xref: /openbmc/linux/fs/direct-io.c (revision 4a3fad70)
1 /*
2  * fs/direct-io.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * O_DIRECT
7  *
8  * 04Jul2002	Andrew Morton
9  *		Initial version
10  * 11Sep2002	janetinc@us.ibm.com
11  * 		added readv/writev support.
12  * 29Oct2002	Andrew Morton
13  *		rewrote bio_add_page() support.
14  * 30Oct2002	pbadari@us.ibm.com
15  *		added support for non-aligned IO.
16  * 06Nov2002	pbadari@us.ibm.com
17  *		added asynchronous IO support.
18  * 21Jul2003	nathans@sgi.com
19  *		added IO completion notifier.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <linux/atomic.h>
39 #include <linux/prefetch.h>
40 
41 /*
42  * How many user pages to map in one call to get_user_pages().  This determines
43  * the size of a structure in the slab cache
44  */
45 #define DIO_PAGES	64
46 
47 /*
48  * Flags for dio_complete()
49  */
50 #define DIO_COMPLETE_ASYNC		0x01	/* This is async IO */
51 #define DIO_COMPLETE_INVALIDATE		0x02	/* Can invalidate pages */
52 
53 /*
54  * This code generally works in units of "dio_blocks".  A dio_block is
55  * somewhere between the hard sector size and the filesystem block size.  it
56  * is determined on a per-invocation basis.   When talking to the filesystem
57  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
58  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
59  * to bio_block quantities by shifting left by blkfactor.
60  *
61  * If blkfactor is zero then the user's request was aligned to the filesystem's
62  * blocksize.
63  */
64 
65 /* dio_state only used in the submission path */
66 
67 struct dio_submit {
68 	struct bio *bio;		/* bio under assembly */
69 	unsigned blkbits;		/* doesn't change */
70 	unsigned blkfactor;		/* When we're using an alignment which
71 					   is finer than the filesystem's soft
72 					   blocksize, this specifies how much
73 					   finer.  blkfactor=2 means 1/4-block
74 					   alignment.  Does not change */
75 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
76 					   been performed at the start of a
77 					   write */
78 	int pages_in_io;		/* approximate total IO pages */
79 	sector_t block_in_file;		/* Current offset into the underlying
80 					   file in dio_block units. */
81 	unsigned blocks_available;	/* At block_in_file.  changes */
82 	int reap_counter;		/* rate limit reaping */
83 	sector_t final_block_in_request;/* doesn't change */
84 	int boundary;			/* prev block is at a boundary */
85 	get_block_t *get_block;		/* block mapping function */
86 	dio_submit_t *submit_io;	/* IO submition function */
87 
88 	loff_t logical_offset_in_bio;	/* current first logical block in bio */
89 	sector_t final_block_in_bio;	/* current final block in bio + 1 */
90 	sector_t next_block_for_io;	/* next block to be put under IO,
91 					   in dio_blocks units */
92 
93 	/*
94 	 * Deferred addition of a page to the dio.  These variables are
95 	 * private to dio_send_cur_page(), submit_page_section() and
96 	 * dio_bio_add_page().
97 	 */
98 	struct page *cur_page;		/* The page */
99 	unsigned cur_page_offset;	/* Offset into it, in bytes */
100 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
101 	sector_t cur_page_block;	/* Where it starts */
102 	loff_t cur_page_fs_offset;	/* Offset in file */
103 
104 	struct iov_iter *iter;
105 	/*
106 	 * Page queue.  These variables belong to dio_refill_pages() and
107 	 * dio_get_page().
108 	 */
109 	unsigned head;			/* next page to process */
110 	unsigned tail;			/* last valid page + 1 */
111 	size_t from, to;
112 };
113 
114 /* dio_state communicated between submission path and end_io */
115 struct dio {
116 	int flags;			/* doesn't change */
117 	int op;
118 	int op_flags;
119 	blk_qc_t bio_cookie;
120 	struct gendisk *bio_disk;
121 	struct inode *inode;
122 	loff_t i_size;			/* i_size when submitted */
123 	dio_iodone_t *end_io;		/* IO completion function */
124 
125 	void *private;			/* copy from map_bh.b_private */
126 
127 	/* BIO completion state */
128 	spinlock_t bio_lock;		/* protects BIO fields below */
129 	int page_errors;		/* errno from get_user_pages() */
130 	int is_async;			/* is IO async ? */
131 	bool defer_completion;		/* defer AIO completion to workqueue? */
132 	bool should_dirty;		/* if pages should be dirtied */
133 	int io_error;			/* IO error in completion path */
134 	unsigned long refcount;		/* direct_io_worker() and bios */
135 	struct bio *bio_list;		/* singly linked via bi_private */
136 	struct task_struct *waiter;	/* waiting task (NULL if none) */
137 
138 	/* AIO related stuff */
139 	struct kiocb *iocb;		/* kiocb */
140 	ssize_t result;                 /* IO result */
141 
142 	/*
143 	 * pages[] (and any fields placed after it) are not zeroed out at
144 	 * allocation time.  Don't add new fields after pages[] unless you
145 	 * wish that they not be zeroed.
