1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/direct-io.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * O_DIRECT 8 * 9 * 04Jul2002 Andrew Morton 10 * Initial version 11 * 11Sep2002 janetinc@us.ibm.com 12 * added readv/writev support. 13 * 29Oct2002 Andrew Morton 14 * rewrote bio_add_page() support. 15 * 30Oct2002 pbadari@us.ibm.com 16 * added support for non-aligned IO. 17 * 06Nov2002 pbadari@us.ibm.com 18 * added asynchronous IO support. 19 * 21Jul2003 nathans@sgi.com 20 * added IO completion notifier. 21 */ 22 23 #include <linux/kernel.h> 24 #include <linux/module.h> 25 #include <linux/types.h> 26 #include <linux/fs.h> 27 #include <linux/mm.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/pagemap.h> 31 #include <linux/task_io_accounting_ops.h> 32 #include <linux/bio.h> 33 #include <linux/wait.h> 34 #include <linux/err.h> 35 #include <linux/blkdev.h> 36 #include <linux/buffer_head.h> 37 #include <linux/rwsem.h> 38 #include <linux/uio.h> 39 #include <linux/atomic.h> 40 #include <linux/prefetch.h> 41 42 #include "internal.h" 43 44 /* 45 * How many user pages to map in one call to get_user_pages(). This determines 46 * the size of a structure in the slab cache 47 */ 48 #define DIO_PAGES 64 49 50 /* 51 * Flags for dio_complete() 52 */ 53 #define DIO_COMPLETE_ASYNC 0x01 /* This is async IO */ 54 #define DIO_COMPLETE_INVALIDATE 0x02 /* Can invalidate pages */ 55 56 /* 57 * This code generally works in units of "dio_blocks". A dio_block is 58 * somewhere between the hard sector size and the filesystem block size. it 59 * is determined on a per-invocation basis. When talking to the filesystem 60 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity 61 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted 62 * to bio_block quantities by shifting left by blkfactor. 63 * 64 * If blkfactor is zero then the user's request was aligned to the filesystem's 65 * blocksize. 66 */ 67 68 /* dio_state only used in the submission path */ 69 70 struct dio_submit { 71 struct bio *bio; /* bio under assembly */ 72 unsigned blkbits; /* doesn't change */ 73 unsigned blkfactor; /* When we're using an alignment which 74 is finer than the filesystem's soft 75 blocksize, this specifies how much 76 finer. blkfactor=2 means 1/4-block 77 alignment. Does not change */ 78 unsigned start_zero_done; /* flag: sub-blocksize zeroing has 79 been performed at the start of a 80 write */ 81 int pages_in_io; /* approximate total IO pages */ 82 sector_t block_in_file; /* Current offset into the underlying 83 file in dio_block units. */ 84 unsigned blocks_available; /* At block_in_file. changes */ 85 int reap_counter; /* rate limit reaping */ 86 sector_t final_block_in_request;/* doesn't change */ 87 int boundary; /* prev block is at a boundary */ 88 get_block_t *get_block; /* block mapping function */ 89 90 loff_t logical_offset_in_bio; /* current first logical block in bio */ 91 sector_t final_block_in_bio; /* current final block in bio + 1 */ 92 sector_t next_block_for_io; /* next block to be put under IO, 93 in dio_blocks units */ 94 95 /* 96 * Deferred addition of a page to the dio. These variables are 97 * private to dio_send_cur_page(), submit_page_section() and 98 * dio_bio_add_page(). 99 */ 100 struct page *cur_page; /* The page */ 101 unsigned cur_page_offset; /* Offset into it, in bytes */ 102 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ 103 sector_t cur_page_block; /* Where it starts */ 104 loff_t cur_page_fs_offset; /* Offset in file */ 105 106 struct iov_iter *iter; 107 /* 108 * Page queue. These variables belong to dio_refill_pages() and 109 * dio_get_page(). 110 */ 111 unsigned head; /* next page to process */ 112 unsigned tail; /* last valid page + 1 */ 113 size_t from, to; 114 }; 115 116 /* dio_state communicated between submission path and end_io */ 117 struct dio { 118 int flags; /* doesn't change */ 119 blk_opf_t opf; /* request operation type and flags */ 120 struct gendisk *bio_disk; 121 struct inode *inode; 122 loff_t i_size; /* i_size when submitted */ 123 dio_iodone_t *end_io; /* IO completion function */ 124 125 void *private; /* copy from map_bh.b_private */ 126 127 /* BIO completion state */ 128 spinlock_t bio_lock; /* protects BIO fields below */ 129 int page_errors; /* errno from get_user_pages() */ 130 int is_async; /* is IO async ? */ 131 bool defer_completion; /* defer AIO completion to workqueue? */ 132 bool should_dirty; /* if pages should be dirtied */ 133 int io_error; /* IO error in completion path */ 134 unsigned long refcount; /* direct_io_worker() and bios */ 135 struct bio *bio_list; /* singly linked via bi_private */ 136 struct task_struct *waiter; /* waiting task (NULL if none) */ 137 138 /* AIO related stuff */ 139 struct kiocb *iocb; /* kiocb */ 140 ssize_t result; /* IO result */ 141 142 /* 143 * pages[] (and any fields placed after it) are not zeroed out at 144 * allocation time. Don't add new fields after pages[] unless you 145 * wish that they not be zeroed. 146 */ 147 union { 148 struct page *pages[DIO_PAGES]; /* page buffer */ 149 struct work_struct complete_work;/* deferred AIO completion */ 150 }; 151 } ____cacheline_aligned_in_smp; 152 153 static struct kmem_cache *dio_cache __read_mostly; 154 155 /* 156 * How many pages are in the queue? 