1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/direct-io.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * O_DIRECT 8 * 9 * 04Jul2002 Andrew Morton 10 * Initial version 11 * 11Sep2002 janetinc@us.ibm.com 12 * added readv/writev support. 13 * 29Oct2002 Andrew Morton 14 * rewrote bio_add_page() support. 15 * 30Oct2002 pbadari@us.ibm.com 16 * added support for non-aligned IO. 17 * 06Nov2002 pbadari@us.ibm.com 18 * added asynchronous IO support. 19 * 21Jul2003 nathans@sgi.com 20 * added IO completion notifier. 21 */ 22 23 #include <linux/kernel.h> 24 #include <linux/module.h> 25 #include <linux/types.h> 26 #include <linux/fs.h> 27 #include <linux/mm.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/pagemap.h> 31 #include <linux/task_io_accounting_ops.h> 32 #include <linux/bio.h> 33 #include <linux/wait.h> 34 #include <linux/err.h> 35 #include <linux/blkdev.h> 36 #include <linux/buffer_head.h> 37 #include <linux/rwsem.h> 38 #include <linux/uio.h> 39 #include <linux/atomic.h> 40 #include <linux/prefetch.h> 41 42 #include "internal.h" 43 44 /* 45 * How many user pages to map in one call to get_user_pages(). This determines 46 * the size of a structure in the slab cache 47 */ 48 #define DIO_PAGES 64 49 50 /* 51 * Flags for dio_complete() 52 */ 53 #define DIO_COMPLETE_ASYNC 0x01 /* This is async IO */ 54 #define DIO_COMPLETE_INVALIDATE 0x02 /* Can invalidate pages */ 55 56 /* 57 * This code generally works in units of "dio_blocks". A dio_block is 58 * somewhere between the hard sector size and the filesystem block size. it 59 * is determined on a per-invocation basis. When talking to the filesystem 60 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity 61 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted 62 * to bio_block quantities by shifting left by blkfactor. 63 * 64 * If blkfactor is zero then the user's request was aligned to the filesystem's 65 * blocksize. 66 */ 67 68 /* dio_state only used in the submission path */ 69 70 struct dio_submit { 71 struct bio *bio; /* bio under assembly */ 72 unsigned blkbits; /* doesn't change */ 73 unsigned blkfactor; /* When we're using an alignment which 74 is finer than the filesystem's soft 75 blocksize, this specifies how much 76 finer. blkfactor=2 means 1/4-block 77 alignment. Does not change */ 78 unsigned start_zero_done; /* flag: sub-blocksize zeroing has 79 been performed at the start of a 80 write */ 81 int pages_in_io; /* approximate total IO pages */ 82 sector_t block_in_file; /* Current offset into the underlying 83 file in dio_block units. */ 84 unsigned blocks_available; /* At block_in_file. changes */ 85 int reap_counter; /* rate limit reaping */ 86 sector_t final_block_in_request;/* doesn't change */ 87 int boundary; /* prev block is at a boundary */ 88 get_block_t *get_block; /* block mapping function */ 89 dio_submit_t *submit_io; /* IO submition function */ 90 91 loff_t logical_offset_in_bio; /* current first logical block in bio */ 92 sector_t final_block_in_bio; /* current final block in bio + 1 */ 93 sector_t next_block_for_io; /* next block to be put under IO, 94 in dio_blocks units */ 95 96 /* 97 * Deferred addition of a page to the dio. These variables are 98 * private to dio_send_cur_page(), submit_page_section() and 99 * dio_bio_add_page(). 100 */ 101 struct page *cur_page; /* The page */ 102 unsigned cur_page_offset; /* Offset into it, in bytes */ 103 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ 104 sector_t cur_page_block; /* Where it starts */ 105 loff_t cur_page_fs_offset; /* Offset in file */ 106 107 struct iov_iter *iter; 108 /* 109 * Page queue. These variables belong to dio_refill_pages() and 110 * dio_get_page(). 111 */ 112 unsigned head; /* next page to process */ 113 unsigned tail; /* last valid page + 1 */ 114 size_t from, to; 115 }; 116 117 /* dio_state communicated between submission path and end_io */ 118 struct dio { 119 int flags; /* doesn't change */ 120 int op; 121 int op_flags; 122 struct gendisk *bio_disk; 123 struct inode *inode; 124 loff_t i_size; /* i_size when submitted */ 125 dio_iodone_t *end_io; /* IO completion function */ 126 127 void *private; /* copy from map_bh.b_private */ 128 129 /* BIO completion state */ 130 spinlock_t bio_lock; /* protects BIO fields below */ 131 int page_errors; /* errno from get_user_pages() */ 132 int is_async; /* is IO async ? */ 133 bool defer_completion; /* defer AIO completion to workqueue? */ 134 bool should_dirty; /* if pages should be dirtied */ 135 int io_error; /* IO error in completion path */ 136 unsigned long refcount; /* direct_io_worker() and bios */ 137 struct bio *bio_list; /* singly linked via bi_private */ 138 struct task_struct *waiter; /* waiting task (NULL if none) */ 139 140 /* AIO related stuff */ 141 struct kiocb *iocb; /* kiocb */ 142 ssize_t result; /* IO result */ 143 144 /* 145 * pages[] (and any fields placed after it) are not zeroed out at 146 * allocation time. Don't add new fields after pages[] unless you 147 * wish that they not be zeroed. 148 */ 149 union { 150 struct page *pages[DIO_PAGES]; /* page buffer */ 151 struct work_struct complete_work;/* deferred AIO completion */ 152 }; 153 } ____cacheline_aligned_in_smp; 154 155 static struct kmem_cache *dio_cache __read_mostly; 156 157 /* 158 * How many pages are in the queue? 