigned blocksize_mask = (1 << blkbits) - 1;
1118 	ssize_t retval = -EINVAL;
1119 	const size_t count = iov_iter_count(iter);
1120 	loff_t offset = iocb->ki_pos;
1121 	const loff_t end = offset + count;
1122 	struct dio *dio;
1123 	struct dio_submit sdio = { 0, };
1124 	struct buffer_head map_bh = { 0, };
1125 	struct blk_plug plug;
1126 	unsigned long align = offset | iov_iter_alignment(iter);
1127 
1128 	/*
1129 	 * Avoid references to bdev if not absolutely needed to give
1130 	 * the early prefetch in the caller enough time.
1131 	 */
1132 
1133 	/* watch out for a 0 len io from a tricksy fs */
1134 	if (iov_iter_rw(iter) == READ && !count)
1135 		return 0;
1136 
1137 	dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1138 	if (!dio)
1139 		return -ENOMEM;
1140 	/*
1141 	 * Believe it or not, zeroing out the page array caused a .5%
1142 	 * performance regression in a database benchmark.  So, we take
1143 	 * care to only zero out what's needed.
1144 	 */
1145 	memset(dio, 0, offsetof(struct dio, pages));
1146 
1147 	dio->flags = flags;
1148 	if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
1149 		/* will be released by direct_io_worker */
1150 		inode_lock(inode);
1151 	}
1152 	dio->is_pinned = iov_iter_extract_will_pin(iter);
1153 
1154 	/* Once we sampled i_size check for reads beyond EOF */
1155 	dio->i_size = i_size_read(inode);
1156 	if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1157 		retval = 0;
1158 		goto fail_dio;
1159 	}
1160 
1161 	if (align & blocksize_mask) {
1162 		if (bdev)
1163 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
1164 		blocksize_mask = (1 << blkbits) - 1;
1165 		if (align & blocksize_mask)
1166 			goto fail_dio;
1167 	}
1168 
1169 	if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
1170 		struct address_space *mapping = iocb->ki_filp->f_mapping;
1171 
1172 		retval = filemap_write_and_wait_range(mapping, offset, end - 1);
1173 		if (retval)
1174 			goto fail_dio;
1175 	}
1176 
1177 	/*
1178 	 * For file extending writes updating i_size before data writeouts
1179 	 * complete can expose uninitialized blocks in dumb filesystems.
1180 	 * In that case we need to wait for I/O completion even if asked
1181 	 * for an asynchronous write.
1182 	 */
1183 	if (is_sync_kiocb(iocb))
1184 		dio->is_async = false;
1185 	else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1186 		dio->is_async = false;
1187 	else
1188 		dio->is_async = true;
1189 
1190 	dio->inode = inode;
1191 	if (iov_iter_rw(iter) == WRITE) {
1192 		dio->opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
1193 		if (iocb->ki_flags & IOCB_NOWAIT)
1194 			dio->opf |= REQ_NOWAIT;
1195 	} else {
1196 		dio->opf = REQ_OP_READ;
1197 	}
1198 
1199 	/*
1200 	 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1201 	 * so that we can call ->fsync.
1202 	 */
1203 	if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1204 		retval = 0;
1205 		if (iocb_is_dsync(iocb))
1206 			retval = dio_set_defer_completion(dio);
1207 		else if (!dio->inode->i_sb->s_dio_done_wq) {
1208 			/*
1209 			 * In case of AIO write racing with buffered read we
1210 			 * need to defer completion. We can't decide this now,
1211 			 * however the workqueue needs to be initialized here.
1212 			 */
1213 			retval = sb_init_dio_done_wq(dio->inode->i_sb);
1214 		}
1215 		if (retval)
1216 			goto fail_dio;
1217 	}
1218 
1219 	/*
1220 	 * Will be decremented at I/O completion time.
