xref: /openbmc/linux/fs/direct-io.c (revision 5e8d780d)
1 /*
2  * fs/direct-io.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * O_DIRECT
7  *
8  * 04Jul2002	akpm@zip.com.au
9  *		Initial version
10  * 11Sep2002	janetinc@us.ibm.com
11  * 		added readv/writev support.
12  * 29Oct2002	akpm@zip.com.au
13  *		rewrote bio_add_page() support.
14  * 30Oct2002	pbadari@us.ibm.com
15  *		added support for non-aligned IO.
16  * 06Nov2002	pbadari@us.ibm.com
17  *		added asynchronous IO support.
18  * 21Jul2003	nathans@sgi.com
19  *		added IO completion notifier.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/bio.h>
31 #include <linux/wait.h>
32 #include <linux/err.h>
33 #include <linux/blkdev.h>
34 #include <linux/buffer_head.h>
35 #include <linux/rwsem.h>
36 #include <linux/uio.h>
37 #include <asm/atomic.h>
38 
39 /*
40  * How many user pages to map in one call to get_user_pages().  This determines
41  * the size of a structure on the stack.
42  */
43 #define DIO_PAGES	64
44 
45 /*
46  * This code generally works in units of "dio_blocks".  A dio_block is
47  * somewhere between the hard sector size and the filesystem block size.  it
48  * is determined on a per-invocation basis.   When talking to the filesystem
49  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
50  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
51  * to bio_block quantities by shifting left by blkfactor.
52  *
53  * If blkfactor is zero then the user's request was aligned to the filesystem's
54  * blocksize.
55  *
56  * lock_type is DIO_LOCKING for regular files on direct-IO-naive filesystems.
57  * This determines whether we need to do the fancy locking which prevents
58  * direct-IO from being able to read uninitialised disk blocks.  If its zero
59  * (blockdev) this locking is not done, and if it is DIO_OWN_LOCKING i_mutex is
60  * not held for the entire direct write (taken briefly, initially, during a
61  * direct read though, but its never held for the duration of a direct-IO).
62  */
63 
64 struct dio {
65 	/* BIO submission state */
66 	struct bio *bio;		/* bio under assembly */
67 	struct inode *inode;
68 	int rw;
69 	loff_t i_size;			/* i_size when submitted */
70 	int lock_type;			/* doesn't change */
71 	unsigned blkbits;		/* doesn't change */
72 	unsigned blkfactor;		/* When we're using an alignment which
73 					   is finer than the filesystem's soft
74 					   blocksize, this specifies how much
75 					   finer.  blkfactor=2 means 1/4-block
76 					   alignment.  Does not change */
77 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
78 					   been performed at the start of a
79 					   write */
80 	int pages_in_io;		/* approximate total IO pages */
81 	size_t	size;			/* total request size (doesn't change)*/
82 	sector_t block_in_file;		/* Current offset into the underlying
83 					   file in dio_block units. */
84 	unsigned blocks_available;	/* At block_in_file.  changes */
85 	sector_t final_block_in_request;/* doesn't change */
86 	unsigned first_block_in_page;	/* doesn't change, Used only once */
87 	int boundary;			/* prev block is at a boundary */
88 	int reap_counter;		/* rate limit reaping */
89 	get_block_t *get_block;		/* block mapping function */
90 	dio_iodone_t *end_io;		/* IO completion function */
91 	sector_t final_block_in_bio;	/* current final block in bio + 1 */
92 	sector_t next_block_for_io;	/* next block to be put under IO,
93 					   in dio_blocks units */
94 	struct buffer_head map_bh;	/* last get_block() result */
95 
96 	/*
97 	 * Deferred addition of a page to the dio.  These variables are
98 	 * private to dio_send_cur_page(), submit_page_section() and
99 	 * dio_bio_add_page().
100 	 */
101 	struct page *cur_page;		/* The page */
102 	unsigned cur_page_offset;	/* Offset into it, in bytes */
103 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
104 	sector_t cur_page_block;	/* Where it starts */
105 
106 	/*
107 	 * Page fetching state. These variables belong to dio_refill_pages().
108 	 */
109 	int curr_page;			/* changes */
110 	int total_pages;		/* doesn't change */
111 	unsigned long curr_user_address;/* changes */
112 
113 	/*
114 	 * Page queue.  These variables belong to dio_refill_pages() and
115 	 * dio_get_page().
116 	 */
117 	struct page *pages[DIO_PAGES];	/* page buffer */
118 	unsigned head;			/* next page to process */
119 	unsigned tail;			/* last valid page + 1 */
120 	int page_errors;		/* errno from get_user_pages() */
121 
122 	/* BIO completion state */
123 	spinlock_t bio_lock;		/* protects BIO fields below */
124 	int bio_count;			/* nr bios to be completed */
125 	int bios_in_flight;		/* nr bios in flight */
126 	struct bio *bio_list;		/* singly linked via bi_private */
127 	struct task_struct *waiter;	/* waiting task (NULL if none) */
128 
129 	/* AIO related stuff */
130 	struct kiocb *iocb;		/* kiocb */
131 	int is_async;			/* is IO async ? */
132 	int io_error;			/* IO error in completion path */
133 	ssize_t result;                 /* IO result */
134 };
135 
136 /*
137  * How many pages are in the queue?
