xref: /openbmc/linux/fs/direct-io.c (revision 612cf4d2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/direct-io.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * O_DIRECT
8  *
9  * 04Jul2002	Andrew Morton
10  *		Initial version
11  * 11Sep2002	janetinc@us.ibm.com
12  * 		added readv/writev support.
13  * 29Oct2002	Andrew Morton
14  *		rewrote bio_add_page() support.
15  * 30Oct2002	pbadari@us.ibm.com
16  *		added support for non-aligned IO.
17  * 06Nov2002	pbadari@us.ibm.com
18  *		added asynchronous IO support.
19  * 21Jul2003	nathans@sgi.com
20  *		added IO completion notifier.
21  */
22 
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/mm.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/pagemap.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/bio.h>
33 #include <linux/wait.h>
34 #include <linux/err.h>
35 #include <linux/blkdev.h>
36 #include <linux/buffer_head.h>
37 #include <linux/rwsem.h>
38 #include <linux/uio.h>
39 #include <linux/atomic.h>
40 #include <linux/prefetch.h>
41 
42 #include "internal.h"
43 
44 /*
45  * How many user pages to map in one call to get_user_pages().  This determines
46  * the size of a structure in the slab cache
47  */
48 #define DIO_PAGES	64
49 
50 /*
51  * Flags for dio_complete()
52  */
53 #define DIO_COMPLETE_ASYNC		0x01	/* This is async IO */
54 #define DIO_COMPLETE_INVALIDATE		0x02	/* Can invalidate pages */
55 
56 /*
57  * This code generally works in units of "dio_blocks".  A dio_block is
58  * somewhere between the hard sector size and the filesystem block size.  it
59  * is determined on a per-invocation basis.   When talking to the filesystem
60  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
61  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
62  * to bio_block quantities by shifting left by blkfactor.
63  *
64  * If blkfactor is zero then the user's request was aligned to the filesystem's
65  * blocksize.
66  */
67 
68 /* dio_state only used in the submission path */
69 
70 struct dio_submit {
71 	struct bio *bio;		/* bio under assembly */
72 	unsigned blkbits;		/* doesn't change */
73 	unsigned blkfactor;		/* When we're using an alignment which
74 					   is finer than the filesystem's soft
75 					   blocksize, this specifies how much
76 					   finer.  blkfactor=2 means 1/4-block
77 					   alignment.  Does not change */
78 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
79 					   been performed at the start of a
80 					   write */
81 	int pages_in_io;		/* approximate total IO pages */
82 	sector_t block_in_file;		/* Current offset into the underlying
83 					   file in dio_block units. */
84 	unsigned blocks_available;	/* At block_in_file.  changes */
85 	int reap_counter;		/* rate limit reaping */
86 	sector_t final_block_in_request;/* doesn't change */
87 	int boundary;			/* prev block is at a boundary */
88 	get_block_t *get_block;		/* block mapping function */
89 	dio_submit_t *submit_io;	/* IO submition function */
90 
91 	loff_t logical_offset_in_bio;	/* current first logical block in bio */
92 	sector_t final_block_in_bio;	/* current final block in bio + 1 */
93 	sector_t next_block_for_io;	/* next block to be put under IO,
94 					   in dio_blocks units */
95 
96 	/*
97 	 * Deferred addition of a page to the dio.  These variables are
98 	 * private to dio_send_cur_page(), submit_page_section() and
99 	 * dio_bio_add_page().
100 	 */
101 	struct page *cur_page;		/* The page */
102 	unsigned cur_page_offset;	/* Offset into it, in bytes */
103 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
104 	sector_t cur_page_block;	/* Where it starts */
105 	loff_t cur_page_fs_offset;	/* Offset in file */
106 
107 	struct iov_iter *iter;
108 	/*
109 	 * Page queue.  These variables belong to dio_refill_pages() and
110 	 * dio_get_page().
111 	 */
112 	unsigned head;			/* next page to process */
113 	unsigned tail;			/* last valid page + 1 */
114 	size_t from, to;
115 };
116 
117 /* dio_state communicated between submission path and end_io */
118 struct dio {
119 	int flags;			/* doesn't change */
120 	blk_opf_t opf;			/* request operation type and flags */
121 	struct gendisk *bio_disk;
122 	struct inode *inode;
123 	loff_t i_size;			/* i_size when submitted */
124 	dio_iodone_t *end_io;		/* IO completion function */
125 
126 	void *private;			/* copy from map_bh.b_private */
127 
128 	/* BIO completion state */
129 	spinlock_t bio_lock;		/* protects BIO fields below */
130 	int page_errors;		/* errno from get_user_pages() */
131 	int is_async;			/* is IO async ? */
132 	bool defer_completion;		/* defer AIO completion to workqueue? */
133 	bool should_dirty;		/* if pages should be dirtied */
134 	int io_error;			/* IO error in completion path */
135 	unsigned long refcount;		/* direct_io_worker() and bios */
136 	struct bio *bio_list;		/* singly linked via bi_private */
137 	struct task_struct *waiter;	/* waiting task (NULL if none) */
138 
139 	/* AIO related stuff */
140 	struct kiocb *iocb;		/* kiocb */
141 	ssize_t result;                 /* IO result */
142 
143 	/*
144 	 * pages[] (and any fields placed after it) are not zeroed out at
145 	 * allocation time.  Don't add new fields after pages[] unless you
146 	 * wish that they not be zeroed.
147 	 */
148 	union {
149 		struct page *pages[DIO_PAGES];	/* page buffer */
150 		struct work_struct complete_work;/* deferred AIO completion */
151 	};
152 } ____cacheline_aligned_in_smp;
153 
154 static struct kmem_cache *dio_cache __read_mostly;
155 
156 /*
157  * How many pages are in the queue?
