xref: /openbmc/linux/fs/direct-io.c (revision 65cf840f)
1 /*
2  * fs/direct-io.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * O_DIRECT
7  *
8  * 04Jul2002	Andrew Morton
9  *		Initial version
10  * 11Sep2002	janetinc@us.ibm.com
11  * 		added readv/writev support.
12  * 29Oct2002	Andrew Morton
13  *		rewrote bio_add_page() support.
14  * 30Oct2002	pbadari@us.ibm.com
15  *		added support for non-aligned IO.
16  * 06Nov2002	pbadari@us.ibm.com
17  *		added asynchronous IO support.
18  * 21Jul2003	nathans@sgi.com
19  *		added IO completion notifier.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <asm/atomic.h>
39 
40 /*
41  * How many user pages to map in one call to get_user_pages().  This determines
42  * the size of a structure on the stack.
43  */
44 #define DIO_PAGES	64
45 
46 /*
47  * This code generally works in units of "dio_blocks".  A dio_block is
48  * somewhere between the hard sector size and the filesystem block size.  it
49  * is determined on a per-invocation basis.   When talking to the filesystem
50  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
51  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
52  * to bio_block quantities by shifting left by blkfactor.
53  *
54  * If blkfactor is zero then the user's request was aligned to the filesystem's
55  * blocksize.
56  */
57 
58 struct dio {
59 	/* BIO submission state */
60 	struct bio *bio;		/* bio under assembly */
61 	struct inode *inode;
62 	int rw;
63 	loff_t i_size;			/* i_size when submitted */
64 	int flags;			/* doesn't change */
65 	unsigned blkbits;		/* doesn't change */
66 	unsigned blkfactor;		/* When we're using an alignment which
67 					   is finer than the filesystem's soft
68 					   blocksize, this specifies how much
69 					   finer.  blkfactor=2 means 1/4-block
70 					   alignment.  Does not change */
71 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
72 					   been performed at the start of a
73 					   write */
74 	int pages_in_io;		/* approximate total IO pages */
75 	size_t	size;			/* total request size (doesn't change)*/
76 	sector_t block_in_file;		/* Current offset into the underlying
77 					   file in dio_block units. */
78 	unsigned blocks_available;	/* At block_in_file.  changes */
79 	sector_t final_block_in_request;/* doesn't change */
80 	unsigned first_block_in_page;	/* doesn't change, Used only once */
81 	int boundary;			/* prev block is at a boundary */
82 	int reap_counter;		/* rate limit reaping */
83 	get_block_t *get_block;		/* block mapping function */
84 	dio_iodone_t *end_io;		/* IO completion function */
85 	dio_submit_t *submit_io;	/* IO submition function */
86 	loff_t logical_offset_in_bio;	/* current first logical block in bio */
87 	sector_t final_block_in_bio;	/* current final block in bio + 1 */
88 	sector_t next_block_for_io;	/* next block to be put under IO,
89 					   in dio_blocks units */
90 	struct buffer_head map_bh;	/* last get_block() result */
91 
92 	/*
93 	 * Deferred addition of a page to the dio.  These variables are
94 	 * private to dio_send_cur_page(), submit_page_section() and
95 	 * dio_bio_add_page().
96 	 */
97 	struct page *cur_page;		/* The page */
98 	unsigned cur_page_offset;	/* Offset into it, in bytes */
99 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
100 	sector_t cur_page_block;	/* Where it starts */
101 	loff_t cur_page_fs_offset;	/* Offset in file */
102 
103 	/* BIO completion state */
104 	spinlock_t bio_lock;		/* protects BIO fields below */
105 	unsigned long refcount;		/* direct_io_worker() and bios */
106 	struct bio *bio_list;		/* singly linked via bi_private */
107 	struct task_struct *waiter;	/* waiting task (NULL if none) */
108 
109 	/* AIO related stuff */
110 	struct kiocb *iocb;		/* kiocb */
111 	int is_async;			/* is IO async ? */
112 	int io_error;			/* IO error in completion path */
113 	ssize_t result;                 /* IO result */
114 
115 	/*
116 	 * Page fetching state. These variables belong to dio_refill_pages().
117 	 */
118 	int curr_page;			/* changes */
119 	int total_pages;		/* doesn't change */
120 	unsigned long curr_user_address;/* changes */
121 
122 	/*
123 	 * Page queue.  These variables belong to dio_refill_pages() and
124 	 * dio_get_page().
125 	 */
126 	unsigned head;			/* next page to process */
127 	unsigned tail;			/* last valid page + 1 */
128 	int page_errors;		/* errno from get_user_pages() */
129 
130 	/*
131 	 * pages[] (and any fields placed after it) are not zeroed out at
132 	 * allocation time.  Don't add new fields after pages[] unless you
133 	 * wish that they not be zeroed.
134 	 */
135 	struct page *pages[DIO_PAGES];	/* page buffer */
136 };
137 
138 /*
139  * How many pages are in the queue?
140  */
141 static inline unsigned dio_pages_present(struct dio *dio)
142 {
143 	return dio->tail - dio->head;
144 }
145 
146 /*
147  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
148  */
149 static int dio_refill_pages(struct dio *dio)
150 {
151 	int ret;
152 	int nr_pages;
153 
154 	nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES);
155 	ret = get_user_pages_fast(
156 		dio->curr_user_address,		/* Where from? */
157 		nr_pages,			/* How many pages? */
158 		dio->rw == READ,		/* Write to memory? */
159 		&dio->pages[0]);		/* Put results here */
160 
161 	if (ret < 0 && dio->blocks_available && (dio->rw & WRITE)) {
162 		struct page *page = ZERO_PAGE(0);
163 		/*
164 		 * A memory fault, but the filesystem has some outstanding
165 		 * mapped blocks.  We need to use those blocks up to avoid
166 		 * leaking stale data in the file.