157 */ 158 static inline unsigned dio_pages_present(struct dio_submit *sdio) 159 { 160 return sdio->tail - sdio->head; 161 } 162 163 /* 164 * Go grab and pin some userspace pages. Typically we'll get 64 at a time. 165 */ 166 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio) 167 { 168 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 169 ssize_t ret; 170 171 ret = iov_iter_get_pages2(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES, 172 &sdio->from); 173 174 if (ret < 0 && sdio->blocks_available && dio_op == REQ_OP_WRITE) { 175 struct page *page = ZERO_PAGE(0); 176 /* 177 * A memory fault, but the filesystem has some outstanding 178 * mapped blocks. We need to use those blocks up to avoid 179 * leaking stale data in the file. 180 */ 181 if (dio->page_errors == 0) 182 dio->page_errors = ret; 183 get_page(page); 184 dio->pages[0] = page; 185 sdio->head = 0; 186 sdio->tail = 1; 187 sdio->from = 0; 188 sdio->to = PAGE_SIZE; 189 return 0; 190 } 191 192 if (ret >= 0) { 193 ret += sdio->from; 194 sdio->head = 0; 195 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE; 196 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1; 197 return 0; 198 } 199 return ret; 200 } 201 202 /* 203 * Get another userspace page. Returns an ERR_PTR on error. Pages are 204 * buffered inside the dio so that we can call get_user_pages() against a 205 * decent number of pages, less frequently. To provide nicer use of the 206 * L1 cache. 207 */ 208 static inline struct page *dio_get_page(struct dio *dio, 209 struct dio_submit *sdio) 210 { 211 if (dio_pages_present(sdio) == 0) { 212 int ret; 213 214 ret = dio_refill_pages(dio, sdio); 215 if (ret) 216 return ERR_PTR(ret); 217 BUG_ON(dio_pages_present(sdio) == 0); 218 } 219 return dio->pages[sdio->head]; 220 } 221 222 /* 223 * dio_complete() - called when all DIO BIO I/O has been completed 224 * 225 * This drops i_dio_count, lets interested parties know that a DIO operation 226 * has completed, and calculates the resulting return code for the operation. 227 * 228 * It lets the filesystem know if it registered an interest earlier via 229 * get_block. Pass the private field of the map buffer_head so that 230 * filesystems can use it to hold additional state between get_block calls and 231 * dio_complete. 232 */ 233 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags) 234 { 235 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 236 loff_t offset = dio->iocb->ki_pos; 237 ssize_t transferred = 0; 238 int err; 239 240 /* 241 * AIO submission can race with bio completion to get here while 242 * expecting to have the last io completed by bio completion. 243 * In that case -EIOCBQUEUED is in fact not an error we want 244 * to preserve through this call. 245 */ 246 if (ret == -EIOCBQUEUED) 247 ret = 0; 248 249 if (dio->result) { 250 transferred = dio->result; 251 252 /* Check for short read case */ 253 if (dio_op == REQ_OP_READ && 254 ((offset + transferred) > dio->i_size)) 255 transferred = dio->i_size - offset; 256 /* ignore EFAULT if some IO has been done */ 257 if (unlikely(ret == -EFAULT) && transferred) 258 ret = 0; 259 } 260 261 if (ret == 0) 262 ret = dio->page_errors; 263 if (ret == 0) 264 ret = dio->io_error; 265 if (ret == 0) 266 ret = transferred; 267 268 if (dio->end_io) { 269 // XXX: ki_pos?? 270 err = dio->end_io(dio->iocb, offset, ret, dio->private); 271 if (err) 272 ret = err; 273 } 274 275 /* 276 * Try again to invalidate clean pages which might have been cached by 277 * non-direct readahead, or faulted in by get_user_pages() if the source 278 * of the write was an mmap'ed region of the file we're writing. Either 279 * one is a pretty crazy thing to do, so we don't support it 100%. If 280 * this invalidation fails, tough, the write still worked... 281 * 282 * And this page cache invalidation has to be after dio->end_io(), as 283 * some filesystems convert unwritten extents to real allocations in 284 * end_io() when necessary, otherwise a racing buffer read would cache 285 * zeros from unwritten extents. 286 */ 287 if (flags & DIO_COMPLETE_INVALIDATE && 288 ret > 0 && dio_op == REQ_OP_WRITE && 289 dio->inode->i_mapping->nrpages) { 290 err = invalidate_inode_pages2_range(dio->inode->i_mapping, 291 offset >> PAGE_SHIFT, 292 (offset + ret - 1) >> PAGE_SHIFT); 293 if (err) 294 dio_warn_stale_pagecache(dio->iocb->ki_filp); 295 } 296 297 inode_dio_end(dio->inode); 298 299 if (flags & DIO_COMPLETE_ASYNC) { 300 /* 301 * generic_write_sync expects ki_pos to have been updated 302 * already, but the submission path only does this for 303 * synchronous I/O. 304 */ 305 dio->iocb->ki_pos += transferred; 306 307 if (ret > 0 && dio_op == REQ_OP_WRITE) 308 ret = generic_write_sync(dio->iocb, ret); 309 dio->iocb->ki_complete(dio->iocb, ret); 310 } 311 312 kmem_cache_free(dio_cache, dio); 313 return ret; 314 } 315 316 static void dio_aio_complete_work(struct work_struct *work) 317 { 318 struct dio *dio = container_of(work, struct dio, complete_work); 319 320 dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE); 321 } 322 323 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio); 324 325 /* 326 * Asynchronous IO callback. 