158  */
159 static inline unsigned dio_pages_present(struct dio_submit *sdio)
160 {
161 	return sdio->tail - sdio->head;
162 }
163 
164 /*
165  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
166  */
167 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
168 {
169 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
170 	ssize_t ret;
171 
172 	ret = iov_iter_get_pages2(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
173 				&sdio->from);
174 
175 	if (ret < 0 && sdio->blocks_available && dio_op == REQ_OP_WRITE) {
176 		struct page *page = ZERO_PAGE(0);
177 		/*
178 		 * A memory fault, but the filesystem has some outstanding
179 		 * mapped blocks.  We need to use those blocks up to avoid
180 		 * leaking stale data in the file.
181 		 */
182 		if (dio->page_errors == 0)
183 			dio->page_errors = ret;
184 		get_page(page);
185 		dio->pages[0] = page;
186 		sdio->head = 0;
187 		sdio->tail = 1;
188 		sdio->from = 0;
189 		sdio->to = PAGE_SIZE;
190 		return 0;
191 	}
192 
193 	if (ret >= 0) {
194 		ret += sdio->from;
195 		sdio->head = 0;
196 		sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
197 		sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
198 		return 0;
199 	}
200 	return ret;
201 }
202 
203 /*
204  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
205  * buffered inside the dio so that we can call get_user_pages() against a
206  * decent number of pages, less frequently.  To provide nicer use of the
207  * L1 cache.
208  */
209 static inline struct page *dio_get_page(struct dio *dio,
210 					struct dio_submit *sdio)
211 {
212 	if (dio_pages_present(sdio) == 0) {
213 		int ret;
214 
215 		ret = dio_refill_pages(dio, sdio);
216 		if (ret)
217 			return ERR_PTR(ret);
218 		BUG_ON(dio_pages_present(sdio) == 0);
219 	}
220 	return dio->pages[sdio->head];
221 }
222 
223 /*
224  * dio_complete() - called when all DIO BIO I/O has been completed
225  *
226  * This drops i_dio_count, lets interested parties know that a DIO operation
227  * has completed, and calculates the resulting return code for the operation.
228  *
229  * It lets the filesystem know if it registered an interest earlier via
230  * get_block.  Pass the private field of the map buffer_head so that
231  * filesystems can use it to hold additional state between get_block calls and
232  * dio_complete.
233  */
234 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
235 {
236 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
237 	loff_t offset = dio->iocb->ki_pos;
238 	ssize_t transferred = 0;
239 	int err;
240 
241 	/*
242 	 * AIO submission can race with bio completion to get here while
243 	 * expecting to have the last io completed by bio completion.
244 	 * In that case -EIOCBQUEUED is in fact not an error we want
245 	 * to preserve through this call.
246 	 */
247 	if (ret == -EIOCBQUEUED)
248 		ret = 0;
249 
250 	if (dio->result) {
251 		transferred = dio->result;
252 
253 		/* Check for short read case */
254 		if (dio_op == REQ_OP_READ &&
255 		    ((offset + transferred) > dio->i_size))
256 			transferred = dio->i_size - offset;
257 		/* ignore EFAULT if some IO has been done */
258 		if (unlikely(ret == -EFAULT) && transferred)
259 			ret = 0;
260 	}
261 
262 	if (ret == 0)
263 		ret = dio->page_errors;
264 	if (ret == 0)
265 		ret = dio->io_error;
266 	if (ret == 0)
267 		ret = transferred;
268 
269 	if (dio->end_io) {
270 		// XXX: ki_pos??
271 		err = dio->end_io(dio->iocb, offset, ret, dio->private);
272 		if (err)
273 			ret = err;
274 	}
275 
276 	/*
277 	 * Try again to invalidate clean pages which might have been cached by
278 	 * non-direct readahead, or faulted in by get_user_pages() if the source
279 	 * of the write was an mmap'ed region of the file we're writing.  Either
280 	 * one is a pretty crazy thing to do, so we don't support it 100%.  If
281 	 * this invalidation fails, tough, the write still worked...
282 	 *
283 	 * And this page cache invalidation has to be after dio->end_io(), as
284 	 * some filesystems convert unwritten extents to real allocations in
285 	 * end_io() when necessary, otherwise a racing buffer read would cache
286 	 * zeros from unwritten extents.
287 	 */
288 	if (flags & DIO_COMPLETE_INVALIDATE &&
289 	    ret > 0 && dio_op == REQ_OP_WRITE &&
290 	    dio->inode->i_mapping->nrpages) {
291 		err = invalidate_inode_pages2_range(dio->inode->i_mapping,
292 					offset >> PAGE_SHIFT,
293 					(offset + ret - 1) >> PAGE_SHIFT);
294 		if (err)
295 			dio_warn_stale_pagecache(dio->iocb->ki_filp);
296 	}
297 
298 	inode_dio_end(dio->inode);
299 
300 	if (flags & DIO_COMPLETE_ASYNC) {
301 		/*
302 		 * generic_write_sync expects ki_pos to have been updated
303 		 * already, but the submission path only does this for
304 		 * synchronous I/O.
305 		 */
306 		dio->iocb->ki_pos += transferred;
307 
308 		if (ret > 0 && dio_op == REQ_OP_WRITE)
309 			ret = generic_write_sync(dio->iocb, ret);
310 		dio->iocb->ki_complete(dio->iocb, ret);
311 	}
312 
313 	kmem_cache_free(dio_cache, dio);
314 	return ret;
315 }
316 
317 static void dio_aio_complete_work(struct work_struct *work)
318 {
319 	struct dio *dio = container_of(work, struct dio, complete_work);
320 
321 	dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
322 }
323 
324 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
325 
326 /*
327  * Asynchronous IO callback.