159 */ 160 static inline unsigned dio_pages_present(struct dio_submit *sdio) 161 { 162 return sdio->tail - sdio->head; 163 } 164 165 /* 166 * Go grab and pin some userspace pages. Typically we'll get 64 at a time. 167 */ 168 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio) 169 { 170 ssize_t ret; 171 172 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES, 173 &sdio->from); 174 175 if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) { 176 struct page *page = ZERO_PAGE(0); 177 /* 178 * A memory fault, but the filesystem has some outstanding 179 * mapped blocks. We need to use those blocks up to avoid 180 * leaking stale data in the file. 181 */ 182 if (dio->page_errors == 0) 183 dio->page_errors = ret; 184 get_page(page); 185 dio->pages[0] = page; 186 sdio->head = 0; 187 sdio->tail = 1; 188 sdio->from = 0; 189 sdio->to = PAGE_SIZE; 190 return 0; 191 } 192 193 if (ret >= 0) { 194 iov_iter_advance(sdio->iter, ret); 195 ret += sdio->from; 196 sdio->head = 0; 197 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE; 198 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1; 199 return 0; 200 } 201 return ret; 202 } 203 204 /* 205 * Get another userspace page. Returns an ERR_PTR on error. Pages are 206 * buffered inside the dio so that we can call get_user_pages() against a 207 * decent number of pages, less frequently. To provide nicer use of the 208 * L1 cache. 209 */ 210 static inline struct page *dio_get_page(struct dio *dio, 211 struct dio_submit *sdio) 212 { 213 if (dio_pages_present(sdio) == 0) { 214 int ret; 215 216 ret = dio_refill_pages(dio, sdio); 217 if (ret) 218 return ERR_PTR(ret); 219 BUG_ON(dio_pages_present(sdio) == 0); 220 } 221 return dio->pages[sdio->head]; 222 } 223 224 /* 225 * dio_complete() - called when all DIO BIO I/O has been completed 226 * 227 * This drops i_dio_count, lets interested parties know that a DIO operation 228 * has completed, and calculates the resulting return code for the operation. 229 * 230 * It lets the filesystem know if it registered an interest earlier via 231 * get_block. Pass the private field of the map buffer_head so that 232 * filesystems can use it to hold additional state between get_block calls and 233 * dio_complete. 234 */ 235 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags) 236 { 237 loff_t offset = dio->iocb->ki_pos; 238 ssize_t transferred = 0; 239 int err; 240 241 /* 242 * AIO submission can race with bio completion to get here while 243 * expecting to have the last io completed by bio completion. 244 * In that case -EIOCBQUEUED is in fact not an error we want 245 * to preserve through this call. 246 */ 247 if (ret == -EIOCBQUEUED) 248 ret = 0; 249 250 if (dio->result) { 251 transferred = dio->result; 252 253 /* Check for short read case */ 254 if ((dio->op == REQ_OP_READ) && 255 ((offset + transferred) > dio->i_size)) 256 transferred = dio->i_size - offset; 257 /* ignore EFAULT if some IO has been done */ 258 if (unlikely(ret == -EFAULT) && transferred) 259 ret = 0; 260 } 261 262 if (ret == 0) 263 ret = dio->page_errors; 264 if (ret == 0) 265 ret = dio->io_error; 266 if (ret == 0) 267 ret = transferred; 268 269 if (dio->end_io) { 270 // XXX: ki_pos?? 271 err = dio->end_io(dio->iocb, offset, ret, dio->private); 272 if (err) 273 ret = err; 274 } 275 276 /* 277 * Try again to invalidate clean pages which might have been cached by 278 * non-direct readahead, or faulted in by get_user_pages() if the source 279 * of the write was an mmap'ed region of the file we're writing. Either 280 * one is a pretty crazy thing to do, so we don't support it 100%. If 281 * this invalidation fails, tough, the write still worked... 282 * 283 * And this page cache invalidation has to be after dio->end_io(), as 284 * some filesystems convert unwritten extents to real allocations in 285 * end_io() when necessary, otherwise a racing buffer read would cache 286 * zeros from unwritten extents. 287 */ 288 if (flags & DIO_COMPLETE_INVALIDATE && 289 ret > 0 && dio->op == REQ_OP_WRITE && 290 dio->inode->i_mapping->nrpages) { 291 err = invalidate_inode_pages2_range(dio->inode->i_mapping, 292 offset >> PAGE_SHIFT, 293 (offset + ret - 1) >> PAGE_SHIFT); 294 if (err) 295 dio_warn_stale_pagecache(dio->iocb->ki_filp); 296 } 297 298 inode_dio_end(dio->inode); 299 300 if (flags & DIO_COMPLETE_ASYNC) { 301 /* 302 * generic_write_sync expects ki_pos to have been updated 303 * already, but the submission path only does this for 304 * synchronous I/O. 305 */ 306 dio->iocb->ki_pos += transferred; 307 308 if (ret > 0 && dio->op == REQ_OP_WRITE) 309 ret = generic_write_sync(dio->iocb, ret); 310 dio->iocb->ki_complete(dio->iocb, ret); 311 } 312 313 kmem_cache_free(dio_cache, dio); 314 return ret; 315 } 316 317 static void dio_aio_complete_work(struct work_struct *work) 318 { 319 struct dio *dio = container_of(work, struct dio, complete_work); 320 321 dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE); 322 } 323 324 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio); 325 326 /* 327 * Asynchronous IO callback. 328 */ 329 static void dio_bio_end_aio(struct bio *bio) 330 { 331 struct dio *dio = bio->bi_private; 332 unsigned long remaining; 333 unsigned long flags; 334 bool defer_completion = false; 335 336 /* cleanup the bio */ 337 dio_bio_complete(dio, bio); 338 339 spin_lock_irqsave(&dio->bio_lock, flags); 340 remaining = --dio->refcount; 341 if (remaining == 1 && dio->waiter) 342 wake_up_process(dio->waiter); 343 spin_unlock_irqrestore(&dio->bio_lock, flags); 344 345 if (remaining == 0) { 346 /* 347 * Defer completion when defer_completion is set or 348 * when the inode has pages mapped and this is AIO write. 