138  */
139 static inline unsigned dio_pages_present(struct dio *dio)
140 {
141 	return dio->tail - dio->head;
142 }
143 
144 /*
145  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
146  */
147 static int dio_refill_pages(struct dio *dio)
148 {
149 	int ret;
150 	int nr_pages;
151 
152 	nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES);
153 	down_read(&current->mm->mmap_sem);
154 	ret = get_user_pages(
155 		current,			/* Task for fault acounting */
156 		current->mm,			/* whose pages? */
157 		dio->curr_user_address,		/* Where from? */
158 		nr_pages,			/* How many pages? */
159 		dio->rw == READ,		/* Write to memory? */
160 		0,				/* force (?) */
161 		&dio->pages[0],
162 		NULL);				/* vmas */
163 	up_read(&current->mm->mmap_sem);
164 
165 	if (ret < 0 && dio->blocks_available && (dio->rw & WRITE)) {
166 		struct page *page = ZERO_PAGE(dio->curr_user_address);
167 		/*
168 		 * A memory fault, but the filesystem has some outstanding
169 		 * mapped blocks.  We need to use those blocks up to avoid
170 		 * leaking stale data in the file.
171 		 */
172 		if (dio->page_errors == 0)
173 			dio->page_errors = ret;
174 		page_cache_get(page);
175 		dio->pages[0] = page;
176 		dio->head = 0;
177 		dio->tail = 1;
178 		ret = 0;
179 		goto out;
180 	}
181 
182 	if (ret >= 0) {
183 		dio->curr_user_address += ret * PAGE_SIZE;
184 		dio->curr_page += ret;
185 		dio->head = 0;
186 		dio->tail = ret;
187 		ret = 0;
188 	}
189 out:
190 	return ret;
191 }
192 
193 /*
194  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
195  * buffered inside the dio so that we can call get_user_pages() against a
196  * decent number of pages, less frequently.  To provide nicer use of the
197  * L1 cache.
198  */
199 static struct page *dio_get_page(struct dio *dio)
200 {
201 	if (dio_pages_present(dio) == 0) {
202 		int ret;
203 
204 		ret = dio_refill_pages(dio);
205 		if (ret)
206 			return ERR_PTR(ret);
207 		BUG_ON(dio_pages_present(dio) == 0);
208 	}
209 	return dio->pages[dio->head++];
210 }
211 
212 /*
213  * Called when all DIO BIO I/O has been completed - let the filesystem
214  * know, if it registered an interest earlier via get_block.  Pass the
215  * private field of the map buffer_head so that filesystems can use it
216  * to hold additional state between get_block calls and dio_complete.
217  */
218 static void dio_complete(struct dio *dio, loff_t offset, ssize_t bytes)
219 {
220 	if (dio->end_io && dio->result)
221 		dio->end_io(dio->iocb, offset, bytes, dio->map_bh.b_private);
222 	if (dio->lock_type == DIO_LOCKING)
223 		up_read(&dio->inode->i_alloc_sem);
224 }
225 
226 /*
227  * Called when a BIO has been processed.  If the count goes to zero then IO is
228  * complete and we can signal this to the AIO layer.
229  */
230 static void finished_one_bio(struct dio *dio)
231 {
232 	unsigned long flags;
233 
234 	spin_lock_irqsave(&dio->bio_lock, flags);
235 	if (dio->bio_count == 1) {
236 		if (dio->is_async) {
237 			ssize_t transferred;
238 			loff_t offset;
239 
240 			/*
241 			 * Last reference to the dio is going away.
242 			 * Drop spinlock and complete the DIO.
243 			 */
244 			spin_unlock_irqrestore(&dio->bio_lock, flags);
245 
246 			/* Check for short read case */
247 			transferred = dio->result;
248 			offset = dio->iocb->ki_pos;
249 
250 			if ((dio->rw == READ) &&
251 			    ((offset + transferred) > dio->i_size))
252 				transferred = dio->i_size - offset;
253 
254 			/* check for error in completion path */
255 			if (dio->io_error)
256 				transferred = dio->io_error;
257 
258 			dio_complete(dio, offset, transferred);
259 
260 			/* Complete AIO later if falling back to buffered i/o */
261 			if (dio->result == dio->size ||
262 				((dio->rw == READ) && dio->result)) {
263 				aio_complete(dio->iocb, transferred, 0);
264 				kfree(dio);
265 				return;
266 			} else {
267 				/*
268 				 * Falling back to buffered
269 				 */
270 				spin_lock_irqsave(&dio->bio_lock, flags);
271 				dio->bio_count--;
272 				if (dio->waiter)
273 					wake_up_process(dio->waiter);
274 				spin_unlock_irqrestore(&dio->bio_lock, flags);
275 				return;
276 			}
277 		}
278 	}
279 	dio->bio_count--;
280 	spin_unlock_irqrestore(&dio->bio_lock, flags);
281 }
282 
283 static int dio_bio_complete(struct dio *dio, struct bio *bio);
284 /*
285  * Asynchronous IO callback.
286  */
287 static int dio_bio_end_aio(struct bio *bio, unsigned int bytes_done, int error)
288 {
289 	struct dio *dio = bio->bi_private;
290 
291 	if (bio->bi_size)
292 		return 1;
293 
294 	/* cleanup the bio */
295 	dio_bio_complete(dio, bio);
296 	return 0;
297 }
298 
299 /*
300  * The BIO completion handler simply queues the BIO up for the process-context
301  * handler.
302  *
303  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
304  * implement a singly-linked list of completed BIOs, at dio->bio_list.
305  */
306 static int dio_bio_end_io(struct bio *bio, unsigned int bytes_done, int error)
307 {
308 	struct dio *dio = bio->bi_private;
309 	unsigned long flags;
310 
311 	if (bio->bi_size)
312 		return 1;
313 
314 	spin_lock_irqsave(&dio->bio_lock, flags);
315 	bio->bi_private = dio->bio_list;
316 	dio->bio_list = bio;
317 	dio->bios_in_flight--;
318 	if (dio->waiter && dio->bios_in_flight == 0)
319 		wake_up_process(dio->waiter);
320 	spin_unlock_irqrestore(&dio->bio_lock, flags);
321 	return 0;
322 }
323 
324 static int
325 dio_bio_alloc(struct dio *dio, struct block_device *bdev,
326 		sector_t first_sector, int nr_vecs)
327 {
328 	struct bio *bio;
329 
330 	bio = bio_alloc(GFP_KERNEL, nr_vecs);
331 	if (bio == NULL)
332 		return -ENOMEM;
333 
334 	bio->bi_bdev = bdev;
335 	bio->bi_sector = first_sector;
336 	if (dio->is_async)
337 		bio->bi_end_io = dio_bio_end_aio;
338 	else
339 		bio->bi_end_io = dio_bio_end_io;
340 
341 	dio->bio = bio;
342 	return 0;
343 }
344 
345 /*
346  * In the AIO read case we speculatively dirty the pages before starting IO.
