1 /* 2 * fs/direct-io.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * O_DIRECT 7 * 8 * 04Jul2002 Andrew Morton 9 * Initial version 10 * 11Sep2002 janetinc@us.ibm.com 11 * added readv/writev support. 12 * 29Oct2002 Andrew Morton 13 * rewrote bio_add_page() support. 14 * 30Oct2002 pbadari@us.ibm.com 15 * added support for non-aligned IO. 16 * 06Nov2002 pbadari@us.ibm.com 17 * added asynchronous IO support. 18 * 21Jul2003 nathans@sgi.com 19 * added IO completion notifier. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/types.h> 25 #include <linux/fs.h> 26 #include <linux/mm.h> 27 #include <linux/slab.h> 28 #include <linux/highmem.h> 29 #include <linux/pagemap.h> 30 #include <linux/task_io_accounting_ops.h> 31 #include <linux/bio.h> 32 #include <linux/wait.h> 33 #include <linux/err.h> 34 #include <linux/blkdev.h> 35 #include <linux/buffer_head.h> 36 #include <linux/rwsem.h> 37 #include <linux/uio.h> 38 #include <linux/atomic.h> 39 #include <linux/prefetch.h> 40 #include <linux/aio.h> 41 42 /* 43 * How many user pages to map in one call to get_user_pages(). This determines 44 * the size of a structure in the slab cache 45 */ 46 #define DIO_PAGES 64 47 48 /* 49 * This code generally works in units of "dio_blocks". A dio_block is 50 * somewhere between the hard sector size and the filesystem block size. it 51 * is determined on a per-invocation basis. When talking to the filesystem 52 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity 53 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted 54 * to bio_block quantities by shifting left by blkfactor. 55 * 56 * If blkfactor is zero then the user's request was aligned to the filesystem's 57 * blocksize. 58 */ 59 60 /* dio_state only used in the submission path */ 61 62 struct dio_submit { 63 struct bio *bio; /* bio under assembly */ 64 unsigned blkbits; /* doesn't change */ 65 unsigned blkfactor; /* When we're using an alignment which 66 is finer than the filesystem's soft 67 blocksize, this specifies how much 68 finer. blkfactor=2 means 1/4-block 69 alignment. Does not change */ 70 unsigned start_zero_done; /* flag: sub-blocksize zeroing has 71 been performed at the start of a 72 write */ 73 int pages_in_io; /* approximate total IO pages */ 74 sector_t block_in_file; /* Current offset into the underlying 75 file in dio_block units. */ 76 unsigned blocks_available; /* At block_in_file. changes */ 77 int reap_counter; /* rate limit reaping */ 78 sector_t final_block_in_request;/* doesn't change */ 79 int boundary; /* prev block is at a boundary */ 80 get_block_t *get_block; /* block mapping function */ 81 dio_submit_t *submit_io; /* IO submition function */ 82 83 loff_t logical_offset_in_bio; /* current first logical block in bio */ 84 sector_t final_block_in_bio; /* current final block in bio + 1 */ 85 sector_t next_block_for_io; /* next block to be put under IO, 86 in dio_blocks units */ 87 88 /* 89 * Deferred addition of a page to the dio. These variables are 90 * private to dio_send_cur_page(), submit_page_section() and 91 * dio_bio_add_page(). 92 */ 93 struct page *cur_page; /* The page */ 94 unsigned cur_page_offset; /* Offset into it, in bytes */ 95 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ 96 sector_t cur_page_block; /* Where it starts */ 97 loff_t cur_page_fs_offset; /* Offset in file */ 98 99 struct iov_iter *iter; 100 /* 101 * Page queue. These variables belong to dio_refill_pages() and 102 * dio_get_page(). 103 */ 104 unsigned head; /* next page to process */ 105 unsigned tail; /* last valid page + 1 */ 106 size_t from, to; 107 }; 108 109 /* dio_state communicated between submission path and end_io */ 110 struct dio { 111 int flags; /* doesn't change */ 112 int rw; 113 struct inode *inode; 114 loff_t i_size; /* i_size when submitted */ 115 dio_iodone_t *end_io; /* IO completion function */ 116 117 void *private; /* copy from map_bh.b_private */ 118 119 /* BIO completion state */ 120 spinlock_t bio_lock; /* protects BIO fields below */ 121 int page_errors; /* errno from get_user_pages() */ 122 int is_async; /* is IO async ? */ 123 bool defer_completion; /* defer AIO completion to workqueue? */ 124 int io_error; /* IO error in completion path */ 125 unsigned long refcount; /* direct_io_worker() and bios */ 126 struct bio *bio_list; /* singly linked via bi_private */ 127 struct task_struct *waiter; /* waiting task (NULL if none) */ 128 129 /* AIO related stuff */ 130 struct kiocb *iocb; /* kiocb */ 131 ssize_t result; /* IO result */ 132 133 /* 134 * pages[] (and any fields placed after it) are not zeroed out at 135 * allocation time. Don't add new fields after pages[] unless you 136 * wish that they not be zeroed. 137 */ 138 union { 139 struct page *pages[DIO_PAGES]; /* page buffer */ 140 struct work_struct complete_work;/* deferred AIO completion */ 141 }; 142 } ____cacheline_aligned_in_smp; 143 144 static struct kmem_cache *dio_cache __read_mostly; 145 146 /* 147 * How many pages are in the queue? 