349 * We need to invalidate those pages because there is a 350 * chance they contain stale data in the case buffered IO 351 * went in between AIO submission and completion into the 352 * same region. 353 */ 354 if (dio->result) 355 defer_completion = dio->defer_completion || 356 (dio->op == REQ_OP_WRITE && 357 dio->inode->i_mapping->nrpages); 358 if (defer_completion) { 359 INIT_WORK(&dio->complete_work, dio_aio_complete_work); 360 queue_work(dio->inode->i_sb->s_dio_done_wq, 361 &dio->complete_work); 362 } else { 363 dio_complete(dio, 0, DIO_COMPLETE_ASYNC); 364 } 365 } 366 } 367 368 /* 369 * The BIO completion handler simply queues the BIO up for the process-context 370 * handler. 371 * 372 * During I/O bi_private points at the dio. After I/O, bi_private is used to 373 * implement a singly-linked list of completed BIOs, at dio->bio_list. 374 */ 375 static void dio_bio_end_io(struct bio *bio) 376 { 377 struct dio *dio = bio->bi_private; 378 unsigned long flags; 379 380 spin_lock_irqsave(&dio->bio_lock, flags); 381 bio->bi_private = dio->bio_list; 382 dio->bio_list = bio; 383 if (--dio->refcount == 1 && dio->waiter) 384 wake_up_process(dio->waiter); 385 spin_unlock_irqrestore(&dio->bio_lock, flags); 386 } 387 388 static inline void 389 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio, 390 struct block_device *bdev, 391 sector_t first_sector, int nr_vecs) 392 { 393 struct bio *bio; 394 395 /* 396 * bio_alloc() is guaranteed to return a bio when allowed to sleep and 397 * we request a valid number of vectors. 398 */ 399 bio = bio_alloc(GFP_KERNEL, nr_vecs); 400 401 bio_set_dev(bio, bdev); 402 bio->bi_iter.bi_sector = first_sector; 403 bio_set_op_attrs(bio, dio->op, dio->op_flags); 404 if (dio->is_async) 405 bio->bi_end_io = dio_bio_end_aio; 406 else 407 bio->bi_end_io = dio_bio_end_io; 408 409 bio->bi_write_hint = dio->iocb->ki_hint; 410 411 sdio->bio = bio; 412 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset; 413 } 414 415 /* 416 * In the AIO read case we speculatively dirty the pages before starting IO. 417 * During IO completion, any of these pages which happen to have been written 418 * back will be redirtied by bio_check_pages_dirty(). 419 * 420 * bios hold a dio reference between submit_bio and ->end_io. 421 */ 422 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio) 423 { 424 struct bio *bio = sdio->bio; 425 unsigned long flags; 426 427 bio->bi_private = dio; 428 /* don't account direct I/O as memory stall */ 429 bio_clear_flag(bio, BIO_WORKINGSET); 430 431 spin_lock_irqsave(&dio->bio_lock, flags); 432 dio->refcount++; 433 spin_unlock_irqrestore(&dio->bio_lock, flags); 434 435 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) 436 bio_set_pages_dirty(bio); 437 438 dio->bio_disk = bio->bi_bdev->bd_disk; 439 440 if (sdio->submit_io) 441 sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio); 442 else 443 submit_bio(bio); 444 445 sdio->bio = NULL; 446 sdio->boundary = 0; 447 sdio->logical_offset_in_bio = 0; 448 } 449 450 /* 451 * Release any resources in case of a failure 452 */ 453 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio) 454 { 455 while (sdio->head < sdio->tail) 456 put_page(dio->pages[sdio->head++]); 457 } 458 459 /* 460 * Wait for the next BIO to complete. Remove it and return it. NULL is 461 * returned once all BIOs have been completed. This must only be called once 462 * all bios have been issued so that dio->refcount can only decrease. This 463 * requires that the caller hold a reference on the dio. 464 */ 465 static struct bio *dio_await_one(struct dio *dio) 466 { 467 unsigned long flags; 468 struct bio *bio = NULL; 469 470 spin_lock_irqsave(&dio->bio_lock, flags); 471 472 /* 473 * Wait as long as the list is empty and there are bios in flight. bio 474 * completion drops the count, maybe adds to the list, and wakes while 475 * holding the bio_lock so we don't need set_current_state()'s barrier 476 * and can call it after testing our condition. 477 */ 478 while (dio->refcount > 1 && dio->bio_list == NULL) { 479 __set_current_state(TASK_UNINTERRUPTIBLE); 480 dio->waiter = current; 481 spin_unlock_irqrestore(&dio->bio_lock, flags); 482 blk_io_schedule(); 483 /* wake up sets us TASK_RUNNING */ 484 spin_lock_irqsave(&dio->bio_lock, flags); 485 dio->waiter = NULL; 486 } 487 if (dio->bio_list) { 488 bio = dio->bio_list; 489 dio->bio_list = bio->bi_private; 490 } 491 spin_unlock_irqrestore(&dio->bio_lock, flags); 492 return bio; 493 } 494 495 /* 496 * Process one completed BIO. No locks are held. 497 */ 498 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio) 499 { 500 blk_status_t err = bio->bi_status; 501 bool should_dirty = dio->op == REQ_OP_READ && dio->should_dirty; 502 503 if (err) { 504 if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT)) 505 dio->io_error = -EAGAIN; 506 else 507 dio->io_error = -EIO; 508 } 509 510 if (dio->is_async && should_dirty) { 511 bio_check_pages_dirty(bio); /* transfers ownership */ 512 } else { 513 bio_release_pages(bio, should_dirty); 514 bio_put(bio); 515 } 516 return err; 517 } 518 519 /* 520 * Wait on and process all in-flight BIOs. This must only be called once 521 * all bios have been issued so that the refcount can only decrease. 