167 		 */
168 		if (dio->page_errors == 0)
169 			dio->page_errors = ret;
170 		page_cache_get(page);
171 		dio->pages[0] = page;
172 		dio->head = 0;
173 		dio->tail = 1;
174 		ret = 0;
175 		goto out;
176 	}
177 
178 	if (ret >= 0) {
179 		dio->curr_user_address += ret * PAGE_SIZE;
180 		dio->curr_page += ret;
181 		dio->head = 0;
182 		dio->tail = ret;
183 		ret = 0;
184 	}
185 out:
186 	return ret;
187 }
188 
189 /*
190  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
191  * buffered inside the dio so that we can call get_user_pages() against a
192  * decent number of pages, less frequently.  To provide nicer use of the
193  * L1 cache.
194  */
195 static struct page *dio_get_page(struct dio *dio)
196 {
197 	if (dio_pages_present(dio) == 0) {
198 		int ret;
199 
200 		ret = dio_refill_pages(dio);
201 		if (ret)
202 			return ERR_PTR(ret);
203 		BUG_ON(dio_pages_present(dio) == 0);
204 	}
205 	return dio->pages[dio->head++];
206 }
207 
208 /**
209  * dio_complete() - called when all DIO BIO I/O has been completed
210  * @offset: the byte offset in the file of the completed operation
211  *
212  * This releases locks as dictated by the locking type, lets interested parties
213  * know that a DIO operation has completed, and calculates the resulting return
214  * code for the operation.
215  *
216  * It lets the filesystem know if it registered an interest earlier via
217  * get_block.  Pass the private field of the map buffer_head so that
218  * filesystems can use it to hold additional state between get_block calls and
219  * dio_complete.
220  */
221 static int dio_complete(struct dio *dio, loff_t offset, int ret)
222 {
223 	ssize_t transferred = 0;
224 
225 	/*
226 	 * AIO submission can race with bio completion to get here while
227 	 * expecting to have the last io completed by bio completion.
228 	 * In that case -EIOCBQUEUED is in fact not an error we want
229 	 * to preserve through this call.
230 	 */
231 	if (ret == -EIOCBQUEUED)
232 		ret = 0;
233 
234 	if (dio->result) {
235 		transferred = dio->result;
236 
237 		/* Check for short read case */
238 		if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
239 			transferred = dio->i_size - offset;
240 	}
241 
242 	if (dio->end_io && dio->result)
243 		dio->end_io(dio->iocb, offset, transferred,
244 			    dio->map_bh.b_private);
245 
246 	if (dio->flags & DIO_LOCKING)
247 		/* lockdep: non-owner release */
248 		up_read_non_owner(&dio->inode->i_alloc_sem);
249 
250 	if (ret == 0)
251 		ret = dio->page_errors;
252 	if (ret == 0)
253 		ret = dio->io_error;
254 	if (ret == 0)
255 		ret = transferred;
256 
257 	return ret;
258 }
259 
260 static int dio_bio_complete(struct dio *dio, struct bio *bio);
261 /*
262  * Asynchronous IO callback.
263  */
264 static void dio_bio_end_aio(struct bio *bio, int error)
265 {
266 	struct dio *dio = bio->bi_private;
267 	unsigned long remaining;
268 	unsigned long flags;
269 
270 	/* cleanup the bio */
271 	dio_bio_complete(dio, bio);
272 
273 	spin_lock_irqsave(&dio->bio_lock, flags);
274 	remaining = --dio->refcount;
275 	if (remaining == 1 && dio->waiter)
276 		wake_up_process(dio->waiter);
277 	spin_unlock_irqrestore(&dio->bio_lock, flags);
278 
279 	if (remaining == 0) {
280 		int ret = dio_complete(dio, dio->iocb->ki_pos, 0);
281 		aio_complete(dio->iocb, ret, 0);
282 		kfree(dio);
283 	}
284 }
285 
286 /*
287  * The BIO completion handler simply queues the BIO up for the process-context
288  * handler.
289  *
290  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
291  * implement a singly-linked list of completed BIOs, at dio->bio_list.
292  */
293 static void dio_bio_end_io(struct bio *bio, int error)
294 {
295 	struct dio *dio = bio->bi_private;
296 	unsigned long flags;
297 
298 	spin_lock_irqsave(&dio->bio_lock, flags);
299 	bio->bi_private = dio->bio_list;
300 	dio->bio_list = bio;
301 	if (--dio->refcount == 1 && dio->waiter)
302 		wake_up_process(dio->waiter);
303 	spin_unlock_irqrestore(&dio->bio_lock, flags);
304 }
305 
306 /**
307  * dio_end_io - handle the end io action for the given bio
308  * @bio: The direct io bio thats being completed
309  * @error: Error if there was one
310  *
311  * This is meant to be called by any filesystem that uses their own dio_submit_t
312  * so that the DIO specific endio actions are dealt with after the filesystem
313  * has done it's completion work.
314  */
315 void dio_end_io(struct bio *bio, int error)
316 {
317 	struct dio *dio = bio->bi_private;
318 
319 	if (dio->is_async)
320 		dio_bio_end_aio(bio, error);
321 	else
322 		dio_bio_end_io(bio, error);
323 }
324 EXPORT_SYMBOL_GPL(dio_end_io);
325 
326 static int
327 dio_bio_alloc(struct dio *dio, struct block_device *bdev,
328 		sector_t first_sector, int nr_vecs)
329 {
330 	struct bio *bio;
331 
332 	bio = bio_alloc(GFP_KERNEL, nr_vecs);
333 
334 	bio->bi_bdev = bdev;
335 	bio->bi_sector = first_sector;
336 	if (dio->is_async)
337 		bio->bi_end_io = dio_bio_end_aio;
338 	else
339 		bio->bi_end_io = dio_bio_end_io;
340 
341 	dio->bio = bio;
342 	dio->logical_offset_in_bio = dio->cur_page_fs_offset;
343 	return 0;
344 }
345 
346 /*
347  * In the AIO read case we speculatively dirty the pages before starting IO.