148 */ 149 static inline unsigned dio_pages_present(struct dio_submit *sdio) 150 { 151 return sdio->tail - sdio->head; 152 } 153 154 /* 155 * Go grab and pin some userspace pages. Typically we'll get 64 at a time. 156 */ 157 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio) 158 { 159 ssize_t ret; 160 161 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES, 162 &sdio->from); 163 164 if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) { 165 struct page *page = ZERO_PAGE(0); 166 /* 167 * A memory fault, but the filesystem has some outstanding 168 * mapped blocks. We need to use those blocks up to avoid 169 * leaking stale data in the file. 170 */ 171 if (dio->page_errors == 0) 172 dio->page_errors = ret; 173 page_cache_get(page); 174 dio->pages[0] = page; 175 sdio->head = 0; 176 sdio->tail = 1; 177 sdio->from = 0; 178 sdio->to = PAGE_SIZE; 179 return 0; 180 } 181 182 if (ret >= 0) { 183 iov_iter_advance(sdio->iter, ret); 184 ret += sdio->from; 185 sdio->head = 0; 186 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE; 187 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1; 188 return 0; 189 } 190 return ret; 191 } 192 193 /* 194 * Get another userspace page. Returns an ERR_PTR on error. Pages are 195 * buffered inside the dio so that we can call get_user_pages() against a 196 * decent number of pages, less frequently. To provide nicer use of the 197 * L1 cache. 198 */ 199 static inline struct page *dio_get_page(struct dio *dio, 200 struct dio_submit *sdio) 201 { 202 if (dio_pages_present(sdio) == 0) { 203 int ret; 204 205 ret = dio_refill_pages(dio, sdio); 206 if (ret) 207 return ERR_PTR(ret); 208 BUG_ON(dio_pages_present(sdio) == 0); 209 } 210 return dio->pages[sdio->head]; 211 } 212 213 /** 214 * dio_complete() - called when all DIO BIO I/O has been completed 215 * @offset: the byte offset in the file of the completed operation 216 * 217 * This drops i_dio_count, lets interested parties know that a DIO operation 218 * has completed, and calculates the resulting return code for the operation. 219 * 220 * It lets the filesystem know if it registered an interest earlier via 221 * get_block. Pass the private field of the map buffer_head so that 222 * filesystems can use it to hold additional state between get_block calls and 223 * dio_complete. 224 */ 225 static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret, 226 bool is_async) 227 { 228 ssize_t transferred = 0; 229 230 /* 231 * AIO submission can race with bio completion to get here while 232 * expecting to have the last io completed by bio completion. 233 * In that case -EIOCBQUEUED is in fact not an error we want 234 * to preserve through this call. 235 */ 236 if (ret == -EIOCBQUEUED) 237 ret = 0; 238 239 if (dio->result) { 240 transferred = dio->result; 241 242 /* Check for short read case */ 243 if ((dio->rw == READ) && ((offset + transferred) > dio->i_size)) 244 transferred = dio->i_size - offset; 245 } 246 247 if (ret == 0) 248 ret = dio->page_errors; 249 if (ret == 0) 250 ret = dio->io_error; 251 if (ret == 0) 252 ret = transferred; 253 254 if (dio->end_io && dio->result) 255 dio->end_io(dio->iocb, offset, transferred, dio->private); 256 257 inode_dio_done(dio->inode); 258 if (is_async) { 259 if (dio->rw & WRITE) { 260 int err; 261 262 err = generic_write_sync(dio->iocb->ki_filp, offset, 263 transferred); 264 if (err < 0 && ret > 0) 265 ret = err; 266 } 267 268 aio_complete(dio->iocb, ret, 0); 269 } 270 271 kmem_cache_free(dio_cache, dio); 272 return ret; 273 } 274 275 static void dio_aio_complete_work(struct work_struct *work) 276 { 277 struct dio *dio = container_of(work, struct dio, complete_work); 278 279 dio_complete(dio, dio->iocb->ki_pos, 0, true); 280 } 281 282 static int dio_bio_complete(struct dio *dio, struct bio *bio); 283 284 /* 285 * Asynchronous IO callback. 286 */ 287 static void dio_bio_end_aio(struct bio *bio, int error) 288 { 289 struct dio *dio = bio->bi_private; 290 unsigned long remaining; 291 unsigned long flags; 292 293 /* cleanup the bio */ 294 dio_bio_complete(dio, bio); 295 296 spin_lock_irqsave(&dio->bio_lock, flags); 297 remaining = --dio->refcount; 298 if (remaining == 1 && dio->waiter) 299 wake_up_process(dio->waiter); 300 spin_unlock_irqrestore(&dio->bio_lock, flags); 301 302 if (remaining == 0) { 303 if (dio->result && dio->defer_completion) { 304 INIT_WORK(&dio->complete_work, dio_aio_complete_work); 305 queue_work(dio->inode->i_sb->s_dio_done_wq, 306 &dio->complete_work); 307 } else { 308 dio_complete(dio, dio->iocb->ki_pos, 0, true); 309 } 310 } 311 } 312 313 /* 314 * The BIO completion handler simply queues the BIO up for the process-context 315 * handler. 