347  * During IO completion, any of these pages which happen to have been written
348  * back will be redirtied by bio_check_pages_dirty().
349  */
350 static void dio_bio_submit(struct dio *dio)
351 {
352 	struct bio *bio = dio->bio;
353 	unsigned long flags;
354 
355 	bio->bi_private = dio;
356 	spin_lock_irqsave(&dio->bio_lock, flags);
357 	dio->bio_count++;
358 	dio->bios_in_flight++;
359 	spin_unlock_irqrestore(&dio->bio_lock, flags);
360 	if (dio->is_async && dio->rw == READ)
361 		bio_set_pages_dirty(bio);
362 	submit_bio(dio->rw, bio);
363 
364 	dio->bio = NULL;
365 	dio->boundary = 0;
366 }
367 
368 /*
369  * Release any resources in case of a failure
370  */
371 static void dio_cleanup(struct dio *dio)
372 {
373 	while (dio_pages_present(dio))
374 		page_cache_release(dio_get_page(dio));
375 }
376 
377 /*
378  * Wait for the next BIO to complete.  Remove it and return it.
379  */
380 static struct bio *dio_await_one(struct dio *dio)
381 {
382 	unsigned long flags;
383 	struct bio *bio;
384 
385 	spin_lock_irqsave(&dio->bio_lock, flags);
386 	while (dio->bio_list == NULL) {
387 		set_current_state(TASK_UNINTERRUPTIBLE);
388 		if (dio->bio_list == NULL) {
389 			dio->waiter = current;
390 			spin_unlock_irqrestore(&dio->bio_lock, flags);
391 			blk_run_address_space(dio->inode->i_mapping);
392 			io_schedule();
393 			spin_lock_irqsave(&dio->bio_lock, flags);
394 			dio->waiter = NULL;
395 		}
396 		set_current_state(TASK_RUNNING);
397 	}
398 	bio = dio->bio_list;
399 	dio->bio_list = bio->bi_private;
400 	spin_unlock_irqrestore(&dio->bio_lock, flags);
401 	return bio;
402 }
403 
404 /*
405  * Process one completed BIO.  No locks are held.
406  */
407 static int dio_bio_complete(struct dio *dio, struct bio *bio)
408 {
409 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
410 	struct bio_vec *bvec = bio->bi_io_vec;
411 	int page_no;
412 
413 	if (!uptodate)
414 		dio->io_error = -EIO;
415 
416 	if (dio->is_async && dio->rw == READ) {
417 		bio_check_pages_dirty(bio);	/* transfers ownership */
418 	} else {
419 		for (page_no = 0; page_no < bio->bi_vcnt; page_no++) {
420 			struct page *page = bvec[page_no].bv_page;
421 
422 			if (dio->rw == READ && !PageCompound(page))
423 				set_page_dirty_lock(page);
424 			page_cache_release(page);
425 		}
426 		bio_put(bio);
427 	}
428 	finished_one_bio(dio);
429 	return uptodate ? 0 : -EIO;
430 }
431 
432 /*
433  * Wait on and process all in-flight BIOs.
434  */
435 static int dio_await_completion(struct dio *dio)
436 {
437 	int ret = 0;
438 
439 	if (dio->bio)
440 		dio_bio_submit(dio);
441 
442 	/*
443 	 * The bio_lock is not held for the read of bio_count.
444 	 * This is ok since it is the dio_bio_complete() that changes
445 	 * bio_count.
446 	 */
447 	while (dio->bio_count) {
448 		struct bio *bio = dio_await_one(dio);
449 		int ret2;
450 
451 		ret2 = dio_bio_complete(dio, bio);
452 		if (ret == 0)
453 			ret = ret2;
454 	}
455 	return ret;
456 }
457 
458 /*
459  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
460  * to keep the memory consumption sane we periodically reap any completed BIOs
461  * during the BIO generation phase.
462  *
463  * This also helps to limit the peak amount of pinned userspace memory.
464  */
465 static int dio_bio_reap(struct dio *dio)
466 {
467 	int ret = 0;
468 
469 	if (dio->reap_counter++ >= 64) {
470 		while (dio->bio_list) {
471 			unsigned long flags;
472 			struct bio *bio;
473 			int ret2;
474 
475 			spin_lock_irqsave(&dio->bio_lock, flags);
476 			bio = dio->bio_list;
477 			dio->bio_list = bio->bi_private;
478 			spin_unlock_irqrestore(&dio->bio_lock, flags);
479 			ret2 = dio_bio_complete(dio, bio);
480 			if (ret == 0)
481 				ret = ret2;
482 		}
483 		dio->reap_counter = 0;
484 	}
485 	return ret;
486 }
487 
488 /*
489  * Call into the fs to map some more disk blocks.  We record the current number
490  * of available blocks at dio->blocks_available.  These are in units of the
491  * fs blocksize, (1 << inode->i_blkbits).
492  *
493  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
494  * it uses the passed inode-relative block number as the file offset, as usual.
495  *
496  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
497  * has remaining to do.  The fs should not map more than this number of blocks.
498  *
499  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
500  * indicate how much contiguous disk space has been made available at
501  * bh->b_blocknr.
