1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/direct-io.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * O_DIRECT 8 * 9 * 04Jul2002 Andrew Morton 10 * Initial version 11 * 11Sep2002 janetinc@us.ibm.com 12 * added readv/writev support. 13 * 29Oct2002 Andrew Morton 14 * rewrote bio_add_page() support. 15 * 30Oct2002 pbadari@us.ibm.com 16 * added support for non-aligned IO. 17 * 06Nov2002 pbadari@us.ibm.com 18 * added asynchronous IO support. 19 * 21Jul2003 nathans@sgi.com 20 * added IO completion notifier. 21 */ 22 23 #include <linux/kernel.h> 24 #include <linux/module.h> 25 #include <linux/types.h> 26 #include <linux/fs.h> 27 #include <linux/mm.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/pagemap.h> 31 #include <linux/task_io_accounting_ops.h> 32 #include <linux/bio.h> 33 #include <linux/wait.h> 34 #include <linux/err.h> 35 #include <linux/blkdev.h> 36 #include <linux/buffer_head.h> 37 #include <linux/rwsem.h> 38 #include <linux/uio.h> 39 #include <linux/atomic.h> 40 #include <linux/prefetch.h> 41 42 #include "internal.h" 43 44 /* 45 * How many user pages to map in one call to get_user_pages(). This determines 46 * the size of a structure in the slab cache 47 */ 48 #define DIO_PAGES 64 49 50 /* 51 * Flags for dio_complete() 52 */ 53 #define DIO_COMPLETE_ASYNC 0x01 /* This is async IO */ 54 #define DIO_COMPLETE_INVALIDATE 0x02 /* Can invalidate pages */ 55 56 /* 57 * This code generally works in units of "dio_blocks". A dio_block is 58 * somewhere between the hard sector size and the filesystem block size. it 59 * is determined on a per-invocation basis. When talking to the filesystem 60 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity 61 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted 62 * to bio_block quantities by shifting left by blkfactor. 63 * 64 * If blkfactor is zero then the user's request was aligned to the filesystem's 65 * blocksize. 66 */ 67 68 /* dio_state only used in the submission path */ 69 70 struct dio_submit { 71 struct bio *bio; /* bio under assembly */ 72 unsigned blkbits; /* doesn't change */ 73 unsigned blkfactor; /* When we're using an alignment which 74 is finer than the filesystem's soft 75 blocksize, this specifies how much 76 finer. blkfactor=2 means 1/4-block 77 alignment. Does not change */ 78 unsigned start_zero_done; /* flag: sub-blocksize zeroing has 79 been performed at the start of a 80 write */ 81 int pages_in_io; /* approximate total IO pages */ 82 sector_t block_in_file; /* Current offset into the underlying 83 file in dio_block units. */ 84 unsigned blocks_available; /* At block_in_file. changes */ 85 int reap_counter; /* rate limit reaping */ 86 sector_t final_block_in_request;/* doesn't change */ 87 int boundary; /* prev block is at a boundary */ 88 get_block_t *get_block; /* block mapping function */ 89 dio_submit_t *submit_io; /* IO submition function */ 90 91 loff_t logical_offset_in_bio; /* current first logical block in bio */ 92 sector_t final_block_in_bio; /* current final block in bio + 1 */ 93 sector_t next_block_for_io; /* next block to be put under IO, 94 in dio_blocks units */ 95 96 /* 97 * Deferred addition of a page to the dio. These variables are 98 * private to dio_send_cur_page(), submit_page_section() and 99 * dio_bio_add_page(). 100 */ 101 struct page *cur_page; /* The page */ 102 unsigned cur_page_offset; /* Offset into it, in bytes */ 103 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ 104 sector_t cur_page_block; /* Where it starts */ 105 loff_t cur_page_fs_offset; /* Offset in file */ 106 107 struct iov_iter *iter; 108 /* 109 * Page queue. These variables belong to dio_refill_pages() and 110 * dio_get_page(). 111 */ 112 unsigned head; /* next page to process */ 113 unsigned tail; /* last valid page + 1 */ 114 size_t from, to; 115 }; 116 117 /* dio_state communicated between submission path and end_io */ 118 struct dio { 119 int flags; /* doesn't change */ 120 int op; 121 int op_flags; 122 struct gendisk *bio_disk; 123 struct inode *inode; 124 loff_t i_size; /* i_size when submitted */ 125 dio_iodone_t *end_io; /* IO completion function */ 126 127 void *private; /* copy from map_bh.b_private */ 128 129 /* BIO completion state */ 130 spinlock_t bio_lock; /* protects BIO fields below */ 131 int page_errors; /* errno from get_user_pages() */ 132 int is_async; /* is IO async ? */ 133 bool defer_completion; /* defer AIO completion to workqueue? */ 134 bool should_dirty; /* if pages should be dirtied */ 135 int io_error; /* IO error in completion path */ 136 unsigned long refcount; /* direct_io_worker() and bios */ 137 struct bio *bio_list; /* singly linked via bi_private */ 138 struct task_struct *waiter; /* waiting task (NULL if none) */ 139 140 /* AIO related stuff */ 141 struct kiocb *iocb; /* kiocb */ 142 ssize_t result; /* IO result */ 143 144 /* 145 * pages[] (and any fields placed after it) are not zeroed out at 146 * allocation time. Don't add new fields after pages[] unless you 147 * wish that they not be zeroed. 148 */ 149 union { 150 struct page *pages[DIO_PAGES]; /* page buffer */ 151 struct work_struct complete_work;/* deferred AIO completion */ 152 }; 153 } ____cacheline_aligned_in_smp; 154 155 static struct kmem_cache *dio_cache __read_mostly; 156 157 /* 158 * How many pages are in the queue? 