xref: /openbmc/linux/fs/direct-io.c (revision 6a551c11)
1 /*
2  * fs/direct-io.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * O_DIRECT
7  *
8  * 04Jul2002	Andrew Morton
9  *		Initial version
10  * 11Sep2002	janetinc@us.ibm.com
11  * 		added readv/writev support.
12  * 29Oct2002	Andrew Morton
13  *		rewrote bio_add_page() support.
14  * 30Oct2002	pbadari@us.ibm.com
15  *		added support for non-aligned IO.
16  * 06Nov2002	pbadari@us.ibm.com
17  *		added asynchronous IO support.
18  * 21Jul2003	nathans@sgi.com
19  *		added IO completion notifier.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <linux/atomic.h>
39 #include <linux/prefetch.h>
40 
41 /*
42  * How many user pages to map in one call to get_user_pages().  This determines
43  * the size of a structure in the slab cache
44  */
45 #define DIO_PAGES	64
46 
47 /*
48  * This code generally works in units of "dio_blocks".  A dio_block is
49  * somewhere between the hard sector size and the filesystem block size.  it
50  * is determined on a per-invocation basis.   When talking to the filesystem
51  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
52  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
53  * to bio_block quantities by shifting left by blkfactor.
54  *
55  * If blkfactor is zero then the user's request was aligned to the filesystem's
56  * blocksize.
57  */
58 
59 /* dio_state only used in the submission path */
60 
61 struct dio_submit {
62 	struct bio *bio;		/* bio under assembly */
63 	unsigned blkbits;		/* doesn't change */
64 	unsigned blkfactor;		/* When we're using an alignment which
65 					   is finer than the filesystem's soft
66 					   blocksize, this specifies how much
67 					   finer.  blkfactor=2 means 1/4-block
68 					   alignment.  Does not change */
69 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
70 					   been performed at the start of a
71 					   write */
72 	int pages_in_io;		/* approximate total IO pages */
73 	sector_t block_in_file;		/* Current offset into the underlying
74 					   file in dio_block units. */
75 	unsigned blocks_available;	/* At block_in_file.  changes */
76 	int reap_counter;		/* rate limit reaping */
77 	sector_t final_block_in_request;/* doesn't change */
78 	int boundary;			/* prev block is at a boundary */
79 	get_block_t *get_block;		/* block mapping function */
80 	dio_submit_t *submit_io;	/* IO submition function */
81 
82 	loff_t logical_offset_in_bio;	/* current first logical block in bio */
83 	sector_t final_block_in_bio;	/* current final block in bio + 1 */
84 	sector_t next_block_for_io;	/* next block to be put under IO,
85 					   in dio_blocks units */
86 
87 	/*
88 	 * Deferred addition of a page to the dio.  These variables are
89 	 * private to dio_send_cur_page(), submit_page_section() and
90 	 * dio_bio_add_page().
91 	 */
92 	struct page *cur_page;		/* The page */
93 	unsigned cur_page_offset;	/* Offset into it, in bytes */
94 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
95 	sector_t cur_page_block;	/* Where it starts */
96 	loff_t cur_page_fs_offset;	/* Offset in file */
97 
98 	struct iov_iter *iter;
99 	/*
100 	 * Page queue.  These variables belong to dio_refill_pages() and
101 	 * dio_get_page().
102 	 */
103 	unsigned head;			/* next page to process */
104 	unsigned tail;			/* last valid page + 1 */
105 	size_t from, to;
106 };
107 
108 /* dio_state communicated between submission path and end_io */
109 struct dio {
110 	int flags;			/* doesn't change */
111 	int rw;
112 	blk_qc_t bio_cookie;
113 	struct block_device *bio_bdev;
114 	struct inode *inode;
115 	loff_t i_size;			/* i_size when submitted */
116 	dio_iodone_t *end_io;		/* IO completion function */
117 
118 	void *private;			/* copy from map_bh.b_private */
119 
120 	/* BIO completion state */
121 	spinlock_t bio_lock;		/* protects BIO fields below */
122 	int page_errors;		/* errno from get_user_pages() */
123 	int is_async;			/* is IO async ? */
124 	bool defer_completion;		/* defer AIO completion to workqueue? */
125 	bool should_dirty;		/* if pages should be dirtied */
126 	int io_error;			/* IO error in completion path */
127 	unsigned long refcount;		/* direct_io_worker() and bios */
128 	struct bio *bio_list;		/* singly linked via bi_private */
129 	struct task_struct *waiter;	/* waiting task (NULL if none) */
130 
131 	/* AIO related stuff */
132 	struct kiocb *iocb;		/* kiocb */
133 	ssize_t result;                 /* IO result */
134 
135 	/*
136 	 * pages[] (and any fields placed after it) are not zeroed out at
137 	 * allocation time.  Don't add new fields after pages[] unless you
138 	 * wish that they not be zeroed.
139 	 */
140 	union {
141 		struct page *pages[DIO_PAGES];	/* page buffer */
142 		struct work_struct complete_work;/* deferred AIO completion */
143 	};
144 } ____cacheline_aligned_in_smp;
145 
146 static struct kmem_cache *dio_cache __read_mostly;
147 
148 /*
149  * How many pages are in the queue?
150  */
151 static inline unsigned dio_pages_present(struct dio_submit *sdio)
152 {
153 	return sdio->tail - sdio->head;
154 }
155 
156 /*
157  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
158  */
159 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
160 {
161 	ssize_t ret;
162 
163 	ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
164 				&sdio->from);
165 
166 	if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) {
167 		struct page *page = ZERO_PAGE(0);
168 		/*
169 		 * A memory fault, but the filesystem has some outstanding
170 		 * mapped blocks.  We need to use those blocks up to avoid
171 		 * leaking stale data in the file.