522 * This just waits for all bios to make it through dio_bio_complete. IO 523 * errors are propagated through dio->io_error and should be propagated via 524 * dio_complete(). 525 */ 526 static void dio_await_completion(struct dio *dio) 527 { 528 struct bio *bio; 529 do { 530 bio = dio_await_one(dio); 531 if (bio) 532 dio_bio_complete(dio, bio); 533 } while (bio); 534 } 535 536 /* 537 * A really large O_DIRECT read or write can generate a lot of BIOs. So 538 * to keep the memory consumption sane we periodically reap any completed BIOs 539 * during the BIO generation phase. 540 * 541 * This also helps to limit the peak amount of pinned userspace memory. 542 */ 543 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio) 544 { 545 int ret = 0; 546 547 if (sdio->reap_counter++ >= 64) { 548 while (dio->bio_list) { 549 unsigned long flags; 550 struct bio *bio; 551 int ret2; 552 553 spin_lock_irqsave(&dio->bio_lock, flags); 554 bio = dio->bio_list; 555 dio->bio_list = bio->bi_private; 556 spin_unlock_irqrestore(&dio->bio_lock, flags); 557 ret2 = blk_status_to_errno(dio_bio_complete(dio, bio)); 558 if (ret == 0) 559 ret = ret2; 560 } 561 sdio->reap_counter = 0; 562 } 563 return ret; 564 } 565 566 /* 567 * Create workqueue for deferred direct IO completions. We allocate the 568 * workqueue when it's first needed. This avoids creating workqueue for 569 * filesystems that don't need it and also allows us to create the workqueue 570 * late enough so the we can include s_id in the name of the workqueue. 571 */ 572 int sb_init_dio_done_wq(struct super_block *sb) 573 { 574 struct workqueue_struct *old; 575 struct workqueue_struct *wq = alloc_workqueue("dio/%s", 576 WQ_MEM_RECLAIM, 0, 577 sb->s_id); 578 if (!wq) 579 return -ENOMEM; 580 /* 581 * This has to be atomic as more DIOs can race to create the workqueue 582 */ 583 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq); 584 /* Someone created workqueue before us? Free ours... */ 585 if (old) 586 destroy_workqueue(wq); 587 return 0; 588 } 589 590 static int dio_set_defer_completion(struct dio *dio) 591 { 592 struct super_block *sb = dio->inode->i_sb; 593 594 if (dio->defer_completion) 595 return 0; 596 dio->defer_completion = true; 597 if (!sb->s_dio_done_wq) 598 return sb_init_dio_done_wq(sb); 599 return 0; 600 } 601 602 /* 603 * Call into the fs to map some more disk blocks. We record the current number 604 * of available blocks at sdio->blocks_available. These are in units of the 605 * fs blocksize, i_blocksize(inode). 606 * 607 * The fs is allowed to map lots of blocks at once. If it wants to do that, 608 * it uses the passed inode-relative block number as the file offset, as usual. 609 * 610 * get_block() is passed the number of i_blkbits-sized blocks which direct_io 611 * has remaining to do. The fs should not map more than this number of blocks. 612 * 613 * If the fs has mapped a lot of blocks, it should populate bh->b_size to 614 * indicate how much contiguous disk space has been made available at 615 * bh->b_blocknr. 616 * 617 * If *any* of the mapped blocks are new, then the fs must set buffer_new(). 618 * This isn't very efficient... 619 * 620 * In the case of filesystem holes: the fs may return an arbitrarily-large 621 * hole by returning an appropriate value in b_size and by clearing 622 * buffer_mapped(). However the direct-io code will only process holes one 623 * block at a time - it will repeatedly call get_block() as it walks the hole. 624 */ 625 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio, 626 struct buffer_head *map_bh) 627 { 628 int ret; 629 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ 630 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */ 631 unsigned long fs_count; /* Number of filesystem-sized blocks */ 632 int create; 633 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor; 634 loff_t i_size; 635 636 /* 637 * If there was a memory error and we've overwritten all the 638 * mapped blocks then we can now return that memory error 639 */ 640 ret = dio->page_errors; 641 if (ret == 0) { 642 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request); 643 fs_startblk = sdio->block_in_file >> sdio->blkfactor; 644 fs_endblk = (sdio->final_block_in_request - 1) >> 645 sdio->blkfactor; 646 fs_count = fs_endblk - fs_startblk + 1; 647 648 map_bh->b_state = 0; 649 map_bh->b_size = fs_count << i_blkbits; 650 651 /* 652 * For writes that could fill holes inside i_size on a 653 * DIO_SKIP_HOLES filesystem we forbid block creations: only 654 * overwrites are permitted. We will return early to the caller 655 * once we see an unmapped buffer head returned, and the caller 656 * will fall back to buffered I/O. 657 * 658 * Otherwise the decision is left to the get_blocks method, 659 * which may decide to handle it or also return an unmapped 660 * buffer head. 661 */ 662 create = dio->op == REQ_OP_WRITE; 663 if (dio->flags & DIO_SKIP_HOLES) { 664 i_size = i_size_read(dio->inode); 665 if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits) 666 create = 0; 667 } 668 669 ret = (*sdio->get_block)(dio->inode, fs_startblk, 670 map_bh, create); 671 672 /* Store for completion */ 673 dio->private = map_bh->b_private; 674 675 if (ret == 0 && buffer_defer_completion(map_bh)) 676 ret = dio_set_defer_completion(dio); 677 } 678 return ret; 679 } 680 681 /* 682 * There is no bio. Make one now. 683 */ 684 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio, 