316 * 317 * During I/O bi_private points at the dio. After I/O, bi_private is used to 318 * implement a singly-linked list of completed BIOs, at dio->bio_list. 319 */ 320 static void dio_bio_end_io(struct bio *bio, int error) 321 { 322 struct dio *dio = bio->bi_private; 323 unsigned long flags; 324 325 spin_lock_irqsave(&dio->bio_lock, flags); 326 bio->bi_private = dio->bio_list; 327 dio->bio_list = bio; 328 if (--dio->refcount == 1 && dio->waiter) 329 wake_up_process(dio->waiter); 330 spin_unlock_irqrestore(&dio->bio_lock, flags); 331 } 332 333 /** 334 * dio_end_io - handle the end io action for the given bio 335 * @bio: The direct io bio thats being completed 336 * @error: Error if there was one 337 * 338 * This is meant to be called by any filesystem that uses their own dio_submit_t 339 * so that the DIO specific endio actions are dealt with after the filesystem 340 * has done it's completion work. 341 */ 342 void dio_end_io(struct bio *bio, int error) 343 { 344 struct dio *dio = bio->bi_private; 345 346 if (dio->is_async) 347 dio_bio_end_aio(bio, error); 348 else 349 dio_bio_end_io(bio, error); 350 } 351 EXPORT_SYMBOL_GPL(dio_end_io); 352 353 static inline void 354 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio, 355 struct block_device *bdev, 356 sector_t first_sector, int nr_vecs) 357 { 358 struct bio *bio; 359 360 /* 361 * bio_alloc() is guaranteed to return a bio when called with 362 * __GFP_WAIT and we request a valid number of vectors. 363 */ 364 bio = bio_alloc(GFP_KERNEL, nr_vecs); 365 366 bio->bi_bdev = bdev; 367 bio->bi_iter.bi_sector = first_sector; 368 if (dio->is_async) 369 bio->bi_end_io = dio_bio_end_aio; 370 else 371 bio->bi_end_io = dio_bio_end_io; 372 373 sdio->bio = bio; 374 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset; 375 } 376 377 /* 378 * In the AIO read case we speculatively dirty the pages before starting IO. 379 * During IO completion, any of these pages which happen to have been written 380 * back will be redirtied by bio_check_pages_dirty(). 381 * 382 * bios hold a dio reference between submit_bio and ->end_io. 383 */ 384 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio) 385 { 386 struct bio *bio = sdio->bio; 387 unsigned long flags; 388 389 bio->bi_private = dio; 390 391 spin_lock_irqsave(&dio->bio_lock, flags); 392 dio->refcount++; 393 spin_unlock_irqrestore(&dio->bio_lock, flags); 394 395 if (dio->is_async && dio->rw == READ) 396 bio_set_pages_dirty(bio); 397 398 if (sdio->submit_io) 399 sdio->submit_io(dio->rw, bio, dio->inode, 400 sdio->logical_offset_in_bio); 401 else 402 submit_bio(dio->rw, bio); 403 404 sdio->bio = NULL; 405 sdio->boundary = 0; 406 sdio->logical_offset_in_bio = 0; 407 } 408 409 /* 410 * Release any resources in case of a failure 411 */ 412 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio) 413 { 414 while (sdio->head < sdio->tail) 415 page_cache_release(dio->pages[sdio->head++]); 416 } 417 418 /* 419 * Wait for the next BIO to complete. Remove it and return it. NULL is 420 * returned once all BIOs have been completed. This must only be called once 421 * all bios have been issued so that dio->refcount can only decrease. This 422 * requires that that the caller hold a reference on the dio. 423 */ 424 static struct bio *dio_await_one(struct dio *dio) 425 { 426 unsigned long flags; 427 struct bio *bio = NULL; 428 429 spin_lock_irqsave(&dio->bio_lock, flags); 430 431 /* 432 * Wait as long as the list is empty and there are bios in flight. bio 433 * completion drops the count, maybe adds to the list, and wakes while 434 * holding the bio_lock so we don't need set_current_state()'s barrier 435 * and can call it after testing our condition. 436 */ 437 while (dio->refcount > 1 && dio->bio_list == NULL) { 438 __set_current_state(TASK_UNINTERRUPTIBLE); 439 dio->waiter = current; 440 spin_unlock_irqrestore(&dio->bio_lock, flags); 441 io_schedule(); 442 /* wake up sets us TASK_RUNNING */ 443 spin_lock_irqsave(&dio->bio_lock, flags); 444 dio->waiter = NULL; 445 } 446 if (dio->bio_list) { 447 bio = dio->bio_list; 448 dio->bio_list = bio->bi_private; 449 } 450 spin_unlock_irqrestore(&dio->bio_lock, flags); 451 return bio; 452 } 453 454 /* 455 * Process one completed BIO. No locks are held. 456 */ 457 static int dio_bio_complete(struct dio *dio, struct bio *bio) 458 { 459 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 460 struct bio_vec *bvec; 461 unsigned i; 462 463 if (!uptodate) 464 dio->io_error = -EIO; 465 466 if (dio->is_async && dio->rw == READ) { 467 bio_check_pages_dirty(bio); /* transfers ownership */ 468 } else { 469 bio_for_each_segment_all(bvec, bio, i) { 470 struct page *page = bvec->bv_page; 471 472 if (dio->rw == READ && !PageCompound(page)) 473 set_page_dirty_lock(page); 474 page_cache_release(page); 475 } 476 bio_put(bio); 477 } 478 return uptodate ? 0 : -EIO; 479 } 480 481 /* 482 * Wait on and process all in-flight BIOs. This must only be called once 483 * all bios have been issued so that the refcount can only decrease. 484 * This just waits for all bios to make it through dio_bio_complete. IO 485 * errors are propagated through dio->io_error and should be propagated via 486 * dio_complete(). 487 */ 488 static void dio_await_completion(struct dio *dio) 489 { 490 struct bio *bio; 491 do { 492 bio = dio_await_one(dio); 493 if (bio) 494 dio_bio_complete(dio, bio); 495 } while (bio); 496 } 497 498 /* 499 * A really large O_DIRECT read or write can generate a lot of BIOs. So 500 * to keep the memory consumption sane we periodically reap any completed BIOs 501 * during the BIO generation phase. 502 * 503 * This also helps to limit the peak amount of pinned userspace memory. 