502  *
503  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
504  * This isn't very efficient...
505  *
506  * In the case of filesystem holes: the fs may return an arbitrarily-large
507  * hole by returning an appropriate value in b_size and by clearing
508  * buffer_mapped().  However the direct-io code will only process holes one
509  * block at a time - it will repeatedly call get_block() as it walks the hole.
510  */
511 static int get_more_blocks(struct dio *dio)
512 {
513 	int ret;
514 	struct buffer_head *map_bh = &dio->map_bh;
515 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
516 	unsigned long fs_count;	/* Number of filesystem-sized blocks */
517 	unsigned long dio_count;/* Number of dio_block-sized blocks */
518 	unsigned long blkmask;
519 	int create;
520 
521 	/*
522 	 * If there was a memory error and we've overwritten all the
523 	 * mapped blocks then we can now return that memory error
524 	 */
525 	ret = dio->page_errors;
526 	if (ret == 0) {
527 		BUG_ON(dio->block_in_file >= dio->final_block_in_request);
528 		fs_startblk = dio->block_in_file >> dio->blkfactor;
529 		dio_count = dio->final_block_in_request - dio->block_in_file;
530 		fs_count = dio_count >> dio->blkfactor;
531 		blkmask = (1 << dio->blkfactor) - 1;
532 		if (dio_count & blkmask)
533 			fs_count++;
534 
535 		map_bh->b_state = 0;
536 		map_bh->b_size = fs_count << dio->inode->i_blkbits;
537 
538 		create = dio->rw & WRITE;
539 		if (dio->lock_type == DIO_LOCKING) {
540 			if (dio->block_in_file < (i_size_read(dio->inode) >>
541 							dio->blkbits))
542 				create = 0;
543 		} else if (dio->lock_type == DIO_NO_LOCKING) {
544 			create = 0;
545 		}
546 
547 		/*
548 		 * For writes inside i_size we forbid block creations: only
549 		 * overwrites are permitted.  We fall back to buffered writes
550 		 * at a higher level for inside-i_size block-instantiating
551 		 * writes.
552 		 */
553 		ret = (*dio->get_block)(dio->inode, fs_startblk,
554 						map_bh, create);
555 	}
556 	return ret;
557 }
558 
559 /*
560  * There is no bio.  Make one now.
561  */
562 static int dio_new_bio(struct dio *dio, sector_t start_sector)
563 {
564 	sector_t sector;
565 	int ret, nr_pages;
566 
567 	ret = dio_bio_reap(dio);
568 	if (ret)
569 		goto out;
570 	sector = start_sector << (dio->blkbits - 9);
571 	nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev));
572 	BUG_ON(nr_pages <= 0);
573 	ret = dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages);
574 	dio->boundary = 0;
575 out:
576 	return ret;
577 }
578 
579 /*
580  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
581  * that was successful then update final_block_in_bio and take a ref against
582  * the just-added page.
583  *
584  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
585  */
586 static int dio_bio_add_page(struct dio *dio)
587 {
588 	int ret;
589 
590 	ret = bio_add_page(dio->bio, dio->cur_page,
591 			dio->cur_page_len, dio->cur_page_offset);
592 	if (ret == dio->cur_page_len) {
593 		/*
594 		 * Decrement count only, if we are done with this page
595 		 */
596 		if ((dio->cur_page_len + dio->cur_page_offset) == PAGE_SIZE)
597 			dio->pages_in_io--;
598 		page_cache_get(dio->cur_page);
599 		dio->final_block_in_bio = dio->cur_page_block +
600 			(dio->cur_page_len >> dio->blkbits);
601 		ret = 0;
602 	} else {
603 		ret = 1;
604 	}
605 	return ret;
606 }
607 
608 /*
609  * Put cur_page under IO.  The section of cur_page which is described by
610  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
611  * starts on-disk at cur_page_block.
612  *
613  * We take a ref against the page here (on behalf of its presence in the bio).
614  *
615  * The caller of this function is responsible for removing cur_page from the
616  * dio, and for dropping the refcount which came from that presence.
617  */
618 static int dio_send_cur_page(struct dio *dio)
619 {
620 	int ret = 0;
621 
622 	if (dio->bio) {
623 		/*
624 		 * See whether this new request is contiguous with the old
625 		 */
626 		if (dio->final_block_in_bio != dio->cur_page_block)
627 			dio_bio_submit(dio);
628 		/*
629 		 * Submit now if the underlying fs is about to perform a
630 		 * metadata read
631 		 */
632 		if (dio->boundary)
633 			dio_bio_submit(dio);
634 	}
635 
636 	if (dio->bio == NULL) {
637 		ret = dio_new_bio(dio, dio->cur_page_block);
638 		if (ret)
639 			goto out;
640 	}
641 
642 	if (dio_bio_add_page(dio) != 0) {
643 		dio_bio_submit(dio);
644 		ret = dio_new_bio(dio, dio->cur_page_block);
645 		if (ret == 0) {
646 			ret = dio_bio_add_page(dio);
647 			BUG_ON(ret != 0);
648 		}
649 	}
650 out:
651 	return ret;
652 }
653 
654 /*
655  * An autonomous function to put a chunk of a page under deferred IO.
656  *
657  * The caller doesn't actually know (or care) whether this piece of page is in
658  * a BIO, or is under IO or whatever.  We just take care of all possible
659  * situations here.  The separation between the logic of do_direct_IO() and
660  * that of submit_page_section() is important for clarity.  Please don't break.
661  *
662  * The chunk of page starts on-disk at blocknr.
663  *
664  * We perform deferred IO, by recording the last-submitted page inside our
665  * private part of the dio structure.  If possible, we just expand the IO
666  * across that page here.
