1 /* 2 * fs/direct-io.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * O_DIRECT 7 * 8 * 04Jul2002 Andrew Morton 9 * Initial version 10 * 11Sep2002 janetinc@us.ibm.com 11 * added readv/writev support. 12 * 29Oct2002 Andrew Morton 13 * rewrote bio_add_page() support. 14 * 30Oct2002 pbadari@us.ibm.com 15 * added support for non-aligned IO. 16 * 06Nov2002 pbadari@us.ibm.com 17 * added asynchronous IO support. 18 * 21Jul2003 nathans@sgi.com 19 * added IO completion notifier. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/types.h> 25 #include <linux/fs.h> 26 #include <linux/mm.h> 27 #include <linux/slab.h> 28 #include <linux/highmem.h> 29 #include <linux/pagemap.h> 30 #include <linux/task_io_accounting_ops.h> 31 #include <linux/bio.h> 32 #include <linux/wait.h> 33 #include <linux/err.h> 34 #include <linux/blkdev.h> 35 #include <linux/buffer_head.h> 36 #include <linux/rwsem.h> 37 #include <linux/uio.h> 38 #include <asm/atomic.h> 39 40 /* 41 * How many user pages to map in one call to get_user_pages(). This determines 42 * the size of a structure on the stack. 43 */ 44 #define DIO_PAGES 64 45 46 /* 47 * This code generally works in units of "dio_blocks". A dio_block is 48 * somewhere between the hard sector size and the filesystem block size. it 49 * is determined on a per-invocation basis. When talking to the filesystem 50 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity 51 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted 52 * to bio_block quantities by shifting left by blkfactor. 53 * 54 * If blkfactor is zero then the user's request was aligned to the filesystem's 55 * blocksize. 56 */ 57 58 struct dio { 59 /* BIO submission state */ 60 struct bio *bio; /* bio under assembly */ 61 struct inode *inode; 62 int rw; 63 loff_t i_size; /* i_size when submitted */ 64 int flags; /* doesn't change */ 65 unsigned blkbits; /* doesn't change */ 66 unsigned blkfactor; /* When we're using an alignment which 67 is finer than the filesystem's soft 68 blocksize, this specifies how much 69 finer. blkfactor=2 means 1/4-block 70 alignment. Does not change */ 71 unsigned start_zero_done; /* flag: sub-blocksize zeroing has 72 been performed at the start of a 73 write */ 74 int pages_in_io; /* approximate total IO pages */ 75 size_t size; /* total request size (doesn't change)*/ 76 sector_t block_in_file; /* Current offset into the underlying 77 file in dio_block units. */ 78 unsigned blocks_available; /* At block_in_file. changes */ 79 sector_t final_block_in_request;/* doesn't change */ 80 unsigned first_block_in_page; /* doesn't change, Used only once */ 81 int boundary; /* prev block is at a boundary */ 82 int reap_counter; /* rate limit reaping */ 83 get_block_t *get_block; /* block mapping function */ 84 dio_iodone_t *end_io; /* IO completion function */ 85 dio_submit_t *submit_io; /* IO submition function */ 86 loff_t logical_offset_in_bio; /* current first logical block in bio */ 87 sector_t final_block_in_bio; /* current final block in bio + 1 */ 88 sector_t next_block_for_io; /* next block to be put under IO, 89 in dio_blocks units */ 90 struct buffer_head map_bh; /* last get_block() result */ 91 92 /* 93 * Deferred addition of a page to the dio. These variables are 94 * private to dio_send_cur_page(), submit_page_section() and 95 * dio_bio_add_page(). 96 */ 97 struct page *cur_page; /* The page */ 98 unsigned cur_page_offset; /* Offset into it, in bytes */ 99 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ 100 sector_t cur_page_block; /* Where it starts */ 101 loff_t cur_page_fs_offset; /* Offset in file */ 102 103 /* BIO completion state */ 104 spinlock_t bio_lock; /* protects BIO fields below */ 105 unsigned long refcount; /* direct_io_worker() and bios */ 106 struct bio *bio_list; /* singly linked via bi_private */ 107 struct task_struct *waiter; /* waiting task (NULL if none) */ 108 109 /* AIO related stuff */ 110 struct kiocb *iocb; /* kiocb */ 111 int is_async; /* is IO async ? */ 112 int io_error; /* IO error in completion path */ 113 ssize_t result; /* IO result */ 114 115 /* 116 * Page fetching state. These variables belong to dio_refill_pages(). 117 */ 118 int curr_page; /* changes */ 119 int total_pages; /* doesn't change */ 120 unsigned long curr_user_address;/* changes */ 121 122 /* 123 * Page queue. These variables belong to dio_refill_pages() and 124 * dio_get_page(). 125 */ 126 unsigned head; /* next page to process */ 127 unsigned tail; /* last valid page + 1 */ 128 int page_errors; /* errno from get_user_pages() */ 129 130 /* 131 * pages[] (and any fields placed after it) are not zeroed out at 132 * allocation time. Don't add new fields after pages[] unless you 133 * wish that they not be zeroed. 134 */ 135 struct page *pages[DIO_PAGES]; /* page buffer */ 136 }; 137 138 /* 139 * How many pages are in the queue? 