172 		 */
173 		if (dio->page_errors == 0)
174 			dio->page_errors = ret;
175 		get_page(page);
176 		dio->pages[0] = page;
177 		sdio->head = 0;
178 		sdio->tail = 1;
179 		sdio->from = 0;
180 		sdio->to = PAGE_SIZE;
181 		return 0;
182 	}
183 
184 	if (ret >= 0) {
185 		iov_iter_advance(sdio->iter, ret);
186 		ret += sdio->from;
187 		sdio->head = 0;
188 		sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
189 		sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
190 		return 0;
191 	}
192 	return ret;
193 }
194 
195 /*
196  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
197  * buffered inside the dio so that we can call get_user_pages() against a
198  * decent number of pages, less frequently.  To provide nicer use of the
199  * L1 cache.
200  */
201 static inline struct page *dio_get_page(struct dio *dio,
202 					struct dio_submit *sdio)
203 {
204 	if (dio_pages_present(sdio) == 0) {
205 		int ret;
206 
207 		ret = dio_refill_pages(dio, sdio);
208 		if (ret)
209 			return ERR_PTR(ret);
210 		BUG_ON(dio_pages_present(sdio) == 0);
211 	}
212 	return dio->pages[sdio->head];
213 }
214 
215 /**
216  * dio_complete() - called when all DIO BIO I/O has been completed
217  * @offset: the byte offset in the file of the completed operation
218  *
219  * This drops i_dio_count, lets interested parties know that a DIO operation
220  * has completed, and calculates the resulting return code for the operation.
221  *
222  * It lets the filesystem know if it registered an interest earlier via
223  * get_block.  Pass the private field of the map buffer_head so that
224  * filesystems can use it to hold additional state between get_block calls and
225  * dio_complete.
226  */
227 static ssize_t dio_complete(struct dio *dio, ssize_t ret, bool is_async)
228 {
229 	loff_t offset = dio->iocb->ki_pos;
230 	ssize_t transferred = 0;
231 
232 	/*
233 	 * AIO submission can race with bio completion to get here while
234 	 * expecting to have the last io completed by bio completion.
235 	 * In that case -EIOCBQUEUED is in fact not an error we want
236 	 * to preserve through this call.
237 	 */
238 	if (ret == -EIOCBQUEUED)
239 		ret = 0;
240 
241 	if (dio->result) {
242 		transferred = dio->result;
243 
244 		/* Check for short read case */
245 		if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
246 			transferred = dio->i_size - offset;
247 	}
248 
249 	if (ret == 0)
250 		ret = dio->page_errors;
251 	if (ret == 0)
252 		ret = dio->io_error;
253 	if (ret == 0)
254 		ret = transferred;
255 
256 	if (dio->end_io) {
257 		int err;
258 
259 		// XXX: ki_pos??
260 		err = dio->end_io(dio->iocb, offset, ret, dio->private);
261 		if (err)
262 			ret = err;
263 	}
264 
265 	if (!(dio->flags & DIO_SKIP_DIO_COUNT))
266 		inode_dio_end(dio->inode);
267 
268 	if (is_async) {
269 		/*
270 		 * generic_write_sync expects ki_pos to have been updated
271 		 * already, but the submission path only does this for
272 		 * synchronous I/O.
273 		 */
274 		dio->iocb->ki_pos += transferred;
275 
276 		if (dio->rw & WRITE)
277 			ret = generic_write_sync(dio->iocb,  transferred);
278 		dio->iocb->ki_complete(dio->iocb, ret, 0);
279 	}
280 
281 	kmem_cache_free(dio_cache, dio);
282 	return ret;
283 }
284 
285 static void dio_aio_complete_work(struct work_struct *work)
286 {
287 	struct dio *dio = container_of(work, struct dio, complete_work);
288 
289 	dio_complete(dio, 0, true);
290 }
291 
292 static int dio_bio_complete(struct dio *dio, struct bio *bio);
293 
294 /*
295  * Asynchronous IO callback.
296  */
297 static void dio_bio_end_aio(struct bio *bio)
298 {
299 	struct dio *dio = bio->bi_private;
300 	unsigned long remaining;
301 	unsigned long flags;
302 
303 	/* cleanup the bio */
304 	dio_bio_complete(dio, bio);
305 
306 	spin_lock_irqsave(&dio->bio_lock, flags);
307 	remaining = --dio->refcount;
308 	if (remaining == 1 && dio->waiter)
309 		wake_up_process(dio->waiter);
310 	spin_unlock_irqrestore(&dio->bio_lock, flags);
311 
312 	if (remaining == 0) {
313 		if (dio->result && dio->defer_completion) {
314 			INIT_WORK(&dio->complete_work, dio_aio_complete_work);
315 			queue_work(dio->inode->i_sb->s_dio_done_wq,
316 				   &dio->complete_work);
317 		} else {
318 			dio_complete(dio, 0, true);
319 		}
320 	}
321 }
322 
323 /*
324  * The BIO completion handler simply queues the BIO up for the process-context
325  * handler.
326  *
327  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
328  * implement a singly-linked list of completed BIOs, at dio->bio_list.
329  */
330 static void dio_bio_end_io(struct bio *bio)
331 {
332 	struct dio *dio = bio->bi_private;
333 	unsigned long flags;
334 
335 	spin_lock_irqsave(&dio->bio_lock, flags);
336 	bio->bi_private = dio->bio_list;
337 	dio->bio_list = bio;
338 	if (--dio->refcount == 1 && dio->waiter)
339 		wake_up_process(dio->waiter);
340 	spin_unlock_irqrestore(&dio->bio_lock, flags);
341 }
342 
343 /**
344  * dio_end_io - handle the end io action for the given bio
345  * @bio: The direct io bio thats being completed
346  * @error: Error if there was one
347  *
348  * This is meant to be called by any filesystem that uses their own dio_submit_t
349  * so that the DIO specific endio actions are dealt with after the filesystem
350  * has done it's completion work.