146 	 */
147 	union {
148 		struct page *pages[DIO_PAGES];	/* page buffer */
149 		struct work_struct complete_work;/* deferred AIO completion */
150 	};
151 } ____cacheline_aligned_in_smp;
152 
153 static struct kmem_cache *dio_cache __read_mostly;
154 
155 /*
156  * How many pages are in the queue?
157  */
158 static inline unsigned dio_pages_present(struct dio_submit *sdio)
159 {
160 	return sdio->tail - sdio->head;
161 }
162 
163 /*
164  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
165  */
166 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
167 {
168 	ssize_t ret;
169 
170 	ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
171 				&sdio->from);
172 
173 	if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) {
174 		struct page *page = ZERO_PAGE(0);
175 		/*
176 		 * A memory fault, but the filesystem has some outstanding
177 		 * mapped blocks.  We need to use those blocks up to avoid
178 		 * leaking stale data in the file.
179 		 */
180 		if (dio->page_errors == 0)
181 			dio->page_errors = ret;
182 		get_page(page);
183 		dio->pages[0] = page;
184 		sdio->head = 0;
185 		sdio->tail = 1;
186 		sdio->from = 0;
187 		sdio->to = PAGE_SIZE;
188 		return 0;
189 	}
190 
191 	if (ret >= 0) {
192 		iov_iter_advance(sdio->iter, ret);
193 		ret += sdio->from;
194 		sdio->head = 0;
195 		sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
196 		sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
197 		return 0;
198 	}
199 	return ret;
200 }
201 
202 /*
203  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
204  * buffered inside the dio so that we can call get_user_pages() against a
205  * decent number of pages, less frequently.  To provide nicer use of the
206  * L1 cache.
207  */
208 static inline struct page *dio_get_page(struct dio *dio,
209 					struct dio_submit *sdio)
210 {
211 	if (dio_pages_present(sdio) == 0) {
212 		int ret;
213 
214 		ret = dio_refill_pages(dio, sdio);
215 		if (ret)
216 			return ERR_PTR(ret);
217 		BUG_ON(dio_pages_present(sdio) == 0);
218 	}
219 	return dio->pages[sdio->head];
220 }
221 
222 /**
223  * dio_complete() - called when all DIO BIO I/O has been completed
224  * @offset: the byte offset in the file of the completed operation
225  *
226  * This drops i_dio_count, lets interested parties know that a DIO operation
227  * has completed, and calculates the resulting return code for the operation.
228  *
229  * It lets the filesystem know if it registered an interest earlier via
230  * get_block.  Pass the private field of the map buffer_head so that
231  * filesystems can use it to hold additional state between get_block calls and
232  * dio_complete.
233  */
234 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
235 {
236 	loff_t offset = dio->iocb->ki_pos;
237 	ssize_t transferred = 0;
238 	int err;
239 
240 	/*
241 	 * AIO submission can race with bio completion to get here while
242 	 * expecting to have the last io completed by bio completion.
243 	 * In that case -EIOCBQUEUED is in fact not an error we want
244 	 * to preserve through this call.
245 	 */
246 	if (ret == -EIOCBQUEUED)
247 		ret = 0;
248 
249 	if (dio->result) {
250 		transferred = dio->result;
251 
252 		/* Check for short read case */
253 		if ((dio->op == REQ_OP_READ) &&
254 		    ((offset + transferred) > dio->i_size))
255 			transferred = dio->i_size - offset;
256 		/* ignore EFAULT if some IO has been done */
257 		if (unlikely(ret == -EFAULT) && transferred)
258 			ret = 0;
259 	}
260 
261 	if (ret == 0)
262 		ret = dio->page_errors;
263 	if (ret == 0)
264 		ret = dio->io_error;
265 	if (ret == 0)
266 		ret = transferred;
267 
268 	if (dio->end_io) {
269 		// XXX: ki_pos??
270 		err = dio->end_io(dio->iocb, offset, ret, dio->private);
271 		if (err)
272 			ret = err;
273 	}
274 
275 	/*
276 	 * Try again to invalidate clean pages which might have been cached by
277 	 * non-direct readahead, or faulted in by get_user_pages() if the source
278 	 * of the write was an mmap'ed region of the file we're writing.  Either
279 	 * one is a pretty crazy thing to do, so we don't support it 100%.  If
280 	 * this invalidation fails, tough, the write still worked...
281 	 *
282 	 * And this page cache invalidation has to be after dio->end_io(), as
283 	 * some filesystems convert unwritten extents to real allocations in
284 	 * end_io() when necessary, otherwise a racing buffer read would cache
285 	 * zeros from unwritten extents.