504 */ 505 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio) 506 { 507 int ret = 0; 508 509 if (sdio->reap_counter++ >= 64) { 510 while (dio->bio_list) { 511 unsigned long flags; 512 struct bio *bio; 513 int ret2; 514 515 spin_lock_irqsave(&dio->bio_lock, flags); 516 bio = dio->bio_list; 517 dio->bio_list = bio->bi_private; 518 spin_unlock_irqrestore(&dio->bio_lock, flags); 519 ret2 = dio_bio_complete(dio, bio); 520 if (ret == 0) 521 ret = ret2; 522 } 523 sdio->reap_counter = 0; 524 } 525 return ret; 526 } 527 528 /* 529 * Create workqueue for deferred direct IO completions. We allocate the 530 * workqueue when it's first needed. This avoids creating workqueue for 531 * filesystems that don't need it and also allows us to create the workqueue 532 * late enough so the we can include s_id in the name of the workqueue. 533 */ 534 static int sb_init_dio_done_wq(struct super_block *sb) 535 { 536 struct workqueue_struct *old; 537 struct workqueue_struct *wq = alloc_workqueue("dio/%s", 538 WQ_MEM_RECLAIM, 0, 539 sb->s_id); 540 if (!wq) 541 return -ENOMEM; 542 /* 543 * This has to be atomic as more DIOs can race to create the workqueue 544 */ 545 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq); 546 /* Someone created workqueue before us? Free ours... */ 547 if (old) 548 destroy_workqueue(wq); 549 return 0; 550 } 551 552 static int dio_set_defer_completion(struct dio *dio) 553 { 554 struct super_block *sb = dio->inode->i_sb; 555 556 if (dio->defer_completion) 557 return 0; 558 dio->defer_completion = true; 559 if (!sb->s_dio_done_wq) 560 return sb_init_dio_done_wq(sb); 561 return 0; 562 } 563 564 /* 565 * Call into the fs to map some more disk blocks. We record the current number 566 * of available blocks at sdio->blocks_available. These are in units of the 567 * fs blocksize, (1 << inode->i_blkbits). 568 * 569 * The fs is allowed to map lots of blocks at once. If it wants to do that, 570 * it uses the passed inode-relative block number as the file offset, as usual. 571 * 572 * get_block() is passed the number of i_blkbits-sized blocks which direct_io 573 * has remaining to do. The fs should not map more than this number of blocks. 574 * 575 * If the fs has mapped a lot of blocks, it should populate bh->b_size to 576 * indicate how much contiguous disk space has been made available at 577 * bh->b_blocknr. 578 * 579 * If *any* of the mapped blocks are new, then the fs must set buffer_new(). 580 * This isn't very efficient... 581 * 582 * In the case of filesystem holes: the fs may return an arbitrarily-large 583 * hole by returning an appropriate value in b_size and by clearing 584 * buffer_mapped(). However the direct-io code will only process holes one 585 * block at a time - it will repeatedly call get_block() as it walks the hole. 586 */ 587 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio, 588 struct buffer_head *map_bh) 589 { 590 int ret; 591 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ 592 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */ 593 unsigned long fs_count; /* Number of filesystem-sized blocks */ 594 int create; 595 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor; 596 597 /* 598 * If there was a memory error and we've overwritten all the 599 * mapped blocks then we can now return that memory error 600 */ 601 ret = dio->page_errors; 602 if (ret == 0) { 603 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request); 604 fs_startblk = sdio->block_in_file >> sdio->blkfactor; 605 fs_endblk = (sdio->final_block_in_request - 1) >> 606 sdio->blkfactor; 607 fs_count = fs_endblk - fs_startblk + 1; 608 609 map_bh->b_state = 0; 610 map_bh->b_size = fs_count << i_blkbits; 611 612 /* 613 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we 614 * forbid block creations: only overwrites are permitted. 615 * We will return early to the caller once we see an 616 * unmapped buffer head returned, and the caller will fall 617 * back to buffered I/O. 618 * 619 * Otherwise the decision is left to the get_blocks method, 620 * which may decide to handle it or also return an unmapped 621 * buffer head. 622 */ 623 create = dio->rw & WRITE; 624 if (dio->flags & DIO_SKIP_HOLES) { 625 if (sdio->block_in_file < (i_size_read(dio->inode) >> 626 sdio->blkbits)) 627 create = 0; 628 } 629 630 ret = (*sdio->get_block)(dio->inode, fs_startblk, 631 map_bh, create); 632 633 /* Store for completion */ 634 dio->private = map_bh->b_private; 635 636 if (ret == 0 && buffer_defer_completion(map_bh)) 637 ret = dio_set_defer_completion(dio); 638 } 639 return ret; 640 } 641 642 /* 643 * There is no bio. Make one now. 644 */ 645 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio, 646 sector_t start_sector, struct buffer_head *map_bh) 647 { 648 sector_t sector; 649 int ret, nr_pages; 650 651 ret = dio_bio_reap(dio, sdio); 652 if (ret) 653 goto out; 654 sector = start_sector << (sdio->blkbits - 9); 655 nr_pages = min(sdio->pages_in_io, bio_get_nr_vecs(map_bh->b_bdev)); 656 BUG_ON(nr_pages <= 0); 657 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages); 658 sdio->boundary = 0; 659 out: 660 return ret; 661 } 662 663 /* 664 * Attempt to put the current chunk of 'cur_page' into the current BIO. If 665 * that was successful then update final_block_in_bio and take a ref against 666 * the just-added page. 667 * 668 * Return zero on success. Non-zero means