159 */ 160 static inline unsigned dio_pages_present(struct dio_submit *sdio) 161 { 162 return sdio->tail - sdio->head; 163 } 164 165 /* 166 * Go grab and pin some userspace pages. Typically we'll get 64 at a time. 167 */ 168 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio) 169 { 170 ssize_t ret; 171 172 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES, 173 &sdio->from); 174 175 if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) { 176 struct page *page = ZERO_PAGE(0); 177 /* 178 * A memory fault, but the filesystem has some outstanding 179 * mapped blocks. We need to use those blocks up to avoid 180 * leaking stale data in the file. 181 */ 182 if (dio->page_errors == 0) 183 dio->page_errors = ret; 184 get_page(page); 185 dio->pages[0] = page; 186 sdio->head = 0; 187 sdio->tail = 1; 188 sdio->from = 0; 189 sdio->to = PAGE_SIZE; 190 return 0; 191 } 192 193 if (ret >= 0) { 194 iov_iter_advance(sdio->iter, ret); 195 ret += sdio->from; 196 sdio->head = 0; 197 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE; 198 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1; 199 return 0; 200 } 201 return ret; 202 } 203 204 /* 205 * Get another userspace page. Returns an ERR_PTR on error. Pages are 206 * buffered inside the dio so that we can call get_user_pages() against a 207 * decent number of pages, less frequently. To provide nicer use of the 208 * L1 cache. 209 */ 210 static inline struct page *dio_get_page(struct dio *dio, 211 struct dio_submit *sdio) 212 { 213 if (dio_pages_present(sdio) == 0) { 214 int ret; 215 216 ret = dio_refill_pages(dio, sdio); 217 if (ret) 218 return ERR_PTR(ret); 219 BUG_ON(dio_pages_present(sdio) == 0); 220 } 221 return dio->pages[sdio->head]; 222 } 223 224 /* 225 * dio_complete() - called when all DIO BIO I/O has been completed 226 * 227 * This drops i_dio_count, lets interested parties know that a DIO operation 228 * has completed, and calculates the resulting return code for the operation. 229 * 230 * It lets the filesystem know if it registered an interest earlier via 231 * get_block. Pass the private field of the map buffer_head so that 232 * filesystems can use it to hold additional state between get_block calls and 233 * dio_complete. 234 */ 235 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags) 236 { 237 loff_t offset = dio->iocb->ki_pos; 238 ssize_t transferred = 0; 239 int err; 240 241 /* 242 * AIO submission can race with bio completion to get here while 243 * expecting to have the last io completed by bio completion. 244 * In that case -EIOCBQUEUED is in fact not an error we want 245 * to preserve through this call. 246 */ 247 if (ret == -EIOCBQUEUED) 248 ret = 0; 249 250 if (dio->result) { 251 transferred = dio->result; 252 253 /* Check for short read case */ 254 if ((dio->op == REQ_OP_READ) && 255 ((offset + transferred) > dio->i_size)) 256 transferred = dio->i_size - offset; 257 /* ignore EFAULT if some IO has been done */ 258 if (unlikely(ret == -EFAULT) && transferred) 259 ret = 0; 260 } 261 262 if (ret == 0) 263 ret = dio->page_errors; 264 if (ret == 0) 265 ret = dio->io_error; 266 if (ret == 0) 267 ret = transferred; 268 269 if (dio->end_io) { 270 // XXX: ki_pos?? 271 err = dio->end_io(dio->iocb, offset, ret, dio->private); 272 if (err) 273 ret = err; 274 } 275 276 /* 277 * Try again to invalidate clean pages which might have been cached by 278 * non-direct readahead, or faulted in by get_user_pages() if the source 279 * of the write was an mmap'ed region of the file we're writing. Either 280 * one is a pretty crazy thing to do, so we don't support it 100%. If 281 * this invalidation fails, tough, the write still worked... 282 * 283 * And this page cache invalidation has to be after dio->end_io(), as 284 * some filesystems convert unwritten extents to real allocations in 285 * end_io() when necessary, otherwise a racing buffer read would cache 286 * zeros from unwritten extents. 287 */ 288 if (flags & DIO_COMPLETE_INVALIDATE && 289 ret > 0 && dio->op == REQ_OP_WRITE && 290 dio->inode->i_mapping->nrpages) { 291 err = invalidate_inode_pages2_range(dio->inode->i_mapping, 292 offset >> PAGE_SHIFT, 293 (offset + ret - 1) >> PAGE_SHIFT); 294 if (err) 295 dio_warn_stale_pagecache(dio->iocb->ki_filp); 296 } 297 298 inode_dio_end(dio->inode); 299 300 if (flags & DIO_COMPLETE_ASYNC) { 301 /* 302 * generic_write_sync expects ki_pos to have been updated 303 * already, but the submission path only does this for 304 * synchronous I/O. 305 */ 306 dio->iocb->ki_pos += transferred; 307 308 if (ret > 0 && dio->op == REQ_OP_WRITE) 309 ret = generic_write_sync(dio->iocb, ret); 310 dio->iocb->ki_complete(dio->iocb, ret); 311 } 312 313 kmem_cache_free(dio_cache, dio); 314 return ret; 315 } 316 317 static void dio_aio_complete_work(struct work_struct *work) 318 { 319 struct dio *dio = container_of(work, struct dio, complete_work); 320 321 dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE); 322 } 323 324 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio); 325 326 /* 327 * Asynchronous IO callback. 