140 */ 141 static inline unsigned dio_pages_present(struct dio *dio) 142 { 143 return dio->tail - dio->head; 144 } 145 146 /* 147 * Go grab and pin some userspace pages. Typically we'll get 64 at a time. 148 */ 149 static int dio_refill_pages(struct dio *dio) 150 { 151 int ret; 152 int nr_pages; 153 154 nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES); 155 ret = get_user_pages_fast( 156 dio->curr_user_address, /* Where from? */ 157 nr_pages, /* How many pages? */ 158 dio->rw == READ, /* Write to memory? */ 159 &dio->pages[0]); /* Put results here */ 160 161 if (ret < 0 && dio->blocks_available && (dio->rw & WRITE)) { 162 struct page *page = ZERO_PAGE(0); 163 /* 164 * A memory fault, but the filesystem has some outstanding 165 * mapped blocks. We need to use those blocks up to avoid 166 * leaking stale data in the file. 167 */ 168 if (dio->page_errors == 0) 169 dio->page_errors = ret; 170 page_cache_get(page); 171 dio->pages[0] = page; 172 dio->head = 0; 173 dio->tail = 1; 174 ret = 0; 175 goto out; 176 } 177 178 if (ret >= 0) { 179 dio->curr_user_address += ret * PAGE_SIZE; 180 dio->curr_page += ret; 181 dio->head = 0; 182 dio->tail = ret; 183 ret = 0; 184 } 185 out: 186 return ret; 187 } 188 189 /* 190 * Get another userspace page. Returns an ERR_PTR on error. Pages are 191 * buffered inside the dio so that we can call get_user_pages() against a 192 * decent number of pages, less frequently. To provide nicer use of the 193 * L1 cache. 194 */ 195 static struct page *dio_get_page(struct dio *dio) 196 { 197 if (dio_pages_present(dio) == 0) { 198 int ret; 199 200 ret = dio_refill_pages(dio); 201 if (ret) 202 return ERR_PTR(ret); 203 BUG_ON(dio_pages_present(dio) == 0); 204 } 205 return dio->pages[dio->head++]; 206 } 207 208 /** 209 * dio_complete() - called when all DIO BIO I/O has been completed 210 * @offset: the byte offset in the file of the completed operation 211 * 212 * This releases locks as dictated by the locking type, lets interested parties 213 * know that a DIO operation has completed, and calculates the resulting return 214 * code for the operation. 215 * 216 * It lets the filesystem know if it registered an interest earlier via 217 * get_block. Pass the private field of the map buffer_head so that 218 * filesystems can use it to hold additional state between get_block calls and 219 * dio_complete. 220 */ 221 static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret, bool is_async) 222 { 223 ssize_t transferred = 0; 224 225 /* 226 * AIO submission can race with bio completion to get here while 227 * expecting to have the last io completed by bio completion. 228 * In that case -EIOCBQUEUED is in fact not an error we want 229 * to preserve through this call. 230 */ 231 if (ret == -EIOCBQUEUED) 232 ret = 0; 233 234 if (dio->result) { 235 transferred = dio->result; 236 237 /* Check for short read case */ 238 if ((dio->rw == READ) && ((offset + transferred) > dio->i_size)) 239 transferred = dio->i_size - offset; 240 } 241 242 if (ret == 0) 243 ret = dio->page_errors; 244 if (ret == 0) 245 ret = dio->io_error; 246 if (ret == 0) 247 ret = transferred; 248 249 if (dio->end_io && dio->result) { 250 dio->end_io(dio->iocb, offset, transferred, 251 dio->map_bh.b_private, ret, is_async); 252 } else if (is_async) { 253 aio_complete(dio->iocb, ret, 0); 254 } 255 256 if (dio->flags & DIO_LOCKING) 257 /* lockdep: non-owner release */ 258 up_read_non_owner(&dio->inode->i_alloc_sem); 259 260 return ret; 261 } 262 263 static int dio_bio_complete(struct dio *dio, struct bio *bio); 264 /* 265 * Asynchronous IO callback. 266 */ 267 static void dio_bio_end_aio(struct bio *bio, int error) 268 { 269 struct dio *dio = bio->bi_private; 270 unsigned long remaining; 271 unsigned long flags; 272 273 /* cleanup the bio */ 274 dio_bio_complete(dio, bio); 275 276 spin_lock_irqsave(&dio->bio_lock, flags); 277 remaining = --dio->refcount; 278 if (remaining == 1 && dio->waiter) 279 wake_up_process(dio->waiter); 280 spin_unlock_irqrestore(&dio->bio_lock, flags); 281 282 if (remaining == 0) { 283 dio_complete(dio, dio->iocb->ki_pos, 0, true); 284 kfree(dio); 285 } 286 } 287 288 /* 289 * The BIO completion handler simply queues the BIO up for the process-context 290 * handler. 