327 */ 328 static void dio_bio_end_aio(struct bio *bio) 329 { 330 struct dio *dio = bio->bi_private; 331 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 332 unsigned long remaining; 333 unsigned long flags; 334 bool defer_completion = false; 335 336 /* cleanup the bio */ 337 dio_bio_complete(dio, bio); 338 339 spin_lock_irqsave(&dio->bio_lock, flags); 340 remaining = --dio->refcount; 341 if (remaining == 1 && dio->waiter) 342 wake_up_process(dio->waiter); 343 spin_unlock_irqrestore(&dio->bio_lock, flags); 344 345 if (remaining == 0) { 346 /* 347 * Defer completion when defer_completion is set or 348 * when the inode has pages mapped and this is AIO write. 349 * We need to invalidate those pages because there is a 350 * chance they contain stale data in the case buffered IO 351 * went in between AIO submission and completion into the 352 * same region. 353 */ 354 if (dio->result) 355 defer_completion = dio->defer_completion || 356 (dio_op == REQ_OP_WRITE && 357 dio->inode->i_mapping->nrpages); 358 if (defer_completion) { 359 INIT_WORK(&dio->complete_work, dio_aio_complete_work); 360 queue_work(dio->inode->i_sb->s_dio_done_wq, 361 &dio->complete_work); 362 } else { 363 dio_complete(dio, 0, DIO_COMPLETE_ASYNC); 364 } 365 } 366 } 367 368 /* 369 * The BIO completion handler simply queues the BIO up for the process-context 370 * handler. 371 * 372 * During I/O bi_private points at the dio. After I/O, bi_private is used to 373 * implement a singly-linked list of completed BIOs, at dio->bio_list. 374 */ 375 static void dio_bio_end_io(struct bio *bio) 376 { 377 struct dio *dio = bio->bi_private; 378 unsigned long flags; 379 380 spin_lock_irqsave(&dio->bio_lock, flags); 381 bio->bi_private = dio->bio_list; 382 dio->bio_list = bio; 383 if (--dio->refcount == 1 && dio->waiter) 384 wake_up_process(dio->waiter); 385 spin_unlock_irqrestore(&dio->bio_lock, flags); 386 } 387 388 static inline void 389 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio, 390 struct block_device *bdev, 391 sector_t first_sector, int nr_vecs) 392 { 393 struct bio *bio; 394 395 /* 396 * bio_alloc() is guaranteed to return a bio when allowed to sleep and 397 * we request a valid number of vectors. 398 */ 399 bio = bio_alloc(bdev, nr_vecs, dio->opf, GFP_KERNEL); 400 bio->bi_iter.bi_sector = first_sector; 401 if (dio->is_async) 402 bio->bi_end_io = dio_bio_end_aio; 403 else 404 bio->bi_end_io = dio_bio_end_io; 405 sdio->bio = bio; 406 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset; 407 } 408 409 /* 410 * In the AIO read case we speculatively dirty the pages before starting IO. 411 * During IO completion, any of these pages which happen to have been written 412 * back will be redirtied by bio_check_pages_dirty(). 413 * 414 * bios hold a dio reference between submit_bio and ->end_io. 415 */ 416 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio) 417 { 418 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 419 struct bio *bio = sdio->bio; 420 unsigned long flags; 421 422 bio->bi_private = dio; 423 424 spin_lock_irqsave(&dio->bio_lock, flags); 425 dio->refcount++; 426 spin_unlock_irqrestore(&dio->bio_lock, flags); 427 428 if (dio->is_async && dio_op == REQ_OP_READ && dio->should_dirty) 429 bio_set_pages_dirty(bio); 430 431 dio->bio_disk = bio->bi_bdev->bd_disk; 432 433 submit_bio(bio); 434 435 sdio->bio = NULL; 436 sdio->boundary = 0; 437 sdio->logical_offset_in_bio = 0; 438 } 439 440 /* 441 * Release any resources in case of a failure 442 */ 443 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio) 444 { 445 while (sdio->head < sdio->tail) 446 put_page(dio->pages[sdio->head++]); 447 } 448 449 /* 450 * Wait for the next BIO to complete. Remove it and return it. NULL is 451 * returned once all BIOs have been completed. This must only be called once 452 * all bios have been issued so that dio->refcount can only decrease. This 453 * requires that the caller hold a reference on the dio. 454 */ 455 static struct bio *dio_await_one(struct dio *dio) 456 { 457 unsigned long flags; 458 struct bio *bio = NULL; 459 460 spin_lock_irqsave(&dio->bio_lock, flags); 461 462 /* 463 * Wait as long as the list is empty and there are bios in flight. bio 464 * completion drops the count, maybe adds to the list, and wakes while 465 * holding the bio_lock so we don't need set_current_state()'s barrier 466 * and can call it after testing our condition. 467 */ 468 while (dio->refcount > 1 && dio->bio_list == NULL) { 469 __set_current_state(TASK_UNINTERRUPTIBLE); 470 dio->waiter = current; 471 spin_unlock_irqrestore(&dio->bio_lock, flags); 472 blk_io_schedule(); 473 /* wake up sets us TASK_RUNNING */ 474 spin_lock_irqsave(&dio->bio_lock, flags); 475 dio->waiter = NULL; 476 } 477 if (dio->bio_list) { 478 bio = dio->bio_list; 479 dio->bio_list = bio->bi_private; 480 } 481 spin_unlock_irqrestore(&dio->bio_lock, flags); 482 return bio; 483 } 484 485 /* 486 * Process one completed BIO. No locks are held. 487 */ 488 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio) 489 { 490 blk_status_t err = bio->bi_status; 491 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 492 bool should_dirty = dio_op == REQ_OP_READ && dio->should_dirty; 493 494 if (err) { 495 if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT)) 496 dio->io_error = -EAGAIN; 497 else 498 dio->io_error = -EIO; 499 } 500 501 if (dio->is_async && should_dirty) { 502 bio_check_pages_dirty(bio); /* transfers ownership */ 503 } else { 504 bio_release_pages(bio, should_dirty); 505 bio_put(bio); 506 } 507 return err; 508 } 509 510 /* 511 * Wait on and process all in-flight BIOs. This must only be called once 512 * all bios have been issued so that the refcount can only decrease. 