351  */
352 void dio_end_io(struct bio *bio, int error)
353 {
354 	struct dio *dio = bio->bi_private;
355 
356 	if (dio->is_async)
357 		dio_bio_end_aio(bio);
358 	else
359 		dio_bio_end_io(bio);
360 }
361 EXPORT_SYMBOL_GPL(dio_end_io);
362 
363 static inline void
364 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
365 	      struct block_device *bdev,
366 	      sector_t first_sector, int nr_vecs)
367 {
368 	struct bio *bio;
369 
370 	/*
371 	 * bio_alloc() is guaranteed to return a bio when called with
372 	 * __GFP_RECLAIM and we request a valid number of vectors.
373 	 */
374 	bio = bio_alloc(GFP_KERNEL, nr_vecs);
375 
376 	bio->bi_bdev = bdev;
377 	bio->bi_iter.bi_sector = first_sector;
378 	if (dio->is_async)
379 		bio->bi_end_io = dio_bio_end_aio;
380 	else
381 		bio->bi_end_io = dio_bio_end_io;
382 
383 	sdio->bio = bio;
384 	sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
385 }
386 
387 /*
388  * In the AIO read case we speculatively dirty the pages before starting IO.
389  * During IO completion, any of these pages which happen to have been written
390  * back will be redirtied by bio_check_pages_dirty().
391  *
392  * bios hold a dio reference between submit_bio and ->end_io.
393  */
394 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
395 {
396 	struct bio *bio = sdio->bio;
397 	unsigned long flags;
398 
399 	bio->bi_private = dio;
400 
401 	spin_lock_irqsave(&dio->bio_lock, flags);
402 	dio->refcount++;
403 	spin_unlock_irqrestore(&dio->bio_lock, flags);
404 
405 	if (dio->is_async && dio->rw == READ && dio->should_dirty)
406 		bio_set_pages_dirty(bio);
407 
408 	dio->bio_bdev = bio->bi_bdev;
409 
410 	if (sdio->submit_io) {
411 		sdio->submit_io(dio->rw, bio, dio->inode,
412 			       sdio->logical_offset_in_bio);
413 		dio->bio_cookie = BLK_QC_T_NONE;
414 	} else
415 		dio->bio_cookie = submit_bio(dio->rw, bio);
416 
417 	sdio->bio = NULL;
418 	sdio->boundary = 0;
419 	sdio->logical_offset_in_bio = 0;
420 }
421 
422 /*
423  * Release any resources in case of a failure
424  */
425 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
426 {
427 	while (sdio->head < sdio->tail)
428 		put_page(dio->pages[sdio->head++]);
429 }
430 
431 /*
432  * Wait for the next BIO to complete.  Remove it and return it.  NULL is
433  * returned once all BIOs have been completed.  This must only be called once
434  * all bios have been issued so that dio->refcount can only decrease.  This
435  * requires that that the caller hold a reference on the dio.
436  */
437 static struct bio *dio_await_one(struct dio *dio)
438 {
439 	unsigned long flags;
440 	struct bio *bio = NULL;
441 
442 	spin_lock_irqsave(&dio->bio_lock, flags);
443 
444 	/*
445 	 * Wait as long as the list is empty and there are bios in flight.  bio
446 	 * completion drops the count, maybe adds to the list, and wakes while
447 	 * holding the bio_lock so we don't need set_current_state()'s barrier
448 	 * and can call it after testing our condition.
449 	 */
450 	while (dio->refcount > 1 && dio->bio_list == NULL) {
451 		__set_current_state(TASK_UNINTERRUPTIBLE);
452 		dio->waiter = current;
453 		spin_unlock_irqrestore(&dio->bio_lock, flags);
454 		if (!(dio->iocb->ki_flags & IOCB_HIPRI) ||
455 		    !blk_poll(bdev_get_queue(dio->bio_bdev), dio->bio_cookie))
456 			io_schedule();
457 		/* wake up sets us TASK_RUNNING */
458 		spin_lock_irqsave(&dio->bio_lock, flags);
459 		dio->waiter = NULL;
460 	}
461 	if (dio->bio_list) {
462 		bio = dio->bio_list;
463 		dio->bio_list = bio->bi_private;
464 	}
465 	spin_unlock_irqrestore(&dio->bio_lock, flags);
466 	return bio;
467 }
468 
469 /*
470  * Process one completed BIO.  No locks are held.
471  */
472 static int dio_bio_complete(struct dio *dio, struct bio *bio)
473 {
474 	struct bio_vec *bvec;
475 	unsigned i;
476 	int err;
477 
478 	if (bio->bi_error)
479 		dio->io_error = -EIO;
480 
481 	if (dio->is_async && dio->rw == READ && dio->should_dirty) {
482 		err = bio->bi_error;
483 		bio_check_pages_dirty(bio);	/* transfers ownership */
484 	} else {
485 		bio_for_each_segment_all(bvec, bio, i) {
486 			struct page *page = bvec->bv_page;
487 
488 			if (dio->rw == READ && !PageCompound(page) &&
489 					dio->should_dirty)
490 				set_page_dirty_lock(page);
491 			put_page(page);
492 		}
493 		err = bio->bi_error;
494 		bio_put(bio);
495 	}
496 	return err;
497 }
498 
499 /*
500  * Wait on and process all in-flight BIOs.  This must only be called once
501  * all bios have been issued so that the refcount can only decrease.
502  * This just waits for all bios to make it through dio_bio_complete.  IO
503  * errors are propagated through dio->io_error and should be propagated via
504  * dio_complete().
505  */
506 static void dio_await_completion(struct dio *dio)
507 {
508 	struct bio *bio;
509 	do {
510 		bio = dio_await_one(dio);
511 		if (bio)
512 			dio_bio_complete(dio, bio);
513 	} while (bio);
514 }
515 
516 /*
517  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
518  * to keep the memory consumption sane we periodically reap any completed BIOs
519  * during the BIO generation phase.
520  *
521  * This also helps to limit the peak amount of pinned userspace memory.