328 */ 329 static void dio_bio_end_aio(struct bio *bio) 330 { 331 struct dio *dio = bio->bi_private; 332 unsigned long remaining; 333 unsigned long flags; 334 bool defer_completion = false; 335 336 /* cleanup the bio */ 337 dio_bio_complete(dio, bio); 338 339 spin_lock_irqsave(&dio->bio_lock, flags); 340 remaining = --dio->refcount; 341 if (remaining == 1 && dio->waiter) 342 wake_up_process(dio->waiter); 343 spin_unlock_irqrestore(&dio->bio_lock, flags); 344 345 if (remaining == 0) { 346 /* 347 * Defer completion when defer_completion is set or 348 * when the inode has pages mapped and this is AIO write. 349 * We need to invalidate those pages because there is a 350 * chance they contain stale data in the case buffered IO 351 * went in between AIO submission and completion into the 352 * same region. 353 */ 354 if (dio->result) 355 defer_completion = dio->defer_completion || 356 (dio->op == REQ_OP_WRITE && 357 dio->inode->i_mapping->nrpages); 358 if (defer_completion) { 359 INIT_WORK(&dio->complete_work, dio_aio_complete_work); 360 queue_work(dio->inode->i_sb->s_dio_done_wq, 361 &dio->complete_work); 362 } else { 363 dio_complete(dio, 0, DIO_COMPLETE_ASYNC); 364 } 365 } 366 } 367 368 /* 369 * The BIO completion handler simply queues the BIO up for the process-context 370 * handler. 371 * 372 * During I/O bi_private points at the dio. After I/O, bi_private is used to 373 * implement a singly-linked list of completed BIOs, at dio->bio_list. 374 */ 375 static void dio_bio_end_io(struct bio *bio) 376 { 377 struct dio *dio = bio->bi_private; 378 unsigned long flags; 379 380 spin_lock_irqsave(&dio->bio_lock, flags); 381 bio->bi_private = dio->bio_list; 382 dio->bio_list = bio; 383 if (--dio->refcount == 1 && dio->waiter) 384 wake_up_process(dio->waiter); 385 spin_unlock_irqrestore(&dio->bio_lock, flags); 386 } 387 388 static inline void 389 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio, 390 struct block_device *bdev, 391 sector_t first_sector, int nr_vecs) 392 { 393 struct bio *bio; 394 395 /* 396 * bio_alloc() is guaranteed to return a bio when allowed to sleep and 397 * we request a valid number of vectors. 398 */ 399 bio = bio_alloc(bdev, nr_vecs, dio->op | dio->op_flags, GFP_KERNEL); 400 bio->bi_iter.bi_sector = first_sector; 401 if (dio->is_async) 402 bio->bi_end_io = dio_bio_end_aio; 403 else 404 bio->bi_end_io = dio_bio_end_io; 405 sdio->bio = bio; 406 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset; 407 } 408 409 /* 410 * In the AIO read case we speculatively dirty the pages before starting IO. 411 * During IO completion, any of these pages which happen to have been written 412 * back will be redirtied by bio_check_pages_dirty(). 413 * 414 * bios hold a dio reference between submit_bio and ->end_io. 415 */ 416 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio) 417 { 418 struct bio *bio = sdio->bio; 419 unsigned long flags; 420 421 bio->bi_private = dio; 422 /* don't account direct I/O as memory stall */ 423 bio_clear_flag(bio, BIO_WORKINGSET); 424 425 spin_lock_irqsave(&dio->bio_lock, flags); 426 dio->refcount++; 427 spin_unlock_irqrestore(&dio->bio_lock, flags); 428 429 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) 430 bio_set_pages_dirty(bio); 431 432 dio->bio_disk = bio->bi_bdev->bd_disk; 433 434 if (sdio->submit_io) 435 sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio); 436 else 437 submit_bio(bio); 438 439 sdio->bio = NULL; 440 sdio->boundary = 0; 441 sdio->logical_offset_in_bio = 0; 442 } 443 444 /* 445 * Release any resources in case of a failure 446 */ 447 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio) 448 { 449 while (sdio->head < sdio->tail) 450 put_page(dio->pages[sdio->head++]); 451 } 452 453 /* 454 * Wait for the next BIO to complete. Remove it and return it. NULL is 455 * returned once all BIOs have been completed. This must only be called once 456 * all bios have been issued so that dio->refcount can only decrease. This 457 * requires that the caller hold a reference on the dio. 458 */ 459 static struct bio *dio_await_one(struct dio *dio) 460 { 461 unsigned long flags; 462 struct bio *bio = NULL; 463 464 spin_lock_irqsave(&dio->bio_lock, flags); 465 466 /* 467 * Wait as long as the list is empty and there are bios in flight. bio 468 * completion drops the count, maybe adds to the list, and wakes while 469 * holding the bio_lock so we don't need set_current_state()'s barrier 470 * and can call it after testing our condition. 471 */ 472 while (dio->refcount > 1 && dio->bio_list == NULL) { 473 __set_current_state(TASK_UNINTERRUPTIBLE); 474 dio->waiter = current; 475 spin_unlock_irqrestore(&dio->bio_lock, flags); 476 blk_io_schedule(); 477 /* wake up sets us TASK_RUNNING */ 478 spin_lock_irqsave(&dio->bio_lock, flags); 479 dio->waiter = NULL; 480 } 481 if (dio->bio_list) { 482 bio = dio->bio_list; 483 dio->bio_list = bio->bi_private; 484 } 485 spin_unlock_irqrestore(&dio->bio_lock, flags); 486 return bio; 487 } 488 489 /* 490 * Process one completed BIO. No locks are held. 491 */ 492 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio) 493 { 494 blk_status_t err = bio->bi_status; 495 bool should_dirty = dio->op == REQ_OP_READ && dio->should_dirty; 496 497 if (err) { 498 if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT)) 499 dio->io_error = -EAGAIN; 500 else 501 dio->io_error = -EIO; 502 } 503 504 if (dio->is_async && should_dirty) { 505 bio_check_pages_dirty(bio); /* transfers ownership */ 506 } else { 507 bio_release_pages(bio, should_dirty); 508 bio_put(bio); 509 } 510 return err; 511 } 512 513 /* 514 * Wait on and process all in-flight BIOs. This must only be called once 515 * all bios have been issued so that the refcount can only decrease. 