513 * This just waits for all bios to make it through dio_bio_complete. IO 514 * errors are propagated through dio->io_error and should be propagated via 515 * dio_complete(). 516 */ 517 static void dio_await_completion(struct dio *dio) 518 { 519 struct bio *bio; 520 do { 521 bio = dio_await_one(dio); 522 if (bio) 523 dio_bio_complete(dio, bio); 524 } while (bio); 525 } 526 527 /* 528 * A really large O_DIRECT read or write can generate a lot of BIOs. So 529 * to keep the memory consumption sane we periodically reap any completed BIOs 530 * during the BIO generation phase. 531 * 532 * This also helps to limit the peak amount of pinned userspace memory. 533 */ 534 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio) 535 { 536 int ret = 0; 537 538 if (sdio->reap_counter++ >= 64) { 539 while (dio->bio_list) { 540 unsigned long flags; 541 struct bio *bio; 542 int ret2; 543 544 spin_lock_irqsave(&dio->bio_lock, flags); 545 bio = dio->bio_list; 546 dio->bio_list = bio->bi_private; 547 spin_unlock_irqrestore(&dio->bio_lock, flags); 548 ret2 = blk_status_to_errno(dio_bio_complete(dio, bio)); 549 if (ret == 0) 550 ret = ret2; 551 } 552 sdio->reap_counter = 0; 553 } 554 return ret; 555 } 556 557 static int dio_set_defer_completion(struct dio *dio) 558 { 559 struct super_block *sb = dio->inode->i_sb; 560 561 if (dio->defer_completion) 562 return 0; 563 dio->defer_completion = true; 564 if (!sb->s_dio_done_wq) 565 return sb_init_dio_done_wq(sb); 566 return 0; 567 } 568 569 /* 570 * Call into the fs to map some more disk blocks. We record the current number 571 * of available blocks at sdio->blocks_available. These are in units of the 572 * fs blocksize, i_blocksize(inode). 573 * 574 * The fs is allowed to map lots of blocks at once. If it wants to do that, 575 * it uses the passed inode-relative block number as the file offset, as usual. 576 * 577 * get_block() is passed the number of i_blkbits-sized blocks which direct_io 578 * has remaining to do. The fs should not map more than this number of blocks. 579 * 580 * If the fs has mapped a lot of blocks, it should populate bh->b_size to 581 * indicate how much contiguous disk space has been made available at 582 * bh->b_blocknr. 583 * 584 * If *any* of the mapped blocks are new, then the fs must set buffer_new(). 585 * This isn't very efficient... 586 * 587 * In the case of filesystem holes: the fs may return an arbitrarily-large 588 * hole by returning an appropriate value in b_size and by clearing 589 * buffer_mapped(). However the direct-io code will only process holes one 590 * block at a time - it will repeatedly call get_block() as it walks the hole. 591 */ 592 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio, 593 struct buffer_head *map_bh) 594 { 595 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 596 int ret; 597 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ 598 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */ 599 unsigned long fs_count; /* Number of filesystem-sized blocks */ 600 int create; 601 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor; 602 loff_t i_size; 603 604 /* 605 * If there was a memory error and we've overwritten all the 606 * mapped blocks then we can now return that memory error 607 */ 608 ret = dio->page_errors; 609 if (ret == 0) { 610 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request); 611 fs_startblk = sdio->block_in_file >> sdio->blkfactor; 612 fs_endblk = (sdio->final_block_in_request - 1) >> 613 sdio->blkfactor; 614 fs_count = fs_endblk - fs_startblk + 1; 615 616 map_bh->b_state = 0; 617 map_bh->b_size = fs_count << i_blkbits; 618 619 /* 620 * For writes that could fill holes inside i_size on a 621 * DIO_SKIP_HOLES filesystem we forbid block creations: only 622 * overwrites are permitted. We will return early to the caller 623 * once we see an unmapped buffer head returned, and the caller 624 * will fall back to buffered I/O. 625 * 626 * Otherwise the decision is left to the get_blocks method, 627 * which may decide to handle it or also return an unmapped 628 * buffer head. 629 */ 630 create = dio_op == REQ_OP_WRITE; 631 if (dio->flags & DIO_SKIP_HOLES) { 632 i_size = i_size_read(dio->inode); 633 if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits) 634 create = 0; 635 } 636 637 ret = (*sdio->get_block)(dio->inode, fs_startblk, 638 map_bh, create); 639 640 /* Store for completion */ 641 dio->private = map_bh->b_private; 642 643 if (ret == 0 && buffer_defer_completion(map_bh)) 644 ret = dio_set_defer_completion(dio); 645 } 646 return ret; 647 } 648 649 /* 650 * There is no bio. Make one now. 651 */ 652 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio, 653 