328  */
329 static void dio_bio_end_aio(struct bio *bio)
330 {
331 	struct dio *dio = bio->bi_private;
332 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
333 	unsigned long remaining;
334 	unsigned long flags;
335 	bool defer_completion = false;
336 
337 	/* cleanup the bio */
338 	dio_bio_complete(dio, bio);
339 
340 	spin_lock_irqsave(&dio->bio_lock, flags);
341 	remaining = --dio->refcount;
342 	if (remaining == 1 && dio->waiter)
343 		wake_up_process(dio->waiter);
344 	spin_unlock_irqrestore(&dio->bio_lock, flags);
345 
346 	if (remaining == 0) {
347 		/*
348 		 * Defer completion when defer_completion is set or
349 		 * when the inode has pages mapped and this is AIO write.
350 		 * We need to invalidate those pages because there is a
351 		 * chance they contain stale data in the case buffered IO
352 		 * went in between AIO submission and completion into the
353 		 * same region.
354 		 */
355 		if (dio->result)
356 			defer_completion = dio->defer_completion ||
357 					   (dio_op == REQ_OP_WRITE &&
358 					    dio->inode->i_mapping->nrpages);
359 		if (defer_completion) {
360 			INIT_WORK(&dio->complete_work, dio_aio_complete_work);
361 			queue_work(dio->inode->i_sb->s_dio_done_wq,
362 				   &dio->complete_work);
363 		} else {
364 			dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
365 		}
366 	}
367 }
368 
369 /*
370  * The BIO completion handler simply queues the BIO up for the process-context
371  * handler.
372  *
373  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
374  * implement a singly-linked list of completed BIOs, at dio->bio_list.
375  */
376 static void dio_bio_end_io(struct bio *bio)
377 {
378 	struct dio *dio = bio->bi_private;
379 	unsigned long flags;
380 
381 	spin_lock_irqsave(&dio->bio_lock, flags);
382 	bio->bi_private = dio->bio_list;
383 	dio->bio_list = bio;
384 	if (--dio->refcount == 1 && dio->waiter)
385 		wake_up_process(dio->waiter);
386 	spin_unlock_irqrestore(&dio->bio_lock, flags);
387 }
388 
389 static inline void
390 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
391 	      struct block_device *bdev,
392 	      sector_t first_sector, int nr_vecs)
393 {
394 	struct bio *bio;
395 
396 	/*
397 	 * bio_alloc() is guaranteed to return a bio when allowed to sleep and
398 	 * we request a valid number of vectors.
399 	 */
400 	bio = bio_alloc(bdev, nr_vecs, dio->opf, GFP_KERNEL);
401 	bio->bi_iter.bi_sector = first_sector;
402 	if (dio->is_async)
403 		bio->bi_end_io = dio_bio_end_aio;
404 	else
405 		bio->bi_end_io = dio_bio_end_io;
406 	sdio->bio = bio;
407 	sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
408 }
409 
410 /*
411  * In the AIO read case we speculatively dirty the pages before starting IO.
412  * During IO completion, any of these pages which happen to have been written
413  * back will be redirtied by bio_check_pages_dirty().
414  *
415  * bios hold a dio reference between submit_bio and ->end_io.
416  */
417 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
418 {
419 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
420 	struct bio *bio = sdio->bio;
421 	unsigned long flags;
422 
423 	bio->bi_private = dio;
424 
425 	spin_lock_irqsave(&dio->bio_lock, flags);
426 	dio->refcount++;
427 	spin_unlock_irqrestore(&dio->bio_lock, flags);
428 
429 	if (dio->is_async && dio_op == REQ_OP_READ && dio->should_dirty)
430 		bio_set_pages_dirty(bio);
431 
432 	dio->bio_disk = bio->bi_bdev->bd_disk;
433 
434 	if (sdio->submit_io)
435 		sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
436 	else
437 		submit_bio(bio);
438 
439 	sdio->bio = NULL;
440 	sdio->boundary = 0;
441 	sdio->logical_offset_in_bio = 0;
442 }
443 
444 /*
445  * Release any resources in case of a failure
446  */
447 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
448 {
449 	while (sdio->head < sdio->tail)
450 		put_page(dio->pages[sdio->head++]);
451 }
452 
453 /*
454  * Wait for the next BIO to complete.  Remove it and return it.  NULL is
455  * returned once all BIOs have been completed.  This must only be called once
456  * all bios have been issued so that dio->refcount can only decrease.  This
457  * requires that the caller hold a reference on the dio.
458  */
459 static struct bio *dio_await_one(struct dio *dio)
460 {
461 	unsigned long flags;
462 	struct bio *bio = NULL;
463 
464 	spin_lock_irqsave(&dio->bio_lock, flags);
465 
466 	/*
467 	 * Wait as long as the list is empty and there are bios in flight.  bio
468 	 * completion drops the count, maybe adds to the list, and wakes while
469 	 * holding the bio_lock so we don't need set_current_state()'s barrier
470 	 * and can call it after testing our condition.
471 	 */
472 	while (dio->refcount > 1 && dio->bio_list == NULL) {
473 		__set_current_state(TASK_UNINTERRUPTIBLE);
474 		dio->waiter = current;
475 		spin_unlock_irqrestore(&dio->bio_lock, flags);
476 		blk_io_schedule();
477 		/* wake up sets us TASK_RUNNING */
478 		spin_lock_irqsave(&dio->bio_lock, flags);
479 		dio->waiter = NULL;
480 	}
481 	if (dio->bio_list) {
482 		bio = dio->bio_list;
483 		dio->bio_list = bio->bi_private;
484 	}
485 	spin_unlock_irqrestore(&dio->bio_lock, flags);
486 	return bio;
487 }
488 
489 /*
490  * Process one completed BIO.  No locks are held.