291 * 292 * During I/O bi_private points at the dio. After I/O, bi_private is used to 293 * implement a singly-linked list of completed BIOs, at dio->bio_list. 294 */ 295 static void dio_bio_end_io(struct bio *bio, int error) 296 { 297 struct dio *dio = bio->bi_private; 298 unsigned long flags; 299 300 spin_lock_irqsave(&dio->bio_lock, flags); 301 bio->bi_private = dio->bio_list; 302 dio->bio_list = bio; 303 if (--dio->refcount == 1 && dio->waiter) 304 wake_up_process(dio->waiter); 305 spin_unlock_irqrestore(&dio->bio_lock, flags); 306 } 307 308 /** 309 * dio_end_io - handle the end io action for the given bio 310 * @bio: The direct io bio thats being completed 311 * @error: Error if there was one 312 * 313 * This is meant to be called by any filesystem that uses their own dio_submit_t 314 * so that the DIO specific endio actions are dealt with after the filesystem 315 * has done it's completion work. 316 */ 317 void dio_end_io(struct bio *bio, int error) 318 { 319 struct dio *dio = bio->bi_private; 320 321 if (dio->is_async) 322 dio_bio_end_aio(bio, error); 323 else 324 dio_bio_end_io(bio, error); 325 } 326 EXPORT_SYMBOL_GPL(dio_end_io); 327 328 static void 329 dio_bio_alloc(struct dio *dio, struct block_device *bdev, 330 sector_t first_sector, int nr_vecs) 331 { 332 struct bio *bio; 333 334 /* 335 * bio_alloc() is guaranteed to return a bio when called with 336 * __GFP_WAIT and we request a valid number of vectors. 337 */ 338 bio = bio_alloc(GFP_KERNEL, nr_vecs); 339 340 bio->bi_bdev = bdev; 341 bio->bi_sector = first_sector; 342 if (dio->is_async) 343 bio->bi_end_io = dio_bio_end_aio; 344 else 345 bio->bi_end_io = dio_bio_end_io; 346 347 dio->bio = bio; 348 dio->logical_offset_in_bio = dio->cur_page_fs_offset; 349 } 350 351 /* 352 * In the AIO read case we speculatively dirty the pages before starting IO. 353 * During IO completion, any of these pages which happen to have been written 354 * back will be redirtied by bio_check_pages_dirty(). 355 * 356 * bios hold a dio reference between submit_bio and ->end_io. 357 */ 358 static void dio_bio_submit(struct dio *dio) 359 { 360 struct bio *bio = dio->bio; 361 unsigned long flags; 362 363 bio->bi_private = dio; 364 365 spin_lock_irqsave(&dio->bio_lock, flags); 366 dio->refcount++; 367 spin_unlock_irqrestore(&dio->bio_lock, flags); 368 369 if (dio->is_async && dio->rw == READ) 370 bio_set_pages_dirty(bio); 371 372 if (dio->submit_io) 373 dio->submit_io(dio->rw, bio, dio->inode, 374 dio->logical_offset_in_bio); 375 else 376 submit_bio(dio->rw, bio); 377 378 dio->bio = NULL; 379 dio->boundary = 0; 380 dio->logical_offset_in_bio = 0; 381 } 382 383 /* 384 * Release any resources in case of a failure 385 */ 386 static void dio_cleanup(struct dio *dio) 387 { 388 while (dio_pages_present(dio)) 389 page_cache_release(dio_get_page(dio)); 390 } 391 392 /* 393 * Wait for the next BIO to complete. Remove it and return it. NULL is 394 * returned once all BIOs have been completed. This must only be called once 395 * all bios have been issued so that dio->refcount can only decrease. This 396 * requires that that the caller hold a reference on the dio. 397 */ 398 static struct bio *dio_await_one(struct dio *dio) 399 { 400 unsigned long flags; 401 struct bio *bio = NULL; 402 403 spin_lock_irqsave(&dio->bio_lock, flags); 404 405 /* 406 * Wait as long as the list is empty and there are bios in flight. bio 407 * completion drops the count, maybe adds to the list, and wakes while 408 * holding the bio_lock so we don't need set_current_state()'s barrier 409 * and can call it after testing our condition. 410 */ 411 while (dio->refcount > 1 && dio->bio_list == NULL) { 412 __set_current_state(TASK_UNINTERRUPTIBLE); 413 dio->waiter = current; 414 spin_unlock_irqrestore(&dio->bio_lock, flags); 415 io_schedule(); 416 /* wake up sets us TASK_RUNNING */ 417 spin_lock_irqsave(&dio->bio_lock, flags); 418 dio->waiter = NULL; 419 } 420 if (dio->bio_list) { 421 bio = dio->bio_list; 422 dio->bio_list = bio->bi_private; 423 } 424 spin_unlock_irqrestore(&dio->bio_lock, flags); 425 return bio; 426 } 427 428 /* 429 * Process one completed BIO. No locks are held. 430 */ 431 static int dio_bio_complete(struct dio *dio, struct bio *bio) 432 { 433 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 434 struct bio_vec *bvec = bio->bi_io_vec; 435 int page_no; 436 437 if (!uptodate) 438 dio->io_error = -EIO; 439 440 if (dio->is_async && dio->rw == READ) { 441 bio_check_pages_dirty(bio); /* transfers ownership */ 442 } else { 443 for (page_no = 0; page_no < bio->bi_vcnt; page_no++) { 444 struct page *page = bvec[page_no].bv_page; 445 446 if (dio->rw == READ && !PageCompound(page)) 447 set_page_dirty_lock(page); 448 page_cache_release(page); 449 } 450 bio_put(bio); 451 } 452 return uptodate ? 0 : -EIO; 453 } 454 455 /* 456 * Wait on and process all in-flight BIOs. This must only be called once 457 * all bios have been issued so that the refcount can only decrease. 458 * This just waits for all bios to make it through dio_bio_complete. IO 459 * errors are propagated through dio->io_error and should be propagated via 460 * dio_complete(). 461 */ 462 static void dio_await_completion(struct dio *dio) 463 { 464 struct bio *bio; 465 do { 466 bio = dio_await_one(dio); 467 if (bio) 468 dio_bio_complete(dio, bio); 469 } while (bio); 470 } 471 472 /* 473 * A really large O_DIRECT read or write can generate a lot of BIOs. So 474 * to keep the memory consumption sane we periodically reap any completed BIOs 475 * during the BIO generation phase. 