sector_t start_sector, struct buffer_head *map_bh) 654 { 655 sector_t sector; 656 int ret, nr_pages; 657 658 ret = dio_bio_reap(dio, sdio); 659 if (ret) 660 goto out; 661 sector = start_sector << (sdio->blkbits - 9); 662 nr_pages = bio_max_segs(sdio->pages_in_io); 663 BUG_ON(nr_pages <= 0); 664 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages); 665 sdio->boundary = 0; 666 out: 667 return ret; 668 } 669 670 /* 671 * Attempt to put the current chunk of 'cur_page' into the current BIO. If 672 * that was successful then update final_block_in_bio and take a ref against 673 * the just-added page. 674 * 675 * Return zero on success. Non-zero means the caller needs to start a new BIO. 676 */ 677 static inline int dio_bio_add_page(struct dio_submit *sdio) 678 { 679 int ret; 680 681 ret = bio_add_page(sdio->bio, sdio->cur_page, 682 sdio->cur_page_len, sdio->cur_page_offset); 683 if (ret == sdio->cur_page_len) { 684 /* 685 * Decrement count only, if we are done with this page 686 */ 687 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE) 688 sdio->pages_in_io--; 689 get_page(sdio->cur_page); 690 sdio->final_block_in_bio = sdio->cur_page_block + 691 (sdio->cur_page_len >> sdio->blkbits); 692 ret = 0; 693 } else { 694 ret = 1; 695 } 696 return ret; 697 } 698 699 /* 700 * Put cur_page under IO. The section of cur_page which is described by 701 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page 702 * starts on-disk at cur_page_block. 703 * 704 * We take a ref against the page here (on behalf of its presence in the bio). 705 * 706 * The caller of this function is responsible for removing cur_page from the 707 * dio, and for dropping the refcount which came from that presence. 708 */ 709 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio, 710 struct buffer_head *map_bh) 711 { 712 int ret = 0; 713 714 if (sdio->bio) { 715 loff_t cur_offset = sdio->cur_page_fs_offset; 716 loff_t bio_next_offset = sdio->logical_offset_in_bio + 717 sdio->bio->bi_iter.bi_size; 718 719 /* 720 * See whether this new request is contiguous with the old. 721 * 722 * Btrfs cannot handle having logically non-contiguous requests 723 * submitted. For example if you have 724 * 725 * Logical: [0-4095][HOLE][8192-12287] 726 * Physical: [0-4095] [4096-8191] 727 * 728 * We cannot submit those pages together as one BIO. So if our 729 * current logical offset in the file does not equal what would 730 * be the next logical offset in the bio, submit the bio we 731 * have. 732 */ 733 if (sdio->final_block_in_bio != sdio->cur_page_block || 734 cur_offset != bio_next_offset) 735 dio_bio_submit(dio, sdio); 736 } 737 738 if (sdio->bio == NULL) { 739 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 740 if (ret) 741 goto out; 742 } 743 744 if (dio_bio_add_page(sdio) != 0) { 745 dio_bio_submit(dio, sdio); 746 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 747 if (ret == 0) { 748 ret = dio_bio_add_page(sdio); 749 BUG_ON(ret != 0); 750 } 751 } 752 out: 753 return ret; 754 } 755 756 /* 757 * An autonomous function to put a chunk of a page under deferred IO. 758 * 759 * The caller doesn't actually know (or care) whether this piece of page is in 760 * a BIO, or is under IO or whatever. We just take care of all possible 761 * situations here. The separation between the logic of do_direct_IO() and 762 * that of submit_page_section() is important for clarity. Please don't break. 763 * 764 * The chunk of page starts on-disk at blocknr. 765 * 766 * We perform deferred IO, by recording the last-submitted page inside our 767 * private part of the dio structure. If possible, we just expand the IO 768 * across that page here. 769 * 770 * If that doesn't work out then we put the old page into the bio and add this 771 * page to the dio instead. 772 */ 773 static inline int 774 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page, 775 unsigned offset, unsigned len, sector_t blocknr, 776 struct buffer_head *map_bh) 777 { 778 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 779 int ret = 0; 780 int boundary = sdio->boundary; /* dio_send_cur_page may clear it */ 781 782 if (dio_op == REQ_OP_WRITE) { 783 /* 784 * Read accounting is performed in submit_bio() 785 */ 786 task_io_account_write(len); 787 } 788 789 /* 790 * Can we just grow the current page's presence in the dio? 791 */ 792 if (sdio->cur_page == page && 793 sdio->cur_page_offset + sdio->cur_page_len == offset && 794 sdio->cur_page_block + 795 (sdio->cur_page_len >> sdio->blkbits) == blocknr) { 796 sdio->cur_page_len += len; 797 goto out; 798 } 799 800 /* 801 * If there's a deferred page already there then send it. 802 */ 803 if (sdio->cur_page) { 804 ret = dio_send_cur_page(dio, sdio, map_bh); 805 put_page(sdio->cur_page); 806 sdio->cur_page = NULL; 807 if (ret) 808 return ret; 809 } 810 811 get_page(page); /* It is in dio */ 812 sdio->cur_page = page; 813 sdio->cur_page_offset = offset; 814 sdio->cur_page_len = len; 815 sdio->cur_page_block = blocknr; 816 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits; 817 out: 818 /* 819 * If boundary then we want to schedule the IO now to 820 * avoid metadata seeks. 