491  */
492 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
493 {
494 	blk_status_t err = bio->bi_status;
495 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
496 	bool should_dirty = dio_op == REQ_OP_READ && dio->should_dirty;
497 
498 	if (err) {
499 		if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
500 			dio->io_error = -EAGAIN;
501 		else
502 			dio->io_error = -EIO;
503 	}
504 
505 	if (dio->is_async && should_dirty) {
506 		bio_check_pages_dirty(bio);	/* transfers ownership */
507 	} else {
508 		bio_release_pages(bio, should_dirty);
509 		bio_put(bio);
510 	}
511 	return err;
512 }
513 
514 /*
515  * Wait on and process all in-flight BIOs.  This must only be called once
516  * all bios have been issued so that the refcount can only decrease.
517  * This just waits for all bios to make it through dio_bio_complete.  IO
518  * errors are propagated through dio->io_error and should be propagated via
519  * dio_complete().
520  */
521 static void dio_await_completion(struct dio *dio)
522 {
523 	struct bio *bio;
524 	do {
525 		bio = dio_await_one(dio);
526 		if (bio)
527 			dio_bio_complete(dio, bio);
528 	} while (bio);
529 }
530 
531 /*
532  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
533  * to keep the memory consumption sane we periodically reap any completed BIOs
534  * during the BIO generation phase.
535  *
536  * This also helps to limit the peak amount of pinned userspace memory.
537  */
538 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
539 {
540 	int ret = 0;
541 
542 	if (sdio->reap_counter++ >= 64) {
543 		while (dio->bio_list) {
544 			unsigned long flags;
545 			struct bio *bio;
546 			int ret2;
547 
548 			spin_lock_irqsave(&dio->bio_lock, flags);
549 			bio = dio->bio_list;
550 			dio->bio_list = bio->bi_private;
551 			spin_unlock_irqrestore(&dio->bio_lock, flags);
552 			ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
553 			if (ret == 0)
554 				ret = ret2;
555 		}
556 		sdio->reap_counter = 0;
557 	}
558 	return ret;
559 }
560 
561 /*
562  * Create workqueue for deferred direct IO completions. We allocate the
563  * workqueue when it's first needed. This avoids creating workqueue for
564  * filesystems that don't need it and also allows us to create the workqueue
565  * late enough so the we can include s_id in the name of the workqueue.
566  */
567 int sb_init_dio_done_wq(struct super_block *sb)
568 {
569 	struct workqueue_struct *old;
570 	struct workqueue_struct *wq = alloc_workqueue("dio/%s",
571 						      WQ_MEM_RECLAIM, 0,
572 						      sb->s_id);
573 	if (!wq)
574 		return -ENOMEM;
575 	/*
576 	 * This has to be atomic as more DIOs can race to create the workqueue
577 	 */
578 	old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
579 	/* Someone created workqueue before us? Free ours... */
580 	if (old)
581 		destroy_workqueue(wq);
582 	return 0;
583 }
584 
585 static int dio_set_defer_completion(struct dio *dio)
586 {
587 	struct super_block *sb = dio->inode->i_sb;
588 
589 	if (dio->defer_completion)
590 		return 0;
591 	dio->defer_completion = true;
592 	if (!sb->s_dio_done_wq)
593 		return sb_init_dio_done_wq(sb);
594 	return 0;
595 }
596 
597 /*
598  * Call into the fs to map some more disk blocks.  We record the current number
599  * of available blocks at sdio->blocks_available.  These are in units of the
600  * fs blocksize, i_blocksize(inode).
601  *
602  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
603  * it uses the passed inode-relative block number as the file offset, as usual.
604  *
605  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
606  * has remaining to do.  The fs should not map more than this number of blocks.
607  *
608  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
609  * indicate how much contiguous disk space has been made available at
610  * bh->b_blocknr.
611  *
612  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
613  * This isn't very efficient...
614  *
615  * In the case of filesystem holes: the fs may return an arbitrarily-large
616  * hole by returning an appropriate value in b_size and by clearing
617  * buffer_mapped().  However the direct-io code will only process holes one
618  * block at a time - it will repeatedly call get_block() as it walks the hole.
619  */
620 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
621 			   struct buffer_head *map_bh)
622 {
623 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
624 	int ret;
625 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
626 	sector_t fs_endblk;	/* Into file, in filesystem-sized blocks */
627 	unsigned long fs_count;	/* Number of filesystem-sized blocks */
628 	int create;
629 	unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
630 	loff_t i_size;
631 
632 	/*
633 	 * If there was a memory error and we've overwritten all the
634 	 * mapped blocks then we can now return that memory error
635 	 */
636 	ret = dio->page_errors;
637 	if (ret == 0) {
638 		BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
639 		fs_startblk = sdio->block_in_file >> sdio->blkfactor;
640 		fs_endblk = (sdio->final_block_in_request - 1) >>
641 					sdio->blkfactor;
642 		fs_count = fs_endblk - fs_startblk + 1;
643 
644 		map_bh->b_state = 0;
645 		map_bh->b_size = fs_count << i_blkbits;
646 
647 		/*
648 		 * For writes that could fill holes inside i_size on a
649 		 * DIO_SKIP_HOLES filesystem we forbid block creations: only
650 		 * overwrites are permitted. We will return early to the caller
651 		 * once we see an unmapped buffer head returned, and the caller
652 		 * will fall back to buffered I/O.
653 		 *
654 		 * Otherwise the decision is left to the get_blocks method,
655 		 * which may decide to handle it or also return an unmapped
656 		 * buffer head.
657 		 */
658 		create = dio_op == REQ_OP_WRITE;
659 		if (dio->flags & DIO_SKIP_HOLES) {
660 			i_size = i_size_read(dio->inode);
661 			if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits)
662 				create = 0;
663 		}
664 
665 		ret = (*sdio->get_block)(dio->inode, fs_startblk,
666 						map_bh, create);
667 
668 		/* Store for completion */
669 		dio->private = map_bh->b_private;
670 
671 		if (ret == 0 && buffer_defer_completion(map_bh))
672 			ret = dio_set_defer_completion(dio);
673 	}
674 	return ret;
675 }
676 
677 /*
678  * There is no bio.  Make one now.