685 sector_t start_sector, struct buffer_head *map_bh) 686 { 687 sector_t sector; 688 int ret, nr_pages; 689 690 ret = dio_bio_reap(dio, sdio); 691 if (ret) 692 goto out; 693 sector = start_sector << (sdio->blkbits - 9); 694 nr_pages = bio_max_segs(sdio->pages_in_io); 695 BUG_ON(nr_pages <= 0); 696 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages); 697 sdio->boundary = 0; 698 out: 699 return ret; 700 } 701 702 /* 703 * Attempt to put the current chunk of 'cur_page' into the current BIO. If 704 * that was successful then update final_block_in_bio and take a ref against 705 * the just-added page. 706 * 707 * Return zero on success. Non-zero means the caller needs to start a new BIO. 708 */ 709 static inline int dio_bio_add_page(struct dio_submit *sdio) 710 { 711 int ret; 712 713 ret = bio_add_page(sdio->bio, sdio->cur_page, 714 sdio->cur_page_len, sdio->cur_page_offset); 715 if (ret == sdio->cur_page_len) { 716 /* 717 * Decrement count only, if we are done with this page 718 */ 719 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE) 720 sdio->pages_in_io--; 721 get_page(sdio->cur_page); 722 sdio->final_block_in_bio = sdio->cur_page_block + 723 (sdio->cur_page_len >> sdio->blkbits); 724 ret = 0; 725 } else { 726 ret = 1; 727 } 728 return ret; 729 } 730 731 /* 732 * Put cur_page under IO. The section of cur_page which is described by 733 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page 734 * starts on-disk at cur_page_block. 735 * 736 * We take a ref against the page here (on behalf of its presence in the bio). 737 * 738 * The caller of this function is responsible for removing cur_page from the 739 * dio, and for dropping the refcount which came from that presence. 740 */ 741 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio, 742 struct buffer_head *map_bh) 743 { 744 int ret = 0; 745 746 if (sdio->bio) { 747 loff_t cur_offset = sdio->cur_page_fs_offset; 748 loff_t bio_next_offset = sdio->logical_offset_in_bio + 749 sdio->bio->bi_iter.bi_size; 750 751 /* 752 * See whether this new request is contiguous with the old. 753 * 754 * Btrfs cannot handle having logically non-contiguous requests 755 * submitted. For example if you have 756 * 757 * Logical: [0-4095][HOLE][8192-12287] 758 * Physical: [0-4095] [4096-8191] 759 * 760 * We cannot submit those pages together as one BIO. So if our 761 * current logical offset in the file does not equal what would 762 * be the next logical offset in the bio, submit the bio we 763 * have. 764 */ 765 if (sdio->final_block_in_bio != sdio->cur_page_block || 766 cur_offset != bio_next_offset) 767 dio_bio_submit(dio, sdio); 768 } 769 770 if (sdio->bio == NULL) { 771 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 772 if (ret) 773 goto out; 774 } 775 776 if (dio_bio_add_page(sdio) != 0) { 777 dio_bio_submit(dio, sdio); 778 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 779 if (ret == 0) { 780 ret = dio_bio_add_page(sdio); 781 BUG_ON(ret != 0); 782 } 783 } 784 out: 785 return ret; 786 } 787 788 /* 789 * An autonomous function to put a chunk of a page under deferred IO. 790 * 791 * The caller doesn't actually know (or care) whether this piece of page is in 792 * a BIO, or is under IO or whatever. We just take care of all possible 793 * situations here. The separation between the logic of do_direct_IO() and 794 * that of submit_page_section() is important for clarity. Please don't break. 795 * 796 * The chunk of page starts on-disk at blocknr. 797 * 798 * We perform deferred IO, by recording the last-submitted page inside our 799 * private part of the dio structure. If possible, we just expand the IO 800 * across that page here. 801 * 802 * If that doesn't work out then we put the old page into the bio and add this 803 * page to the dio instead. 804 */ 805 static inline int 806 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page, 807 unsigned offset, unsigned len, sector_t blocknr, 808 struct buffer_head *map_bh) 809 { 810 int ret = 0; 811 int boundary = sdio->boundary; /* dio_send_cur_page may clear it */ 812 813 if (dio->op == REQ_OP_WRITE) { 814 /* 815 * Read accounting is performed in submit_bio() 816 */ 817 task_io_account_write(len); 818 } 819 820 /* 821 * Can we just grow the current page's presence in the dio? 822 */ 823 if (sdio->cur_page == page && 824 sdio->cur_page_offset + sdio->cur_page_len == offset && 825 sdio->cur_page_block + 826 (sdio->cur_page_len >> sdio->blkbits) == blocknr) { 827 sdio->cur_page_len += len; 828 goto out; 829 } 830 831 /* 832 * If there's a deferred page already there then send it. 833 */ 834 if (sdio->cur_page) { 835 ret = dio_send_cur_page(dio, sdio, map_bh); 836 put_page(sdio->cur_page); 837 sdio->cur_page = NULL; 838 if (ret) 839 return ret; 840 } 841 842 get_page(page); /* It is in dio */ 843 sdio->cur_page = page; 844 sdio->cur_page_offset = offset; 845 sdio->cur_page_len = len; 846 sdio->cur_page_block = blocknr; 847 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits; 848 out: 849 /* 850 * If boundary then we want to schedule the IO now to 851 * avoid metadata seeks. 852 */ 853 if (boundary) { 854 ret = dio_send_cur_page(dio, sdio, map_bh); 855 if (sdio->bio) 856 dio_bio_submit(dio, sdio); 857 put_page(sdio->cur_page); 858 sdio->cur_page = NULL; 859 } 860 return ret; 861 } 862 863 /* 864 * If we are not writing the entire block and get_block() allocated 865 * the block for us, we need to fill-in the unused portion of the 866 * block with zeros. This happens only if user-buffer, fileoffset or 867 * io length is not filesystem block-size multiple. 