667  *
668  * If that doesn't work out then we put the old page into the bio and add this
669  * page to the dio instead.
670  */
671 static int
672 submit_page_section(struct dio *dio, struct page *page,
673 		unsigned offset, unsigned len, sector_t blocknr)
674 {
675 	int ret = 0;
676 
677 	/*
678 	 * Can we just grow the current page's presence in the dio?
679 	 */
680 	if (	(dio->cur_page == page) &&
681 		(dio->cur_page_offset + dio->cur_page_len == offset) &&
682 		(dio->cur_page_block +
683 			(dio->cur_page_len >> dio->blkbits) == blocknr)) {
684 		dio->cur_page_len += len;
685 
686 		/*
687 		 * If dio->boundary then we want to schedule the IO now to
688 		 * avoid metadata seeks.
689 		 */
690 		if (dio->boundary) {
691 			ret = dio_send_cur_page(dio);
692 			page_cache_release(dio->cur_page);
693 			dio->cur_page = NULL;
694 		}
695 		goto out;
696 	}
697 
698 	/*
699 	 * If there's a deferred page already there then send it.
700 	 */
701 	if (dio->cur_page) {
702 		ret = dio_send_cur_page(dio);
703 		page_cache_release(dio->cur_page);
704 		dio->cur_page = NULL;
705 		if (ret)
706 			goto out;
707 	}
708 
709 	page_cache_get(page);		/* It is in dio */
710 	dio->cur_page = page;
711 	dio->cur_page_offset = offset;
712 	dio->cur_page_len = len;
713 	dio->cur_page_block = blocknr;
714 out:
715 	return ret;
716 }
717 
718 /*
719  * Clean any dirty buffers in the blockdev mapping which alias newly-created
720  * file blocks.  Only called for S_ISREG files - blockdevs do not set
721  * buffer_new
722  */
723 static void clean_blockdev_aliases(struct dio *dio)
724 {
725 	unsigned i;
726 	unsigned nblocks;
727 
728 	nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits;
729 
730 	for (i = 0; i < nblocks; i++) {
731 		unmap_underlying_metadata(dio->map_bh.b_bdev,
732 					dio->map_bh.b_blocknr + i);
733 	}
734 }
735 
736 /*
737  * If we are not writing the entire block and get_block() allocated
738  * the block for us, we need to fill-in the unused portion of the
739  * block with zeros. This happens only if user-buffer, fileoffset or
740  * io length is not filesystem block-size multiple.
741  *
742  * `end' is zero if we're doing the start of the IO, 1 at the end of the
743  * IO.
744  */
745 static void dio_zero_block(struct dio *dio, int end)
746 {
747 	unsigned dio_blocks_per_fs_block;
748 	unsigned this_chunk_blocks;	/* In dio_blocks */
749 	unsigned this_chunk_bytes;
750 	struct page *page;
751 
752 	dio->start_zero_done = 1;
753 	if (!dio->blkfactor || !buffer_new(&dio->map_bh))
754 		return;
755 
756 	dio_blocks_per_fs_block = 1 << dio->blkfactor;
757 	this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1);
758 
759 	if (!this_chunk_blocks)
760 		return;
761 
762 	/*
763 	 * We need to zero out part of an fs block.  It is either at the
764 	 * beginning or the end of the fs block.
765 	 */
766 	if (end)
767 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
768 
769 	this_chunk_bytes = this_chunk_blocks << dio->blkbits;
770 
771 	page = ZERO_PAGE(dio->curr_user_address);
772 	if (submit_page_section(dio, page, 0, this_chunk_bytes,
773 				dio->next_block_for_io))
774 		return;
775 
776 	dio->next_block_for_io += this_chunk_blocks;
777 }
778 
779 /*
780  * Walk the user pages, and the file, mapping blocks to disk and generating
781  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
782  * into submit_page_section(), which takes care of the next stage of submission
783  *
784  * Direct IO against a blockdev is different from a file.  Because we can
785  * happily perform page-sized but 512-byte aligned IOs.  It is important that
786  * blockdev IO be able to have fine alignment and large sizes.
787  *
788  * So what we do is to permit the ->get_block function to populate bh.b_size
789  * with the size of IO which is permitted at this offset and this i_blkbits.
790  *
791  * For best results, the blockdev should be set up with 512-byte i_blkbits and
792  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
793  * fine alignment but still allows this function to work in PAGE_SIZE units.