348  * During IO completion, any of these pages which happen to have been written
349  * back will be redirtied by bio_check_pages_dirty().
350  *
351  * bios hold a dio reference between submit_bio and ->end_io.
352  */
353 static void dio_bio_submit(struct dio *dio)
354 {
355 	struct bio *bio = dio->bio;
356 	unsigned long flags;
357 
358 	bio->bi_private = dio;
359 
360 	spin_lock_irqsave(&dio->bio_lock, flags);
361 	dio->refcount++;
362 	spin_unlock_irqrestore(&dio->bio_lock, flags);
363 
364 	if (dio->is_async && dio->rw == READ)
365 		bio_set_pages_dirty(bio);
366 
367 	if (dio->submit_io)
368 		dio->submit_io(dio->rw, bio, dio->inode,
369 			       dio->logical_offset_in_bio);
370 	else
371 		submit_bio(dio->rw, bio);
372 
373 	dio->bio = NULL;
374 	dio->boundary = 0;
375 	dio->logical_offset_in_bio = 0;
376 }
377 
378 /*
379  * Release any resources in case of a failure
380  */
381 static void dio_cleanup(struct dio *dio)
382 {
383 	while (dio_pages_present(dio))
384 		page_cache_release(dio_get_page(dio));
385 }
386 
387 /*
388  * Wait for the next BIO to complete.  Remove it and return it.  NULL is
389  * returned once all BIOs have been completed.  This must only be called once
390  * all bios have been issued so that dio->refcount can only decrease.  This
391  * requires that that the caller hold a reference on the dio.
392  */
393 static struct bio *dio_await_one(struct dio *dio)
394 {
395 	unsigned long flags;
396 	struct bio *bio = NULL;
397 
398 	spin_lock_irqsave(&dio->bio_lock, flags);
399 
400 	/*
401 	 * Wait as long as the list is empty and there are bios in flight.  bio
402 	 * completion drops the count, maybe adds to the list, and wakes while
403 	 * holding the bio_lock so we don't need set_current_state()'s barrier
404 	 * and can call it after testing our condition.
405 	 */
406 	while (dio->refcount > 1 && dio->bio_list == NULL) {
407 		__set_current_state(TASK_UNINTERRUPTIBLE);
408 		dio->waiter = current;
409 		spin_unlock_irqrestore(&dio->bio_lock, flags);
410 		io_schedule();
411 		/* wake up sets us TASK_RUNNING */
412 		spin_lock_irqsave(&dio->bio_lock, flags);
413 		dio->waiter = NULL;
414 	}
415 	if (dio->bio_list) {
416 		bio = dio->bio_list;
417 		dio->bio_list = bio->bi_private;
418 	}
419 	spin_unlock_irqrestore(&dio->bio_lock, flags);
420 	return bio;
421 }
422 
423 /*
424  * Process one completed BIO.  No locks are held.
425  */
426 static int dio_bio_complete(struct dio *dio, struct bio *bio)
427 {
428 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
429 	struct bio_vec *bvec = bio->bi_io_vec;
430 	int page_no;
431 
432 	if (!uptodate)
433 		dio->io_error = -EIO;
434 
435 	if (dio->is_async && dio->rw == READ) {
436 		bio_check_pages_dirty(bio);	/* transfers ownership */
437 	} else {
438 		for (page_no = 0; page_no < bio->bi_vcnt; page_no++) {
439 			struct page *page = bvec[page_no].bv_page;
440 
441 			if (dio->rw == READ && !PageCompound(page))
442 				set_page_dirty_lock(page);
443 			page_cache_release(page);
444 		}
445 		bio_put(bio);
446 	}
447 	return uptodate ? 0 : -EIO;
448 }
449 
450 /*
451  * Wait on and process all in-flight BIOs.  This must only be called once
452  * all bios have been issued so that the refcount can only decrease.
453  * This just waits for all bios to make it through dio_bio_complete.  IO
454  * errors are propagated through dio->io_error and should be propagated via
455  * dio_complete().
456  */
457 static void dio_await_completion(struct dio *dio)
458 {
459 	struct bio *bio;
460 	do {
461 		bio = dio_await_one(dio);
462 		if (bio)
463 			dio_bio_complete(dio, bio);
464 	} while (bio);
465 }
466 
467 /*
468  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
469  * to keep the memory consumption sane we periodically reap any completed BIOs
470  * during the BIO generation phase.
471  *
472  * This also helps to limit the peak amount of pinned userspace memory.
473  */
474 static int dio_bio_reap(struct dio *dio)
475 {
476 	int ret = 0;
477 
478 	if (dio->reap_counter++ >= 64) {
479 		while (dio->bio_list) {
480 			unsigned long flags;
481 			struct bio *bio;
482 			int ret2;
483 
484 			spin_lock_irqsave(&dio->bio_lock, flags);
485 			bio = dio->bio_list;
486 			dio->bio_list = bio->bi_private;
487 			spin_unlock_irqrestore(&dio->bio_lock, flags);
488 			ret2 = dio_bio_complete(dio, bio);
489 			if (ret == 0)
490 				ret = ret2;
491 		}
492 		dio->reap_counter = 0;
493 	}
494 	return ret;
495 }
496 
497 /*
498  * Call into the fs to map some more disk blocks.  We record the current number
499  * of available blocks at dio->blocks_available.  These are in units of the
500  * fs blocksize, (1 << inode->i_blkbits).