522  */
523 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
524 {
525 	int ret = 0;
526 
527 	if (sdio->reap_counter++ >= 64) {
528 		while (dio->bio_list) {
529 			unsigned long flags;
530 			struct bio *bio;
531 			int ret2;
532 
533 			spin_lock_irqsave(&dio->bio_lock, flags);
534 			bio = dio->bio_list;
535 			dio->bio_list = bio->bi_private;
536 			spin_unlock_irqrestore(&dio->bio_lock, flags);
537 			ret2 = dio_bio_complete(dio, bio);
538 			if (ret == 0)
539 				ret = ret2;
540 		}
541 		sdio->reap_counter = 0;
542 	}
543 	return ret;
544 }
545 
546 /*
547  * Create workqueue for deferred direct IO completions. We allocate the
548  * workqueue when it's first needed. This avoids creating workqueue for
549  * filesystems that don't need it and also allows us to create the workqueue
550  * late enough so the we can include s_id in the name of the workqueue.
551  */
552 static int sb_init_dio_done_wq(struct super_block *sb)
553 {
554 	struct workqueue_struct *old;
555 	struct workqueue_struct *wq = alloc_workqueue("dio/%s",
556 						      WQ_MEM_RECLAIM, 0,
557 						      sb->s_id);
558 	if (!wq)
559 		return -ENOMEM;
560 	/*
561 	 * This has to be atomic as more DIOs can race to create the workqueue
562 	 */
563 	old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
564 	/* Someone created workqueue before us? Free ours... */
565 	if (old)
566 		destroy_workqueue(wq);
567 	return 0;
568 }
569 
570 static int dio_set_defer_completion(struct dio *dio)
571 {
572 	struct super_block *sb = dio->inode->i_sb;
573 
574 	if (dio->defer_completion)
575 		return 0;
576 	dio->defer_completion = true;
577 	if (!sb->s_dio_done_wq)
578 		return sb_init_dio_done_wq(sb);
579 	return 0;
580 }
581 
582 /*
583  * Call into the fs to map some more disk blocks.  We record the current number
584  * of available blocks at sdio->blocks_available.  These are in units of the
585  * fs blocksize, (1 << inode->i_blkbits).
586  *
587  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
588  * it uses the passed inode-relative block number as the file offset, as usual.
589  *
590  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
591  * has remaining to do.  The fs should not map more than this number of blocks.
592  *
593  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
594  * indicate how much contiguous disk space has been made available at
595  * bh->b_blocknr.
596  *
597  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
598  * This isn't very efficient...
599  *
600  * In the case of filesystem holes: the fs may return an arbitrarily-large
601  * hole by returning an appropriate value in b_size and by clearing
602  * buffer_mapped().  However the direct-io code will only process holes one
603  * block at a time - it will repeatedly call get_block() as it walks the hole.
604  */
605 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
606 			   struct buffer_head *map_bh)
607 {
608 	int ret;
609 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
610 	sector_t fs_endblk;	/* Into file, in filesystem-sized blocks */
611 	unsigned long fs_count;	/* Number of filesystem-sized blocks */
612 	int create;
613 	unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
614 
615 	/*
616 	 * If there was a memory error and we've overwritten all the
617 	 * mapped blocks then we can now return that memory error
618 	 */
619 	ret = dio->page_errors;
620 	if (ret == 0) {
621 		BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
622 		fs_startblk = sdio->block_in_file >> sdio->blkfactor;
623 		fs_endblk = (sdio->final_block_in_request - 1) >>
624 					sdio->blkfactor;
625 		fs_count = fs_endblk - fs_startblk + 1;
626 
627 		map_bh->b_state = 0;
628 		map_bh->b_size = fs_count << i_blkbits;
629 
630 		/*
631 		 * For writes that could fill holes inside i_size on a
632 		 * DIO_SKIP_HOLES filesystem we forbid block creations: only
633 		 * overwrites are permitted. We will return early to the caller
634 		 * once we see an unmapped buffer head returned, and the caller
635 		 * will fall back to buffered I/O.
636 		 *
637 		 * Otherwise the decision is left to the get_blocks method,
638 		 * which may decide to handle it or also return an unmapped
639 		 * buffer head.
640 		 */
641 		create = dio->rw & WRITE;
642 		if (dio->flags & DIO_SKIP_HOLES) {
643 			if (fs_startblk <= ((i_size_read(dio->inode) - 1) >>
644 							i_blkbits))
645 				create = 0;
646 		}
647 
648 		ret = (*sdio->get_block)(dio->inode, fs_startblk,
649 						map_bh, create);
650 
651 		/* Store for completion */
652 		dio->private = map_bh->b_private;
653 
654 		if (ret == 0 && buffer_defer_completion(map_bh))
655 			ret = dio_set_defer_completion(dio);
656 	}
657 	return ret;
658 }
659 
660 /*
661  * There is no bio.  Make one now.
662  */
663 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
664 		sector_t start_sector, struct buffer_head *map_bh)
665 {
666 	sector_t sector;
667 	int ret, nr_pages;
668 
669 	ret = dio_bio_reap(dio, sdio);
670 	if (ret)
671 		goto out;
672 	sector = start_sector << (sdio->blkbits - 9);
673 	nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
674 	BUG_ON(nr_pages <= 0);
675 	dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
676 	sdio->boundary = 0;
677 out:
678 	return ret;
679 }
680 
681 /*
682  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
683  * that was successful then update final_block_in_bio and take a ref against
684  * the just-added page.
685  *
686  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
687  */
688 static inline int dio_bio_add_page(struct dio_submit *sdio)
689 {
690 	int ret;
691 
692 	ret = bio_add_page(sdio->bio, sdio->cur_page,
693 			sdio->cur_page_len, sdio->cur_page_offset);
694 	if (ret == sdio->cur_page_len) {
695 		/*
696 		 * Decrement count only, if we are done with this page
697 		 */
698 		if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
699 			sdio->pages_in_io--;
700 		get_page(sdio->cur_page);
701 		sdio->final_block_in_bio = sdio->cur_page_block +
702 			(sdio->cur_page_len >> sdio->blkbits);
703 		ret = 0;
704 	} else {
705 		ret = 1;
706 	}
707 	return ret;
708 }
709 
710 /*
711  * Put cur_page under IO.  The section of cur_page which is described by
712  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
713  * starts on-disk at cur_page_block.