821 */ 822 if (boundary) { 823 ret = dio_send_cur_page(dio, sdio, map_bh); 824 if (sdio->bio) 825 dio_bio_submit(dio, sdio); 826 put_page(sdio->cur_page); 827 sdio->cur_page = NULL; 828 } 829 return ret; 830 } 831 832 /* 833 * If we are not writing the entire block and get_block() allocated 834 * the block for us, we need to fill-in the unused portion of the 835 * block with zeros. This happens only if user-buffer, fileoffset or 836 * io length is not filesystem block-size multiple. 837 * 838 * `end' is zero if we're doing the start of the IO, 1 at the end of the 839 * IO. 840 */ 841 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio, 842 int end, struct buffer_head *map_bh) 843 { 844 unsigned dio_blocks_per_fs_block; 845 unsigned this_chunk_blocks; /* In dio_blocks */ 846 unsigned this_chunk_bytes; 847 struct page *page; 848 849 sdio->start_zero_done = 1; 850 if (!sdio->blkfactor || !buffer_new(map_bh)) 851 return; 852 853 dio_blocks_per_fs_block = 1 << sdio->blkfactor; 854 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1); 855 856 if (!this_chunk_blocks) 857 return; 858 859 /* 860 * We need to zero out part of an fs block. It is either at the 861 * beginning or the end of the fs block. 862 */ 863 if (end) 864 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; 865 866 this_chunk_bytes = this_chunk_blocks << sdio->blkbits; 867 868 page = ZERO_PAGE(0); 869 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes, 870 sdio->next_block_for_io, map_bh)) 871 return; 872 873 sdio->next_block_for_io += this_chunk_blocks; 874 } 875 876 /* 877 * Walk the user pages, and the file, mapping blocks to disk and generating 878 * a sequence of (page,offset,len,block) mappings. These mappings are injected 879 * into submit_page_section(), which takes care of the next stage of submission 880 * 881 * Direct IO against a blockdev is different from a file. Because we can 882 * happily perform page-sized but 512-byte aligned IOs. It is important that 883 * blockdev IO be able to have fine alignment and large sizes. 884 * 885 * So what we do is to permit the ->get_block function to populate bh.b_size 886 * with the size of IO which is permitted at this offset and this i_blkbits. 887 * 888 * For best results, the blockdev should be set up with 512-byte i_blkbits and 889 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives 890 * fine alignment but still allows this function to work in PAGE_SIZE units. 891 */ 892 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio, 893 struct buffer_head *map_bh) 894 { 895 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 896 const unsigned blkbits = sdio->blkbits; 897 const unsigned i_blkbits = blkbits + sdio->blkfactor; 898 int ret = 0; 899 900 while (sdio->block_in_file < sdio->final_block_in_request) { 901 struct page *page; 902 size_t from, to; 903 904 page = dio_get_page(dio, sdio); 905 if (IS_ERR(page)) { 906 ret = PTR_ERR(page); 907 goto out; 908 } 909 from = sdio->head ? 0 : sdio->from; 910 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE; 911 sdio->head++; 912 913 while (from < to) { 914 unsigned this_chunk_bytes; /* # of bytes mapped */ 915 unsigned this_chunk_blocks; /* # of blocks */ 916 unsigned u; 917 918 if (sdio->blocks_available == 0) { 919 /* 920 * Need to go and map some more disk 921 */ 922 unsigned long blkmask; 923 unsigned long dio_remainder; 924 925 ret = get_more_blocks(dio, sdio, map_bh); 926 if (ret) { 927 put_page(page); 928 goto out; 929 } 930 if (!buffer_mapped(map_bh)) 931 goto do_holes; 932 933 sdio->blocks_available = 934 map_bh->b_size >> blkbits; 935 sdio->next_block_for_io = 936 map_bh->b_blocknr << sdio->blkfactor; 937 if (buffer_new(map_bh)) { 938 clean_bdev_aliases( 939 map_bh->b_bdev, 940 map_bh->b_blocknr, 941 map_bh->b_size >> i_blkbits); 942 } 943 944 if (!sdio->blkfactor) 945 goto do_holes; 946 947 blkmask = (1 << sdio->blkfactor) - 1; 948 dio_remainder = (sdio->block_in_file & blkmask); 949 950 /* 951 * If we are at the start of IO and that IO 952 * starts partway into a fs-block, 953 * dio_remainder will be non-zero. If the IO 954 * is a read then we can simply advance the IO 955 * cursor to the first block which is to be 956 * read. But if the IO is a write and the 957 * block was newly allocated we cannot do that; 958 * the start of the fs block must be zeroed out 959 * on-disk 960 */ 961 if (!buffer_new(map_bh)) 962 sdio->next_block_for_io += dio_remainder; 963 sdio->blocks_available -= dio_remainder; 964 } 965 do_holes: 966 /* Handle holes */ 967 if (!buffer_mapped(map_bh)) { 968 loff_t i_size_aligned; 969 970 /* AKPM: eargh, -ENOTBLK is a hack */ 971 if (dio_op == REQ_OP_WRITE) { 972 put_page(page); 973 return -ENOTBLK; 974 } 975 976 /* 977 * Be sure to account for a partial block as the 978 * last block in the file 979 */ 980 i_size_aligned = ALIGN(i_size_read(dio->inode), 981 1 << blkbits); 982 if (sdio->block_in_file >= 983 i_size_aligned >> blkbits) { 984 /* We hit eof */ 985 put_page(page); 986 goto out; 987 } 988 zero_user(page, from, 1 << blkbits); 989 sdio->block_in_file++; 990 from += 1 << blkbits; 991 dio->result += 1 << blkbits; 992 goto next_block; 993 } 994 995 /* 996 * If we're performing IO which has an alignment which 997 * is finer than the underlying fs, go check to see if 998 * we must zero out the start of this block. 