476 * 477 * This also helps to limit the peak amount of pinned userspace memory. 478 */ 479 static int dio_bio_reap(struct dio *dio) 480 { 481 int ret = 0; 482 483 if (dio->reap_counter++ >= 64) { 484 while (dio->bio_list) { 485 unsigned long flags; 486 struct bio *bio; 487 int ret2; 488 489 spin_lock_irqsave(&dio->bio_lock, flags); 490 bio = dio->bio_list; 491 dio->bio_list = bio->bi_private; 492 spin_unlock_irqrestore(&dio->bio_lock, flags); 493 ret2 = dio_bio_complete(dio, bio); 494 if (ret == 0) 495 ret = ret2; 496 } 497 dio->reap_counter = 0; 498 } 499 return ret; 500 } 501 502 /* 503 * Call into the fs to map some more disk blocks. We record the current number 504 * of available blocks at dio->blocks_available. These are in units of the 505 * fs blocksize, (1 << inode->i_blkbits). 506 * 507 * The fs is allowed to map lots of blocks at once. If it wants to do that, 508 * it uses the passed inode-relative block number as the file offset, as usual. 509 * 510 * get_block() is passed the number of i_blkbits-sized blocks which direct_io 511 * has remaining to do. The fs should not map more than this number of blocks. 512 * 513 * If the fs has mapped a lot of blocks, it should populate bh->b_size to 514 * indicate how much contiguous disk space has been made available at 515 * bh->b_blocknr. 516 * 517 * If *any* of the mapped blocks are new, then the fs must set buffer_new(). 518 * This isn't very efficient... 519 * 520 * In the case of filesystem holes: the fs may return an arbitrarily-large 521 * hole by returning an appropriate value in b_size and by clearing 522 * buffer_mapped(). However the direct-io code will only process holes one 523 * block at a time - it will repeatedly call get_block() as it walks the hole. 524 */ 525 static int get_more_blocks(struct dio *dio) 526 { 527 int ret; 528 struct buffer_head *map_bh = &dio->map_bh; 529 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ 530 unsigned long fs_count; /* Number of filesystem-sized blocks */ 531 unsigned long dio_count;/* Number of dio_block-sized blocks */ 532 unsigned long blkmask; 533 int create; 534 535 /* 536 * If there was a memory error and we've overwritten all the 537 * mapped blocks then we can now return that memory error 538 */ 539 ret = dio->page_errors; 540 if (ret == 0) { 541 BUG_ON(dio->block_in_file >= dio->final_block_in_request); 542 fs_startblk = dio->block_in_file >> dio->blkfactor; 543 dio_count = dio->final_block_in_request - dio->block_in_file; 544 fs_count = dio_count >> dio->blkfactor; 545 blkmask = (1 << dio->blkfactor) - 1; 546 if (dio_count & blkmask) 547 fs_count++; 548 549 map_bh->b_state = 0; 550 map_bh->b_size = fs_count << dio->inode->i_blkbits; 551 552 /* 553 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we 554 * forbid block creations: only overwrites are permitted. 555 * We will return early to the caller once we see an 556 * unmapped buffer head returned, and the caller will fall 557 * back to buffered I/O. 558 * 559 * Otherwise the decision is left to the get_blocks method, 560 * which may decide to handle it or also return an unmapped 561 * buffer head. 562 */ 563 create = dio->rw & WRITE; 564 if (dio->flags & DIO_SKIP_HOLES) { 565 if (dio->block_in_file < (i_size_read(dio->inode) >> 566 dio->blkbits)) 567 create = 0; 568 } 569 570 ret = (*dio->get_block)(dio->inode, fs_startblk, 571 map_bh, create); 572 } 573 return ret; 574 } 575 576 /* 577 * There is no bio. Make one now. 578 */ 579 static int dio_new_bio(struct dio *dio, sector_t start_sector) 580 { 581 sector_t sector; 582 int ret, nr_pages; 583 584 ret = dio_bio_reap(dio); 585 if (ret) 586 goto out; 587 sector = start_sector << (dio->blkbits - 9); 588 nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev)); 589 nr_pages = min(nr_pages, BIO_MAX_PAGES); 590 BUG_ON(nr_pages <= 0); 591 dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages); 592 dio->boundary = 0; 593 out: 594 return ret; 595 } 596 597 /* 598 * Attempt to put the current chunk of 'cur_page' into the current BIO. If 599 * that was successful then update final_block_in_bio and take a ref against 600 * the just-added page. 601 * 602 * Return zero on success. Non-zero means the caller needs to start a new BIO. 603 */ 604 static int dio_bio_add_page(struct dio *dio) 605 { 606 int ret; 607 608 ret = bio_add_page(dio->bio, dio->cur_page, 609 dio->cur_page_len, dio->cur_page_offset); 610 if (ret == dio->cur_page_len) { 611 /* 612 * Decrement count only, if we are done with this page 613 */ 614 if ((dio->cur_page_len + dio->cur_page_offset) == PAGE_SIZE) 615 dio->pages_in_io--; 616 page_cache_get(dio->cur_page); 617 dio->final_block_in_bio = dio->cur_page_block + 618 (dio->cur_page_len >> dio->blkbits); 619 ret = 0; 620 } else { 621 ret = 1; 622 } 623 return ret; 624 } 625 626 /* 627 * Put cur_page under IO. The section of cur_page which is described by 628 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page 629 * starts on-disk at cur_page_block. 