286 	 */
287 	if (flags & DIO_COMPLETE_INVALIDATE &&
288 	    ret > 0 && dio->op == REQ_OP_WRITE &&
289 	    dio->inode->i_mapping->nrpages) {
290 		err = invalidate_inode_pages2_range(dio->inode->i_mapping,
291 					offset >> PAGE_SHIFT,
292 					(offset + ret - 1) >> PAGE_SHIFT);
293 		WARN_ON_ONCE(err);
294 	}
295 
296 	if (!(dio->flags & DIO_SKIP_DIO_COUNT))
297 		inode_dio_end(dio->inode);
298 
299 	if (flags & DIO_COMPLETE_ASYNC) {
300 		/*
301 		 * generic_write_sync expects ki_pos to have been updated
302 		 * already, but the submission path only does this for
303 		 * synchronous I/O.
304 		 */
305 		dio->iocb->ki_pos += transferred;
306 
307 		if (dio->op == REQ_OP_WRITE)
308 			ret = generic_write_sync(dio->iocb,  transferred);
309 		dio->iocb->ki_complete(dio->iocb, ret, 0);
310 	}
311 
312 	kmem_cache_free(dio_cache, dio);
313 	return ret;
314 }
315 
316 static void dio_aio_complete_work(struct work_struct *work)
317 {
318 	struct dio *dio = container_of(work, struct dio, complete_work);
319 
320 	dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
321 }
322 
323 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
324 
325 /*
326  * Asynchronous IO callback.
327  */
328 static void dio_bio_end_aio(struct bio *bio)
329 {
330 	struct dio *dio = bio->bi_private;
331 	unsigned long remaining;
332 	unsigned long flags;
333 	bool defer_completion = false;
334 
335 	/* cleanup the bio */
336 	dio_bio_complete(dio, bio);
337 
338 	spin_lock_irqsave(&dio->bio_lock, flags);
339 	remaining = --dio->refcount;
340 	if (remaining == 1 && dio->waiter)
341 		wake_up_process(dio->waiter);
342 	spin_unlock_irqrestore(&dio->bio_lock, flags);
343 
344 	if (remaining == 0) {
345 		/*
346 		 * Defer completion when defer_completion is set or
347 		 * when the inode has pages mapped and this is AIO write.
348 		 * We need to invalidate those pages because there is a
349 		 * chance they contain stale data in the case buffered IO
350 		 * went in between AIO submission and completion into the
351 		 * same region.
352 		 */
353 		if (dio->result)
354 			defer_completion = dio->defer_completion ||
355 					   (dio->op == REQ_OP_WRITE &&
356 					    dio->inode->i_mapping->nrpages);
357 		if (defer_completion) {
358 			INIT_WORK(&dio->complete_work, dio_aio_complete_work);
359 			queue_work(dio->inode->i_sb->s_dio_done_wq,
360 				   &dio->complete_work);
361 		} else {
362 			dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
363 		}
364 	}
365 }
366 
367 /*
368  * The BIO completion handler simply queues the BIO up for the process-context
369  * handler.
370  *
371  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
372  * implement a singly-linked list of completed BIOs, at dio->bio_list.
373  */
374 static void dio_bio_end_io(struct bio *bio)
375 {
376 	struct dio *dio = bio->bi_private;
377 	unsigned long flags;
378 
379 	spin_lock_irqsave(&dio->bio_lock, flags);
380 	bio->bi_private = dio->bio_list;
381 	dio->bio_list = bio;
382 	if (--dio->refcount == 1 && dio->waiter)
383 		wake_up_process(dio->waiter);
384 	spin_unlock_irqrestore(&dio->bio_lock, flags);
385 }
386 
387 /**
388  * dio_end_io - handle the end io action for the given bio
389  * @bio: The direct io bio thats being completed
390  *
391  * This is meant to be called by any filesystem that uses their own dio_submit_t
392  * so that the DIO specific endio actions are dealt with after the filesystem
393  * has done it's completion work.
394  */
395 void dio_end_io(struct bio *bio)
396 {
397 	struct dio *dio = bio->bi_private;
398 
399 	if (dio->is_async)
400 		dio_bio_end_aio(bio);
401 	else
402 		dio_bio_end_io(bio);
403 }
404 EXPORT_SYMBOL_GPL(dio_end_io);
405 
406 static inline void
407 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
408 	      struct block_device *bdev,
409 	      sector_t first_sector, int nr_vecs)
410 {
411 	struct bio *bio;
412 
413 	/*
414 	 * bio_alloc() is guaranteed to return a bio when called with
415 	 * __GFP_RECLAIM and we request a valid number of vectors.
416 	 */
417 	bio = bio_alloc(GFP_KERNEL, nr_vecs);
418 
419 	bio_set_dev(bio, bdev);
420 	bio->bi_iter.bi_sector = first_sector;
421 	bio_set_op_attrs(bio, dio->op, dio->op_flags);
422 	if (dio->is_async)
423 		bio->bi_end_io = dio_bio_end_aio;
424 	else
425 		bio->bi_end_io = dio_bio_end_io;
426 
427 	bio->bi_write_hint = dio->iocb->ki_hint;
428 
429 	sdio->bio = bio;
430 	sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
431 }
432 
433 /*
434  * In the AIO read case we speculatively dirty the pages before starting IO.