679  */
680 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
681 		sector_t start_sector, struct buffer_head *map_bh)
682 {
683 	sector_t sector;
684 	int ret, nr_pages;
685 
686 	ret = dio_bio_reap(dio, sdio);
687 	if (ret)
688 		goto out;
689 	sector = start_sector << (sdio->blkbits - 9);
690 	nr_pages = bio_max_segs(sdio->pages_in_io);
691 	BUG_ON(nr_pages <= 0);
692 	dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
693 	sdio->boundary = 0;
694 out:
695 	return ret;
696 }
697 
698 /*
699  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
700  * that was successful then update final_block_in_bio and take a ref against
701  * the just-added page.
702  *
703  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
704  */
705 static inline int dio_bio_add_page(struct dio_submit *sdio)
706 {
707 	int ret;
708 
709 	ret = bio_add_page(sdio->bio, sdio->cur_page,
710 			sdio->cur_page_len, sdio->cur_page_offset);
711 	if (ret == sdio->cur_page_len) {
712 		/*
713 		 * Decrement count only, if we are done with this page
714 		 */
715 		if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
716 			sdio->pages_in_io--;
717 		get_page(sdio->cur_page);
718 		sdio->final_block_in_bio = sdio->cur_page_block +
719 			(sdio->cur_page_len >> sdio->blkbits);
720 		ret = 0;
721 	} else {
722 		ret = 1;
723 	}
724 	return ret;
725 }
726 
727 /*
728  * Put cur_page under IO.  The section of cur_page which is described by
729  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
730  * starts on-disk at cur_page_block.
731  *
732  * We take a ref against the page here (on behalf of its presence in the bio).
733  *
734  * The caller of this function is responsible for removing cur_page from the
735  * dio, and for dropping the refcount which came from that presence.
736  */
737 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
738 		struct buffer_head *map_bh)
739 {
740 	int ret = 0;
741 
742 	if (sdio->bio) {
743 		loff_t cur_offset = sdio->cur_page_fs_offset;
744 		loff_t bio_next_offset = sdio->logical_offset_in_bio +
745 			sdio->bio->bi_iter.bi_size;
746 
747 		/*
748 		 * See whether this new request is contiguous with the old.
749 		 *
750 		 * Btrfs cannot handle having logically non-contiguous requests
751 		 * submitted.  For example if you have
752 		 *
753 		 * Logical:  [0-4095][HOLE][8192-12287]
754 		 * Physical: [0-4095]      [4096-8191]
755 		 *
756 		 * We cannot submit those pages together as one BIO.  So if our
757 		 * current logical offset in the file does not equal what would
758 		 * be the next logical offset in the bio, submit the bio we
759 		 * have.
760 		 */
761 		if (sdio->final_block_in_bio != sdio->cur_page_block ||
762 		    cur_offset != bio_next_offset)
763 			dio_bio_submit(dio, sdio);
764 	}
765 
766 	if (sdio->bio == NULL) {
767 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
768 		if (ret)
769 			goto out;
770 	}
771 
772 	if (dio_bio_add_page(sdio) != 0) {
773 		dio_bio_submit(dio, sdio);
774 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
775 		if (ret == 0) {
776 			ret = dio_bio_add_page(sdio);
777 			BUG_ON(ret != 0);
778 		}
779 	}
780 out:
781 	return ret;
782 }
783 
784 /*
785  * An autonomous function to put a chunk of a page under deferred IO.
786  *
787  * The caller doesn't actually know (or care) whether this piece of page is in
788  * a BIO, or is under IO or whatever.  We just take care of all possible
789  * situations here.  The separation between the logic of do_direct_IO() and
790  * that of submit_page_section() is important for clarity.  Please don't break.
791  *
792  * The chunk of page starts on-disk at blocknr.
793  *
794  * We perform deferred IO, by recording the last-submitted page inside our
795  * private part of the dio structure.  If possible, we just expand the IO
796  * across that page here.
797  *
798  * If that doesn't work out then we put the old page into the bio and add this
799  * page to the dio instead.
800  */
801 static inline int
802 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
803 		    unsigned offset, unsigned len, sector_t blocknr,
804 		    struct buffer_head *map_bh)
805 {
806 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
807 	int ret = 0;
808 	int boundary = sdio->boundary;	/* dio_send_cur_page may clear it */
809 
810 	if (dio_op == REQ_OP_WRITE) {
811 		/*
812 		 * Read accounting is performed in submit_bio()
813 		 */
814 		task_io_account_write(len);
815 	}
816 
817 	/*
818 	 * Can we just grow the current page's presence in the dio?
819 	 */
820 	if (sdio->cur_page == page &&
821 	    sdio->cur_page_offset + sdio->cur_page_len == offset &&
822 	    sdio->cur_page_block +
823 	    (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
824 		sdio->cur_page_len += len;
825 		goto out;
826 	}
827 
828 	/*
829 	 * If there's a deferred page already there then send it.
830 	 */
831 	if (sdio->cur_page) {
832 		ret = dio_send_cur_page(dio, sdio, map_bh);
833 		put_page(sdio->cur_page);
834 		sdio->cur_page = NULL;
835 		if (ret)
836 			return ret;
837 	}
838 
839 	get_page(page);		/* It is in dio */
840 	sdio->cur_page = page;
841 	sdio->cur_page_offset = offset;
842 	sdio->cur_page_len = len;
843 	sdio->cur_page_block = blocknr;
844 	sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
845 out:
846 	/*
847 	 * If boundary then we want to schedule the IO now to
848 	 * avoid metadata seeks.
849 	 */
850 	if (boundary) {
851 		ret = dio_send_cur_page(dio, sdio, map_bh);
852 		if (sdio->bio)
853 			dio_bio_submit(dio, sdio);
854 		put_page(sdio->cur_page);
855 		sdio->cur_page = NULL;
856 	}
857 	return ret;
858 }
859 
860 /*
861  * If we are not writing the entire block and get_block() allocated
862  * the block for us, we need to fill-in the unused portion of the
863  * block with zeros. This happens only if user-buffer, fileoffset or
864  * io length is not filesystem block-size multiple.