the caller needs to start a new BIO. 669 */ 670 static inline int dio_bio_add_page(struct dio_submit *sdio) 671 { 672 int ret; 673 674 ret = bio_add_page(sdio->bio, sdio->cur_page, 675 sdio->cur_page_len, sdio->cur_page_offset); 676 if (ret == sdio->cur_page_len) { 677 /* 678 * Decrement count only, if we are done with this page 679 */ 680 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE) 681 sdio->pages_in_io--; 682 page_cache_get(sdio->cur_page); 683 sdio->final_block_in_bio = sdio->cur_page_block + 684 (sdio->cur_page_len >> sdio->blkbits); 685 ret = 0; 686 } else { 687 ret = 1; 688 } 689 return ret; 690 } 691 692 /* 693 * Put cur_page under IO. The section of cur_page which is described by 694 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page 695 * starts on-disk at cur_page_block. 696 * 697 * We take a ref against the page here (on behalf of its presence in the bio). 698 * 699 * The caller of this function is responsible for removing cur_page from the 700 * dio, and for dropping the refcount which came from that presence. 701 */ 702 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio, 703 struct buffer_head *map_bh) 704 { 705 int ret = 0; 706 707 if (sdio->bio) { 708 loff_t cur_offset = sdio->cur_page_fs_offset; 709 loff_t bio_next_offset = sdio->logical_offset_in_bio + 710 sdio->bio->bi_iter.bi_size; 711 712 /* 713 * See whether this new request is contiguous with the old. 714 * 715 * Btrfs cannot handle having logically non-contiguous requests 716 * submitted. For example if you have 717 * 718 * Logical: [0-4095][HOLE][8192-12287] 719 * Physical: [0-4095] [4096-8191] 720 * 721 * We cannot submit those pages together as one BIO. So if our 722 * current logical offset in the file does not equal what would 723 * be the next logical offset in the bio, submit the bio we 724 * have. 725 */ 726 if (sdio->final_block_in_bio != sdio->cur_page_block || 727 cur_offset != bio_next_offset) 728 dio_bio_submit(dio, sdio); 729 } 730 731 if (sdio->bio == NULL) { 732 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 733 if (ret) 734 goto out; 735 } 736 737 if (dio_bio_add_page(sdio) != 0) { 738 dio_bio_submit(dio, sdio); 739 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 740 if (ret == 0) { 741 ret = dio_bio_add_page(sdio); 742 BUG_ON(ret != 0); 743 } 744 } 745 out: 746 return ret; 747 } 748 749 /* 750 * An autonomous function to put a chunk of a page under deferred IO. 751 * 752 * The caller doesn't actually know (or care) whether this piece of page is in 753 * a BIO, or is under IO or whatever. We just take care of all possible 754 * situations here. The separation between the logic of do_direct_IO() and 755 * that of submit_page_section() is important for clarity. Please don't break. 756 * 757 * The chunk of page starts on-disk at blocknr. 758 * 759 * We perform deferred IO, by recording the last-submitted page inside our 760 * private part of the dio structure. If possible, we just expand the IO 761 * across that page here. 762 * 763 * If that doesn't work out then we put the old page into the bio and add this 764 * page to the dio instead. 765 */ 766 static inline int 767 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page, 768 unsigned offset, unsigned len, sector_t blocknr, 769 struct buffer_head *map_bh) 770 { 771 int ret = 0; 772 773 if (dio->rw & WRITE) { 774 /* 775 * Read accounting is performed in submit_bio() 776 */ 777 task_io_account_write(len); 778 } 779 780 /* 781 * Can we just grow the current page's presence in the dio? 782 */ 783 if (sdio->cur_page == page && 784 sdio->cur_page_offset + sdio->cur_page_len == offset && 785 sdio->cur_page_block + 786 (sdio->cur_page_len >> sdio->blkbits) == blocknr) { 787 sdio->cur_page_len += len; 788 goto out; 789 } 790 791 /* 792 * If there's a deferred page already there then send it. 793 */ 794 if (sdio->cur_page) { 795 ret = dio_send_cur_page(dio, sdio, map_bh); 796 page_cache_release(sdio->cur_page); 797 sdio->cur_page = NULL; 798 if (ret) 799 return ret; 800 } 801 802 page_cache_get(page); /* It is in dio */ 803 sdio->cur_page = page; 804 sdio->cur_page_offset = offset; 805 sdio->cur_page_len = len; 806 sdio->cur_page_block = blocknr; 807 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits; 808 out: 809 /* 810 * If sdio->boundary then we want to schedule the IO now to 811 * avoid metadata seeks. 812 */ 813 if (sdio->boundary) { 814 ret = dio_send_cur_page(dio, sdio, map_bh); 815 dio_bio_submit(dio, sdio); 816 page_cache_release(sdio->cur_page); 817 sdio->cur_page = NULL; 818 } 819 return ret; 820 } 821 822 /* 823 * Clean any dirty buffers in the blockdev mapping which alias newly-created 824 * file blocks. Only called for S_ISREG files - blockdevs do not set 825 * buffer_new 826 */ 827 static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh) 828 { 829 unsigned i; 830 unsigned nblocks; 831 832 nblocks = map_bh->b_size >> dio->inode->i_blkbits; 833 834 for (i = 0; i < nblocks; i++) { 835 unmap_underlying_metadata(map_bh->b_bdev, 836 map_bh->b_blocknr + i); 837 } 838 } 839 840 /* 841 * If we are not writing the entire block and get_block() allocated 842 * the block for us, we need to fill-in the unused portion of the 843 * block with zeros. This happens only if user-buffer, fileoffset or 844 * io length is not filesystem block-size multiple. 