435  * During IO completion, any of these pages which happen to have been written
436  * back will be redirtied by bio_check_pages_dirty().
437  *
438  * bios hold a dio reference between submit_bio and ->end_io.
439  */
440 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
441 {
442 	struct bio *bio = sdio->bio;
443 	unsigned long flags;
444 
445 	bio->bi_private = dio;
446 
447 	spin_lock_irqsave(&dio->bio_lock, flags);
448 	dio->refcount++;
449 	spin_unlock_irqrestore(&dio->bio_lock, flags);
450 
451 	if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty)
452 		bio_set_pages_dirty(bio);
453 
454 	dio->bio_disk = bio->bi_disk;
455 
456 	if (sdio->submit_io) {
457 		sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
458 		dio->bio_cookie = BLK_QC_T_NONE;
459 	} else
460 		dio->bio_cookie = submit_bio(bio);
461 
462 	sdio->bio = NULL;
463 	sdio->boundary = 0;
464 	sdio->logical_offset_in_bio = 0;
465 }
466 
467 /*
468  * Release any resources in case of a failure
469  */
470 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
471 {
472 	while (sdio->head < sdio->tail)
473 		put_page(dio->pages[sdio->head++]);
474 }
475 
476 /*
477  * Wait for the next BIO to complete.  Remove it and return it.  NULL is
478  * returned once all BIOs have been completed.  This must only be called once
479  * all bios have been issued so that dio->refcount can only decrease.  This
480  * requires that that the caller hold a reference on the dio.
481  */
482 static struct bio *dio_await_one(struct dio *dio)
483 {
484 	unsigned long flags;
485 	struct bio *bio = NULL;
486 
487 	spin_lock_irqsave(&dio->bio_lock, flags);
488 
489 	/*
490 	 * Wait as long as the list is empty and there are bios in flight.  bio
491 	 * completion drops the count, maybe adds to the list, and wakes while
492 	 * holding the bio_lock so we don't need set_current_state()'s barrier
493 	 * and can call it after testing our condition.
494 	 */
495 	while (dio->refcount > 1 && dio->bio_list == NULL) {
496 		__set_current_state(TASK_UNINTERRUPTIBLE);
497 		dio->waiter = current;
498 		spin_unlock_irqrestore(&dio->bio_lock, flags);
499 		if (!(dio->iocb->ki_flags & IOCB_HIPRI) ||
500 		    !blk_poll(dio->bio_disk->queue, dio->bio_cookie))
501 			io_schedule();
502 		/* wake up sets us TASK_RUNNING */
503 		spin_lock_irqsave(&dio->bio_lock, flags);
504 		dio->waiter = NULL;
505 	}
506 	if (dio->bio_list) {
507 		bio = dio->bio_list;
508 		dio->bio_list = bio->bi_private;
509 	}
510 	spin_unlock_irqrestore(&dio->bio_lock, flags);
511 	return bio;
512 }
513 
514 /*
515  * Process one completed BIO.  No locks are held.
516  */
517 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
518 {
519 	struct bio_vec *bvec;
520 	unsigned i;
521 	blk_status_t err = bio->bi_status;
522 
523 	if (err) {
524 		if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
525 			dio->io_error = -EAGAIN;
526 		else
527 			dio->io_error = -EIO;
528 	}
529 
530 	if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) {
531 		bio_check_pages_dirty(bio);	/* transfers ownership */
532 	} else {
533 		bio_for_each_segment_all(bvec, bio, i) {
534 			struct page *page = bvec->bv_page;
535 
536 			if (dio->op == REQ_OP_READ && !PageCompound(page) &&
537 					dio->should_dirty)
538 				set_page_dirty_lock(page);
539 			put_page(page);
540 		}
541 		bio_put(bio);
542 	}
543 	return err;
544 }
545 
546 /*
547  * Wait on and process all in-flight BIOs.  This must only be called once
548  * all bios have been issued so that the refcount can only decrease.
549  * This just waits for all bios to make it through dio_bio_complete.  IO
550  * errors are propagated through dio->io_error and should be propagated via
551  * dio_complete().
552  */
553 static void dio_await_completion(struct dio *dio)
554 {
555 	struct bio *bio;
556 	do {
557 		bio = dio_await_one(dio);
558 		if (bio)
559 			dio_bio_complete(dio, bio);
560 	} while (bio);
561 }
562 
563 /*
564  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
565  * to keep the memory consumption sane we periodically reap any completed BIOs
566  * during the BIO generation phase.
567  *
568  * This also helps to limit the peak amount of pinned userspace memory.