501  *
502  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
503  * it uses the passed inode-relative block number as the file offset, as usual.
504  *
505  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
506  * has remaining to do.  The fs should not map more than this number of blocks.
507  *
508  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
509  * indicate how much contiguous disk space has been made available at
510  * bh->b_blocknr.
511  *
512  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
513  * This isn't very efficient...
514  *
515  * In the case of filesystem holes: the fs may return an arbitrarily-large
516  * hole by returning an appropriate value in b_size and by clearing
517  * buffer_mapped().  However the direct-io code will only process holes one
518  * block at a time - it will repeatedly call get_block() as it walks the hole.
519  */
520 static int get_more_blocks(struct dio *dio)
521 {
522 	int ret;
523 	struct buffer_head *map_bh = &dio->map_bh;
524 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
525 	unsigned long fs_count;	/* Number of filesystem-sized blocks */
526 	unsigned long dio_count;/* Number of dio_block-sized blocks */
527 	unsigned long blkmask;
528 	int create;
529 
530 	/*
531 	 * If there was a memory error and we've overwritten all the
532 	 * mapped blocks then we can now return that memory error
533 	 */
534 	ret = dio->page_errors;
535 	if (ret == 0) {
536 		BUG_ON(dio->block_in_file >= dio->final_block_in_request);
537 		fs_startblk = dio->block_in_file >> dio->blkfactor;
538 		dio_count = dio->final_block_in_request - dio->block_in_file;
539 		fs_count = dio_count >> dio->blkfactor;
540 		blkmask = (1 << dio->blkfactor) - 1;
541 		if (dio_count & blkmask)
542 			fs_count++;
543 
544 		map_bh->b_state = 0;
545 		map_bh->b_size = fs_count << dio->inode->i_blkbits;
546 
547 		/*
548 		 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
549 		 * forbid block creations: only overwrites are permitted.
550 		 * We will return early to the caller once we see an
551 		 * unmapped buffer head returned, and the caller will fall
552 		 * back to buffered I/O.
553 		 *
554 		 * Otherwise the decision is left to the get_blocks method,
555 		 * which may decide to handle it or also return an unmapped
556 		 * buffer head.
557 		 */
558 		create = dio->rw & WRITE;
559 		if (dio->flags & DIO_SKIP_HOLES) {
560 			if (dio->block_in_file < (i_size_read(dio->inode) >>
561 							dio->blkbits))
562 				create = 0;
563 		}
564 
565 		ret = (*dio->get_block)(dio->inode, fs_startblk,
566 						map_bh, create);
567 	}
568 	return ret;
569 }
570 
571 /*
572  * There is no bio.  Make one now.
573  */
574 static int dio_new_bio(struct dio *dio, sector_t start_sector)
575 {
576 	sector_t sector;
577 	int ret, nr_pages;
578 
579 	ret = dio_bio_reap(dio);
580 	if (ret)
581 		goto out;
582 	sector = start_sector << (dio->blkbits - 9);
583 	nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev));
584 	BUG_ON(nr_pages <= 0);
585 	ret = dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages);
586 	dio->boundary = 0;
587 out:
588 	return ret;
589 }
590 
591 /*
592  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
593  * that was successful then update final_block_in_bio and take a ref against
594  * the just-added page.
595  *
596  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
597  */
598 static int dio_bio_add_page(struct dio *dio)
599 {
600 	int ret;
601 
602 	ret = bio_add_page(dio->bio, dio->cur_page,
603 			dio->cur_page_len, dio->cur_page_offset);
604 	if (ret == dio->cur_page_len) {
605 		/*
606 		 * Decrement count only, if we are done with this page
607 		 */
608 		if ((dio->cur_page_len + dio->cur_page_offset) == PAGE_SIZE)
609 			dio->pages_in_io--;
610 		page_cache_get(dio->cur_page);
611 		dio->final_block_in_bio = dio->cur_page_block +
612 			(dio->cur_page_len >> dio->blkbits);
613 		ret = 0;
614 	} else {
615 		ret = 1;
616 	}
617 	return ret;
618 }
619 
620 /*
621  * Put cur_page under IO.  The section of cur_page which is described by
622  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
623  * starts on-disk at cur_page_block.
624  *
625  * We take a ref against the page here (on behalf of its presence in the bio).
626  *
627  * The caller of this function is responsible for removing cur_page from the
628  * dio, and for dropping the refcount which came from that presence.
629  */
630 static int dio_send_cur_page(struct dio *dio)
631 {
632 	int ret = 0;
633 
634 	if (dio->bio) {
635 		loff_t cur_offset = dio->block_in_file << dio->blkbits;
636 		loff_t bio_next_offset = dio->logical_offset_in_bio +
637 			dio->bio->bi_size;
638 
639 		/*
640 		 * See whether this new request is contiguous with the old.
641 		 *
642 		 * Btrfs cannot handl having logically non-contiguous requests
643 		 * submitted.  For exmple if you have
644 		 *
645 		 * Logical:  [0-4095][HOLE][8192-12287]
646 		 * Phyiscal: [0-4095]      [4096-8181]
647 		 *
648 		 * We cannot submit those pages together as one BIO.  So if our
649 		 * current logical offset in the file does not equal what would
650 		 * be the next logical offset in the bio, submit the bio we
651 		 * have.