714  *
715  * We take a ref against the page here (on behalf of its presence in the bio).
716  *
717  * The caller of this function is responsible for removing cur_page from the
718  * dio, and for dropping the refcount which came from that presence.
719  */
720 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
721 		struct buffer_head *map_bh)
722 {
723 	int ret = 0;
724 
725 	if (sdio->bio) {
726 		loff_t cur_offset = sdio->cur_page_fs_offset;
727 		loff_t bio_next_offset = sdio->logical_offset_in_bio +
728 			sdio->bio->bi_iter.bi_size;
729 
730 		/*
731 		 * See whether this new request is contiguous with the old.
732 		 *
733 		 * Btrfs cannot handle having logically non-contiguous requests
734 		 * submitted.  For example if you have
735 		 *
736 		 * Logical:  [0-4095][HOLE][8192-12287]
737 		 * Physical: [0-4095]      [4096-8191]
738 		 *
739 		 * We cannot submit those pages together as one BIO.  So if our
740 		 * current logical offset in the file does not equal what would
741 		 * be the next logical offset in the bio, submit the bio we
742 		 * have.
743 		 */
744 		if (sdio->final_block_in_bio != sdio->cur_page_block ||
745 		    cur_offset != bio_next_offset)
746 			dio_bio_submit(dio, sdio);
747 	}
748 
749 	if (sdio->bio == NULL) {
750 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
751 		if (ret)
752 			goto out;
753 	}
754 
755 	if (dio_bio_add_page(sdio) != 0) {
756 		dio_bio_submit(dio, sdio);
757 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
758 		if (ret == 0) {
759 			ret = dio_bio_add_page(sdio);
760 			BUG_ON(ret != 0);
761 		}
762 	}
763 out:
764 	return ret;
765 }
766 
767 /*
768  * An autonomous function to put a chunk of a page under deferred IO.
769  *
770  * The caller doesn't actually know (or care) whether this piece of page is in
771  * a BIO, or is under IO or whatever.  We just take care of all possible
772  * situations here.  The separation between the logic of do_direct_IO() and
773  * that of submit_page_section() is important for clarity.  Please don't break.
774  *
775  * The chunk of page starts on-disk at blocknr.
776  *
777  * We perform deferred IO, by recording the last-submitted page inside our
778  * private part of the dio structure.  If possible, we just expand the IO
779  * across that page here.
780  *
781  * If that doesn't work out then we put the old page into the bio and add this
782  * page to the dio instead.
783  */
784 static inline int
785 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
786 		    unsigned offset, unsigned len, sector_t blocknr,
787 		    struct buffer_head *map_bh)
788 {
789 	int ret = 0;
790 
791 	if (dio->rw & WRITE) {
792 		/*
793 		 * Read accounting is performed in submit_bio()
794 		 */
795 		task_io_account_write(len);
796 	}
797 
798 	/*
799 	 * Can we just grow the current page's presence in the dio?
800 	 */
801 	if (sdio->cur_page == page &&
802 	    sdio->cur_page_offset + sdio->cur_page_len == offset &&
803 	    sdio->cur_page_block +
804 	    (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
805 		sdio->cur_page_len += len;
806 		goto out;
807 	}
808 
809 	/*
810 	 * If there's a deferred page already there then send it.
811 	 */
812 	if (sdio->cur_page) {
813 		ret = dio_send_cur_page(dio, sdio, map_bh);
814 		put_page(sdio->cur_page);
815 		sdio->cur_page = NULL;
816 		if (ret)
817 			return ret;
818 	}
819 
820 	get_page(page);		/* It is in dio */
821 	sdio->cur_page = page;
822 	sdio->cur_page_offset = offset;
823 	sdio->cur_page_len = len;
824 	sdio->cur_page_block = blocknr;
825 	sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
826 out:
827 	/*
828 	 * If sdio->boundary then we want to schedule the IO now to
829 	 * avoid metadata seeks.
830 	 */
831 	if (sdio->boundary) {
832 		ret = dio_send_cur_page(dio, sdio, map_bh);
833 		dio_bio_submit(dio, sdio);
834 		put_page(sdio->cur_page);
835 		sdio->cur_page = NULL;
836 	}
837 	return ret;
838 }
839 
840 /*
841  * Clean any dirty buffers in the blockdev mapping which alias newly-created
842  * file blocks.  Only called for S_ISREG files - blockdevs do not set
843  * buffer_new
844  */
845 static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh)
846 {
847 	unsigned i;
848 	unsigned nblocks;
849 
850 	nblocks = map_bh->b_size >> dio->inode->i_blkbits;
851 
852 	for (i = 0; i < nblocks; i++) {
853 		unmap_underlying_metadata(map_bh->b_bdev,
854 					  map_bh->b_blocknr + i);
855 	}
856 }
857 
858 /*
859  * If we are not writing the entire block and get_block() allocated
860  * the block for us, we need to fill-in the unused portion of the
861  * block with zeros. This happens only if user-buffer, fileoffset or
862  * io length is not filesystem block-size multiple.
863  *
864  * `end' is zero if we're doing the start of the IO, 1 at the end of the
865  * IO.