569  */
570 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
571 {
572 	int ret = 0;
573 
574 	if (sdio->reap_counter++ >= 64) {
575 		while (dio->bio_list) {
576 			unsigned long flags;
577 			struct bio *bio;
578 			int ret2;
579 
580 			spin_lock_irqsave(&dio->bio_lock, flags);
581 			bio = dio->bio_list;
582 			dio->bio_list = bio->bi_private;
583 			spin_unlock_irqrestore(&dio->bio_lock, flags);
584 			ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
585 			if (ret == 0)
586 				ret = ret2;
587 		}
588 		sdio->reap_counter = 0;
589 	}
590 	return ret;
591 }
592 
593 /*
594  * Create workqueue for deferred direct IO completions. We allocate the
595  * workqueue when it's first needed. This avoids creating workqueue for
596  * filesystems that don't need it and also allows us to create the workqueue
597  * late enough so the we can include s_id in the name of the workqueue.
598  */
599 int sb_init_dio_done_wq(struct super_block *sb)
600 {
601 	struct workqueue_struct *old;
602 	struct workqueue_struct *wq = alloc_workqueue("dio/%s",
603 						      WQ_MEM_RECLAIM, 0,
604 						      sb->s_id);
605 	if (!wq)
606 		return -ENOMEM;
607 	/*
608 	 * This has to be atomic as more DIOs can race to create the workqueue
609 	 */
610 	old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
611 	/* Someone created workqueue before us? Free ours... */
612 	if (old)
613 		destroy_workqueue(wq);
614 	return 0;
615 }
616 
617 static int dio_set_defer_completion(struct dio *dio)
618 {
619 	struct super_block *sb = dio->inode->i_sb;
620 
621 	if (dio->defer_completion)
622 		return 0;
623 	dio->defer_completion = true;
624 	if (!sb->s_dio_done_wq)
625 		return sb_init_dio_done_wq(sb);
626 	return 0;
627 }
628 
629 /*
630  * Call into the fs to map some more disk blocks.  We record the current number
631  * of available blocks at sdio->blocks_available.  These are in units of the
632  * fs blocksize, i_blocksize(inode).
633  *
634  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
635  * it uses the passed inode-relative block number as the file offset, as usual.
636  *
637  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
638  * has remaining to do.  The fs should not map more than this number of blocks.
639  *
640  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
641  * indicate how much contiguous disk space has been made available at
642  * bh->b_blocknr.
643  *
644  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
645  * This isn't very efficient...
646  *
647  * In the case of filesystem holes: the fs may return an arbitrarily-large
648  * hole by returning an appropriate value in b_size and by clearing
649  * buffer_mapped().  However the direct-io code will only process holes one
650  * block at a time - it will repeatedly call get_block() as it walks the hole.
651  */
652 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
653 			   struct buffer_head *map_bh)
654 {
655 	int ret;
656 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
657 	sector_t fs_endblk;	/* Into file, in filesystem-sized blocks */
658 	unsigned long fs_count;	/* Number of filesystem-sized blocks */
659 	int create;
660 	unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
661 
662 	/*
663 	 * If there was a memory error and we've overwritten all the
664 	 * mapped blocks then we can now return that memory error
665 	 */
666 	ret = dio->page_errors;
667 	if (ret == 0) {
668 		BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
669 		fs_startblk = sdio->block_in_file >> sdio->blkfactor;
670 		fs_endblk = (sdio->final_block_in_request - 1) >>
671 					sdio->blkfactor;
672 		fs_count = fs_endblk - fs_startblk + 1;
673 
674 		map_bh->b_state = 0;
675 		map_bh->b_size = fs_count << i_blkbits;
676 
677 		/*
678 		 * For writes that could fill holes inside i_size on a
679 		 * DIO_SKIP_HOLES filesystem we forbid block creations: only
680 		 * overwrites are permitted. We will return early to the caller
681 		 * once we see an unmapped buffer head returned, and the caller
682 		 * will fall back to buffered I/O.
683 		 *
684 		 * Otherwise the decision is left to the get_blocks method,
685 		 * which may decide to handle it or also return an unmapped
686 		 * buffer head.
687 		 */
688 		create = dio->op == REQ_OP_WRITE;
689 		if (dio->flags & DIO_SKIP_HOLES) {
690 			if (fs_startblk <= ((i_size_read(dio->inode) - 1) >>
691 							i_blkbits))
692 				create = 0;
693 		}
694 
695 		ret = (*sdio->get_block)(dio->inode, fs_startblk,
696 						map_bh, create);
697 
698 		/* Store for completion */
699 		dio->private = map_bh->b_private;
700 
701 		if (ret == 0 && buffer_defer_completion(map_bh))
702 			ret = dio_set_defer_completion(dio);
703 	}
704 	return ret;
705 }
706 
707 /*
708  * There is no bio.  Make one now.
709  */
710 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
711 		sector_t start_sector, struct buffer_head *map_bh)
712 {
713 	sector_t sector;
714 	int ret, nr_pages;
715 
716 	ret = dio_bio_reap(dio, sdio);
717 	if (ret)
718 		goto out;
719 	sector = start_sector << (sdio->blkbits - 9);
720 	nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
721 	BUG_ON(nr_pages <= 0);
722 	dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
723 	sdio->boundary = 0;
724 out:
725 	return ret;
726 }
727 
728 /*
729  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
730  * that was successful then update final_block_in_bio and take a ref against
731  * the just-added page.