845 * 846 * `end' is zero if we're doing the start of the IO, 1 at the end of the 847 * IO. 848 */ 849 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio, 850 int end, struct buffer_head *map_bh) 851 { 852 unsigned dio_blocks_per_fs_block; 853 unsigned this_chunk_blocks; /* In dio_blocks */ 854 unsigned this_chunk_bytes; 855 struct page *page; 856 857 sdio->start_zero_done = 1; 858 if (!sdio->blkfactor || !buffer_new(map_bh)) 859 return; 860 861 dio_blocks_per_fs_block = 1 << sdio->blkfactor; 862 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1); 863 864 if (!this_chunk_blocks) 865 return; 866 867 /* 868 * We need to zero out part of an fs block. It is either at the 869 * beginning or the end of the fs block. 870 */ 871 if (end) 872 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; 873 874 this_chunk_bytes = this_chunk_blocks << sdio->blkbits; 875 876 page = ZERO_PAGE(0); 877 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes, 878 sdio->next_block_for_io, map_bh)) 879 return; 880 881 sdio->next_block_for_io += this_chunk_blocks; 882 } 883 884 /* 885 * Walk the user pages, and the file, mapping blocks to disk and generating 886 * a sequence of (page,offset,len,block) mappings. These mappings are injected 887 * into submit_page_section(), which takes care of the next stage of submission 888 * 889 * Direct IO against a blockdev is different from a file. Because we can 890 * happily perform page-sized but 512-byte aligned IOs. It is important that 891 * blockdev IO be able to have fine alignment and large sizes. 892 * 893 * So what we do is to permit the ->get_block function to populate bh.b_size 894 * with the size of IO which is permitted at this offset and this i_blkbits. 895 * 896 * For best results, the blockdev should be set up with 512-byte i_blkbits and 897 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives 898 * fine alignment but still allows this function to work in PAGE_SIZE units. 899 */ 900 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio, 901 struct buffer_head *map_bh) 902 { 903 const unsigned blkbits = sdio->blkbits; 904 int ret = 0; 905 906 while (sdio->block_in_file < sdio->final_block_in_request) { 907 struct page *page; 908 size_t from, to; 909 910 page = dio_get_page(dio, sdio); 911 if (IS_ERR(page)) { 912 ret = PTR_ERR(page); 913 goto out; 914 } 915 from = sdio->head ? 0 : sdio->from; 916 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE; 917 sdio->head++; 918 919 while (from < to) { 920 unsigned this_chunk_bytes; /* # of bytes mapped */ 921 unsigned this_chunk_blocks; /* # of blocks */ 922 unsigned u; 923 924 if (sdio->blocks_available == 0) { 925 /* 926 * Need to go and map some more disk 927 */ 928 unsigned long blkmask; 929 unsigned long dio_remainder; 930 931 ret = get_more_blocks(dio, sdio, map_bh); 932 if (ret) { 933 page_cache_release(page); 934 goto out; 935 } 936 if (!buffer_mapped(map_bh)) 937 goto do_holes; 938 939 sdio->blocks_available = 940 map_bh->b_size >> sdio->blkbits; 941 sdio->next_block_for_io = 942 map_bh->b_blocknr << sdio->blkfactor; 943 if (buffer_new(map_bh)) 944 clean_blockdev_aliases(dio, map_bh); 945 946 if (!sdio->blkfactor) 947 goto do_holes; 948 949 blkmask = (1 << sdio->blkfactor) - 1; 950 dio_remainder = (sdio->block_in_file & blkmask); 951 952 /* 953 * If we are at the start of IO and that IO 954 * starts partway into a fs-block, 955 * dio_remainder will be non-zero. If the IO 956 * is a read then we can simply advance the IO 957 * cursor to the first block which is to be 958 * read. But if the IO is a write and the 959 * block was newly allocated we cannot do that; 960 * the start of the fs block must be zeroed out 961 * on-disk 962 */ 963 if (!buffer_new(map_bh)) 964 sdio->next_block_for_io += dio_remainder; 965 sdio->blocks_available -= dio_remainder; 966 } 967 do_holes: 968 /* Handle holes */ 969 if (!buffer_mapped(map_bh)) { 970 loff_t i_size_aligned; 971 972 /* AKPM: eargh, -ENOTBLK is a hack */ 973 if (dio->rw & WRITE) { 974 page_cache_release(page); 975 return -ENOTBLK; 976 } 977 978 /* 979 * Be sure to account for a partial block as the 980 * last block in the file 981 */ 982 i_size_aligned = ALIGN(i_size_read(dio->inode), 983 1 << blkbits); 984 if (sdio->block_in_file >= 985 i_size_aligned >> blkbits) { 986 /* We hit eof */ 987 page_cache_release(page); 988 goto out; 989 } 990 zero_user(page, from, 1 << blkbits); 991 sdio->block_in_file++; 992 from += 1 << blkbits; 993 dio->result += 1 << blkbits; 994 goto next_block; 995 } 996 997 /* 998 * If we're performing IO which has an alignment which 999 * is finer than the underlying fs, go check to see if 1000 * we must zero out the start of this block. 