652 		 */
653 		if (dio->final_block_in_bio != dio->cur_page_block ||
654 		    cur_offset != bio_next_offset)
655 			dio_bio_submit(dio);
656 		/*
657 		 * Submit now if the underlying fs is about to perform a
658 		 * metadata read
659 		 */
660 		if (dio->boundary)
661 			dio_bio_submit(dio);
662 	}
663 
664 	if (dio->bio == NULL) {
665 		ret = dio_new_bio(dio, dio->cur_page_block);
666 		if (ret)
667 			goto out;
668 	}
669 
670 	if (dio_bio_add_page(dio) != 0) {
671 		dio_bio_submit(dio);
672 		ret = dio_new_bio(dio, dio->cur_page_block);
673 		if (ret == 0) {
674 			ret = dio_bio_add_page(dio);
675 			BUG_ON(ret != 0);
676 		}
677 	}
678 out:
679 	return ret;
680 }
681 
682 /*
683  * An autonomous function to put a chunk of a page under deferred IO.
684  *
685  * The caller doesn't actually know (or care) whether this piece of page is in
686  * a BIO, or is under IO or whatever.  We just take care of all possible
687  * situations here.  The separation between the logic of do_direct_IO() and
688  * that of submit_page_section() is important for clarity.  Please don't break.
689  *
690  * The chunk of page starts on-disk at blocknr.
691  *
692  * We perform deferred IO, by recording the last-submitted page inside our
693  * private part of the dio structure.  If possible, we just expand the IO
694  * across that page here.
695  *
696  * If that doesn't work out then we put the old page into the bio and add this
697  * page to the dio instead.
698  */
699 static int
700 submit_page_section(struct dio *dio, struct page *page,
701 		unsigned offset, unsigned len, sector_t blocknr)
702 {
703 	int ret = 0;
704 
705 	if (dio->rw & WRITE) {
706 		/*
707 		 * Read accounting is performed in submit_bio()
708 		 */
709 		task_io_account_write(len);
710 	}
711 
712 	/*
713 	 * Can we just grow the current page's presence in the dio?
714 	 */
715 	if (	(dio->cur_page == page) &&
716 		(dio->cur_page_offset + dio->cur_page_len == offset) &&
717 		(dio->cur_page_block +
718 			(dio->cur_page_len >> dio->blkbits) == blocknr)) {
719 		dio->cur_page_len += len;
720 
721 		/*
722 		 * If dio->boundary then we want to schedule the IO now to
723 		 * avoid metadata seeks.
724 		 */
725 		if (dio->boundary) {
726 			ret = dio_send_cur_page(dio);
727 			page_cache_release(dio->cur_page);
728 			dio->cur_page = NULL;
729 		}
730 		goto out;
731 	}
732 
733 	/*
734 	 * If there's a deferred page already there then send it.
735 	 */
736 	if (dio->cur_page) {
737 		ret = dio_send_cur_page(dio);
738 		page_cache_release(dio->cur_page);
739 		dio->cur_page = NULL;
740 		if (ret)
741 			goto out;
742 	}
743 
744 	page_cache_get(page);		/* It is in dio */
745 	dio->cur_page = page;
746 	dio->cur_page_offset = offset;
747 	dio->cur_page_len = len;
748 	dio->cur_page_block = blocknr;
749 	dio->cur_page_fs_offset = dio->block_in_file << dio->blkbits;
750 out:
751 	return ret;
752 }
753 
754 /*
755  * Clean any dirty buffers in the blockdev mapping which alias newly-created
756  * file blocks.  Only called for S_ISREG files - blockdevs do not set
757  * buffer_new
758  */
759 static void clean_blockdev_aliases(struct dio *dio)
760 {
761 	unsigned i;
762 	unsigned nblocks;
763 
764 	nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits;
765 
766 	for (i = 0; i < nblocks; i++) {
767 		unmap_underlying_metadata(dio->map_bh.b_bdev,
768 					dio->map_bh.b_blocknr + i);
769 	}
770 }
771 
772 /*
773  * If we are not writing the entire block and get_block() allocated
774  * the block for us, we need to fill-in the unused portion of the
775  * block with zeros. This happens only if user-buffer, fileoffset or
776  * io length is not filesystem block-size multiple.
777  *
778  * `end' is zero if we're doing the start of the IO, 1 at the end of the
779  * IO.
780  */
781 static void dio_zero_block(struct dio *dio, int end)
782 {
783 	unsigned dio_blocks_per_fs_block;
784 	unsigned this_chunk_blocks;	/* In dio_blocks */
785 	unsigned this_chunk_bytes;
786 	struct page *page;
787 
788 	dio->start_zero_done = 1;
789 	if (!dio->blkfactor || !buffer_new(&dio->map_bh))
790 		return;
791 
792 	dio_blocks_per_fs_block = 1 << dio->blkfactor;
793 	this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1);
794 
795 	if (!this_chunk_blocks)
796 		return;
797 
798 	/*
799 	 * We need to zero out part of an fs block.  It is either at the
800 	 * beginning or the end of the fs block.
801 	 */
802 	if (end)
803 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
804 
805 	this_chunk_bytes = this_chunk_blocks << dio->blkbits;
806 
807 	page = ZERO_PAGE(0);
808 	if (submit_page_section(dio, page, 0, this_chunk_bytes,
809 				dio->next_block_for_io))
810 		return;
811 
812 	dio->next_block_for_io += this_chunk_blocks;
813 }
814 
815 /*
816  * Walk the user pages, and the file, mapping blocks to disk and generating
817  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
818  * into submit_page_section(), which takes care of the next stage of submission
819  *
820  * Direct IO against a blockdev is different from a file.  Because we can
821  * happily perform page-sized but 512-byte aligned IOs.  It is important that
822  * blockdev IO be able to have fine alignment and large sizes.
823  *
824  * So what we do is to permit the ->get_block function to populate bh.b_size
825  * with the size of IO which is permitted at this offset and this i_blkbits.
826  *
827  * For best results, the blockdev should be set up with 512-byte i_blkbits and
828  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
829  * fine alignment but still allows this function to work in PAGE_SIZE units.