732  *
733  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
734  */
735 static inline int dio_bio_add_page(struct dio_submit *sdio)
736 {
737 	int ret;
738 
739 	ret = bio_add_page(sdio->bio, sdio->cur_page,
740 			sdio->cur_page_len, sdio->cur_page_offset);
741 	if (ret == sdio->cur_page_len) {
742 		/*
743 		 * Decrement count only, if we are done with this page
744 		 */
745 		if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
746 			sdio->pages_in_io--;
747 		get_page(sdio->cur_page);
748 		sdio->final_block_in_bio = sdio->cur_page_block +
749 			(sdio->cur_page_len >> sdio->blkbits);
750 		ret = 0;
751 	} else {
752 		ret = 1;
753 	}
754 	return ret;
755 }
756 
757 /*
758  * Put cur_page under IO.  The section of cur_page which is described by
759  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
760  * starts on-disk at cur_page_block.
761  *
762  * We take a ref against the page here (on behalf of its presence in the bio).
763  *
764  * The caller of this function is responsible for removing cur_page from the
765  * dio, and for dropping the refcount which came from that presence.
766  */
767 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
768 		struct buffer_head *map_bh)
769 {
770 	int ret = 0;
771 
772 	if (sdio->bio) {
773 		loff_t cur_offset = sdio->cur_page_fs_offset;
774 		loff_t bio_next_offset = sdio->logical_offset_in_bio +
775 			sdio->bio->bi_iter.bi_size;
776 
777 		/*
778 		 * See whether this new request is contiguous with the old.
779 		 *
780 		 * Btrfs cannot handle having logically non-contiguous requests
781 		 * submitted.  For example if you have
782 		 *
783 		 * Logical:  [0-4095][HOLE][8192-12287]
784 		 * Physical: [0-4095]      [4096-8191]
785 		 *
786 		 * We cannot submit those pages together as one BIO.  So if our
787 		 * current logical offset in the file does not equal what would
788 		 * be the next logical offset in the bio, submit the bio we
789 		 * have.
790 		 */
791 		if (sdio->final_block_in_bio != sdio->cur_page_block ||
792 		    cur_offset != bio_next_offset)
793 			dio_bio_submit(dio, sdio);
794 	}
795 
796 	if (sdio->bio == NULL) {
797 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
798 		if (ret)
799 			goto out;
800 	}
801 
802 	if (dio_bio_add_page(sdio) != 0) {
803 		dio_bio_submit(dio, sdio);
804 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
805 		if (ret == 0) {
806 			ret = dio_bio_add_page(sdio);
807 			BUG_ON(ret != 0);
808 		}
809 	}
810 out:
811 	return ret;
812 }
813 
814 /*
815  * An autonomous function to put a chunk of a page under deferred IO.
816  *
817  * The caller doesn't actually know (or care) whether this piece of page is in
818  * a BIO, or is under IO or whatever.  We just take care of all possible
819  * situations here.  The separation between the logic of do_direct_IO() and
820  * that of submit_page_section() is important for clarity.  Please don't break.
821  *
822  * The chunk of page starts on-disk at blocknr.
823  *
824  * We perform deferred IO, by recording the last-submitted page inside our
825  * private part of the dio structure.  If possible, we just expand the IO
826  * across that page here.
827  *
828  * If that doesn't work out then we put the old page into the bio and add this
829  * page to the dio instead.
830  */
831 static inline int
832 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
833 		    unsigned offset, unsigned len, sector_t blocknr,
834 		    struct buffer_head *map_bh)
835 {
836 	int ret = 0;
837 
838 	if (dio->op == REQ_OP_WRITE) {
839 		/*
840 		 * Read accounting is performed in submit_bio()
841 		 */
842 		task_io_account_write(len);
843 	}
844 
845 	/*
846 	 * Can we just grow the current page's presence in the dio?
847 	 */
848 	if (sdio->cur_page == page &&
849 	    sdio->cur_page_offset + sdio->cur_page_len == offset &&
850 	    sdio->cur_page_block +
851 	    (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
852 		sdio->cur_page_len += len;
853 		goto out;
854 	}
855 
856 	/*
857 	 * If there's a deferred page already there then send it.
858 	 */
859 	if (sdio->cur_page) {
860 		ret = dio_send_cur_page(dio, sdio, map_bh);
861 		put_page(sdio->cur_page);
862 		sdio->cur_page = NULL;
863 		if (ret)
864 			return ret;
865 	}
866 
867 	get_page(page);		/* It is in dio */
868 	sdio->cur_page = page;
869 	sdio->cur_page_offset = offset;
870 	sdio->cur_page_len = len;
871 	sdio->cur_page_block = blocknr;
872 	sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
873 out:
874 	/*
875 	 * If sdio->boundary then we want to schedule the IO now to
876 	 * avoid metadata seeks.