868 * 869 * `end' is zero if we're doing the start of the IO, 1 at the end of the 870 * IO. 871 */ 872 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio, 873 int end, struct buffer_head *map_bh) 874 { 875 unsigned dio_blocks_per_fs_block; 876 unsigned this_chunk_blocks; /* In dio_blocks */ 877 unsigned this_chunk_bytes; 878 struct page *page; 879 880 sdio->start_zero_done = 1; 881 if (!sdio->blkfactor || !buffer_new(map_bh)) 882 return; 883 884 dio_blocks_per_fs_block = 1 << sdio->blkfactor; 885 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1); 886 887 if (!this_chunk_blocks) 888 return; 889 890 /* 891 * We need to zero out part of an fs block. It is either at the 892 * beginning or the end of the fs block. 893 */ 894 if (end) 895 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; 896 897 this_chunk_bytes = this_chunk_blocks << sdio->blkbits; 898 899 page = ZERO_PAGE(0); 900 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes, 901 sdio->next_block_for_io, map_bh)) 902 return; 903 904 sdio->next_block_for_io += this_chunk_blocks; 905 } 906 907 /* 908 * Walk the user pages, and the file, mapping blocks to disk and generating 909 * a sequence of (page,offset,len,block) mappings. These mappings are injected 910 * into submit_page_section(), which takes care of the next stage of submission 911 * 912 * Direct IO against a blockdev is different from a file. Because we can 913 * happily perform page-sized but 512-byte aligned IOs. It is important that 914 * blockdev IO be able to have fine alignment and large sizes. 915 * 916 * So what we do is to permit the ->get_block function to populate bh.b_size 917 * with the size of IO which is permitted at this offset and this i_blkbits. 918 * 919 * For best results, the blockdev should be set up with 512-byte i_blkbits and 920 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives 921 * fine alignment but still allows this function to work in PAGE_SIZE units. 922 */ 923 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio, 924 struct buffer_head *map_bh) 925 { 926 const unsigned blkbits = sdio->blkbits; 927 const unsigned i_blkbits = blkbits + sdio->blkfactor; 928 int ret = 0; 929 930 while (sdio->block_in_file < sdio->final_block_in_request) { 931 struct page *page; 932 size_t from, to; 933 934 page = dio_get_page(dio, sdio); 935 if (IS_ERR(page)) { 936 ret = PTR_ERR(page); 937 goto out; 938 } 939 from = sdio->head ? 0 : sdio->from; 940 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE; 941 sdio->head++; 942 943 while (from < to) { 944 unsigned this_chunk_bytes; /* # of bytes mapped */ 945 unsigned this_chunk_blocks; /* # of blocks */ 946 unsigned u; 947 948 if (sdio->blocks_available == 0) { 949 /* 950 * Need to go and map some more disk 951 */ 952 unsigned long blkmask; 953 unsigned long dio_remainder; 954 955 ret = get_more_blocks(dio, sdio, map_bh); 956 if (ret) { 957 put_page(page); 958 goto out; 959 } 960 if (!buffer_mapped(map_bh)) 961 goto do_holes; 962 963 sdio->blocks_available = 964 map_bh->b_size >> blkbits; 965 sdio->next_block_for_io = 966 map_bh->b_blocknr << sdio->blkfactor; 967 if (buffer_new(map_bh)) { 968 clean_bdev_aliases( 969 map_bh->b_bdev, 970 map_bh->b_blocknr, 971 map_bh->b_size >> i_blkbits); 972 } 973 974 if (!sdio->blkfactor) 975 goto do_holes; 976 977 blkmask = (1 << sdio->blkfactor) - 1; 978 dio_remainder = (sdio->block_in_file & blkmask); 979 980 /* 981 * If we are at the start of IO and that IO 982 * starts partway into a fs-block, 983 * dio_remainder will be non-zero. If the IO 984 * is a read then we can simply advance the IO 985 * cursor to the first block which is to be 986 * read. But if the IO is a write and the 987 * block was newly allocated we cannot do that; 988 * the start of the fs block must be zeroed out 989 * on-disk 990 */ 991 if (!buffer_new(map_bh)) 992 sdio->next_block_for_io += dio_remainder; 993 sdio->blocks_available -= dio_remainder; 994 } 995 do_holes: 996 /* Handle holes */ 997 if (!buffer_mapped(map_bh)) { 998 loff_t i_size_aligned; 999 1000 /* AKPM: eargh, -ENOTBLK is a hack */ 1001 if (dio->op == REQ_OP_WRITE) { 1002 put_page(page); 1003 return -ENOTBLK; 1004 } 1005 1006 /* 1007 * Be sure to account for a partial block as the 1008 * last block in the file 1009 */ 1010 i_size_aligned = ALIGN(i_size_read(dio->inode), 1011 1 << blkbits); 1012 if (sdio->block_in_file >= 1013 i_size_aligned >> blkbits) { 1014 /* We hit eof */ 1015 put_page(page); 1016 goto out; 1017 } 1018 zero_user(page, from, 1 << blkbits); 1019 sdio->block_in_file++; 1020 from += 1 << blkbits; 1021 dio->result += 1 << blkbits; 1022 goto next_block; 1023 } 1024 1025 /* 1026 * If we're performing IO which has an alignment which 1027 * is finer than the underlying fs, go check to see if 1028 * we must zero out the start of this block. 