866  */
867 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
868 		int end, struct buffer_head *map_bh)
869 {
870 	unsigned dio_blocks_per_fs_block;
871 	unsigned this_chunk_blocks;	/* In dio_blocks */
872 	unsigned this_chunk_bytes;
873 	struct page *page;
874 
875 	sdio->start_zero_done = 1;
876 	if (!sdio->blkfactor || !buffer_new(map_bh))
877 		return;
878 
879 	dio_blocks_per_fs_block = 1 << sdio->blkfactor;
880 	this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
881 
882 	if (!this_chunk_blocks)
883 		return;
884 
885 	/*
886 	 * We need to zero out part of an fs block.  It is either at the
887 	 * beginning or the end of the fs block.
888 	 */
889 	if (end)
890 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
891 
892 	this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
893 
894 	page = ZERO_PAGE(0);
895 	if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
896 				sdio->next_block_for_io, map_bh))
897 		return;
898 
899 	sdio->next_block_for_io += this_chunk_blocks;
900 }
901 
902 /*
903  * Walk the user pages, and the file, mapping blocks to disk and generating
904  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
905  * into submit_page_section(), which takes care of the next stage of submission
906  *
907  * Direct IO against a blockdev is different from a file.  Because we can
908  * happily perform page-sized but 512-byte aligned IOs.  It is important that
909  * blockdev IO be able to have fine alignment and large sizes.
910  *
911  * So what we do is to permit the ->get_block function to populate bh.b_size
912  * with the size of IO which is permitted at this offset and this i_blkbits.
913  *
914  * For best results, the blockdev should be set up with 512-byte i_blkbits and
915  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
916  * fine alignment but still allows this function to work in PAGE_SIZE units.
917  */
918 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
919 			struct buffer_head *map_bh)
920 {
921 	const unsigned blkbits = sdio->blkbits;
922 	int ret = 0;
923 
924 	while (sdio->block_in_file < sdio->final_block_in_request) {
925 		struct page *page;
926 		size_t from, to;
927 
928 		page = dio_get_page(dio, sdio);
929 		if (IS_ERR(page)) {
930 			ret = PTR_ERR(page);
931 			goto out;
932 		}
933 		from = sdio->head ? 0 : sdio->from;
934 		to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
935 		sdio->head++;
936 
937 		while (from < to) {
938 			unsigned this_chunk_bytes;	/* # of bytes mapped */
939 			unsigned this_chunk_blocks;	/* # of blocks */
940 			unsigned u;
941 
942 			if (sdio->blocks_available == 0) {
943 				/*
944 				 * Need to go and map some more disk
945 				 */
946 				unsigned long blkmask;
947 				unsigned long dio_remainder;
948 
949 				ret = get_more_blocks(dio, sdio, map_bh);
950 				if (ret) {
951 					put_page(page);
952 					goto out;
953 				}
954 				if (!buffer_mapped(map_bh))
955 					goto do_holes;
956 
957 				sdio->blocks_available =
958 						map_bh->b_size >> sdio->blkbits;
959 				sdio->next_block_for_io =
960 					map_bh->b_blocknr << sdio->blkfactor;
961 				if (buffer_new(map_bh))
962 					clean_blockdev_aliases(dio, map_bh);
963 
964 				if (!sdio->blkfactor)
965 					goto do_holes;
966 
967 				blkmask = (1 << sdio->blkfactor) - 1;
968 				dio_remainder = (sdio->block_in_file & blkmask);
969 
970 				/*
971 				 * If we are at the start of IO and that IO
972 				 * starts partway into a fs-block,
973 				 * dio_remainder will be non-zero.  If the IO
974 				 * is a read then we can simply advance the IO
975 				 * cursor to the first block which is to be
976 				 * read.  But if the IO is a write and the
977 				 * block was newly allocated we cannot do that;
978 				 * the start of the fs block must be zeroed out
979 				 * on-disk
980 				 */
981 				if (!buffer_new(map_bh))
982 					sdio->next_block_for_io += dio_remainder;
983 				sdio->blocks_available -= dio_remainder;
984 			}
985 do_holes:
986 			/* Handle holes */
987 			if (!buffer_mapped(map_bh)) {
988 				loff_t i_size_aligned;
989 
990 				/* AKPM: eargh, -ENOTBLK is a hack */
991 				if (dio->rw & WRITE) {
992 					put_page(page);
993 					return -ENOTBLK;
994 				}
995 
996 				/*
997 				 * Be sure to account for a partial block as the
998 				 * last block in the file
999 				 */
1000 				i_size_aligned = ALIGN(i_size_read(dio->inode),
1001 							1 << blkbits);
1002 				if (sdio->block_in_file >=
1003 						i_size_aligned >> blkbits) {
1004 					/* We hit eof */
1005 					put_page(page);
1006 					goto out;
1007 				}
1008 				zero_user(page, from, 1 << blkbits);
1009 				sdio->block_in_file++;
1010 				from += 1 << blkbits;
1011 				dio->result += 1 << blkbits;
1012 				goto next_block;
1013 			}
1014 
1015 			/*
1016 			 * If we're performing IO which has an alignment which
1017 			 * is finer than the underlying fs, go check to see if
1018 			 * we must zero out the start of this block.