1001 */ 1002 if (unlikely(sdio->blkfactor && !sdio->start_zero_done)) 1003 dio_zero_block(dio, sdio, 0, map_bh); 1004 1005 /* 1006 * Work out, in this_chunk_blocks, how much disk we 1007 * can add to this page 1008 */ 1009 this_chunk_blocks = sdio->blocks_available; 1010 u = (to - from) >> blkbits; 1011 if (this_chunk_blocks > u) 1012 this_chunk_blocks = u; 1013 u = sdio->final_block_in_request - sdio->block_in_file; 1014 if (this_chunk_blocks > u) 1015 this_chunk_blocks = u; 1016 this_chunk_bytes = this_chunk_blocks << blkbits; 1017 BUG_ON(this_chunk_bytes == 0); 1018 1019 if (this_chunk_blocks == sdio->blocks_available) 1020 sdio->boundary = buffer_boundary(map_bh); 1021 ret = submit_page_section(dio, sdio, page, 1022 from, 1023 this_chunk_bytes, 1024 sdio->next_block_for_io, 1025 map_bh); 1026 if (ret) { 1027 page_cache_release(page); 1028 goto out; 1029 } 1030 sdio->next_block_for_io += this_chunk_blocks; 1031 1032 sdio->block_in_file += this_chunk_blocks; 1033 from += this_chunk_bytes; 1034 dio->result += this_chunk_bytes; 1035 sdio->blocks_available -= this_chunk_blocks; 1036 next_block: 1037 BUG_ON(sdio->block_in_file > sdio->final_block_in_request); 1038 if (sdio->block_in_file == sdio->final_block_in_request) 1039 break; 1040 } 1041 1042 /* Drop the ref which was taken in get_user_pages() */ 1043 page_cache_release(page); 1044 } 1045 out: 1046 return ret; 1047 } 1048 1049 static inline int drop_refcount(struct dio *dio) 1050 { 1051 int ret2; 1052 unsigned long flags; 1053 1054 /* 1055 * Sync will always be dropping the final ref and completing the 1056 * operation. AIO can if it was a broken operation described above or 1057 * in fact if all the bios race to complete before we get here. In 1058 * that case dio_complete() translates the EIOCBQUEUED into the proper 1059 * return code that the caller will hand to aio_complete(). 1060 * 1061 * This is managed by the bio_lock instead of being an atomic_t so that 1062 * completion paths can drop their ref and use the remaining count to 1063 * decide to wake the submission path atomically. 1064 */ 1065 spin_lock_irqsave(&dio->bio_lock, flags); 1066 ret2 = --dio->refcount; 1067 spin_unlock_irqrestore(&dio->bio_lock, flags); 1068 return ret2; 1069 } 1070 1071 /* 1072 * This is a library function for use by filesystem drivers. 1073 * 1074 * The locking rules are governed by the flags parameter: 1075 * - if the flags value contains DIO_LOCKING we use a fancy locking 1076 * scheme for dumb filesystems. 1077 * For writes this function is called under i_mutex and returns with 1078 * i_mutex held, for reads, i_mutex is not held on entry, but it is 1079 * taken and dropped again before returning. 1080 * - if the flags value does NOT contain DIO_LOCKING we don't use any 1081 * internal locking but rather rely on the filesystem to synchronize 1082 * direct I/O reads/writes versus each other and truncate. 1083 * 1084 * To help with locking against truncate we incremented the i_dio_count 1085 * counter before starting direct I/O, and decrement it once we are done. 1086 * Truncate can wait for it to reach zero to provide exclusion. It is 1087 * expected that filesystem provide exclusion between new direct I/O 1088 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex, 1089 * but other filesystems need to take care of this on their own. 1090 * 1091 * NOTE: if you pass "sdio" to anything by pointer make sure that function 1092 * is always inlined. Otherwise gcc is unable to split the structure into 1093 * individual fields and will generate much worse code. This is important 1094 * for the whole file. 1095 */ 1096 static inline ssize_t 1097 do_blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode, 1098 struct block_device *bdev, struct iov_iter *iter, loff_t offset, 1099 get_block_t get_block, dio_iodone_t end_io, 1100 dio_submit_t submit_io, int flags) 1101 { 1102 unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits); 1103 unsigned blkbits = i_blkbits; 1104 unsigned blocksize_mask = (1 << blkbits) - 1; 1105 ssize_t retval = -EINVAL; 1106 size_t count = iov_iter_count(iter); 1107 loff_t end = offset + count; 1108 struct dio *dio; 1109 struct dio_submit sdio = { 0, }; 1110 struct buffer_head map_bh = { 0, }; 1111 struct blk_plug plug; 1112 unsigned long align = offset | iov_iter_alignment(iter); 1113 1114 if (rw & WRITE) 1115 rw = WRITE_ODIRECT; 1116 1117 /* 1118 * Avoid references to bdev if not absolutely needed to give 1119 * the early prefetch in the caller enough time. 1120 */ 1121 1122 if (align & blocksize_mask) { 1123 if (bdev) 1124 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 1125 blocksize_mask = (1 << blkbits) - 1; 1126 if (align & blocksize_mask) 1127 goto out; 1128 } 1129 1130 /* watch out for a 0 len io from a tricksy fs */ 1131 if (rw == READ && !iov_iter_count(iter)) 1132 return 0; 1133 1134 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL); 1135 retval = -ENOMEM; 1136 if (!dio) 1137 goto out; 1138 /* 1139 * Believe it or not, zeroing out the page array caused a .5% 1140 * performance regression in a database benchmark. So, we take 1141 * care to only zero out what's needed. 1142 */ 1143 memset(dio, 0, offsetof(struct dio, pages)); 1144 1145 dio->flags = flags; 1146 if (dio->flags & DIO_LOCKING) { 1147 if (rw == READ) { 1148 struct address_space *mapping = 1149 iocb->ki_filp->f_mapping; 1150 1151 /* will be released by direct_io_worker */ 1152 mutex_lock(&inode->i_mutex); 1153 1154 retval = filemap_write_and_wait_range(mapping, offset, 1155 end - 1); 1156 if (retval) { 1157 mutex_unlock(&inode->i_mutex); 1158 kmem_cache_free(dio_cache, dio); 1159 goto out; 1160 } 1161 } 1162 } 1163 1164 /* 1165 * For file extending writes updating i_size before data writeouts 1166 * complete can expose uninitialized blocks in dumb filesystems. 