630 * 631 * We take a ref against the page here (on behalf of its presence in the bio). 632 * 633 * The caller of this function is responsible for removing cur_page from the 634 * dio, and for dropping the refcount which came from that presence. 635 */ 636 static int dio_send_cur_page(struct dio *dio) 637 { 638 int ret = 0; 639 640 if (dio->bio) { 641 loff_t cur_offset = dio->cur_page_fs_offset; 642 loff_t bio_next_offset = dio->logical_offset_in_bio + 643 dio->bio->bi_size; 644 645 /* 646 * See whether this new request is contiguous with the old. 647 * 648 * Btrfs cannot handle having logically non-contiguous requests 649 * submitted. For example if you have 650 * 651 * Logical: [0-4095][HOLE][8192-12287] 652 * Physical: [0-4095] [4096-8191] 653 * 654 * We cannot submit those pages together as one BIO. So if our 655 * current logical offset in the file does not equal what would 656 * be the next logical offset in the bio, submit the bio we 657 * have. 658 */ 659 if (dio->final_block_in_bio != dio->cur_page_block || 660 cur_offset != bio_next_offset) 661 dio_bio_submit(dio); 662 /* 663 * Submit now if the underlying fs is about to perform a 664 * metadata read 665 */ 666 else if (dio->boundary) 667 dio_bio_submit(dio); 668 } 669 670 if (dio->bio == NULL) { 671 ret = dio_new_bio(dio, dio->cur_page_block); 672 if (ret) 673 goto out; 674 } 675 676 if (dio_bio_add_page(dio) != 0) { 677 dio_bio_submit(dio); 678 ret = dio_new_bio(dio, dio->cur_page_block); 679 if (ret == 0) { 680 ret = dio_bio_add_page(dio); 681 BUG_ON(ret != 0); 682 } 683 } 684 out: 685 return ret; 686 } 687 688 /* 689 * An autonomous function to put a chunk of a page under deferred IO. 690 * 691 * The caller doesn't actually know (or care) whether this piece of page is in 692 * a BIO, or is under IO or whatever. We just take care of all possible 693 * situations here. The separation between the logic of do_direct_IO() and 694 * that of submit_page_section() is important for clarity. Please don't break. 695 * 696 * The chunk of page starts on-disk at blocknr. 697 * 698 * We perform deferred IO, by recording the last-submitted page inside our 699 * private part of the dio structure. If possible, we just expand the IO 700 * across that page here. 701 * 702 * If that doesn't work out then we put the old page into the bio and add this 703 * page to the dio instead. 704 */ 705 static int 706 submit_page_section(struct dio *dio, struct page *page, 707 unsigned offset, unsigned len, sector_t blocknr) 708 { 709 int ret = 0; 710 711 if (dio->rw & WRITE) { 712 /* 713 * Read accounting is performed in submit_bio() 714 */ 715 task_io_account_write(len); 716 } 717 718 /* 719 * Can we just grow the current page's presence in the dio? 720 */ 721 if ( (dio->cur_page == page) && 722 (dio->cur_page_offset + dio->cur_page_len == offset) && 723 (dio->cur_page_block + 724 (dio->cur_page_len >> dio->blkbits) == blocknr)) { 725 dio->cur_page_len += len; 726 727 /* 728 * If dio->boundary then we want to schedule the IO now to 729 * avoid metadata seeks. 730 */ 731 if (dio->boundary) { 732 ret = dio_send_cur_page(dio); 733 page_cache_release(dio->cur_page); 734 dio->cur_page = NULL; 735 } 736 goto out; 737 } 738 739 /* 740 * If there's a deferred page already there then send it. 741 */ 742 if (dio->cur_page) { 743 ret = dio_send_cur_page(dio); 744 page_cache_release(dio->cur_page); 745 dio->cur_page = NULL; 746 if (ret) 747 goto out; 748 } 749 750 page_cache_get(page); /* It is in dio */ 751 dio->cur_page = page; 752 dio->cur_page_offset = offset; 753 dio->cur_page_len = len; 754 dio->cur_page_block = blocknr; 755 dio->cur_page_fs_offset = dio->block_in_file << dio->blkbits; 756 out: 757 return ret; 758 } 759 760 /* 761 * Clean any dirty buffers in the blockdev mapping which alias newly-created 762 * file blocks. Only called for S_ISREG files - blockdevs do not set 763 * buffer_new 764 */ 765 static void clean_blockdev_aliases(struct dio *dio) 766 { 767 unsigned i; 768 unsigned nblocks; 769 770 nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits; 771 772 for (i = 0; i < nblocks; i++) { 773 unmap_underlying_metadata(dio->map_bh.b_bdev, 774 dio->map_bh.b_blocknr + i); 775 } 776 } 777 778 /* 779 * If we are not writing the entire block and get_block() allocated 780 * the block for us, we need to fill-in the unused portion of the 781 * block with zeros. This happens only if user-buffer, fileoffset or 782 * io length is not filesystem block-size multiple. 