1029 */ 1030 if (unlikely(sdio->blkfactor && !sdio->start_zero_done)) 1031 dio_zero_block(dio, sdio, 0, map_bh); 1032 1033 /* 1034 * Work out, in this_chunk_blocks, how much disk we 1035 * can add to this page 1036 */ 1037 this_chunk_blocks = sdio->blocks_available; 1038 u = (to - from) >> blkbits; 1039 if (this_chunk_blocks > u) 1040 this_chunk_blocks = u; 1041 u = sdio->final_block_in_request - sdio->block_in_file; 1042 if (this_chunk_blocks > u) 1043 this_chunk_blocks = u; 1044 this_chunk_bytes = this_chunk_blocks << blkbits; 1045 BUG_ON(this_chunk_bytes == 0); 1046 1047 if (this_chunk_blocks == sdio->blocks_available) 1048 sdio->boundary = buffer_boundary(map_bh); 1049 ret = submit_page_section(dio, sdio, page, 1050 from, 1051 this_chunk_bytes, 1052 sdio->next_block_for_io, 1053 map_bh); 1054 if (ret) { 1055 put_page(page); 1056 goto out; 1057 } 1058 sdio->next_block_for_io += this_chunk_blocks; 1059 1060 sdio->block_in_file += this_chunk_blocks; 1061 from += this_chunk_bytes; 1062 dio->result += this_chunk_bytes; 1063 sdio->blocks_available -= this_chunk_blocks; 1064 next_block: 1065 BUG_ON(sdio->block_in_file > sdio->final_block_in_request); 1066 if (sdio->block_in_file == sdio->final_block_in_request) 1067 break; 1068 } 1069 1070 /* Drop the ref which was taken in get_user_pages() */ 1071 put_page(page); 1072 } 1073 out: 1074 return ret; 1075 } 1076 1077 static inline int drop_refcount(struct dio *dio) 1078 { 1079 int ret2; 1080 unsigned long flags; 1081 1082 /* 1083 * Sync will always be dropping the final ref and completing the 1084 * operation. AIO can if it was a broken operation described above or 1085 * in fact if all the bios race to complete before we get here. In 1086 * that case dio_complete() translates the EIOCBQUEUED into the proper 1087 * return code that the caller will hand to ->complete(). 1088 * 1089 * This is managed by the bio_lock instead of being an atomic_t so that 1090 * completion paths can drop their ref and use the remaining count to 1091 * decide to wake the submission path atomically. 1092 */ 1093 spin_lock_irqsave(&dio->bio_lock, flags); 1094 ret2 = --dio->refcount; 1095 spin_unlock_irqrestore(&dio->bio_lock, flags); 1096 return ret2; 1097 } 1098 1099 /* 1100 * This is a library function for use by filesystem drivers. 1101 * 1102 * The locking rules are governed by the flags parameter: 1103 * - if the flags value contains DIO_LOCKING we use a fancy locking 1104 * scheme for dumb filesystems. 1105 * For writes this function is called under i_mutex and returns with 1106 * i_mutex held, for reads, i_mutex is not held on entry, but it is 1107 * taken and dropped again before returning. 1108 * - if the flags value does NOT contain DIO_LOCKING we don't use any 1109 * internal locking but rather rely on the filesystem to synchronize 1110 * direct I/O reads/writes versus each other and truncate. 1111 * 1112 * To help with locking against truncate we incremented the i_dio_count 1113 * counter before starting direct I/O, and decrement it once we are done. 1114 * Truncate can wait for it to reach zero to provide exclusion. It is 1115 * expected that filesystem provide exclusion between new direct I/O 1116 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex, 1117 * but other filesystems need to take care of this on their own. 1118 * 1119 * NOTE: if you pass "sdio" to anything by pointer make sure that function 1120 * is always inlined. Otherwise gcc is unable to split the structure into 1121 * individual fields and will generate much worse code. This is important 1122 * for the whole file. 1123 */ 1124 static inline ssize_t 1125 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1126 struct block_device *bdev, struct iov_iter *iter, 1127 get_block_t get_block, dio_iodone_t end_io, 1128 dio_submit_t submit_io, int flags) 1129 { 1130 unsigned i_blkbits = READ_ONCE(inode->i_blkbits); 1131 unsigned blkbits = i_blkbits; 1132 unsigned blocksize_mask = (1 << blkbits) - 1; 1133 ssize_t retval = -EINVAL; 1134 const size_t count = iov_iter_count(iter); 1135 loff_t offset = iocb->ki_pos; 1136 const loff_t end = offset + count; 1137 struct dio *dio; 1138 struct dio_submit sdio = { 0, }; 1139 struct buffer_head map_bh = { 0, }; 1140 struct blk_plug plug; 1141 unsigned long align = offset | iov_iter_alignment(iter); 1142 1143 /* 1144 * Avoid references to bdev if not absolutely needed to give 1145 * the early prefetch in the caller enough time. 1146 */ 1147 1148 /* watch out for a 0 len io from a tricksy fs */ 1149 if (iov_iter_rw(iter) == READ && !count) 1150 return 0; 1151 1152 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL); 1153 if (!dio) 1154 return -ENOMEM; 1155 /* 1156 * Believe it or not, zeroing out the page array caused a .5% 1157 * performance regression in a database benchmark. So, we take 1158 * care to only zero out what's needed. 1159 */ 1160 memset(dio, 0, offsetof(struct dio, pages)); 1161 1162 dio->flags = flags; 1163 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) { 1164 /* will be released by direct_io_worker */ 1165 inode_lock(inode); 1166 } 1167 1168 /* Once we sampled i_size check for reads beyond EOF */ 1169 dio->i_size = i_size_read(inode); 1170 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) { 1171 retval = 0; 1172 goto fail_dio; 1173 } 1174 1175 if (align & blocksize_mask) { 1176 if (bdev) 1177 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 1178 blocksize_mask = (1 << blkbits) - 1; 1179 if (align & blocksize_mask) 1180 goto fail_dio; 1181 } 1182 1183 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) { 1184 struct address_space *mapping = iocb->ki_filp->f_mapping; 1185 1186 retval = filemap_write_and_wait_range(mapping, offset, end - 1); 1187 if (retval) 1188 goto fail_dio; 1189 } 1190 1191 /* 1192 * For file extending writes updating i_size before data writeouts 1193 * complete can expose uninitialized blocks in dumb filesystems. 