516 * This just waits for all bios to make it through dio_bio_complete. IO 517 * errors are propagated through dio->io_error and should be propagated via 518 * dio_complete(). 519 */ 520 static void dio_await_completion(struct dio *dio) 521 { 522 struct bio *bio; 523 do { 524 bio = dio_await_one(dio); 525 if (bio) 526 dio_bio_complete(dio, bio); 527 } while (bio); 528 } 529 530 /* 531 * A really large O_DIRECT read or write can generate a lot of BIOs. So 532 * to keep the memory consumption sane we periodically reap any completed BIOs 533 * during the BIO generation phase. 534 * 535 * This also helps to limit the peak amount of pinned userspace memory. 536 */ 537 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio) 538 { 539 int ret = 0; 540 541 if (sdio->reap_counter++ >= 64) { 542 while (dio->bio_list) { 543 unsigned long flags; 544 struct bio *bio; 545 int ret2; 546 547 spin_lock_irqsave(&dio->bio_lock, flags); 548 bio = dio->bio_list; 549 dio->bio_list = bio->bi_private; 550 spin_unlock_irqrestore(&dio->bio_lock, flags); 551 ret2 = blk_status_to_errno(dio_bio_complete(dio, bio)); 552 if (ret == 0) 553 ret = ret2; 554 } 555 sdio->reap_counter = 0; 556 } 557 return ret; 558 } 559 560 /* 561 * Create workqueue for deferred direct IO completions. We allocate the 562 * workqueue when it's first needed. This avoids creating workqueue for 563 * filesystems that don't need it and also allows us to create the workqueue 564 * late enough so the we can include s_id in the name of the workqueue. 565 */ 566 int sb_init_dio_done_wq(struct super_block *sb) 567 { 568 struct workqueue_struct *old; 569 struct workqueue_struct *wq = alloc_workqueue("dio/%s", 570 WQ_MEM_RECLAIM, 0, 571 sb->s_id); 572 if (!wq) 573 return -ENOMEM; 574 /* 575 * This has to be atomic as more DIOs can race to create the workqueue 576 */ 577 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq); 578 /* Someone created workqueue before us? Free ours... */ 579 if (old) 580 destroy_workqueue(wq); 581 return 0; 582 } 583 584 static int dio_set_defer_completion(struct dio *dio) 585 { 586 struct super_block *sb = dio->inode->i_sb; 587 588 if (dio->defer_completion) 589 return 0; 590 dio->defer_completion = true; 591 if (!sb->s_dio_done_wq) 592 return sb_init_dio_done_wq(sb); 593 return 0; 594 } 595 596 /* 597 * Call into the fs to map some more disk blocks. We record the current number 598 * of available blocks at sdio->blocks_available. These are in units of the 599 * fs blocksize, i_blocksize(inode). 600 * 601 * The fs is allowed to map lots of blocks at once. If it wants to do that, 602 * it uses the passed inode-relative block number as the file offset, as usual. 603 * 604 * get_block() is passed the number of i_blkbits-sized blocks which direct_io 605 * has remaining to do. The fs should not map more than this number of blocks. 606 * 607 * If the fs has mapped a lot of blocks, it should populate bh->b_size to 608 * indicate how much contiguous disk space has been made available at 609 * bh->b_blocknr. 610 * 611 * If *any* of the mapped blocks are new, then the fs must set buffer_new(). 612 * This isn't very efficient... 613 * 614 * In the case of filesystem holes: the fs may return an arbitrarily-large 615 * hole by returning an appropriate value in b_size and by clearing 616 * buffer_mapped(). However the direct-io code will only process holes one 617 * block at a time - it will repeatedly call get_block() as it walks the hole. 618 */ 619 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio, 620 struct buffer_head *map_bh) 621 { 622 int ret; 623 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ 624 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */ 625 unsigned long fs_count; /* Number of filesystem-sized blocks */ 626 int create; 627 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor; 628 loff_t i_size; 629 630 /* 631 * If there was a memory error and we've overwritten all the 632 * mapped blocks then we can now return that memory error 633 */ 634 ret = dio->page_errors; 635 if (ret == 0) { 636 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request); 637 fs_startblk = sdio->block_in_file >> sdio->blkfactor; 638 fs_endblk = (sdio->final_block_in_request - 1) >> 639 sdio->blkfactor; 640 fs_count = fs_endblk - fs_startblk + 1; 641 642 map_bh->b_state = 0; 643 map_bh->b_size = fs_count << i_blkbits; 644 645 /* 646 * For writes that could fill holes inside i_size on a 647 * DIO_SKIP_HOLES filesystem we forbid block creations: only 648 * overwrites are permitted. We will return early to the caller 649 * once we see an unmapped buffer head returned, and the caller 650 * will fall back to buffered I/O. 651 * 652 * Otherwise the decision is left to the get_blocks method, 653 * which may decide to handle it or also return an unmapped 654 * buffer head. 655 */ 656 create = dio->op == REQ_OP_WRITE; 657 if (dio->flags & DIO_SKIP_HOLES) { 658 i_size = i_size_read(dio->inode); 659 if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits) 660 create = 0; 661 } 662 663 ret = (*sdio->get_block)(dio->inode, fs_startblk, 664 map_bh, create); 665 666 /* Store for completion */ 667 dio->private = map_bh->b_private; 668 669 if (ret == 0 && buffer_defer_completion(map_bh)) 670 ret = dio_set_defer_completion(dio); 671 } 672 return ret; 673 } 674 675 /* 676 * There is no bio. Make one now. 677 */ 678 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio, 679 sector_t start_sector, struct buffer_head *map_bh) 680 { 681 sector_t sector; 682 int ret, nr_pages; 683 684 ret = dio_bio_reap(dio, sdio); 685 if (ret) 686 goto out; 687 sector = start_sector << (sdio->blkbits - 9); 688 nr_pages = bio_max_segs(sdio->pages_in_io); 689 BUG_ON(nr_pages <= 0); 690 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages); 691 sdio->boundary = 0; 692 out: 693 return ret; 694 } 695 696 /* 697 * Attempt to put the current chunk of 'cur_page' into the current BIO. If 698 * that was successful then update final_block_in_bio and take a ref against 699 * the just-added page. 700 * 701 * Return zero on success. Non-zero means the caller needs to start a new BIO. 702 */ 703 static inline int dio_bio_add_page(struct dio_submit *sdio) 704 { 705 int ret; 706 707 ret = bio_add_page(sdio->bio, sdio->cur_page, 708 sdio->cur_page_len, sdio->cur_page_offset); 709 if (ret == sdio->cur_page_len) { 710 /* 711 * Decrement count only, if we are done with this page 712 */ 713 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE) 714 sdio->pages_in_io--; 715 get_page(sdio->cur_page); 716 sdio->final_block_in_bio = sdio->cur_page_block + 717 (sdio->cur_page_len >> sdio->blkbits); 718 ret = 0; 719 } else { 720 ret = 1; 721 } 722 return ret; 723 } 724 725 /* 726 * Put cur_page under IO. The section of cur_page which is described by 727 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page 728 * starts on-disk at cur_page_block. 729 * 730 * We take a ref against the page here (on behalf of its presence in the bio). 731 * 732 * The caller of this function is responsible for removing cur_page from the 733 * dio, and for dropping the refcount which came from that presence. 734 */ 735 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio, 736 struct buffer_head *map_bh) 737 { 738 int ret = 0; 739 740 if (sdio->bio) { 741 loff_t cur_offset = sdio->cur_page_fs_offset; 742 loff_t bio_next_offset = sdio->logical_offset_in_bio + 743 sdio->bio->bi_iter.bi_size; 744 745 /* 746 * See whether this new request is contiguous with the old. 747 * 748 * Btrfs cannot handle having logically non-contiguous requests 749 * submitted. For example if you have 750 * 751 * Logical: [0-4095][HOLE][8192-12287] 752 * Physical: [0-4095] [4096-8191] 753 * 754 * We cannot submit those pages together as one BIO. So if our 755 * current logical offset in the file does not equal what would 756 * be the next logical offset in the bio, submit the bio we 757 * have. 758 */ 759 if (sdio->final_block_in_bio != sdio->cur_page_block || 760 cur_offset != bio_next_offset) 761 dio_bio_submit(dio, sdio); 762 } 763 764 if (sdio->bio == NULL) { 765 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 766 if (ret) 767 goto out; 768 } 769 770 if (dio_bio_add_page(sdio) != 0) { 771 dio_bio_submit(dio, sdio); 772 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 773 if (ret == 0) { 774 ret = dio_bio_add_page(sdio); 775 BUG_ON(ret != 0); 776 } 777 } 778 out: 779 return ret; 780 } 781 782 /* 783 * An autonomous function to put a chunk of a page under deferred IO. 784 * 785 * The caller doesn't actually know (or care) whether this piece of page is in 786 * a BIO, or is under IO or whatever. We just take care of all possible 787 * situations here. The separation between the logic of do_direct_IO() and 788 * that of submit_page_section() is important for clarity. Please don't break. 789 * 790 * The chunk of page starts on-disk at blocknr. 791 * 792 * We perform deferred IO, by recording the last-submitted page inside our 793 * private part of the dio structure. If possible, we just expand the IO 794 * across that page here. 795 * 796 * If that doesn't work out then we put the old page into the bio and add this 797 * page to the dio instead. 798 */ 799 static inline int 800 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page, 801 unsigned offset, unsigned len, sector_t blocknr, 802 struct buffer_head *map_bh) 803 { 804 int ret = 0; 805 int boundary = sdio->boundary; /* dio_send_cur_page may clear it */ 806 807 if (dio->op == REQ_OP_WRITE) { 808 /* 809 * Read accounting is performed in submit_bio() 810 */ 811 task_io_account_write(len); 812 } 813 814 /* 815 * Can we just grow the current page's presence in the dio? 816 */ 817 if (sdio->cur_page == page && 818 sdio->cur_page_offset + sdio->cur_page_len == offset && 819 sdio->cur_page_block + 820 (sdio->cur_page_len >> sdio->blkbits) == blocknr) { 821 sdio->cur_page_len += len; 822 goto out; 823 } 824 825 /* 826 * If there's a deferred page already there then send it. 827 */ 828 if (sdio->cur_page) { 829 ret = dio_send_cur_page(dio, sdio, map_bh); 830 put_page(sdio->cur_page); 831 sdio->cur_page = NULL; 832 if (ret) 833 return ret; 834 } 835 836 get_page(page); /* It is in dio */ 837 sdio->cur_page = page; 838 sdio->cur_page_offset = offset; 839 sdio->cur_page_len = len; 840 sdio->cur_page_block = blocknr; 841 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits; 842 out: 843 /* 844 * If boundary then we want to schedule the IO now to 845 * avoid metadata seeks. 