877 	 */
878 	if (sdio->boundary) {
879 		ret = dio_send_cur_page(dio, sdio, map_bh);
880 		if (sdio->bio)
881 			dio_bio_submit(dio, sdio);
882 		put_page(sdio->cur_page);
883 		sdio->cur_page = NULL;
884 	}
885 	return ret;
886 }
887 
888 /*
889  * If we are not writing the entire block and get_block() allocated
890  * the block for us, we need to fill-in the unused portion of the
891  * block with zeros. This happens only if user-buffer, fileoffset or
892  * io length is not filesystem block-size multiple.
893  *
894  * `end' is zero if we're doing the start of the IO, 1 at the end of the
895  * IO.
896  */
897 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
898 		int end, struct buffer_head *map_bh)
899 {
900 	unsigned dio_blocks_per_fs_block;
901 	unsigned this_chunk_blocks;	/* In dio_blocks */
902 	unsigned this_chunk_bytes;
903 	struct page *page;
904 
905 	sdio->start_zero_done = 1;
906 	if (!sdio->blkfactor || !buffer_new(map_bh))
907 		return;
908 
909 	dio_blocks_per_fs_block = 1 << sdio->blkfactor;
910 	this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
911 
912 	if (!this_chunk_blocks)
913 		return;
914 
915 	/*
916 	 * We need to zero out part of an fs block.  It is either at the
917 	 * beginning or the end of the fs block.
918 	 */
919 	if (end)
920 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
921 
922 	this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
923 
924 	page = ZERO_PAGE(0);
925 	if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
926 				sdio->next_block_for_io, map_bh))
927 		return;
928 
929 	sdio->next_block_for_io += this_chunk_blocks;
930 }
931 
932 /*
933  * Walk the user pages, and the file, mapping blocks to disk and generating
934  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
935  * into submit_page_section(), which takes care of the next stage of submission
936  *
937  * Direct IO against a blockdev is different from a file.  Because we can
938  * happily perform page-sized but 512-byte aligned IOs.  It is important that
939  * blockdev IO be able to have fine alignment and large sizes.
940  *
941  * So what we do is to permit the ->get_block function to populate bh.b_size
942  * with the size of IO which is permitted at this offset and this i_blkbits.
943  *
944  * For best results, the blockdev should be set up with 512-byte i_blkbits and
945  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
946  * fine alignment but still allows this function to work in PAGE_SIZE units.
947  */
948 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
949 			struct buffer_head *map_bh)
950 {
951 	const unsigned blkbits = sdio->blkbits;
952 	const unsigned i_blkbits = blkbits + sdio->blkfactor;
953 	int ret = 0;
954 
955 	while (sdio->block_in_file < sdio->final_block_in_request) {
956 		struct page *page;
957 		size_t from, to;
958 
959 		page = dio_get_page(dio, sdio);
960 		if (IS_ERR(page)) {
961 			ret = PTR_ERR(page);
962 			goto out;
963 		}
964 		from = sdio->head ? 0 : sdio->from;
965 		to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
966 		sdio->head++;
967 
968 		while (from < to) {
969 			unsigned this_chunk_bytes;	/* # of bytes mapped */
970 			unsigned this_chunk_blocks;	/* # of blocks */
971 			unsigned u;
972 
973 			if (sdio->blocks_available == 0) {
974 				/*
975 				 * Need to go and map some more disk
976 				 */
977 				unsigned long blkmask;
978 				unsigned long dio_remainder;
979 
980 				ret = get_more_blocks(dio, sdio, map_bh);
981 				if (ret) {
982 					put_page(page);
983 					goto out;
984 				}
985 				if (!buffer_mapped(map_bh))
986 					goto do_holes;
987 
988 				sdio->blocks_available =
989 						map_bh->b_size >> blkbits;
990 				sdio->next_block_for_io =
991 					map_bh->b_blocknr << sdio->blkfactor;
992 				if (buffer_new(map_bh)) {
993 					clean_bdev_aliases(
994 						map_bh->b_bdev,
995 						map_bh->b_blocknr,
996 						map_bh->b_size >> i_blkbits);
997 				}
998 
999 				if (!sdio->blkfactor)
1000 					goto do_holes;
1001 
1002 				blkmask = (1 << sdio->blkfactor) - 1;
1003 				dio_remainder = (sdio->block_in_file & blkmask);
1004 
1005 				/*
1006 				 * If we are at the start of IO and that IO
1007 				 * starts partway into a fs-block,
1008 				 * dio_remainder will be non-zero.  If the IO
1009 				 * is a read then we can simply advance the IO
1010 				 * cursor to the first block which is to be
1011 				 * read.  But if the IO is a write and the
1012 				 * block was newly allocated we cannot do that;
1013 				 * the start of the fs block must be zeroed out
1014 				 * on-disk
1015 				 */
1016 				if (!buffer_new(map_bh))
1017 					sdio->next_block_for_io += dio_remainder;
1018 				sdio->blocks_available -= dio_remainder;
1019 			}
1020 do_holes:
1021 			/* Handle holes */
1022 			if (!buffer_mapped(map_bh)) {
1023 				loff_t i_size_aligned;
1024 
1025 				/* AKPM: eargh, -ENOTBLK is a hack */
1026 				if (dio->op == REQ_OP_WRITE) {
1027 					put_page(page);
1028 					return -ENOTBLK;
1029 				}
1030 
1031 				/*
1032 				 * Be sure to account for a partial block as the
1033 				 * last block in the file
1034 				 */
1035 				i_size_aligned = ALIGN(i_size_read(dio->inode),
1036 							1 << blkbits);
1037 				if (sdio->block_in_file >=
1038 						i_size_aligned >> blkbits) {
1039 					/* We hit eof */
1040 					put_page(page);
1041 					goto out;
1042 				}
1043 				zero_user(page, from, 1 << blkbits);
1044 				sdio->block_in_file++;
1045 				from += 1 << blkbits;
1046 				dio->result += 1 << blkbits;
1047 				goto next_block;
1048 			}
1049 
1050 			/*
1051 			 * If we're performing IO which has an alignment which
1052 			 * is finer than the underlying fs, go check to see if
1053 			 * we must zero out the start of this block.