830  */
831 static int do_direct_IO(struct dio *dio)
832 {
833 	const unsigned blkbits = dio->blkbits;
834 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
835 	struct page *page;
836 	unsigned block_in_page;
837 	struct buffer_head *map_bh = &dio->map_bh;
838 	int ret = 0;
839 
840 	/* The I/O can start at any block offset within the first page */
841 	block_in_page = dio->first_block_in_page;
842 
843 	while (dio->block_in_file < dio->final_block_in_request) {
844 		page = dio_get_page(dio);
845 		if (IS_ERR(page)) {
846 			ret = PTR_ERR(page);
847 			goto out;
848 		}
849 
850 		while (block_in_page < blocks_per_page) {
851 			unsigned offset_in_page = block_in_page << blkbits;
852 			unsigned this_chunk_bytes;	/* # of bytes mapped */
853 			unsigned this_chunk_blocks;	/* # of blocks */
854 			unsigned u;
855 
856 			if (dio->blocks_available == 0) {
857 				/*
858 				 * Need to go and map some more disk
859 				 */
860 				unsigned long blkmask;
861 				unsigned long dio_remainder;
862 
863 				ret = get_more_blocks(dio);
864 				if (ret) {
865 					page_cache_release(page);
866 					goto out;
867 				}
868 				if (!buffer_mapped(map_bh))
869 					goto do_holes;
870 
871 				dio->blocks_available =
872 						map_bh->b_size >> dio->blkbits;
873 				dio->next_block_for_io =
874 					map_bh->b_blocknr << dio->blkfactor;
875 				if (buffer_new(map_bh))
876 					clean_blockdev_aliases(dio);
877 
878 				if (!dio->blkfactor)
879 					goto do_holes;
880 
881 				blkmask = (1 << dio->blkfactor) - 1;
882 				dio_remainder = (dio->block_in_file & blkmask);
883 
884 				/*
885 				 * If we are at the start of IO and that IO
886 				 * starts partway into a fs-block,
887 				 * dio_remainder will be non-zero.  If the IO
888 				 * is a read then we can simply advance the IO
889 				 * cursor to the first block which is to be
890 				 * read.  But if the IO is a write and the
891 				 * block was newly allocated we cannot do that;
892 				 * the start of the fs block must be zeroed out
893 				 * on-disk
894 				 */
895 				if (!buffer_new(map_bh))
896 					dio->next_block_for_io += dio_remainder;
897 				dio->blocks_available -= dio_remainder;
898 			}
899 do_holes:
900 			/* Handle holes */
901 			if (!buffer_mapped(map_bh)) {
902 				loff_t i_size_aligned;
903 
904 				/* AKPM: eargh, -ENOTBLK is a hack */
905 				if (dio->rw & WRITE) {
906 					page_cache_release(page);
907 					return -ENOTBLK;
908 				}
909 
910 				/*
911 				 * Be sure to account for a partial block as the
912 				 * last block in the file
913 				 */
914 				i_size_aligned = ALIGN(i_size_read(dio->inode),
915 							1 << blkbits);
916 				if (dio->block_in_file >=
917 						i_size_aligned >> blkbits) {
918 					/* We hit eof */
919 					page_cache_release(page);
920 					goto out;
921 				}
922 				zero_user(page, block_in_page << blkbits,
923 						1 << blkbits);
924 				dio->block_in_file++;
925 				block_in_page++;
926 				goto next_block;
927 			}
928 
929 			/*
930 			 * If we're performing IO which has an alignment which
931 			 * is finer than the underlying fs, go check to see if
932 			 * we must zero out the start of this block.
933 			 */
934 			if (unlikely(dio->blkfactor && !dio->start_zero_done))
935 				dio_zero_block(dio, 0);
936 
937 			/*
938 			 * Work out, in this_chunk_blocks, how much disk we
939 			 * can add to this page
940 			 */
941 			this_chunk_blocks = dio->blocks_available;
942 			u = (PAGE_SIZE - offset_in_page) >> blkbits;
943 			if (this_chunk_blocks > u)
944 				this_chunk_blocks = u;
945 			u = dio->final_block_in_request - dio->block_in_file;
946 			if (this_chunk_blocks > u)
947 				this_chunk_blocks = u;
948 			this_chunk_bytes = this_chunk_blocks << blkbits;
949 			BUG_ON(this_chunk_bytes == 0);
950 
951 			dio->boundary = buffer_boundary(map_bh);
952 			ret = submit_page_section(dio, page, offset_in_page,
953 				this_chunk_bytes, dio->next_block_for_io);
954 			if (ret) {
955 				page_cache_release(page);
956 				goto out;
957 			}
958 			dio->next_block_for_io += this_chunk_blocks;
959 
960 			dio->block_in_file += this_chunk_blocks;
961 			block_in_page += this_chunk_blocks;
962 			dio->blocks_available -= this_chunk_blocks;
963 next_block:
964 			BUG_ON(dio->block_in_file > dio->final_block_in_request);
965 			if (dio->block_in_file == dio->final_block_in_request)
966 				break;
967 		}
968 
969 		/* Drop the ref which was taken in get_user_pages() */
970 		page_cache_release(page);
971 		block_in_page = 0;
972 	}
973 out:
974 	return ret;
975 }
976 
977 /*
978  * Releases both i_mutex and i_alloc_sem
979  */
980 static ssize_t
981 direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode,
982 	const struct iovec *iov, loff_t offset, unsigned long nr_segs,
983 	unsigned blkbits, get_block_t get_block, dio_iodone_t end_io,
984 	dio_submit_t submit_io, struct dio *dio)
985 {
986 	unsigned long user_addr;
987 	unsigned long flags;
988 	int seg;
989 	ssize_t ret = 0;
990 	ssize_t ret2;
991 	size_t bytes;
992 
993 	dio->inode = inode;
994 	dio->rw = rw;
995 	dio->blkbits = blkbits;
996 	dio->blkfactor = inode->i_blkbits - blkbits;
997 	dio->block_in_file = offset >> blkbits;
998 
999 	dio->get_block = get_block;
1000 	dio->end_io = end_io;
1001 	dio->submit_io = submit_io;
1002 	dio->final_block_in_bio = -1;
1003 	dio->next_block_for_io = -1;
1004 
1005 	dio->iocb = iocb;
1006 	dio->i_size = i_size_read(inode);
1007 
1008 	spin_lock_init(&dio->bio_lock);
1009 	dio->refcount = 1;
1010 
1011 	/*
1012 	 * In case of non-aligned buffers, we may need 2 more
1013 	 * pages since we need to zero out first and last block.