846 */ 847 if (boundary) { 848 ret = dio_send_cur_page(dio, sdio, map_bh); 849 if (sdio->bio) 850 dio_bio_submit(dio, sdio); 851 put_page(sdio->cur_page); 852 sdio->cur_page = NULL; 853 } 854 return ret; 855 } 856 857 /* 858 * If we are not writing the entire block and get_block() allocated 859 * the block for us, we need to fill-in the unused portion of the 860 * block with zeros. This happens only if user-buffer, fileoffset or 861 * io length is not filesystem block-size multiple. 862 * 863 * `end' is zero if we're doing the start of the IO, 1 at the end of the 864 * IO. 865 */ 866 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio, 867 int end, struct buffer_head *map_bh) 868 { 869 unsigned dio_blocks_per_fs_block; 870 unsigned this_chunk_blocks; /* In dio_blocks */ 871 unsigned this_chunk_bytes; 872 struct page *page; 873 874 sdio->start_zero_done = 1; 875 if (!sdio->blkfactor || !buffer_new(map_bh)) 876 return; 877 878 dio_blocks_per_fs_block = 1 << sdio->blkfactor; 879 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1); 880 881 if (!this_chunk_blocks) 882 return; 883 884 /* 885 * We need to zero out part of an fs block. It is either at the 886 * beginning or the end of the fs block. 887 */ 888 if (end) 889 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; 890 891 this_chunk_bytes = this_chunk_blocks << sdio->blkbits; 892 893 page = ZERO_PAGE(0); 894 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes, 895 sdio->next_block_for_io, map_bh)) 896 return; 897 898 sdio->next_block_for_io += this_chunk_blocks; 899 } 900 901 /* 902 * Walk the user pages, and the file, mapping blocks to disk and generating 903 * a sequence of (page,offset,len,block) mappings. These mappings are injected 904 * into submit_page_section(), which takes care of the next stage of submission 905 * 906 * Direct IO against a blockdev is different from a file. Because we can 907 * happily perform page-sized but 512-byte aligned IOs. It is important that 908 * blockdev IO be able to have fine alignment and large sizes. 909 * 910 * So what we do is to permit the ->get_block function to populate bh.b_size 911 * with the size of IO which is permitted at this offset and this i_blkbits. 912 * 913 * For best results, the blockdev should be set up with 512-byte i_blkbits and 914 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives 915 * fine alignment but still allows this function to work in PAGE_SIZE units. 916 */ 917 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio, 918 struct buffer_head *map_bh) 919 { 920 const unsigned blkbits = sdio->blkbits; 921 const unsigned i_blkbits = blkbits + sdio->blkfactor; 922 int ret = 0; 923 924 while (sdio->block_in_file < sdio->final_block_in_request) { 925 struct page *page; 926 size_t from, to; 927 928 page = dio_get_page(dio, sdio); 929 if (IS_ERR(page)) { 930 ret = PTR_ERR(page); 931 goto out; 932 } 933 from = sdio->head ? 0 : sdio->from; 934 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE; 935 sdio->head++; 936 937 while (from < to) { 938 unsigned this_chunk_bytes; /* # of bytes mapped */ 939 unsigned this_chunk_blocks; /* # of blocks */ 940 unsigned u; 941 942 if (sdio->blocks_available == 0) { 943 /* 944 * Need to go and map some more disk 945 */ 946 unsigned long blkmask; 947 unsigned long dio_remainder; 948 949 ret = get_more_blocks(dio, sdio, map_bh); 950 if (ret) { 951 put_page(page); 952 goto out; 953 } 954 if (!buffer_mapped(map_bh)) 955 goto do_holes; 956 957 sdio->blocks_available = 958 map_bh->b_size >> blkbits; 959 sdio->next_block_for_io = 960 map_bh->b_blocknr << sdio->blkfactor; 961 if (buffer_new(map_bh)) { 962 clean_bdev_aliases( 963 map_bh->b_bdev, 964 map_bh->b_blocknr, 965 map_bh->b_size >> i_blkbits); 966 } 967 968 if (!sdio->blkfactor) 969 goto do_holes; 970 971 blkmask = (1 << sdio->blkfactor) - 1; 972 dio_remainder = (sdio->block_in_file & blkmask); 973 974 /* 975 * If we are at the start of IO and that IO 976 * starts partway into a fs-block, 977 * dio_remainder will be non-zero. If the IO 978 * is a read then we can simply advance the IO 979 * cursor to the first block which is to be 980 * read. But if the IO is a write and the 981 * block was newly allocated we cannot do that; 982 * the start of the fs block must be zeroed out 983 * on-disk 984 */ 985 if (!buffer_new(map_bh)) 986 sdio->next_block_for_io += dio_remainder; 987 sdio->blocks_available -= dio_remainder; 988 } 989 do_holes: 990 /* Handle holes */ 991 if (!buffer_mapped(map_bh)) { 992 loff_t i_size_aligned; 993 994 /* AKPM: eargh, -ENOTBLK is a hack */ 995 if (dio->op == REQ_OP_WRITE) { 996 put_page(page); 997 return -ENOTBLK; 998 } 999 1000 /* 1001 * Be sure to account for a partial block as the 1002 * last block in the file 1003 */ 1004 i_size_aligned = ALIGN(i_size_read(dio->inode), 1005 1 << blkbits); 1006 if (sdio->block_in_file >= 1007 i_size_aligned >> blkbits) { 1008 /* We hit eof */ 1009 put_page(page); 1010 goto out; 1011 } 1012 zero_user(page, from, 1 << blkbits); 1013 sdio->block_in_file++; 1014 from += 1 << blkbits; 1015 dio->result += 1 << blkbits; 1016 goto next_block; 1017 } 1018 1019 /* 1020 * If we're performing IO which has an alignment which 1021 * is finer than the underlying fs, go check to see if 1022 * we must zero out the start of this block. 