865  *
866  * `end' is zero if we're doing the start of the IO, 1 at the end of the
867  * IO.
868  */
869 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
870 		int end, struct buffer_head *map_bh)
871 {
872 	unsigned dio_blocks_per_fs_block;
873 	unsigned this_chunk_blocks;	/* In dio_blocks */
874 	unsigned this_chunk_bytes;
875 	struct page *page;
876 
877 	sdio->start_zero_done = 1;
878 	if (!sdio->blkfactor || !buffer_new(map_bh))
879 		return;
880 
881 	dio_blocks_per_fs_block = 1 << sdio->blkfactor;
882 	this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
883 
884 	if (!this_chunk_blocks)
885 		return;
886 
887 	/*
888 	 * We need to zero out part of an fs block.  It is either at the
889 	 * beginning or the end of the fs block.
890 	 */
891 	if (end)
892 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
893 
894 	this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
895 
896 	page = ZERO_PAGE(0);
897 	if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
898 				sdio->next_block_for_io, map_bh))
899 		return;
900 
901 	sdio->next_block_for_io += this_chunk_blocks;
902 }
903 
904 /*
905  * Walk the user pages, and the file, mapping blocks to disk and generating
906  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
907  * into submit_page_section(), which takes care of the next stage of submission
908  *
909  * Direct IO against a blockdev is different from a file.  Because we can
910  * happily perform page-sized but 512-byte aligned IOs.  It is important that
911  * blockdev IO be able to have fine alignment and large sizes.
912  *
913  * So what we do is to permit the ->get_block function to populate bh.b_size
914  * with the size of IO which is permitted at this offset and this i_blkbits.
915  *
916  * For best results, the blockdev should be set up with 512-byte i_blkbits and
917  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
918  * fine alignment but still allows this function to work in PAGE_SIZE units.
919  */
920 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
921 			struct buffer_head *map_bh)
922 {
923 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
924 	const unsigned blkbits = sdio->blkbits;
925 	const unsigned i_blkbits = blkbits + sdio->blkfactor;
926 	int ret = 0;
927 
928 	while (sdio->block_in_file < sdio->final_block_in_request) {
929 		struct page *page;
930 		size_t from, to;
931 
932 		page = dio_get_page(dio, sdio);
933 		if (IS_ERR(page)) {
934 			ret = PTR_ERR(page);
935 			goto out;
936 		}
937 		from = sdio->head ? 0 : sdio->from;
938 		to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
939 		sdio->head++;
940 
941 		while (from < to) {
942 			unsigned this_chunk_bytes;	/* # of bytes mapped */
943 			unsigned this_chunk_blocks;	/* # of blocks */
944 			unsigned u;
945 
946 			if (sdio->blocks_available == 0) {
947 				/*
948 				 * Need to go and map some more disk
949 				 */
950 				unsigned long blkmask;
951 				unsigned long dio_remainder;
952 
953 				ret = get_more_blocks(dio, sdio, map_bh);
954 				if (ret) {
955 					put_page(page);
956 					goto out;
957 				}
958 				if (!buffer_mapped(map_bh))
959 					goto do_holes;
960 
961 				sdio->blocks_available =
962 						map_bh->b_size >> blkbits;
963 				sdio->next_block_for_io =
964 					map_bh->b_blocknr << sdio->blkfactor;
965 				if (buffer_new(map_bh)) {
966 					clean_bdev_aliases(
967 						map_bh->b_bdev,
968 						map_bh->b_blocknr,
969 						map_bh->b_size >> i_blkbits);
970 				}
971 
972 				if (!sdio->blkfactor)
973 					goto do_holes;
974 
975 				blkmask = (1 << sdio->blkfactor) - 1;
976 				dio_remainder = (sdio->block_in_file & blkmask);
977 
978 				/*
979 				 * If we are at the start of IO and that IO
980 				 * starts partway into a fs-block,
981 				 * dio_remainder will be non-zero.  If the IO
982 				 * is a read then we can simply advance the IO
983 				 * cursor to the first block which is to be
984 				 * read.  But if the IO is a write and the
985 				 * block was newly allocated we cannot do that;
986 				 * the start of the fs block must be zeroed out
987 				 * on-disk
988 				 */
989 				if (!buffer_new(map_bh))
990 					sdio->next_block_for_io += dio_remainder;
991 				sdio->blocks_available -= dio_remainder;
992 			}
993 do_holes:
994 			/* Handle holes */
995 			if (!buffer_mapped(map_bh)) {
996 				loff_t i_size_aligned;
997 
998 				/* AKPM: eargh, -ENOTBLK is a hack */
999 				if (dio_op == REQ_OP_WRITE) {
1000 					put_page(page);
1001 					return -ENOTBLK;
1002 				}
1003 
1004 				/*
1005 				 * Be sure to account for a partial block as the
1006 				 * last block in the file
1007 				 */
1008 				i_size_aligned = ALIGN(i_size_read(dio->inode),
1009 							1 << blkbits);
1010 				if (sdio->block_in_file >=
1011 						i_size_aligned >> blkbits) {
1012 					/* We hit eof */
1013 					put_page(page);
1014 					goto out;
1015 				}
1016 				zero_user(page, from, 1 << blkbits);
1017 				sdio->block_in_file++;
1018 				from += 1 << blkbits;
1019 				dio->result += 1 << blkbits;
1020 				goto next_block;
1021 			}
1022 
1023 			/*
1024 			 * If we're performing IO which has an alignment which
1025 			 * is finer than the underlying fs, go check to see if
1026 			 * we must zero out the start of this block.