794  */
795 static int do_direct_IO(struct dio *dio)
796 {
797 	const unsigned blkbits = dio->blkbits;
798 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
799 	struct page *page;
800 	unsigned block_in_page;
801 	struct buffer_head *map_bh = &dio->map_bh;
802 	int ret = 0;
803 
804 	/* The I/O can start at any block offset within the first page */
805 	block_in_page = dio->first_block_in_page;
806 
807 	while (dio->block_in_file < dio->final_block_in_request) {
808 		page = dio_get_page(dio);
809 		if (IS_ERR(page)) {
810 			ret = PTR_ERR(page);
811 			goto out;
812 		}
813 
814 		while (block_in_page < blocks_per_page) {
815 			unsigned offset_in_page = block_in_page << blkbits;
816 			unsigned this_chunk_bytes;	/* # of bytes mapped */
817 			unsigned this_chunk_blocks;	/* # of blocks */
818 			unsigned u;
819 
820 			if (dio->blocks_available == 0) {
821 				/*
822 				 * Need to go and map some more disk
823 				 */
824 				unsigned long blkmask;
825 				unsigned long dio_remainder;
826 
827 				ret = get_more_blocks(dio);
828 				if (ret) {
829 					page_cache_release(page);
830 					goto out;
831 				}
832 				if (!buffer_mapped(map_bh))
833 					goto do_holes;
834 
835 				dio->blocks_available =
836 						map_bh->b_size >> dio->blkbits;
837 				dio->next_block_for_io =
838 					map_bh->b_blocknr << dio->blkfactor;
839 				if (buffer_new(map_bh))
840 					clean_blockdev_aliases(dio);
841 
842 				if (!dio->blkfactor)
843 					goto do_holes;
844 
845 				blkmask = (1 << dio->blkfactor) - 1;
846 				dio_remainder = (dio->block_in_file & blkmask);
847 
848 				/*
849 				 * If we are at the start of IO and that IO
850 				 * starts partway into a fs-block,
851 				 * dio_remainder will be non-zero.  If the IO
852 				 * is a read then we can simply advance the IO
853 				 * cursor to the first block which is to be
854 				 * read.  But if the IO is a write and the
855 				 * block was newly allocated we cannot do that;
856 				 * the start of the fs block must be zeroed out
857 				 * on-disk
858 				 */
859 				if (!buffer_new(map_bh))
860 					dio->next_block_for_io += dio_remainder;
861 				dio->blocks_available -= dio_remainder;
862 			}
863 do_holes:
864 			/* Handle holes */
865 			if (!buffer_mapped(map_bh)) {
866 				char *kaddr;
867 				loff_t i_size_aligned;
868 
869 				/* AKPM: eargh, -ENOTBLK is a hack */
870 				if (dio->rw & WRITE) {
871 					page_cache_release(page);
872 					return -ENOTBLK;
873 				}
874 
875 				/*
876 				 * Be sure to account for a partial block as the
877 				 * last block in the file
878 				 */
879 				i_size_aligned = ALIGN(i_size_read(dio->inode),
880 							1 << blkbits);
881 				if (dio->block_in_file >=
882 						i_size_aligned >> blkbits) {
883 					/* We hit eof */
884 					page_cache_release(page);
885 					goto out;
886 				}
887 				kaddr = kmap_atomic(page, KM_USER0);
888 				memset(kaddr + (block_in_page << blkbits),
889 						0, 1 << blkbits);
890 				flush_dcache_page(page);
891 				kunmap_atomic(kaddr, KM_USER0);
892 				dio->block_in_file++;
893 				block_in_page++;
894 				goto next_block;
895 			}
896 
897 			/*
898 			 * If we're performing IO which has an alignment which
899 			 * is finer than the underlying fs, go check to see if
900 			 * we must zero out the start of this block.
901 			 */
902 			if (unlikely(dio->blkfactor && !dio->start_zero_done))
903 				dio_zero_block(dio, 0);
904 
905 			/*
906 			 * Work out, in this_chunk_blocks, how much disk we
907 			 * can add to this page
908 			 */
909 			this_chunk_blocks = dio->blocks_available;
910 			u = (PAGE_SIZE - offset_in_page) >> blkbits;
911 			if (this_chunk_blocks > u)
912 				this_chunk_blocks = u;
913 			u = dio->final_block_in_request - dio->block_in_file;
914 			if (this_chunk_blocks > u)
915 				this_chunk_blocks = u;
916 			this_chunk_bytes = this_chunk_blocks << blkbits;
917 			BUG_ON(this_chunk_bytes == 0);
918 
919 			dio->boundary = buffer_boundary(map_bh);
920 			ret = submit_page_section(dio, page, offset_in_page,
921 				this_chunk_bytes, dio->next_block_for_io);
922 			if (ret) {
923 				page_cache_release(page);
924 				goto out;
925 			}
926 			dio->next_block_for_io += this_chunk_blocks;
927 
928 			dio->block_in_file += this_chunk_blocks;
929 			block_in_page += this_chunk_blocks;
930 			dio->blocks_available -= this_chunk_blocks;
931 next_block:
932 			BUG_ON(dio->block_in_file > dio->final_block_in_request);
933 			if (dio->block_in_file == dio->final_block_in_request)
934 				break;
935 		}
936 
937 		/* Drop the ref which was taken in get_user_pages() */
938 		page_cache_release(page);
939 		block_in_page = 0;
940 	}
941 out:
942 	return ret;
943 }
944 
945 /*
946  * Releases both i_mutex and i_alloc_sem
947  */
948 static ssize_t
949 direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode,
950 	const struct iovec *iov, loff_t offset, unsigned long nr_segs,
951 	unsigned blkbits, get_block_t get_block, dio_iodone_t end_io,
952 	struct dio *dio)
953 {
954 	unsigned long user_addr;
955 	int seg;
956 	ssize_t ret = 0;
957 	ssize_t ret2;
958 	size_t bytes;
959 
960 	dio->bio = NULL;
961 	dio->inode = inode;
962 	dio->rw = rw;
963 	dio->blkbits = blkbits;
964 	dio->blkfactor = inode->i_blkbits - blkbits;
965 	dio->start_zero_done = 0;
966 	dio->size = 0;
967 	dio->block_in_file = offset >> blkbits;
968 	dio->blocks_available = 0;
969 	dio->cur_page = NULL;
970 
971 	dio->boundary = 0;
972 	dio->reap_counter = 0;
973 	dio->get_block = get_block;
974 	dio->end_io = end_io;
975 	dio->map_bh.b_private = NULL;
976 	dio->final_block_in_bio = -1;
977 	dio->next_block_for_io = -1;
978 
979 	dio->page_errors = 0;
980 	dio->io_error = 0;
981 	dio->result = 0;
982 	dio->iocb = iocb;
983 	dio->i_size = i_size_read(inode);
984 
985 	/*
986 	 * BIO completion state.
987 	 *
988 	 * ->bio_count starts out at one, and we decrement it to zero after all
989 	 * BIOs are submitted.  This to avoid the situation where a really fast
990 	 * (or synchronous) device could take the count to zero while we're
991 	 * still submitting BIOs.