1023 */ 1024 if (unlikely(sdio->blkfactor && !sdio->start_zero_done)) 1025 dio_zero_block(dio, sdio, 0, map_bh); 1026 1027 /* 1028 * Work out, in this_chunk_blocks, how much disk we 1029 * can add to this page 1030 */ 1031 this_chunk_blocks = sdio->blocks_available; 1032 u = (to - from) >> blkbits; 1033 if (this_chunk_blocks > u) 1034 this_chunk_blocks = u; 1035 u = sdio->final_block_in_request - sdio->block_in_file; 1036 if (this_chunk_blocks > u) 1037 this_chunk_blocks = u; 1038 this_chunk_bytes = this_chunk_blocks << blkbits; 1039 BUG_ON(this_chunk_bytes == 0); 1040 1041 if (this_chunk_blocks == sdio->blocks_available) 1042 sdio->boundary = buffer_boundary(map_bh); 1043 ret = submit_page_section(dio, sdio, page, 1044 from, 1045 this_chunk_bytes, 1046 sdio->next_block_for_io, 1047 map_bh); 1048 if (ret) { 1049 put_page(page); 1050 goto out; 1051 } 1052 sdio->next_block_for_io += this_chunk_blocks; 1053 1054 sdio->block_in_file += this_chunk_blocks; 1055 from += this_chunk_bytes; 1056 dio->result += this_chunk_bytes; 1057 sdio->blocks_available -= this_chunk_blocks; 1058 next_block: 1059 BUG_ON(sdio->block_in_file > sdio->final_block_in_request); 1060 if (sdio->block_in_file == sdio->final_block_in_request) 1061 break; 1062 } 1063 1064 /* Drop the ref which was taken in get_user_pages() */ 1065 put_page(page); 1066 } 1067 out: 1068 return ret; 1069 } 1070 1071 static inline int drop_refcount(struct dio *dio) 1072 { 1073 int ret2; 1074 unsigned long flags; 1075 1076 /* 1077 * Sync will always be dropping the final ref and completing the 1078 * operation. AIO can if it was a broken operation described above or 1079 * in fact if all the bios race to complete before we get here. In 1080 * that case dio_complete() translates the EIOCBQUEUED into the proper 1081 * return code that the caller will hand to ->complete(). 1082 * 1083 * This is managed by the bio_lock instead of being an atomic_t so that 1084 * completion paths can drop their ref and use the remaining count to 1085 * decide to wake the submission path atomically. 1086 */ 1087 spin_lock_irqsave(&dio->bio_lock, flags); 1088 ret2 = --dio->refcount; 1089 spin_unlock_irqrestore(&dio->bio_lock, flags); 1090 return ret2; 1091 } 1092 1093 /* 1094 * This is a library function for use by filesystem drivers. 1095 * 1096 * The locking rules are governed by the flags parameter: 1097 * - if the flags value contains DIO_LOCKING we use a fancy locking 1098 * scheme for dumb filesystems. 1099 * For writes this function is called under i_mutex and returns with 1100 * i_mutex held, for reads, i_mutex is not held on entry, but it is 1101 * taken and dropped again before returning. 1102 * - if the flags value does NOT contain DIO_LOCKING we don't use any 1103 * internal locking but rather rely on the filesystem to synchronize 1104 * direct I/O reads/writes versus each other and truncate. 1105 * 1106 * To help with locking against truncate we incremented the i_dio_count 1107 * counter before starting direct I/O, and decrement it once we are done. 1108 * Truncate can wait for it to reach zero to provide exclusion. It is 1109 * expected that filesystem provide exclusion between new direct I/O 1110 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex, 1111 * but other filesystems need to take care of this on their own. 1112 * 1113 * NOTE: if you pass "sdio" to anything by pointer make sure that function 1114 * is always inlined. Otherwise gcc is unable to split the structure into 1115 * individual fields and will generate much worse code. This is important 1116 * for the whole file. 1117 */ 1118 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1119 struct block_device *bdev, struct iov_iter *iter, 1120 get_block_t get_block, dio_iodone_t end_io, 1121 dio_submit_t submit_io, int flags) 1122 { 1123 unsigned i_blkbits = READ_ONCE(inode->i_blkbits); 1124 unsigned blkbits = i_blkbits; 1125 unsigned blocksize_mask = (1 << blkbits) - 1; 1126 ssize_t retval = -EINVAL; 1127 const size_t count = iov_iter_count(iter); 1128 loff_t offset = iocb->ki_pos; 1129 const loff_t end = offset + count; 1130 struct dio *dio; 1131 struct dio_submit sdio = { 0, }; 1132 struct buffer_head map_bh = { 0, }; 1133 struct blk_plug plug; 1134 unsigned long align = offset | iov_iter_alignment(iter); 1135 1136 /* 1137 * Avoid references to bdev if not absolutely needed to give 1138 * the early prefetch in the caller enough time. 1139 */ 1140 1141 /* watch out for a 0 len io from a tricksy fs */ 1142 if (iov_iter_rw(iter) == READ && !count) 1143 return 0; 1144 1145 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL); 1146 if (!dio) 1147 return -ENOMEM; 1148 /* 1149 * Believe it or not, zeroing out the page array caused a .5% 1150 * performance regression in a database benchmark. So, we take 1151 * care to only zero out what's needed. 