1019 			 */
1020 			if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1021 				dio_zero_block(dio, sdio, 0, map_bh);
1022 
1023 			/*
1024 			 * Work out, in this_chunk_blocks, how much disk we
1025 			 * can add to this page
1026 			 */
1027 			this_chunk_blocks = sdio->blocks_available;
1028 			u = (to - from) >> blkbits;
1029 			if (this_chunk_blocks > u)
1030 				this_chunk_blocks = u;
1031 			u = sdio->final_block_in_request - sdio->block_in_file;
1032 			if (this_chunk_blocks > u)
1033 				this_chunk_blocks = u;
1034 			this_chunk_bytes = this_chunk_blocks << blkbits;
1035 			BUG_ON(this_chunk_bytes == 0);
1036 
1037 			if (this_chunk_blocks == sdio->blocks_available)
1038 				sdio->boundary = buffer_boundary(map_bh);
1039 			ret = submit_page_section(dio, sdio, page,
1040 						  from,
1041 						  this_chunk_bytes,
1042 						  sdio->next_block_for_io,
1043 						  map_bh);
1044 			if (ret) {
1045 				put_page(page);
1046 				goto out;
1047 			}
1048 			sdio->next_block_for_io += this_chunk_blocks;
1049 
1050 			sdio->block_in_file += this_chunk_blocks;
1051 			from += this_chunk_bytes;
1052 			dio->result += this_chunk_bytes;
1053 			sdio->blocks_available -= this_chunk_blocks;
1054 next_block:
1055 			BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1056 			if (sdio->block_in_file == sdio->final_block_in_request)
1057 				break;
1058 		}
1059 
1060 		/* Drop the ref which was taken in get_user_pages() */
1061 		put_page(page);
1062 	}
1063 out:
1064 	return ret;
1065 }
1066 
1067 static inline int drop_refcount(struct dio *dio)
1068 {
1069 	int ret2;
1070 	unsigned long flags;
1071 
1072 	/*
1073 	 * Sync will always be dropping the final ref and completing the
1074 	 * operation.  AIO can if it was a broken operation described above or
1075 	 * in fact if all the bios race to complete before we get here.  In
1076 	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1077 	 * return code that the caller will hand to ->complete().
1078 	 *
1079 	 * This is managed by the bio_lock instead of being an atomic_t so that
1080 	 * completion paths can drop their ref and use the remaining count to
1081 	 * decide to wake the submission path atomically.
1082 	 */
1083 	spin_lock_irqsave(&dio->bio_lock, flags);
1084 	ret2 = --dio->refcount;
1085 	spin_unlock_irqrestore(&dio->bio_lock, flags);
1086 	return ret2;
1087 }
1088 
1089 /*
1090  * This is a library function for use by filesystem drivers.
1091  *
1092  * The locking rules are governed by the flags parameter:
1093  *  - if the flags value contains DIO_LOCKING we use a fancy locking
1094  *    scheme for dumb filesystems.
1095  *    For writes this function is called under i_mutex and returns with
1096  *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1097  *    taken and dropped again before returning.
1098  *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1099  *    internal locking but rather rely on the filesystem to synchronize
1100  *    direct I/O reads/writes versus each other and truncate.
1101  *
1102  * To help with locking against truncate we incremented the i_dio_count
1103  * counter before starting direct I/O, and decrement it once we are done.
1104  * Truncate can wait for it to reach zero to provide exclusion.  It is
1105  * expected that filesystem provide exclusion between new direct I/O
1106  * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1107  * but other filesystems need to take care of this on their own.
1108  *
1109  * NOTE: if you pass "sdio" to anything by pointer make sure that function
1110  * is always inlined. Otherwise gcc is unable to split the structure into
1111  * individual fields and will generate much worse code. This is important
1112  * for the whole file.
1113  */
1114 static inline ssize_t
1115 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1116 		      struct block_device *bdev, struct iov_iter *iter,
1117 		      get_block_t get_block, dio_iodone_t end_io,
1118 		      dio_submit_t submit_io, int flags)
1119 {
1120 	unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits);
1121 	unsigned blkbits = i_blkbits;
1122 	unsigned blocksize_mask = (1 << blkbits) - 1;
1123 	ssize_t retval = -EINVAL;
1124 	size_t count = iov_iter_count(iter);
1125 	loff_t offset = iocb->ki_pos;
1126 	loff_t end = offset + count;
1127 	struct dio *dio;
1128 	struct dio_submit sdio = { 0, };
1129 	struct buffer_head map_bh = { 0, };
1130 	struct blk_plug plug;
1131 	unsigned long align = offset | iov_iter_alignment(iter);
1132 
1133 	/*
1134 	 * Avoid references to bdev if not absolutely needed to give
1135 	 * the early prefetch in the caller enough time.
1136 	 */
1137 
1138 	if (align & blocksize_mask) {
1139 		if (bdev)
1140 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
1141 		blocksize_mask = (1 << blkbits) - 1;
1142 		if (align & blocksize_mask)
1143 			goto out;
1144 	}
1145 
1146 	/* watch out for a 0 len io from a tricksy fs */
1147 	if (iov_iter_rw(iter) == READ && !iov_iter_count(iter))
1148 		return 0;
1149 
1150 	dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1151 	retval = -ENOMEM;
1152 	if (!dio)
1153 		goto out;
1154 	/*
1155 	 * Believe it or not, zeroing out the page array caused a .5%
1156 	 * performance regression in a database benchmark.  So, we take
1157 	 * care to only zero out what's needed.
1158 	 */
1159 	memset(dio, 0, offsetof(struct dio, pages));
1160 
1161 	dio->flags = flags;
1162 	if (dio->flags & DIO_LOCKING) {
1163 		if (iov_iter_rw(iter) == READ) {
1164 			struct address_space *mapping =
1165 					iocb->ki_filp->f_mapping;
1166 
1167 			/* will be released by direct_io_worker */
1168 			inode_lock(inode);
1169 
1170 			retval = filemap_write_and_wait_range(mapping, offset,
1171 							      end - 1);
1172 			if (retval) {
1173 				inode_unlock(inode);
1174 				kmem_cache_free(dio_cache, dio);
1175 				goto out;
1176 			}
1177 		}
1178 	}
1179 
1180 	/* Once we sampled i_size check for reads beyond EOF */
1181 	dio->i_size = i_size_read(inode);
1182 	if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1183 		if (dio->flags & DIO_LOCKING)
1184 			inode_unlock(inode);
1185 		kmem_cache_free(dio_cache, dio);
1186 		retval = 0;
1187 		goto out;
1188 	}
1189 
1190 	/*
1191 	 * For file extending writes updating i_size before data writeouts
1192 	 * complete can expose uninitialized blocks in dumb filesystems.
1193 	 * In that case we need to wait for I/O completion even if asked
1194 	 * for an asynchronous write.