999 */ 1000 if (unlikely(sdio->blkfactor && !sdio->start_zero_done)) 1001 dio_zero_block(dio, sdio, 0, map_bh); 1002 1003 /* 1004 * Work out, in this_chunk_blocks, how much disk we 1005 * can add to this page 1006 */ 1007 this_chunk_blocks = sdio->blocks_available; 1008 u = (to - from) >> blkbits; 1009 if (this_chunk_blocks > u) 1010 this_chunk_blocks = u; 1011 u = sdio->final_block_in_request - sdio->block_in_file; 1012 if (this_chunk_blocks > u) 1013 this_chunk_blocks = u; 1014 this_chunk_bytes = this_chunk_blocks << blkbits; 1015 BUG_ON(this_chunk_bytes == 0); 1016 1017 if (this_chunk_blocks == sdio->blocks_available) 1018 sdio->boundary = buffer_boundary(map_bh); 1019 ret = submit_page_section(dio, sdio, page, 1020 from, 1021 this_chunk_bytes, 1022 sdio->next_block_for_io, 1023 map_bh); 1024 if (ret) { 1025 put_page(page); 1026 goto out; 1027 } 1028 sdio->next_block_for_io += this_chunk_blocks; 1029 1030 sdio->block_in_file += this_chunk_blocks; 1031 from += this_chunk_bytes; 1032 dio->result += this_chunk_bytes; 1033 sdio->blocks_available -= this_chunk_blocks; 1034 next_block: 1035 BUG_ON(sdio->block_in_file > sdio->final_block_in_request); 1036 if (sdio->block_in_file == sdio->final_block_in_request) 1037 break; 1038 } 1039 1040 /* Drop the ref which was taken in get_user_pages() */ 1041 put_page(page); 1042 } 1043 out: 1044 return ret; 1045 } 1046 1047 static inline int drop_refcount(struct dio *dio) 1048 { 1049 int ret2; 1050 unsigned long flags; 1051 1052 /* 1053 * Sync will always be dropping the final ref and completing the 1054 * operation. AIO can if it was a broken operation described above or 1055 * in fact if all the bios race to complete before we get here. In 1056 * that case dio_complete() translates the EIOCBQUEUED into the proper 1057 * return code that the caller will hand to ->complete(). 1058 * 1059 * This is managed by the bio_lock instead of being an atomic_t so that 1060 * completion paths can drop their ref and use the remaining count to 1061 * decide to wake the submission path atomically. 1062 */ 1063 spin_lock_irqsave(&dio->bio_lock, flags); 1064 ret2 = --dio->refcount; 1065 spin_unlock_irqrestore(&dio->bio_lock, flags); 1066 return ret2; 1067 } 1068 1069 /* 1070 * This is a library function for use by filesystem drivers. 1071 * 1072 * The locking rules are governed by the flags parameter: 1073 * - if the flags value contains DIO_LOCKING we use a fancy locking 1074 * scheme for dumb filesystems. 1075 * For writes this function is called under i_mutex and returns with 1076 * i_mutex held, for reads, i_mutex is not held on entry, but it is 1077 * taken and dropped again before returning. 1078 * - if the flags value does NOT contain DIO_LOCKING we don't use any 1079 * internal locking but rather rely on the filesystem to synchronize 1080 * direct I/O reads/writes versus each other and truncate. 1081 * 1082 * To help with locking against truncate we incremented the i_dio_count 1083 * counter before starting direct I/O, and decrement it once we are done. 1084 * Truncate can wait for it to reach zero to provide exclusion. It is 1085 * expected that filesystem provide exclusion between new direct I/O 1086 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex, 1087 * but other filesystems need to take care of this on their own. 1088 * 1089 * NOTE: if you pass "sdio" to anything by pointer make sure that function 1090 * is always inlined. Otherwise gcc is unable to split the structure into 1091 * individual fields and will generate much worse code. This is important 1092 * for the whole file. 1093 */ 1094 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1095 struct block_device *bdev, struct iov_iter *iter, 1096 get_block_t get_block, dio_iodone_t end_io, 1097 int flags) 1098 { 1099 unsigned i_blkbits = READ_ONCE(inode->i_blkbits); 1100 unsigned blkbits = i_blkbits; 1101 unsigned blocksize_mask = (1 << blkbits) - 1; 1102 ssize_t retval = -EINVAL; 1103 const size_t count = iov_iter_count(iter); 1104 loff_t offset = iocb->ki_pos; 1105 const loff_t end = offset + count; 1106 struct dio *dio; 1107 struct dio_submit sdio = { 0, }; 1108 struct buffer_head map_bh = { 0, }; 1109 struct blk_plug plug; 1110 unsigned long align = offset | iov_iter_alignment(iter); 1111 1112 /* 1113 * Avoid references to bdev if not absolutely needed to give 1114 * the early prefetch in the caller enough time. 1115 */ 1116 1117 /* watch out for a 0 len io from a tricksy fs */ 1118 if (iov_iter_rw(iter) == READ && !count) 1119 return 0; 1120 1121 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL); 1122 if (!dio) 1123 return -ENOMEM; 1124 /* 1125 * Believe it or not, zeroing out the page array caused a .5% 1126 * performance regression in a database benchmark. So, we take 1127 * care to only zero out what's needed. 