1014 	 */
1015 	if (unlikely(dio->blkfactor))
1016 		dio->pages_in_io = 2;
1017 
1018 	for (seg = 0; seg < nr_segs; seg++) {
1019 		user_addr = (unsigned long)iov[seg].iov_base;
1020 		dio->pages_in_io +=
1021 			((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE
1022 				- user_addr/PAGE_SIZE);
1023 	}
1024 
1025 	for (seg = 0; seg < nr_segs; seg++) {
1026 		user_addr = (unsigned long)iov[seg].iov_base;
1027 		dio->size += bytes = iov[seg].iov_len;
1028 
1029 		/* Index into the first page of the first block */
1030 		dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
1031 		dio->final_block_in_request = dio->block_in_file +
1032 						(bytes >> blkbits);
1033 		/* Page fetching state */
1034 		dio->head = 0;
1035 		dio->tail = 0;
1036 		dio->curr_page = 0;
1037 
1038 		dio->total_pages = 0;
1039 		if (user_addr & (PAGE_SIZE-1)) {
1040 			dio->total_pages++;
1041 			bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
1042 		}
1043 		dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1044 		dio->curr_user_address = user_addr;
1045 
1046 		ret = do_direct_IO(dio);
1047 
1048 		dio->result += iov[seg].iov_len -
1049 			((dio->final_block_in_request - dio->block_in_file) <<
1050 					blkbits);
1051 
1052 		if (ret) {
1053 			dio_cleanup(dio);
1054 			break;
1055 		}
1056 	} /* end iovec loop */
1057 
1058 	if (ret == -ENOTBLK) {
1059 		/*
1060 		 * The remaining part of the request will be
1061 		 * be handled by buffered I/O when we return
1062 		 */
1063 		ret = 0;
1064 	}
1065 	/*
1066 	 * There may be some unwritten disk at the end of a part-written
1067 	 * fs-block-sized block.  Go zero that now.
1068 	 */
1069 	dio_zero_block(dio, 1);
1070 
1071 	if (dio->cur_page) {
1072 		ret2 = dio_send_cur_page(dio);
1073 		if (ret == 0)
1074 			ret = ret2;
1075 		page_cache_release(dio->cur_page);
1076 		dio->cur_page = NULL;
1077 	}
1078 	if (dio->bio)
1079 		dio_bio_submit(dio);
1080 
1081 	/*
1082 	 * It is possible that, we return short IO due to end of file.
1083 	 * In that case, we need to release all the pages we got hold on.
1084 	 */
1085 	dio_cleanup(dio);
1086 
1087 	/*
1088 	 * All block lookups have been performed. For READ requests
1089 	 * we can let i_mutex go now that its achieved its purpose
1090 	 * of protecting us from looking up uninitialized blocks.
1091 	 */
1092 	if (rw == READ && (dio->flags & DIO_LOCKING))
1093 		mutex_unlock(&dio->inode->i_mutex);
1094 
1095 	/*
1096 	 * The only time we want to leave bios in flight is when a successful
1097 	 * partial aio read or full aio write have been setup.  In that case
1098 	 * bio completion will call aio_complete.  The only time it's safe to
1099 	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1100 	 * This had *better* be the only place that raises -EIOCBQUEUED.
1101 	 */
1102 	BUG_ON(ret == -EIOCBQUEUED);
1103 	if (dio->is_async && ret == 0 && dio->result &&
1104 	    ((rw & READ) || (dio->result == dio->size)))
1105 		ret = -EIOCBQUEUED;
1106 
1107 	if (ret != -EIOCBQUEUED) {
1108 		/* All IO is now issued, send it on its way */
1109 		blk_run_address_space(inode->i_mapping);
1110 		dio_await_completion(dio);
1111 	}
1112 
1113 	/*
1114 	 * Sync will always be dropping the final ref and completing the
1115 	 * operation.  AIO can if it was a broken operation described above or
1116 	 * in fact if all the bios race to complete before we get here.  In
1117 	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1118 	 * return code that the caller will hand to aio_complete().
1119 	 *
1120 	 * This is managed by the bio_lock instead of being an atomic_t so that
1121 	 * completion paths can drop their ref and use the remaining count to
1122 	 * decide to wake the submission path atomically.