1152 */ 1153 memset(dio, 0, offsetof(struct dio, pages)); 1154 1155 dio->flags = flags; 1156 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) { 1157 /* will be released by direct_io_worker */ 1158 inode_lock(inode); 1159 } 1160 1161 /* Once we sampled i_size check for reads beyond EOF */ 1162 dio->i_size = i_size_read(inode); 1163 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) { 1164 retval = 0; 1165 goto fail_dio; 1166 } 1167 1168 if (align & blocksize_mask) { 1169 if (bdev) 1170 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 1171 blocksize_mask = (1 << blkbits) - 1; 1172 if (align & blocksize_mask) 1173 goto fail_dio; 1174 } 1175 1176 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) { 1177 struct address_space *mapping = iocb->ki_filp->f_mapping; 1178 1179 retval = filemap_write_and_wait_range(mapping, offset, end - 1); 1180 if (retval) 1181 goto fail_dio; 1182 } 1183 1184 /* 1185 * For file extending writes updating i_size before data writeouts 1186 * complete can expose uninitialized blocks in dumb filesystems. 1187 * In that case we need to wait for I/O completion even if asked 1188 * for an asynchronous write. 1189 */ 1190 if (is_sync_kiocb(iocb)) 1191 dio->is_async = false; 1192 else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode)) 1193 dio->is_async = false; 1194 else 1195 dio->is_async = true; 1196 1197 dio->inode = inode; 1198 if (iov_iter_rw(iter) == WRITE) { 1199 dio->op = REQ_OP_WRITE; 1200 dio->op_flags = REQ_SYNC | REQ_IDLE; 1201 if (iocb->ki_flags & IOCB_NOWAIT) 1202 dio->op_flags |= REQ_NOWAIT; 1203 } else { 1204 dio->op = REQ_OP_READ; 1205 } 1206 1207 /* 1208 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue 1209 * so that we can call ->fsync. 1210 */ 1211 if (dio->is_async && iov_iter_rw(iter) == WRITE) { 1212 retval = 0; 1213 if (iocb->ki_flags & IOCB_DSYNC) 1214 retval = dio_set_defer_completion(dio); 1215 else if (!dio->inode->i_sb->s_dio_done_wq) { 1216 /* 1217 * In case of AIO write racing with buffered read we 1218 * need to defer completion. We can't decide this now, 1219 * however the workqueue needs to be initialized here. 1220 */ 1221 retval = sb_init_dio_done_wq(dio->inode->i_sb); 1222 } 1223 if (retval) 1224 goto fail_dio; 1225 } 1226 1227 /* 1228 * Will be decremented at I/O completion time. 1229 */ 1230 inode_dio_begin(inode); 1231 1232 retval = 0; 1233 sdio.blkbits = blkbits; 1234 sdio.blkfactor = i_blkbits - blkbits; 1235 sdio.block_in_file = offset >> blkbits; 1236 1237 sdio.get_block = get_block; 1238 dio->end_io = end_io; 1239 sdio.submit_io = submit_io; 1240 sdio.final_block_in_bio = -1; 1241 sdio.next_block_for_io = -1; 1242 1243 dio->iocb = iocb; 1244 1245 spin_lock_init(&dio->bio_lock); 1246 dio->refcount = 1; 1247 1248 dio->should_dirty = iter_is_iovec(iter) && iov_iter_rw(iter) == READ; 1249 sdio.iter = iter; 1250 sdio.final_block_in_request = end >> blkbits; 1251 1252 /* 1253 * In case of non-aligned buffers, we may need 2 more 1254 * pages since we need to zero out first and last block. 1255 */ 1256 if (unlikely(sdio.blkfactor)) 1257 sdio.pages_in_io = 2; 1258 1259 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX); 1260 1261 blk_start_plug(&plug); 1262 1263 retval = do_direct_IO(dio, &sdio, &map_bh); 1264 if (retval) 1265 dio_cleanup(dio, &sdio); 1266 1267 if (retval == -ENOTBLK) { 1268 /* 1269 * The remaining part of the request will be 1270 * handled by buffered I/O when we return 1271 */ 1272 retval = 0; 1273 } 1274 /* 1275 * There may be some unwritten disk at the end of a part-written 1276 * fs-block-sized block. Go zero that now. 1277 */ 1278 dio_zero_block(dio, &sdio, 1, &map_bh); 1279 1280 if (sdio.cur_page) { 1281 ssize_t ret2; 1282 1283 ret2 = dio_send_cur_page(dio, &sdio, &map_bh); 1284 if (retval == 0) 1285 retval = ret2; 1286 put_page(sdio.cur_page); 1287 sdio.cur_page = NULL; 1288 } 1289 if (sdio.bio) 1290 dio_bio_submit(dio, &sdio); 1291 1292 blk_finish_plug(&plug); 1293 1294 /* 1295 * It is possible that, we return short IO due to end of file. 1296 * In that case, we need to release all the pages we got hold on. 1297 */ 1298 dio_cleanup(dio, &sdio); 1299 1300 /* 1301 * All block lookups have been performed. For READ requests 1302 * we can let i_mutex go now that its achieved its purpose 1303 * of protecting us from looking up uninitialized blocks. 1304 */ 1305 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING)) 1306 inode_unlock(dio->inode); 1307 1308 /* 1309 * The only time we want to leave bios in flight is when a successful 1310 * partial aio read or full aio write have been setup. In that case 1311 * bio completion will call aio_complete. The only time it's safe to 1312 * call aio_complete is when we return -EIOCBQUEUED, so we key on that. 1313 * This had *better* be the only place that raises -EIOCBQUEUED. 1314 */ 1315 BUG_ON(retval == -EIOCBQUEUED); 1316 if (dio->is_async && retval == 0 && dio->result && 1317 (iov_iter_rw(iter) == READ || dio->result == count)) 1318 retval = -EIOCBQUEUED; 1319 else 1320 dio_await_completion(dio); 1321 1322 if (drop_refcount(dio) == 0) { 1323 retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE); 1324 } else 1325 BUG_ON(retval != -EIOCBQUEUED); 1326 1327 return retval; 1328 1329 fail_dio: 1330 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) 1331 inode_unlock(inode); 1332 1333 kmem_cache_free(dio_cache, dio); 1334 return retval; 1335 } 1336 EXPORT_SYMBOL(__blockdev_direct_IO); 1337 1338 static __init int dio_init(void) 1339 { 1340 dio_cache = KMEM_CACHE(dio, SLAB_PANIC); 1341 return 0; 1342 } 1343 module_init(dio_init) 1344