1027 			 */
1028 			if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1029 				dio_zero_block(dio, sdio, 0, map_bh);
1030 
1031 			/*
1032 			 * Work out, in this_chunk_blocks, how much disk we
1033 			 * can add to this page
1034 			 */
1035 			this_chunk_blocks = sdio->blocks_available;
1036 			u = (to - from) >> blkbits;
1037 			if (this_chunk_blocks > u)
1038 				this_chunk_blocks = u;
1039 			u = sdio->final_block_in_request - sdio->block_in_file;
1040 			if (this_chunk_blocks > u)
1041 				this_chunk_blocks = u;
1042 			this_chunk_bytes = this_chunk_blocks << blkbits;
1043 			BUG_ON(this_chunk_bytes == 0);
1044 
1045 			if (this_chunk_blocks == sdio->blocks_available)
1046 				sdio->boundary = buffer_boundary(map_bh);
1047 			ret = submit_page_section(dio, sdio, page,
1048 						  from,
1049 						  this_chunk_bytes,
1050 						  sdio->next_block_for_io,
1051 						  map_bh);
1052 			if (ret) {
1053 				put_page(page);
1054 				goto out;
1055 			}
1056 			sdio->next_block_for_io += this_chunk_blocks;
1057 
1058 			sdio->block_in_file += this_chunk_blocks;
1059 			from += this_chunk_bytes;
1060 			dio->result += this_chunk_bytes;
1061 			sdio->blocks_available -= this_chunk_blocks;
1062 next_block:
1063 			BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1064 			if (sdio->block_in_file == sdio->final_block_in_request)
1065 				break;
1066 		}
1067 
1068 		/* Drop the ref which was taken in get_user_pages() */
1069 		put_page(page);
1070 	}
1071 out:
1072 	return ret;
1073 }
1074 
1075 static inline int drop_refcount(struct dio *dio)
1076 {
1077 	int ret2;
1078 	unsigned long flags;
1079 
1080 	/*
1081 	 * Sync will always be dropping the final ref and completing the
1082 	 * operation.  AIO can if it was a broken operation described above or
1083 	 * in fact if all the bios race to complete before we get here.  In
1084 	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1085 	 * return code that the caller will hand to ->complete().
1086 	 *
1087 	 * This is managed by the bio_lock instead of being an atomic_t so that
1088 	 * completion paths can drop their ref and use the remaining count to
1089 	 * decide to wake the submission path atomically.
1090 	 */
1091 	spin_lock_irqsave(&dio->bio_lock, flags);
1092 	ret2 = --dio->refcount;
1093 	spin_unlock_irqrestore(&dio->bio_lock, flags);
1094 	return ret2;
1095 }
1096 
1097 /*
1098  * This is a library function for use by filesystem drivers.
1099  *
1100  * The locking rules are governed by the flags parameter:
1101  *  - if the flags value contains DIO_LOCKING we use a fancy locking
1102  *    scheme for dumb filesystems.
1103  *    For writes this function is called under i_mutex and returns with
1104  *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1105  *    taken and dropped again before returning.
1106  *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1107  *    internal locking but rather rely on the filesystem to synchronize
1108  *    direct I/O reads/writes versus each other and truncate.
1109  *
1110  * To help with locking against truncate we incremented the i_dio_count
1111  * counter before starting direct I/O, and decrement it once we are done.
1112  * Truncate can wait for it to reach zero to provide exclusion.  It is
1113  * expected that filesystem provide exclusion between new direct I/O
1114  * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1115  * but other filesystems need to take care of this on their own.
1116  *
1117  * NOTE: if you pass "sdio" to anything by pointer make sure that function
1118  * is always inlined. Otherwise gcc is unable to split the structure into
1119  * individual fields and will generate much worse code. This is important
1120  * for the whole file.
1121  */
1122 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1123 		struct block_device *bdev, struct iov_iter *iter,
1124 		get_block_t get_block, dio_iodone_t end_io,
1125 		dio_submit_t submit_io, int flags)
1126 {
1127 	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
1128 	unsigned blkbits = i_blkbits;
1129 	unsigned blocksize_mask = (1 << blkbits) - 1;
1130 	ssize_t retval = -EINVAL;
1131 	const size_t count = iov_iter_count(iter);
1132 	loff_t offset = iocb->ki_pos;
1133 	const loff_t end = offset + count;
1134 	struct dio *dio;
1135 	struct dio_submit sdio = { 0, };
1136 	struct buffer_head map_bh = { 0, };
1137 	struct blk_plug plug;
1138 	unsigned long align = offset | iov_iter_alignment(iter);
1139 
1140 	/*
1141 	 * Avoid references to bdev if not absolutely needed to give
1142 	 * the early prefetch in the caller enough time.
1143 	 */
1144 
1145 	/* watch out for a 0 len io from a tricksy fs */
1146 	if (iov_iter_rw(iter) == READ && !count)
1147 		return 0;
1148 
1149 	dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1150 	if (!dio)
1151 		return -ENOMEM;
1152 	/*
1153 	 * Believe it or not, zeroing out the page array caused a .5%
1154 	 * performance regression in a database benchmark.  So, we take
1155 	 * care to only zero out what's needed.
1156 	 */
1157 	memset(dio, 0, offsetof(struct dio, pages));
1158 
1159 	dio->flags = flags;
1160 	if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
1161 		/* will be released by direct_io_worker */
1162 		inode_lock(inode);
1163 	}
1164 
1165 	/* Once we sampled i_size check for reads beyond EOF */
1166 	dio->i_size = i_size_read(inode);
1167 	if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1168 		retval = 0;
1169 		goto fail_dio;
1170 	}
1171 
1172 	if (align & blocksize_mask) {
1173 		if (bdev)
1174 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
1175 		blocksize_mask = (1 << blkbits) - 1;
1176 		if (align & blocksize_mask)
1177 			goto fail_dio;
1178 	}
1179 
1180 	if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
1181 		struct address_space *mapping = iocb->ki_filp->f_mapping;
1182 
1183 		retval = filemap_write_and_wait_range(mapping, offset, end - 1);
1184 		if (retval)
1185 			goto fail_dio;
1186 	}
1187 
1188 	/*
1189 	 * For file extending writes updating i_size before data writeouts
1190 	 * complete can expose uninitialized blocks in dumb filesystems.