1194 * In that case we need to wait for I/O completion even if asked 1195 * for an asynchronous write. 1196 */ 1197 if (is_sync_kiocb(iocb)) 1198 dio->is_async = false; 1199 else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode)) 1200 dio->is_async = false; 1201 else 1202 dio->is_async = true; 1203 1204 dio->inode = inode; 1205 if (iov_iter_rw(iter) == WRITE) { 1206 dio->op = REQ_OP_WRITE; 1207 dio->op_flags = REQ_SYNC | REQ_IDLE; 1208 if (iocb->ki_flags & IOCB_NOWAIT) 1209 dio->op_flags |= REQ_NOWAIT; 1210 } else { 1211 dio->op = REQ_OP_READ; 1212 } 1213 1214 /* 1215 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue 1216 * so that we can call ->fsync. 1217 */ 1218 if (dio->is_async && iov_iter_rw(iter) == WRITE) { 1219 retval = 0; 1220 if (iocb->ki_flags & IOCB_DSYNC) 1221 retval = dio_set_defer_completion(dio); 1222 else if (!dio->inode->i_sb->s_dio_done_wq) { 1223 /* 1224 * In case of AIO write racing with buffered read we 1225 * need to defer completion. We can't decide this now, 1226 * however the workqueue needs to be initialized here. 1227 */ 1228 retval = sb_init_dio_done_wq(dio->inode->i_sb); 1229 } 1230 if (retval) 1231 goto fail_dio; 1232 } 1233 1234 /* 1235 * Will be decremented at I/O completion time. 1236 */ 1237 inode_dio_begin(inode); 1238 1239 retval = 0; 1240 sdio.blkbits = blkbits; 1241 sdio.blkfactor = i_blkbits - blkbits; 1242 sdio.block_in_file = offset >> blkbits; 1243 1244 sdio.get_block = get_block; 1245 dio->end_io = end_io; 1246 sdio.submit_io = submit_io; 1247 sdio.final_block_in_bio = -1; 1248 sdio.next_block_for_io = -1; 1249 1250 dio->iocb = iocb; 1251 1252 spin_lock_init(&dio->bio_lock); 1253 dio->refcount = 1; 1254 1255 dio->should_dirty = iter_is_iovec(iter) && iov_iter_rw(iter) == READ; 1256 sdio.iter = iter; 1257 sdio.final_block_in_request = end >> blkbits; 1258 1259 /* 1260 * In case of non-aligned buffers, we may need 2 more 1261 * pages since we need to zero out first and last block. 1262 */ 1263 if (unlikely(sdio.blkfactor)) 1264 sdio.pages_in_io = 2; 1265 1266 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX); 1267 1268 blk_start_plug(&plug); 1269 1270 retval = do_direct_IO(dio, &sdio, &map_bh); 1271 if (retval) 1272 dio_cleanup(dio, &sdio); 1273 1274 if (retval == -ENOTBLK) { 1275 /* 1276 * The remaining part of the request will be 1277 * handled by buffered I/O when we return 1278 */ 1279 retval = 0; 1280 } 1281 /* 1282 * There may be some unwritten disk at the end of a part-written 1283 * fs-block-sized block. Go zero that now. 1284 */ 1285 dio_zero_block(dio, &sdio, 1, &map_bh); 1286 1287 if (sdio.cur_page) { 1288 ssize_t ret2; 1289 1290 ret2 = dio_send_cur_page(dio, &sdio, &map_bh); 1291 if (retval == 0) 1292 retval = ret2; 1293 put_page(sdio.cur_page); 1294 sdio.cur_page = NULL; 1295 } 1296 if (sdio.bio) 1297 dio_bio_submit(dio, &sdio); 1298 1299 blk_finish_plug(&plug); 1300 1301 /* 1302 * It is possible that, we return short IO due to end of file. 1303 * In that case, we need to release all the pages we got hold on. 1304 */ 1305 dio_cleanup(dio, &sdio); 1306 1307 /* 1308 * All block lookups have been performed. For READ requests 1309 * we can let i_mutex go now that its achieved its purpose 1310 * of protecting us from looking up uninitialized blocks. 1311 */ 1312 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING)) 1313 inode_unlock(dio->inode); 1314 1315 /* 1316 * The only time we want to leave bios in flight is when a successful 1317 * partial aio read or full aio write have been setup. In that case 1318 * bio completion will call aio_complete. The only time it's safe to 1319 * call aio_complete is when we return -EIOCBQUEUED, so we key on that. 1320 * This had *better* be the only place that raises -EIOCBQUEUED. 1321 */ 1322 BUG_ON(retval == -EIOCBQUEUED); 1323 if (dio->is_async && retval == 0 && dio->result && 1324 (iov_iter_rw(iter) == READ || dio->result == count)) 1325 retval = -EIOCBQUEUED; 1326 else 1327 dio_await_completion(dio); 1328 1329 if (drop_refcount(dio) == 0) { 1330 retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE); 1331 } else 1332 BUG_ON(retval != -EIOCBQUEUED); 1333 1334 return retval; 1335 1336 fail_dio: 1337 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) 1338 inode_unlock(inode); 1339 1340 kmem_cache_free(dio_cache, dio); 1341 return retval; 1342 } 1343 1344 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1345 struct block_device *bdev, struct iov_iter *iter, 1346 get_block_t get_block, 1347 dio_iodone_t end_io, dio_submit_t submit_io, 1348 int flags) 1349 { 1350 /* 1351 * The block device state is needed in the end to finally 1352 * submit everything. Since it's likely to be cache cold 1353 * prefetch it here as first thing to hide some of the 1354 * latency. 1355 * 1356 * Attempt to prefetch the pieces we likely need later. 1357 */ 1358 prefetch(&bdev->bd_disk->part_tbl); 1359 prefetch(bdev->bd_disk->queue); 1360 prefetch((char *)bdev->bd_disk->queue + SMP_CACHE_BYTES); 1361 1362 return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block, 1363 end_io, submit_io, flags); 1364 } 1365 1366 EXPORT_SYMBOL(__blockdev_direct_IO); 1367 1368 static __init int dio_init(void) 1369 { 1370 dio_cache = KMEM_CACHE(dio, SLAB_PANIC); 1371 return 0; 1372 } 1373 module_init(dio_init) 1374