1128 */ 1129 memset(dio, 0, offsetof(struct dio, pages)); 1130 1131 dio->flags = flags; 1132 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) { 1133 /* will be released by direct_io_worker */ 1134 inode_lock(inode); 1135 } 1136 1137 /* Once we sampled i_size check for reads beyond EOF */ 1138 dio->i_size = i_size_read(inode); 1139 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) { 1140 retval = 0; 1141 goto fail_dio; 1142 } 1143 1144 if (align & blocksize_mask) { 1145 if (bdev) 1146 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 1147 blocksize_mask = (1 << blkbits) - 1; 1148 if (align & blocksize_mask) 1149 goto fail_dio; 1150 } 1151 1152 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) { 1153 struct address_space *mapping = iocb->ki_filp->f_mapping; 1154 1155 retval = filemap_write_and_wait_range(mapping, offset, end - 1); 1156 if (retval) 1157 goto fail_dio; 1158 } 1159 1160 /* 1161 * For file extending writes updating i_size before data writeouts 1162 * complete can expose uninitialized blocks in dumb filesystems. 1163 * In that case we need to wait for I/O completion even if asked 1164 * for an asynchronous write. 1165 */ 1166 if (is_sync_kiocb(iocb)) 1167 dio->is_async = false; 1168 else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode)) 1169 dio->is_async = false; 1170 else 1171 dio->is_async = true; 1172 1173 dio->inode = inode; 1174 if (iov_iter_rw(iter) == WRITE) { 1175 dio->opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE; 1176 if (iocb->ki_flags & IOCB_NOWAIT) 1177 dio->opf |= REQ_NOWAIT; 1178 } else { 1179 dio->opf = REQ_OP_READ; 1180 } 1181 1182 /* 1183 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue 1184 * so that we can call ->fsync. 1185 */ 1186 if (dio->is_async && iov_iter_rw(iter) == WRITE) { 1187 retval = 0; 1188 if (iocb_is_dsync(iocb)) 1189 retval = dio_set_defer_completion(dio); 1190 else if (!dio->inode->i_sb->s_dio_done_wq) { 1191 /* 1192 * In case of AIO write racing with buffered read we 1193 * need to defer completion. We can't decide this now, 1194 * however the workqueue needs to be initialized here. 1195 */ 1196 retval = sb_init_dio_done_wq(dio->inode->i_sb); 1197 } 1198 if (retval) 1199 goto fail_dio; 1200 } 1201 1202 /* 1203 * Will be decremented at I/O completion time. 1204 */ 1205 inode_dio_begin(inode); 1206 1207 retval = 0; 1208 sdio.blkbits = blkbits; 1209 sdio.blkfactor = i_blkbits - blkbits; 1210 sdio.block_in_file = offset >> blkbits; 1211 1212 sdio.get_block = get_block; 1213 dio->end_io = end_io; 1214 sdio.final_block_in_bio = -1; 1215 sdio.next_block_for_io = -1; 1216 1217 dio->iocb = iocb; 1218 1219 spin_lock_init(&dio->bio_lock); 1220 dio->refcount = 1; 1221 1222 dio->should_dirty = user_backed_iter(iter) && iov_iter_rw(iter) == READ; 1223 sdio.iter = iter; 1224 sdio.final_block_in_request = end >> blkbits; 1225 1226 /* 1227 * In case of non-aligned buffers, we may need 2 more 1228 * pages since we need to zero out first and last block. 1229 */ 1230 if (unlikely(sdio.blkfactor)) 1231 sdio.pages_in_io = 2; 1232 1233 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX); 1234 1235 blk_start_plug(&plug); 1236 1237 retval = do_direct_IO(dio, &sdio, &map_bh); 1238 if (retval) 1239 dio_cleanup(dio, &sdio); 1240 1241 if (retval == -ENOTBLK) { 1242 /* 1243 * The remaining part of the request will be 1244 * handled by buffered I/O when we return 1245 */ 1246 retval = 0; 1247 } 1248 /* 1249 * There may be some unwritten disk at the end of a part-written 1250 * fs-block-sized block. Go zero that now. 1251 */ 1252 dio_zero_block(dio, &sdio, 1, &map_bh); 1253 1254 if (sdio.cur_page) { 1255 ssize_t ret2; 1256 1257 ret2 = dio_send_cur_page(dio, &sdio, &map_bh); 1258 if (retval == 0) 1259 retval = ret2; 1260 put_page(sdio.cur_page); 1261 sdio.cur_page = NULL; 1262 } 1263 if (sdio.bio) 1264 dio_bio_submit(dio, &sdio); 1265 1266 blk_finish_plug(&plug); 1267 1268 /* 1269 * It is possible that, we return short IO due to end of file. 1270 * In that case, we need to release all the pages we got hold on. 1271 */ 1272 dio_cleanup(dio, &sdio); 1273 1274 /* 1275 * All block lookups have been performed. For READ requests 1276 * we can let i_mutex go now that its achieved its purpose 1277 * of protecting us from looking up uninitialized blocks. 1278 */ 1279 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING)) 1280 inode_unlock(dio->inode); 1281 1282 /* 1283 * The only time we want to leave bios in flight is when a successful 1284 * partial aio read or full aio write have been setup. In that case 1285 * bio completion will call aio_complete. The only time it's safe to 1286 * call aio_complete is when we return -EIOCBQUEUED, so we key on that. 1287 * This had *better* be the only place that raises -EIOCBQUEUED. 1288 */ 1289 BUG_ON(retval == -EIOCBQUEUED); 1290 if (dio->is_async && retval == 0 && dio->result && 1291 (iov_iter_rw(iter) == READ || dio->result == count)) 1292 retval = -EIOCBQUEUED; 1293 else 1294 dio_await_completion(dio); 1295 1296 if (drop_refcount(dio) == 0) { 1297 retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE); 1298 } else 1299 BUG_ON(retval != -EIOCBQUEUED); 1300 1301 return retval; 1302 1303 fail_dio: 1304 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) 1305 inode_unlock(inode); 1306 1307 kmem_cache_free(dio_cache, dio); 1308 return retval; 1309 } 1310 EXPORT_SYMBOL(__blockdev_direct_IO); 1311 1312 static __init int dio_init(void) 1313 { 1314 dio_cache = KMEM_CACHE(dio, SLAB_PANIC); 1315 return 0; 1316 } 1317 module_init(dio_init) 1318