992 	 */
993 	dio->bio_count = 1;
994 	dio->bios_in_flight = 0;
995 	spin_lock_init(&dio->bio_lock);
996 	dio->bio_list = NULL;
997 	dio->waiter = NULL;
998 
999 	/*
1000 	 * In case of non-aligned buffers, we may need 2 more
1001 	 * pages since we need to zero out first and last block.
1002 	 */
1003 	if (unlikely(dio->blkfactor))
1004 		dio->pages_in_io = 2;
1005 	else
1006 		dio->pages_in_io = 0;
1007 
1008 	for (seg = 0; seg < nr_segs; seg++) {
1009 		user_addr = (unsigned long)iov[seg].iov_base;
1010 		dio->pages_in_io +=
1011 			((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE
1012 				- user_addr/PAGE_SIZE);
1013 	}
1014 
1015 	for (seg = 0; seg < nr_segs; seg++) {
1016 		user_addr = (unsigned long)iov[seg].iov_base;
1017 		dio->size += bytes = iov[seg].iov_len;
1018 
1019 		/* Index into the first page of the first block */
1020 		dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
1021 		dio->final_block_in_request = dio->block_in_file +
1022 						(bytes >> blkbits);
1023 		/* Page fetching state */
1024 		dio->head = 0;
1025 		dio->tail = 0;
1026 		dio->curr_page = 0;
1027 
1028 		dio->total_pages = 0;
1029 		if (user_addr & (PAGE_SIZE-1)) {
1030 			dio->total_pages++;
1031 			bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
1032 		}
1033 		dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1034 		dio->curr_user_address = user_addr;
1035 
1036 		ret = do_direct_IO(dio);
1037 
1038 		dio->result += iov[seg].iov_len -
1039 			((dio->final_block_in_request - dio->block_in_file) <<
1040 					blkbits);
1041 
1042 		if (ret) {
1043 			dio_cleanup(dio);
1044 			break;
1045 		}
1046 	} /* end iovec loop */
1047 
1048 	if (ret == -ENOTBLK && (rw & WRITE)) {
1049 		/*
1050 		 * The remaining part of the request will be
1051 		 * be handled by buffered I/O when we return
1052 		 */
1053 		ret = 0;
1054 	}
1055 	/*
1056 	 * There may be some unwritten disk at the end of a part-written
1057 	 * fs-block-sized block.  Go zero that now.
1058 	 */
1059 	dio_zero_block(dio, 1);
1060 
1061 	if (dio->cur_page) {
1062 		ret2 = dio_send_cur_page(dio);
1063 		if (ret == 0)
1064 			ret = ret2;
1065 		page_cache_release(dio->cur_page);
1066 		dio->cur_page = NULL;
1067 	}
1068 	if (dio->bio)
1069 		dio_bio_submit(dio);
1070 
1071 	/*
1072 	 * It is possible that, we return short IO due to end of file.
1073 	 * In that case, we need to release all the pages we got hold on.
1074 	 */
1075 	dio_cleanup(dio);
1076 
1077 	/*
1078 	 * All block lookups have been performed. For READ requests
1079 	 * we can let i_mutex go now that its achieved its purpose
1080 	 * of protecting us from looking up uninitialized blocks.
1081 	 */
1082 	if ((rw == READ) && (dio->lock_type == DIO_LOCKING))
1083 		mutex_unlock(&dio->inode->i_mutex);
1084 
1085 	/*
1086 	 * OK, all BIOs are submitted, so we can decrement bio_count to truly
1087 	 * reflect the number of to-be-processed BIOs.
1088 	 */
1089 	if (dio->is_async) {
1090 		int should_wait = 0;
1091 
1092 		if (dio->result < dio->size && (rw & WRITE)) {
1093 			dio->waiter = current;
1094 			should_wait = 1;
1095 		}
1096 		if (ret == 0)
1097 			ret = dio->result;
1098 		finished_one_bio(dio);		/* This can free the dio */
1099 		blk_run_address_space(inode->i_mapping);
1100 		if (should_wait) {
1101 			unsigned long flags;
1102 			/*
1103 			 * Wait for already issued I/O to drain out and
1104 			 * release its references to user-space pages
1105 			 * before returning to fallback on buffered I/O
1106 			 */
1107 
1108 			spin_lock_irqsave(&dio->bio_lock, flags);
1109 			set_current_state(TASK_UNINTERRUPTIBLE);
1110 			while (dio->bio_count) {
1111 				spin_unlock_irqrestore(&dio->bio_lock, flags);
1112 				io_schedule();
1113 				spin_lock_irqsave(&dio->bio_lock, flags);
1114 				set_current_state(TASK_UNINTERRUPTIBLE);
1115 			}
1116 			spin_unlock_irqrestore(&dio->bio_lock, flags);
1117 			set_current_state(TASK_RUNNING);
1118 			kfree(dio);
1119 		}
1120 	} else {
1121 		ssize_t transferred = 0;
1122 
1123 		finished_one_bio(dio);
1124 		ret2 = dio_await_completion(dio);
1125 		if (ret == 0)
1126 			ret = ret2;
1127 		if (ret == 0)
1128 			ret = dio->page_errors;
1129 		if (dio->result) {
1130 			loff_t i_size = i_size_read(inode);
1131 
1132 			transferred = dio->result;
1133 			/*
1134 			 * Adjust the return value if the read crossed a
1135 			 * non-block-aligned EOF.
1136 			 */
1137 			if (rw == READ && (offset + transferred > i_size))
1138 				transferred = i_size - offset;
1139 		}
1140 		dio_complete(dio, offset, transferred);
1141 		if (ret == 0)
1142 			ret = transferred;
1143 
1144 		/* We could have also come here on an AIO file extend */
1145 		if (!is_sync_kiocb(iocb) && (rw & WRITE) &&
1146 		    ret >= 0 && dio->result == dio->size)
1147 			/*
1148 			 * For AIO writes where we have completed the
1149 			 * i/o, we have to mark the the aio complete.