1221 	 */
1222 	inode_dio_begin(inode);
1223 
1224 	retval = 0;
1225 	sdio.blkbits = blkbits;
1226 	sdio.blkfactor = i_blkbits - blkbits;
1227 	sdio.block_in_file = offset >> blkbits;
1228 
1229 	sdio.get_block = get_block;
1230 	dio->end_io = end_io;
1231 	sdio.final_block_in_bio = -1;
1232 	sdio.next_block_for_io = -1;
1233 
1234 	dio->iocb = iocb;
1235 
1236 	spin_lock_init(&dio->bio_lock);
1237 	dio->refcount = 1;
1238 
1239 	dio->should_dirty = user_backed_iter(iter) && iov_iter_rw(iter) == READ;
1240 	sdio.iter = iter;
1241 	sdio.final_block_in_request = end >> blkbits;
1242 
1243 	/*
1244 	 * In case of non-aligned buffers, we may need 2 more
1245 	 * pages since we need to zero out first and last block.
1246 	 */
1247 	if (unlikely(sdio.blkfactor))
1248 		sdio.pages_in_io = 2;
1249 
1250 	sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1251 
1252 	blk_start_plug(&plug);
1253 
1254 	retval = do_direct_IO(dio, &sdio, &map_bh);
1255 	if (retval)
1256 		dio_cleanup(dio, &sdio);
1257 
1258 	if (retval == -ENOTBLK) {
1259 		/*
1260 		 * The remaining part of the request will be
1261 		 * handled by buffered I/O when we return
1262 		 */
1263 		retval = 0;
1264 	}
1265 	/*
1266 	 * There may be some unwritten disk at the end of a part-written
1267 	 * fs-block-sized block.  Go zero that now.
1268 	 */
1269 	dio_zero_block(dio, &sdio, 1, &map_bh);
1270 
1271 	if (sdio.cur_page) {
1272 		ssize_t ret2;
1273 
1274 		ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1275 		if (retval == 0)
1276 			retval = ret2;
1277 		dio_unpin_page(dio, sdio.cur_page);
1278 		sdio.cur_page = NULL;
1279 	}
1280 	if (sdio.bio)
1281 		dio_bio_submit(dio, &sdio);
1282 
1283 	blk_finish_plug(&plug);
1284 
1285 	/*
1286 	 * It is possible that, we return short IO due to end of file.
1287 	 * In that case, we need to release all the pages we got hold on.
1288 	 */
1289 	dio_cleanup(dio, &sdio);
1290 
1291 	/*
1292 	 * All block lookups have been performed. For READ requests
1293 	 * we can let i_mutex go now that its achieved its purpose
1294 	 * of protecting us from looking up uninitialized blocks.
1295 	 */
1296 	if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1297 		inode_unlock(dio->inode);
1298 
1299 	/*
1300 	 * The only time we want to leave bios in flight is when a successful
1301 	 * partial aio read or full aio write have been setup.  In that case
1302 	 * bio completion will call aio_complete.  The only time it's safe to
1303 	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1304 	 * This had *better* be the only place that raises -EIOCBQUEUED.
1305 	 */
1306 	BUG_ON(retval == -EIOCBQUEUED);
1307 	if (dio->is_async && retval == 0 && dio->result &&
1308 	    (iov_iter_rw(iter) == READ || dio->result == count))
1309 		retval = -EIOCBQUEUED;
1310 	else
1311 		dio_await_completion(dio);
1312 
1313 	if (drop_refcount(dio) == 0) {
1314 		retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
1315 	} else
1316 		BUG_ON(retval != -EIOCBQUEUED);
1317 
1318 	return retval;
1319 
1320 fail_dio:
1321 	if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ)
1322 		inode_unlock(inode);
1323 
1324 	kmem_cache_free(dio_cache, dio);
1325 	return retval;
1326 }
1327 EXPORT_SYMBOL(__blockdev_direct_IO);
1328 
1329 static __init int dio_init(void)
1330 {
1331 	dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1332 	return 0;
1333 }
1334 module_init(dio_init)
1335