1167 * In that case we need to wait for I/O completion even if asked 1168 * for an asynchronous write. 1169 */ 1170 if (is_sync_kiocb(iocb)) 1171 dio->is_async = false; 1172 else if (!(dio->flags & DIO_ASYNC_EXTEND) && 1173 (rw & WRITE) && end > i_size_read(inode)) 1174 dio->is_async = false; 1175 else 1176 dio->is_async = true; 1177 1178 dio->inode = inode; 1179 dio->rw = rw; 1180 1181 /* 1182 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue 1183 * so that we can call ->fsync. 1184 */ 1185 if (dio->is_async && (rw & WRITE) && 1186 ((iocb->ki_filp->f_flags & O_DSYNC) || 1187 IS_SYNC(iocb->ki_filp->f_mapping->host))) { 1188 retval = dio_set_defer_completion(dio); 1189 if (retval) { 1190 /* 1191 * We grab i_mutex only for reads so we don't have 1192 * to release it here 1193 */ 1194 kmem_cache_free(dio_cache, dio); 1195 goto out; 1196 } 1197 } 1198 1199 /* 1200 * Will be decremented at I/O completion time. 1201 */ 1202 atomic_inc(&inode->i_dio_count); 1203 1204 retval = 0; 1205 sdio.blkbits = blkbits; 1206 sdio.blkfactor = i_blkbits - blkbits; 1207 sdio.block_in_file = offset >> blkbits; 1208 1209 sdio.get_block = get_block; 1210 dio->end_io = end_io; 1211 sdio.submit_io = submit_io; 1212 sdio.final_block_in_bio = -1; 1213 sdio.next_block_for_io = -1; 1214 1215 dio->iocb = iocb; 1216 dio->i_size = i_size_read(inode); 1217 1218 spin_lock_init(&dio->bio_lock); 1219 dio->refcount = 1; 1220 1221 sdio.iter = iter; 1222 sdio.final_block_in_request = 1223 (offset + iov_iter_count(iter)) >> blkbits; 1224 1225 /* 1226 * In case of non-aligned buffers, we may need 2 more 1227 * pages since we need to zero out first and last block. 1228 */ 1229 if (unlikely(sdio.blkfactor)) 1230 sdio.pages_in_io = 2; 1231 1232 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX); 1233 1234 blk_start_plug(&plug); 1235 1236 retval = do_direct_IO(dio, &sdio, &map_bh); 1237 if (retval) 1238 dio_cleanup(dio, &sdio); 1239 1240 if (retval == -ENOTBLK) { 1241 /* 1242 * The remaining part of the request will be 1243 * be handled by buffered I/O when we return 1244 */ 1245 retval = 0; 1246 } 1247 /* 1248 * There may be some unwritten disk at the end of a part-written 1249 * fs-block-sized block. Go zero that now. 1250 */ 1251 dio_zero_block(dio, &sdio, 1, &map_bh); 1252 1253 if (sdio.cur_page) { 1254 ssize_t ret2; 1255 1256 ret2 = dio_send_cur_page(dio, &sdio, &map_bh); 1257 if (retval == 0) 1258 retval = ret2; 1259 page_cache_release(sdio.cur_page); 1260 sdio.cur_page = NULL; 1261 } 1262 if (sdio.bio) 1263 dio_bio_submit(dio, &sdio); 1264 1265 blk_finish_plug(&plug); 1266 1267 /* 1268 * It is possible that, we return short IO due to end of file. 1269 * In that case, we need to release all the pages we got hold on. 1270 */ 1271 dio_cleanup(dio, &sdio); 1272 1273 /* 1274 * All block lookups have been performed. For READ requests 1275 * we can let i_mutex go now that its achieved its purpose 1276 * of protecting us from looking up uninitialized blocks. 1277 */ 1278 if (rw == READ && (dio->flags & DIO_LOCKING)) 1279 mutex_unlock(&dio->inode->i_mutex); 1280 1281 /* 1282 * The only time we want to leave bios in flight is when a successful 1283 * partial aio read or full aio write have been setup. In that case 1284 * bio completion will call aio_complete. The only time it's safe to 1285 * call aio_complete is when we return -EIOCBQUEUED, so we key on that. 1286 * This had *better* be the only place that raises -EIOCBQUEUED. 1287 */ 1288 BUG_ON(retval == -EIOCBQUEUED); 1289 if (dio->is_async && retval == 0 && dio->result && 1290 (rw == READ || dio->result == count)) 1291 retval = -EIOCBQUEUED; 1292 else 1293 dio_await_completion(dio); 1294 1295 if (drop_refcount(dio) == 0) { 1296 retval = dio_complete(dio, offset, retval, false); 1297 } else 1298 BUG_ON(retval != -EIOCBQUEUED); 1299 1300 out: 1301 return retval; 1302 } 1303 1304 ssize_t 1305 __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode, 1306 struct block_device *bdev, struct iov_iter *iter, loff_t offset, 1307 get_block_t get_block, dio_iodone_t end_io, 1308 dio_submit_t submit_io, int flags) 1309 { 1310 /* 1311 * The block device state is needed in the end to finally 1312 * submit everything. Since it's likely to be cache cold 1313 * prefetch it here as first thing to hide some of the 1314 * latency. 1315 * 1316 * Attempt to prefetch the pieces we likely need later. 1317 */ 1318 prefetch(&bdev->bd_disk->part_tbl); 1319 prefetch(bdev->bd_queue); 1320 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES); 1321 1322 return do_blockdev_direct_IO(rw, iocb, inode, bdev, iter, offset, 1323 get_block, end_io, submit_io, flags); 1324 } 1325 1326 EXPORT_SYMBOL(__blockdev_direct_IO); 1327 1328 static __init int dio_init(void) 1329 { 1330 dio_cache = KMEM_CACHE(dio, SLAB_PANIC); 1331 return 0; 1332 } 1333 module_init(dio_init) 1334