783 * 784 * `end' is zero if we're doing the start of the IO, 1 at the end of the 785 * IO. 786 */ 787 static void dio_zero_block(struct dio *dio, int end) 788 { 789 unsigned dio_blocks_per_fs_block; 790 unsigned this_chunk_blocks; /* In dio_blocks */ 791 unsigned this_chunk_bytes; 792 struct page *page; 793 794 dio->start_zero_done = 1; 795 if (!dio->blkfactor || !buffer_new(&dio->map_bh)) 796 return; 797 798 dio_blocks_per_fs_block = 1 << dio->blkfactor; 799 this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1); 800 801 if (!this_chunk_blocks) 802 return; 803 804 /* 805 * We need to zero out part of an fs block. It is either at the 806 * beginning or the end of the fs block. 807 */ 808 if (end) 809 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; 810 811 this_chunk_bytes = this_chunk_blocks << dio->blkbits; 812 813 page = ZERO_PAGE(0); 814 if (submit_page_section(dio, page, 0, this_chunk_bytes, 815 dio->next_block_for_io)) 816 return; 817 818 dio->next_block_for_io += this_chunk_blocks; 819 } 820 821 /* 822 * Walk the user pages, and the file, mapping blocks to disk and generating 823 * a sequence of (page,offset,len,block) mappings. These mappings are injected 824 * into submit_page_section(), which takes care of the next stage of submission 825 * 826 * Direct IO against a blockdev is different from a file. Because we can 827 * happily perform page-sized but 512-byte aligned IOs. It is important that 828 * blockdev IO be able to have fine alignment and large sizes. 829 * 830 * So what we do is to permit the ->get_block function to populate bh.b_size 831 * with the size of IO which is permitted at this offset and this i_blkbits. 832 * 833 * For best results, the blockdev should be set up with 512-byte i_blkbits and 834 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives 835 * fine alignment but still allows this function to work in PAGE_SIZE units. 836 */ 837 static int do_direct_IO(struct dio *dio) 838 { 839 const unsigned blkbits = dio->blkbits; 840 const unsigned blocks_per_page = PAGE_SIZE >> blkbits; 841 struct page *page; 842 unsigned block_in_page; 843 struct buffer_head *map_bh = &dio->map_bh; 844 int ret = 0; 845 846 /* The I/O can start at any block offset within the first page */ 847 block_in_page = dio->first_block_in_page; 848 849 while (dio->block_in_file < dio->final_block_in_request) { 850 page = dio_get_page(dio); 851 if (IS_ERR(page)) { 852 ret = PTR_ERR(page); 853 goto out; 854 } 855 856 while (block_in_page < blocks_per_page) { 857 unsigned offset_in_page = block_in_page << blkbits; 858 unsigned this_chunk_bytes; /* # of bytes mapped */ 859 unsigned this_chunk_blocks; /* # of blocks */ 860 unsigned u; 861 862 if (dio->blocks_available == 0) { 863 /* 864 * Need to go and map some more disk 865 */ 866 unsigned long blkmask; 867 unsigned long dio_remainder; 868 869 ret = get_more_blocks(dio); 870 if (ret) { 871 page_cache_release(page); 872 goto out; 873 } 874 if (!buffer_mapped(map_bh)) 875 goto do_holes; 876 877 dio->blocks_available = 878 map_bh->b_size >> dio->blkbits; 879 dio->next_block_for_io = 880 map_bh->b_blocknr << dio->blkfactor; 881 if (buffer_new(map_bh)) 882 clean_blockdev_aliases(dio); 883 884 if (!dio->blkfactor) 885 goto do_holes; 886 887 blkmask = (1 << dio->blkfactor) - 1; 888 dio_remainder = (dio->block_in_file & blkmask); 889 890 /* 891 * If we are at the start of IO and that IO 892 * starts partway into a fs-block, 893 * dio_remainder will be non-zero. If the IO 894 * is a read then we can simply advance the IO 895 * cursor to the first block which is to be 896 * read. But if the IO is a write and the 897 * block was newly allocated we cannot do that; 898 * the start of the fs block must be zeroed out 899 * on-disk 900 */ 901 if (!buffer_new(map_bh)) 902 dio->next_block_for_io += dio_remainder; 903 dio->blocks_available -= dio_remainder; 904 } 905 do_holes: 906 /* Handle holes */ 907 if (!buffer_mapped(map_bh)) { 908 loff_t i_size_aligned; 909 910 /* AKPM: eargh, -ENOTBLK is a hack */ 911 if (dio->rw & WRITE) { 912 page_cache_release(page); 913 return -ENOTBLK; 914 } 915 916 /* 917 * Be sure to account for a partial block as the 918 * last block in the file 919 */ 920 i_size_aligned = ALIGN(i_size_read(dio->inode), 921 1 << blkbits); 922 if (dio->block_in_file >= 923 i_size_aligned >> blkbits) { 924 /* We hit eof */ 925 page_cache_release(page); 926 goto out; 927 } 928 zero_user(page, block_in_page << blkbits, 929 1 << blkbits); 930 dio->block_in_file++; 931 block_in_page++; 932 goto next_block; 933 } 934 935 /* 936 * If we're performing IO which has an alignment which 937 * is finer than the underlying fs, go check to see if 938 * we must zero out the start of this block. 