1195 	 */
1196 	if (is_sync_kiocb(iocb))
1197 		dio->is_async = false;
1198 	else if (!(dio->flags & DIO_ASYNC_EXTEND) &&
1199 		 iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1200 		dio->is_async = false;
1201 	else
1202 		dio->is_async = true;
1203 
1204 	dio->inode = inode;
1205 	dio->rw = iov_iter_rw(iter) == WRITE ? WRITE_ODIRECT : READ;
1206 
1207 	/*
1208 	 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1209 	 * so that we can call ->fsync.
1210 	 */
1211 	if (dio->is_async && iov_iter_rw(iter) == WRITE &&
1212 	    ((iocb->ki_filp->f_flags & O_DSYNC) ||
1213 	     IS_SYNC(iocb->ki_filp->f_mapping->host))) {
1214 		retval = dio_set_defer_completion(dio);
1215 		if (retval) {
1216 			/*
1217 			 * We grab i_mutex only for reads so we don't have
1218 			 * to release it here
1219 			 */
1220 			kmem_cache_free(dio_cache, dio);
1221 			goto out;
1222 		}
1223 	}
1224 
1225 	/*
1226 	 * Will be decremented at I/O completion time.
1227 	 */
1228 	if (!(dio->flags & DIO_SKIP_DIO_COUNT))
1229 		inode_dio_begin(inode);
1230 
1231 	retval = 0;
1232 	sdio.blkbits = blkbits;
1233 	sdio.blkfactor = i_blkbits - blkbits;
1234 	sdio.block_in_file = offset >> blkbits;
1235 
1236 	sdio.get_block = get_block;
1237 	dio->end_io = end_io;
1238 	sdio.submit_io = submit_io;
1239 	sdio.final_block_in_bio = -1;
1240 	sdio.next_block_for_io = -1;
1241 
1242 	dio->iocb = iocb;
1243 
1244 	spin_lock_init(&dio->bio_lock);
1245 	dio->refcount = 1;
1246 
1247 	dio->should_dirty = (iter->type == ITER_IOVEC);
1248 	sdio.iter = iter;
1249 	sdio.final_block_in_request =
1250 		(offset + iov_iter_count(iter)) >> blkbits;
1251 
1252 	/*
1253 	 * In case of non-aligned buffers, we may need 2 more
1254 	 * pages since we need to zero out first and last block.
1255 	 */
1256 	if (unlikely(sdio.blkfactor))
1257 		sdio.pages_in_io = 2;
1258 
1259 	sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1260 
1261 	blk_start_plug(&plug);
1262 
1263 	retval = do_direct_IO(dio, &sdio, &map_bh);
1264 	if (retval)
1265 		dio_cleanup(dio, &sdio);
1266 
1267 	if (retval == -ENOTBLK) {
1268 		/*
1269 		 * The remaining part of the request will be
1270 		 * be handled by buffered I/O when we return
1271 		 */
1272 		retval = 0;
1273 	}
1274 	/*
1275 	 * There may be some unwritten disk at the end of a part-written
1276 	 * fs-block-sized block.  Go zero that now.
1277 	 */
1278 	dio_zero_block(dio, &sdio, 1, &map_bh);
1279 
1280 	if (sdio.cur_page) {
1281 		ssize_t ret2;
1282 
1283 		ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1284 		if (retval == 0)
1285 			retval = ret2;
1286 		put_page(sdio.cur_page);
1287 		sdio.cur_page = NULL;
1288 	}
1289 	if (sdio.bio)
1290 		dio_bio_submit(dio, &sdio);
1291 
1292 	blk_finish_plug(&plug);
1293 
1294 	/*
1295 	 * It is possible that, we return short IO due to end of file.
1296 	 * In that case, we need to release all the pages we got hold on.
1297 	 */
1298 	dio_cleanup(dio, &sdio);
1299 
1300 	/*
1301 	 * All block lookups have been performed. For READ requests
1302 	 * we can let i_mutex go now that its achieved its purpose
1303 	 * of protecting us from looking up uninitialized blocks.
1304 	 */
1305 	if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1306 		inode_unlock(dio->inode);
1307 
1308 	/*
1309 	 * The only time we want to leave bios in flight is when a successful
1310 	 * partial aio read or full aio write have been setup.  In that case
1311 	 * bio completion will call aio_complete.  The only time it's safe to
1312 	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1313 	 * This had *better* be the only place that raises -EIOCBQUEUED.
1314 	 */
1315 	BUG_ON(retval == -EIOCBQUEUED);
1316 	if (dio->is_async && retval == 0 && dio->result &&
1317 	    (iov_iter_rw(iter) == READ || dio->result == count))
1318 		retval = -EIOCBQUEUED;
1319 	else
1320 		dio_await_completion(dio);
1321 
1322 	if (drop_refcount(dio) == 0) {
1323 		retval = dio_complete(dio, retval, false);
1324 	} else
1325 		BUG_ON(retval != -EIOCBQUEUED);
1326 
1327 out:
1328 	return retval;
1329 }
1330 
1331 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1332 			     struct block_device *bdev, struct iov_iter *iter,
1333 			     get_block_t get_block,
1334 			     dio_iodone_t end_io, dio_submit_t submit_io,
1335 			     int flags)
1336 {
1337 	/*
1338 	 * The block device state is needed in the end to finally
1339 	 * submit everything.  Since it's likely to be cache cold
1340 	 * prefetch it here as first thing to hide some of the
1341 	 * latency.
1342 	 *
1343 	 * Attempt to prefetch the pieces we likely need later.
1344 	 */
1345 	prefetch(&bdev->bd_disk->part_tbl);
1346 	prefetch(bdev->bd_queue);
1347 	prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1348 
1349 	return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block,
1350 				     end_io, submit_io, flags);
1351 }
1352 
1353 EXPORT_SYMBOL(__blockdev_direct_IO);
1354 
1355 static __init int dio_init(void)
1356 {
1357 	dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1358 	return 0;
1359 }
1360 module_init(dio_init)
1361