1150 			 */
1151 			aio_complete(iocb, ret, 0);
1152 		kfree(dio);
1153 	}
1154 	return ret;
1155 }
1156 
1157 /*
1158  * This is a library function for use by filesystem drivers.
1159  * The locking rules are governed by the dio_lock_type parameter.
1160  *
1161  * DIO_NO_LOCKING (no locking, for raw block device access)
1162  * For writes, i_mutex is not held on entry; it is never taken.
1163  *
1164  * DIO_LOCKING (simple locking for regular files)
1165  * For writes we are called under i_mutex and return with i_mutex held, even
1166  * though it is internally dropped.
1167  * For reads, i_mutex is not held on entry, but it is taken and dropped before
1168  * returning.
1169  *
1170  * DIO_OWN_LOCKING (filesystem provides synchronisation and handling of
1171  *	uninitialised data, allowing parallel direct readers and writers)
1172  * For writes we are called without i_mutex, return without it, never touch it.
1173  * For reads we are called under i_mutex and return with i_mutex held, even
1174  * though it may be internally dropped.
1175  *
1176  * Additional i_alloc_sem locking requirements described inline below.
1177  */
1178 ssize_t
1179 __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1180 	struct block_device *bdev, const struct iovec *iov, loff_t offset,
1181 	unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1182 	int dio_lock_type)
1183 {
1184 	int seg;
1185 	size_t size;
1186 	unsigned long addr;
1187 	unsigned blkbits = inode->i_blkbits;
1188 	unsigned bdev_blkbits = 0;
1189 	unsigned blocksize_mask = (1 << blkbits) - 1;
1190 	ssize_t retval = -EINVAL;
1191 	loff_t end = offset;
1192 	struct dio *dio;
1193 	int release_i_mutex = 0;
1194 	int acquire_i_mutex = 0;
1195 
1196 	if (rw & WRITE)
1197 		rw = WRITE_SYNC;
1198 
1199 	if (bdev)
1200 		bdev_blkbits = blksize_bits(bdev_hardsect_size(bdev));
1201 
1202 	if (offset & blocksize_mask) {
1203 		if (bdev)
1204 			 blkbits = bdev_blkbits;
1205 		blocksize_mask = (1 << blkbits) - 1;
1206 		if (offset & blocksize_mask)
1207 			goto out;
1208 	}
1209 
1210 	/* Check the memory alignment.  Blocks cannot straddle pages */
1211 	for (seg = 0; seg < nr_segs; seg++) {
1212 		addr = (unsigned long)iov[seg].iov_base;
1213 		size = iov[seg].iov_len;
1214 		end += size;
1215 		if ((addr & blocksize_mask) || (size & blocksize_mask))  {
1216 			if (bdev)
1217 				 blkbits = bdev_blkbits;
1218 			blocksize_mask = (1 << blkbits) - 1;
1219 			if ((addr & blocksize_mask) || (size & blocksize_mask))
1220 				goto out;
1221 		}
1222 	}
1223 
1224 	dio = kmalloc(sizeof(*dio), GFP_KERNEL);
1225 	retval = -ENOMEM;
1226 	if (!dio)
1227 		goto out;
1228 
1229 	/*
1230 	 * For block device access DIO_NO_LOCKING is used,
1231 	 *	neither readers nor writers do any locking at all
1232 	 * For regular files using DIO_LOCKING,
1233 	 *	readers need to grab i_mutex and i_alloc_sem
1234 	 *	writers need to grab i_alloc_sem only (i_mutex is already held)
1235 	 * For regular files using DIO_OWN_LOCKING,
1236 	 *	neither readers nor writers take any locks here
1237 	 */
1238 	dio->lock_type = dio_lock_type;
1239 	if (dio_lock_type != DIO_NO_LOCKING) {
1240 		/* watch out for a 0 len io from a tricksy fs */
1241 		if (rw == READ && end > offset) {
1242 			struct address_space *mapping;
1243 
1244 			mapping = iocb->ki_filp->f_mapping;
1245 			if (dio_lock_type != DIO_OWN_LOCKING) {
1246 				mutex_lock(&inode->i_mutex);
1247 				release_i_mutex = 1;
1248 			}
1249 
1250 			retval = filemap_write_and_wait_range(mapping, offset,
1251 							      end - 1);
1252 			if (retval) {
1253 				kfree(dio);
1254 				goto out;
1255 			}
1256 
1257 			if (dio_lock_type == DIO_OWN_LOCKING) {
1258 				mutex_unlock(&inode->i_mutex);
1259 				acquire_i_mutex = 1;
1260 			}
1261 		}
1262 
1263 		if (dio_lock_type == DIO_LOCKING)
1264 			down_read(&inode->i_alloc_sem);
1265 	}
1266 
1267 	/*
1268 	 * For file extending writes updating i_size before data
1269 	 * writeouts complete can expose uninitialized blocks. So
1270 	 * even for AIO, we need to wait for i/o to complete before
1271 	 * returning in this case.
1272 	 */
1273 	dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) &&
1274 		(end > i_size_read(inode)));
1275 
1276 	retval = direct_io_worker(rw, iocb, inode, iov, offset,
1277 				nr_segs, blkbits, get_block, end_io, dio);
1278 
1279 	if (rw == READ && dio_lock_type == DIO_LOCKING)
1280 		release_i_mutex = 0;
1281 
1282 out:
1283 	if (release_i_mutex)
1284 		mutex_unlock(&inode->i_mutex);
1285 	else if (acquire_i_mutex)
1286 		mutex_lock(&inode->i_mutex);
1287 	return retval;
1288 }
1289 EXPORT_SYMBOL(__blockdev_direct_IO);
1290