939 */ 940 if (unlikely(dio->blkfactor && !dio->start_zero_done)) 941 dio_zero_block(dio, 0); 942 943 /* 944 * Work out, in this_chunk_blocks, how much disk we 945 * can add to this page 946 */ 947 this_chunk_blocks = dio->blocks_available; 948 u = (PAGE_SIZE - offset_in_page) >> blkbits; 949 if (this_chunk_blocks > u) 950 this_chunk_blocks = u; 951 u = dio->final_block_in_request - dio->block_in_file; 952 if (this_chunk_blocks > u) 953 this_chunk_blocks = u; 954 this_chunk_bytes = this_chunk_blocks << blkbits; 955 BUG_ON(this_chunk_bytes == 0); 956 957 dio->boundary = buffer_boundary(map_bh); 958 ret = submit_page_section(dio, page, offset_in_page, 959 this_chunk_bytes, dio->next_block_for_io); 960 if (ret) { 961 page_cache_release(page); 962 goto out; 963 } 964 dio->next_block_for_io += this_chunk_blocks; 965 966 dio->block_in_file += this_chunk_blocks; 967 block_in_page += this_chunk_blocks; 968 dio->blocks_available -= this_chunk_blocks; 969 next_block: 970 BUG_ON(dio->block_in_file > dio->final_block_in_request); 971 if (dio->block_in_file == dio->final_block_in_request) 972 break; 973 } 974 975 /* Drop the ref which was taken in get_user_pages() */ 976 page_cache_release(page); 977 block_in_page = 0; 978 } 979 out: 980 return ret; 981 } 982 983 /* 984 * Releases both i_mutex and i_alloc_sem 985 */ 986 static ssize_t 987 direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode, 988 const struct iovec *iov, loff_t offset, unsigned long nr_segs, 989 unsigned blkbits, get_block_t get_block, dio_iodone_t end_io, 990 dio_submit_t submit_io, struct dio *dio) 991 { 992 unsigned long user_addr; 993 unsigned long flags; 994 int seg; 995 ssize_t ret = 0; 996 ssize_t ret2; 997 size_t bytes; 998 999 dio->inode = inode; 1000 dio->rw = rw; 1001 dio->blkbits = blkbits; 1002 dio->blkfactor = inode->i_blkbits - blkbits; 1003 dio->block_in_file = offset >> blkbits; 1004 1005 dio->get_block = get_block; 1006 dio->end_io = end_io; 1007 dio->submit_io = submit_io; 1008 dio->final_block_in_bio = -1; 1009 dio->next_block_for_io = -1; 1010 1011 dio->iocb = iocb; 1012 dio->i_size = i_size_read(inode); 1013 1014 spin_lock_init(&dio->bio_lock); 1015 dio->refcount = 1; 1016 1017 /* 1018 * In case of non-aligned buffers, we may need 2 more 1019 * pages since we need to zero out first and last block. 1020 */ 1021 if (unlikely(dio->blkfactor)) 1022 dio->pages_in_io = 2; 1023 1024 for (seg = 0; seg < nr_segs; seg++) { 1025 user_addr = (unsigned long)iov[seg].iov_base; 1026 dio->pages_in_io += 1027 ((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE 1028 - user_addr/PAGE_SIZE); 1029 } 1030 1031 for (seg = 0; seg < nr_segs; seg++) { 1032 user_addr = (unsigned long)iov[seg].iov_base; 1033 dio->size += bytes = iov[seg].iov_len; 1034 1035 /* Index into the first page of the first block */ 1036 dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits; 1037 dio->final_block_in_request = dio->block_in_file + 1038 (bytes >> blkbits); 1039 /* Page fetching state */ 1040 dio->head = 0; 1041 dio->tail = 0; 1042 dio->curr_page = 0; 1043 1044 dio->total_pages = 0; 1045 if (user_addr & (PAGE_SIZE-1)) { 1046 dio->total_pages++; 1047 bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1)); 1048 } 1049 dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE; 1050 dio->curr_user_address = user_addr; 1051 1052 ret = do_direct_IO(dio); 1053 1054 dio->result += iov[seg].iov_len - 1055 ((dio->final_block_in_request - dio->block_in_file) << 1056 blkbits); 1057 1058 if (ret) { 1059 dio_cleanup(dio); 1060 break; 1061 } 1062 } /* end iovec loop */ 1063 1064 if (ret == -ENOTBLK) { 1065 /* 1066 * The remaining part of the request will be 1067 * be handled by buffered I/O when we return 1068 */ 1069 ret = 0; 1070 } 1071 /* 1072 * There may be some unwritten disk at the end of a part-written 1073 * fs-block-sized block. Go zero that now. 1074 */ 1075 dio_zero_block(dio, 1); 1076 1077 if (dio->cur_page) { 1078 ret2 = dio_send_cur_page(dio); 1079 if (ret == 0) 1080 ret = ret2; 1081 page_cache_release(dio->cur_page); 1082 dio->cur_page = NULL; 1083 } 1084 if (dio->bio) 1085 dio_bio_submit(dio); 1086 1087 /* 1088 * It is possible that, we return short IO due to end of file. 1089 * In that case, we need to release all the pages we got hold on. 1090 */ 1091 dio_cleanup(dio); 1092 1093 /* 1094 * All block lookups have been performed. For READ requests 1095 * we can let i_mutex go now that its achieved its purpose 1096 * of protecting us from looking up uninitialized blocks. 1097 */ 1098 if (rw == READ && (dio->flags & DIO_LOCKING)) 1099 mutex_unlock(&dio->inode->i_mutex); 1100 1101 /* 1102 * The only time we want to leave bios in flight is when a successful 1103 * partial aio read or full aio write have been setup. In that case 1104 * bio completion will call aio_complete. The only time it's safe to 1105 * call aio_complete is when we return -EIOCBQUEUED, so we key on that. 1106 * This had *better* be the only place that raises -EIOCBQUEUED. 