1191 	 * In that case we need to wait for I/O completion even if asked
1192 	 * for an asynchronous write.
1193 	 */
1194 	if (is_sync_kiocb(iocb))
1195 		dio->is_async = false;
1196 	else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1197 		dio->is_async = false;
1198 	else
1199 		dio->is_async = true;
1200 
1201 	dio->inode = inode;
1202 	if (iov_iter_rw(iter) == WRITE) {
1203 		dio->opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
1204 		if (iocb->ki_flags & IOCB_NOWAIT)
1205 			dio->opf |= REQ_NOWAIT;
1206 	} else {
1207 		dio->opf = REQ_OP_READ;
1208 	}
1209 
1210 	/*
1211 	 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1212 	 * so that we can call ->fsync.
1213 	 */
1214 	if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1215 		retval = 0;
1216 		if (iocb_is_dsync(iocb))
1217 			retval = dio_set_defer_completion(dio);
1218 		else if (!dio->inode->i_sb->s_dio_done_wq) {
1219 			/*
1220 			 * In case of AIO write racing with buffered read we
1221 			 * need to defer completion. We can't decide this now,
1222 			 * however the workqueue needs to be initialized here.
1223 			 */
1224 			retval = sb_init_dio_done_wq(dio->inode->i_sb);
1225 		}
1226 		if (retval)
1227 			goto fail_dio;
1228 	}
1229 
1230 	/*
1231 	 * Will be decremented at I/O completion time.
1232 	 */
1233 	inode_dio_begin(inode);
1234 
1235 	retval = 0;
1236 	sdio.blkbits = blkbits;
1237 	sdio.blkfactor = i_blkbits - blkbits;
1238 	sdio.block_in_file = offset >> blkbits;
1239 
1240 	sdio.get_block = get_block;
1241 	dio->end_io = end_io;
1242 	sdio.submit_io = submit_io;
1243 	sdio.final_block_in_bio = -1;
1244 	sdio.next_block_for_io = -1;
1245 
1246 	dio->iocb = iocb;
1247 
1248 	spin_lock_init(&dio->bio_lock);
1249 	dio->refcount = 1;
1250 
1251 	dio->should_dirty = user_backed_iter(iter) && iov_iter_rw(iter) == READ;
1252 	sdio.iter = iter;
1253 	sdio.final_block_in_request = end >> blkbits;
1254 
1255 	/*
1256 	 * In case of non-aligned buffers, we may need 2 more
1257 	 * pages since we need to zero out first and last block.
1258 	 */
1259 	if (unlikely(sdio.blkfactor))
1260 		sdio.pages_in_io = 2;
1261 
1262 	sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1263 
1264 	blk_start_plug(&plug);
1265 
1266 	retval = do_direct_IO(dio, &sdio, &map_bh);
1267 	if (retval)
1268 		dio_cleanup(dio, &sdio);
1269 
1270 	if (retval == -ENOTBLK) {
1271 		/*
1272 		 * The remaining part of the request will be
1273 		 * handled by buffered I/O when we return
1274 		 */
1275 		retval = 0;
1276 	}
1277 	/*
1278 	 * There may be some unwritten disk at the end of a part-written
1279 	 * fs-block-sized block.  Go zero that now.
1280 	 */
1281 	dio_zero_block(dio, &sdio, 1, &map_bh);
1282 
1283 	if (sdio.cur_page) {
1284 		ssize_t ret2;
1285 
1286 		ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1287 		if (retval == 0)
1288 			retval = ret2;
1289 		put_page(sdio.cur_page);
1290 		sdio.cur_page = NULL;
1291 	}
1292 	if (sdio.bio)
1293 		dio_bio_submit(dio, &sdio);
1294 
1295 	blk_finish_plug(&plug);
1296 
1297 	/*
1298 	 * It is possible that, we return short IO due to end of file.
1299 	 * In that case, we need to release all the pages we got hold on.
1300 	 */
1301 	dio_cleanup(dio, &sdio);
1302 
1303 	/*
1304 	 * All block lookups have been performed. For READ requests
1305 	 * we can let i_mutex go now that its achieved its purpose
1306 	 * of protecting us from looking up uninitialized blocks.
1307 	 */
1308 	if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1309 		inode_unlock(dio->inode);
1310 
1311 	/*
1312 	 * The only time we want to leave bios in flight is when a successful
1313 	 * partial aio read or full aio write have been setup.  In that case
1314 	 * bio completion will call aio_complete.  The only time it's safe to
1315 	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1316 	 * This had *better* be the only place that raises -EIOCBQUEUED.
1317 	 */
1318 	BUG_ON(retval == -EIOCBQUEUED);
1319 	if (dio->is_async && retval == 0 && dio->result &&
1320 	    (iov_iter_rw(iter) == READ || dio->result == count))
1321 		retval = -EIOCBQUEUED;
1322 	else
1323 		dio_await_completion(dio);
1324 
1325 	if (drop_refcount(dio) == 0) {
1326 		retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
1327 	} else
1328 		BUG_ON(retval != -EIOCBQUEUED);
1329 
1330 	return retval;
1331 
1332 fail_dio:
1333 	if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ)
1334 		inode_unlock(inode);
1335 
1336 	kmem_cache_free(dio_cache, dio);
1337 	return retval;
1338 }
1339 EXPORT_SYMBOL(__blockdev_direct_IO);
1340 
1341 static __init int dio_init(void)
1342 {
1343 	dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1344 	return 0;
1345 }
1346 module_init(dio_init)
1347