1123 	 */
1124 	spin_lock_irqsave(&dio->bio_lock, flags);
1125 	ret2 = --dio->refcount;
1126 	spin_unlock_irqrestore(&dio->bio_lock, flags);
1127 
1128 	if (ret2 == 0) {
1129 		ret = dio_complete(dio, offset, ret);
1130 		kfree(dio);
1131 	} else
1132 		BUG_ON(ret != -EIOCBQUEUED);
1133 
1134 	return ret;
1135 }
1136 
1137 ssize_t
1138 __blockdev_direct_IO_newtrunc(int rw, struct kiocb *iocb, struct inode *inode,
1139 	struct block_device *bdev, const struct iovec *iov, loff_t offset,
1140 	unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1141 	dio_submit_t submit_io,	int flags)
1142 {
1143 	int seg;
1144 	size_t size;
1145 	unsigned long addr;
1146 	unsigned blkbits = inode->i_blkbits;
1147 	unsigned bdev_blkbits = 0;
1148 	unsigned blocksize_mask = (1 << blkbits) - 1;
1149 	ssize_t retval = -EINVAL;
1150 	loff_t end = offset;
1151 	struct dio *dio;
1152 
1153 	if (rw & WRITE)
1154 		rw = WRITE_ODIRECT_PLUG;
1155 
1156 	if (bdev)
1157 		bdev_blkbits = blksize_bits(bdev_logical_block_size(bdev));
1158 
1159 	if (offset & blocksize_mask) {
1160 		if (bdev)
1161 			 blkbits = bdev_blkbits;
1162 		blocksize_mask = (1 << blkbits) - 1;
1163 		if (offset & blocksize_mask)
1164 			goto out;
1165 	}
1166 
1167 	/* Check the memory alignment.  Blocks cannot straddle pages */
1168 	for (seg = 0; seg < nr_segs; seg++) {
1169 		addr = (unsigned long)iov[seg].iov_base;
1170 		size = iov[seg].iov_len;
1171 		end += size;
1172 		if ((addr & blocksize_mask) || (size & blocksize_mask))  {
1173 			if (bdev)
1174 				 blkbits = bdev_blkbits;
1175 			blocksize_mask = (1 << blkbits) - 1;
1176 			if ((addr & blocksize_mask) || (size & blocksize_mask))
1177 				goto out;
1178 		}
1179 	}
1180 
1181 	dio = kmalloc(sizeof(*dio), GFP_KERNEL);
1182 	retval = -ENOMEM;
1183 	if (!dio)
1184 		goto out;
1185 	/*
1186 	 * Believe it or not, zeroing out the page array caused a .5%
1187 	 * performance regression in a database benchmark.  So, we take
1188 	 * care to only zero out what's needed.
1189 	 */
1190 	memset(dio, 0, offsetof(struct dio, pages));
1191 
1192 	dio->flags = flags;
1193 	if (dio->flags & DIO_LOCKING) {
1194 		/* watch out for a 0 len io from a tricksy fs */
1195 		if (rw == READ && end > offset) {
1196 			struct address_space *mapping =
1197 					iocb->ki_filp->f_mapping;
1198 
1199 			/* will be released by direct_io_worker */
1200 			mutex_lock(&inode->i_mutex);
1201 
1202 			retval = filemap_write_and_wait_range(mapping, offset,
1203 							      end - 1);
1204 			if (retval) {
1205 				mutex_unlock(&inode->i_mutex);
1206 				kfree(dio);
1207 				goto out;
1208 			}
1209 		}
1210 
1211 		/*
1212 		 * Will be released at I/O completion, possibly in a
1213 		 * different thread.
1214 		 */
1215 		down_read_non_owner(&inode->i_alloc_sem);
1216 	}
1217 
1218 	/*
1219 	 * For file extending writes updating i_size before data
1220 	 * writeouts complete can expose uninitialized blocks. So
1221 	 * even for AIO, we need to wait for i/o to complete before
1222 	 * returning in this case.
1223 	 */
1224 	dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) &&
1225 		(end > i_size_read(inode)));
1226 
1227 	retval = direct_io_worker(rw, iocb, inode, iov, offset,
1228 				nr_segs, blkbits, get_block, end_io,
1229 				submit_io, dio);
1230 
1231 out:
1232 	return retval;
1233 }
1234 EXPORT_SYMBOL(__blockdev_direct_IO_newtrunc);
1235 
1236 /*
1237  * This is a library function for use by filesystem drivers.
1238  *
1239  * The locking rules are governed by the flags parameter:
1240  *  - if the flags value contains DIO_LOCKING we use a fancy locking
1241  *    scheme for dumb filesystems.
1242  *    For writes this function is called under i_mutex and returns with
1243  *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1244  *    taken and dropped again before returning.
1245  *    For reads and writes i_alloc_sem is taken in shared mode and released
1246  *    on I/O completion (which may happen asynchronously after returning to
1247  *    the caller).
1248  *
1249  *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1250  *    internal locking but rather rely on the filesystem to synchronize
1251  *    direct I/O reads/writes versus each other and truncate.
1252  *    For reads and writes both i_mutex and i_alloc_sem are not held on
1253  *    entry and are never taken.
1254  */
1255 ssize_t
1256 __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1257 	struct block_device *bdev, const struct iovec *iov, loff_t offset,
1258 	unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1259 	dio_submit_t submit_io,	int flags)
1260 {
1261 	ssize_t retval;
1262 
1263 	retval = __blockdev_direct_IO_newtrunc(rw, iocb, inode, bdev, iov,
1264 			offset, nr_segs, get_block, end_io, submit_io, flags);
1265 	/*
1266 	 * In case of error extending write may have instantiated a few
1267 	 * blocks outside i_size. Trim these off again for DIO_LOCKING.
1268 	 * NOTE: DIO_NO_LOCK/DIO_OWN_LOCK callers have to handle this in
1269 	 * their own manner. This is a further example of where the old
1270 	 * truncate sequence is inadequate.
1271 	 *
1272 	 * NOTE: filesystems with their own locking have to handle this
1273 	 * on their own.
1274 	 */
1275 	if (flags & DIO_LOCKING) {
1276 		if (unlikely((rw & WRITE) && retval < 0)) {
1277 			loff_t isize = i_size_read(inode);
1278 			loff_t end = offset + iov_length(iov, nr_segs);
1279 
1280 			if (end > isize)
1281 				vmtruncate(inode, isize);
1282 		}
1283 	}
1284 
1285 	return retval;
1286 }
1287 EXPORT_SYMBOL(__blockdev_direct_IO);
1288