1107 */ 1108 BUG_ON(ret == -EIOCBQUEUED); 1109 if (dio->is_async && ret == 0 && dio->result && 1110 ((rw & READ) || (dio->result == dio->size))) 1111 ret = -EIOCBQUEUED; 1112 1113 if (ret != -EIOCBQUEUED) { 1114 /* All IO is now issued, send it on its way */ 1115 blk_run_address_space(inode->i_mapping); 1116 dio_await_completion(dio); 1117 } 1118 1119 /* 1120 * Sync will always be dropping the final ref and completing the 1121 * operation. AIO can if it was a broken operation described above or 1122 * in fact if all the bios race to complete before we get here. In 1123 * that case dio_complete() translates the EIOCBQUEUED into the proper 1124 * return code that the caller will hand to aio_complete(). 1125 * 1126 * This is managed by the bio_lock instead of being an atomic_t so that 1127 * completion paths can drop their ref and use the remaining count to 1128 * decide to wake the submission path atomically. 1129 */ 1130 spin_lock_irqsave(&dio->bio_lock, flags); 1131 ret2 = --dio->refcount; 1132 spin_unlock_irqrestore(&dio->bio_lock, flags); 1133 1134 if (ret2 == 0) { 1135 ret = dio_complete(dio, offset, ret, false); 1136 kfree(dio); 1137 } else 1138 BUG_ON(ret != -EIOCBQUEUED); 1139 1140 return ret; 1141 } 1142 1143 /* 1144 * This is a library function for use by filesystem drivers. 1145 * 1146 * The locking rules are governed by the flags parameter: 1147 * - if the flags value contains DIO_LOCKING we use a fancy locking 1148 * scheme for dumb filesystems. 1149 * For writes this function is called under i_mutex and returns with 1150 * i_mutex held, for reads, i_mutex is not held on entry, but it is 1151 * taken and dropped again before returning. 1152 * For reads and writes i_alloc_sem is taken in shared mode and released 1153 * on I/O completion (which may happen asynchronously after returning to 1154 * the caller). 1155 * 1156 * - if the flags value does NOT contain DIO_LOCKING we don't use any 1157 * internal locking but rather rely on the filesystem to synchronize 1158 * direct I/O reads/writes versus each other and truncate. 1159 * For reads and writes both i_mutex and i_alloc_sem are not held on 1160 * entry and are never taken. 1161 */ 1162 ssize_t 1163 __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode, 1164 struct block_device *bdev, const struct iovec *iov, loff_t offset, 1165 unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io, 1166 dio_submit_t submit_io, int flags) 1167 { 1168 int seg; 1169 size_t size; 1170 unsigned long addr; 1171 unsigned blkbits = inode->i_blkbits; 1172 unsigned bdev_blkbits = 0; 1173 unsigned blocksize_mask = (1 << blkbits) - 1; 1174 ssize_t retval = -EINVAL; 1175 loff_t end = offset; 1176 struct dio *dio; 1177 1178 if (rw & WRITE) 1179 rw = WRITE_ODIRECT_PLUG; 1180 1181 if (bdev) 1182 bdev_blkbits = blksize_bits(bdev_logical_block_size(bdev)); 1183 1184 if (offset & blocksize_mask) { 1185 if (bdev) 1186 blkbits = bdev_blkbits; 1187 blocksize_mask = (1 << blkbits) - 1; 1188 if (offset & blocksize_mask) 1189 goto out; 1190 } 1191 1192 /* Check the memory alignment. Blocks cannot straddle pages */ 1193 for (seg = 0; seg < nr_segs; seg++) { 1194 addr = (unsigned long)iov[seg].iov_base; 1195 size = iov[seg].iov_len; 1196 end += size; 1197 if ((addr & blocksize_mask) || (size & blocksize_mask)) { 1198 if (bdev) 1199 blkbits = bdev_blkbits; 1200 blocksize_mask = (1 << blkbits) - 1; 1201 if ((addr & blocksize_mask) || (size & blocksize_mask)) 1202 goto out; 1203 } 1204 } 1205 1206 dio = kmalloc(sizeof(*dio), GFP_KERNEL); 1207 retval = -ENOMEM; 1208 if (!dio) 1209 goto out; 1210 /* 1211 * Believe it or not, zeroing out the page array caused a .5% 1212 * performance regression in a database benchmark. So, we take 1213 * care to only zero out what's needed. 1214 */ 1215 memset(dio, 0, offsetof(struct dio, pages)); 1216 1217 dio->flags = flags; 1218 if (dio->flags & DIO_LOCKING) { 1219 /* watch out for a 0 len io from a tricksy fs */ 1220 if (rw == READ && end > offset) { 1221 struct address_space *mapping = 1222 iocb->ki_filp->f_mapping; 1223 1224 /* will be released by direct_io_worker */ 1225 mutex_lock(&inode->i_mutex); 1226 1227 retval = filemap_write_and_wait_range(mapping, offset, 1228 end - 1); 1229 if (retval) { 1230 mutex_unlock(&inode->i_mutex); 1231 kfree(dio); 1232 goto out; 1233 } 1234 } 1235 1236 /* 1237 * Will be released at I/O completion, possibly in a 1238 * different thread. 1239 */ 1240 down_read_non_owner(&inode->i_alloc_sem); 1241 } 1242 1243 /* 1244 * For file extending writes updating i_size before data 1245 * writeouts complete can expose uninitialized blocks. So 1246 * even for AIO, we need to wait for i/o to complete before 1247 * returning in this case. 1248 */ 1249 dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) && 1250 (end > i_size_read(inode))); 1251 1252 retval = direct_io_worker(rw, iocb, inode, iov, offset, 1253 nr_segs, blkbits, get_block, end_io, 1254 submit_io, dio); 1255 1256 out: 1257 return retval; 1258 } 1259 EXPORT_SYMBOL(__blockdev_direct_IO); 1260