1054 			 */
1055 			if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1056 				dio_zero_block(dio, sdio, 0, map_bh);
1057 
1058 			/*
1059 			 * Work out, in this_chunk_blocks, how much disk we
1060 			 * can add to this page
1061 			 */
1062 			this_chunk_blocks = sdio->blocks_available;
1063 			u = (to - from) >> blkbits;
1064 			if (this_chunk_blocks > u)
1065 				this_chunk_blocks = u;
1066 			u = sdio->final_block_in_request - sdio->block_in_file;
1067 			if (this_chunk_blocks > u)
1068 				this_chunk_blocks = u;
1069 			this_chunk_bytes = this_chunk_blocks << blkbits;
1070 			BUG_ON(this_chunk_bytes == 0);
1071 
1072 			if (this_chunk_blocks == sdio->blocks_available)
1073 				sdio->boundary = buffer_boundary(map_bh);
1074 			ret = submit_page_section(dio, sdio, page,
1075 						  from,
1076 						  this_chunk_bytes,
1077 						  sdio->next_block_for_io,
1078 						  map_bh);
1079 			if (ret) {
1080 				put_page(page);
1081 				goto out;
1082 			}
1083 			sdio->next_block_for_io += this_chunk_blocks;
1084 
1085 			sdio->block_in_file += this_chunk_blocks;
1086 			from += this_chunk_bytes;
1087 			dio->result += this_chunk_bytes;
1088 			sdio->blocks_available -= this_chunk_blocks;
1089 next_block:
1090 			BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1091 			if (sdio->block_in_file == sdio->final_block_in_request)
1092 				break;
1093 		}
1094 
1095 		/* Drop the ref which was taken in get_user_pages() */
1096 		put_page(page);
1097 	}
1098 out:
1099 	return ret;
1100 }
1101 
1102 static inline int drop_refcount(struct dio *dio)
1103 {
1104 	int ret2;
1105 	unsigned long flags;
1106 
1107 	/*
1108 	 * Sync will always be dropping the final ref and completing the
1109 	 * operation.  AIO can if it was a broken operation described above or
1110 	 * in fact if all the bios race to complete before we get here.  In
1111 	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1112 	 * return code that the caller will hand to ->complete().
1113 	 *
1114 	 * This is managed by the bio_lock instead of being an atomic_t so that
1115 	 * completion paths can drop their ref and use the remaining count to
1116 	 * decide to wake the submission path atomically.
1117 	 */
1118 	spin_lock_irqsave(&dio->bio_lock, flags);
1119 	ret2 = --dio->refcount;
1120 	spin_unlock_irqrestore(&dio->bio_lock, flags);
1121 	return ret2;
1122 }
1123 
1124 /*
1125  * This is a library function for use by filesystem drivers.
1126  *
1127  * The locking rules are governed by the flags parameter:
1128  *  - if the flags value contains DIO_LOCKING we use a fancy locking
1129  *    scheme for dumb filesystems.
1130  *    For writes this function is called under i_mutex and returns with
1131  *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1132  *    taken and dropped again before returning.
1133  *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1134  *    internal locking but rather rely on the filesystem to synchronize
1135  *    direct I/O reads/writes versus each other and truncate.
1136  *
1137  * To help with locking against truncate we incremented the i_dio_count
1138  * counter before starting direct I/O, and decrement it once we are done.
1139  * Truncate can wait for it to reach zero to provide exclusion.  It is
1140  * expected that filesystem provide exclusion between new direct I/O
1141  * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1142  * but other filesystems need to take care of this on their own.
1143  *
1144  * NOTE: if you pass "sdio" to anything by pointer make sure that function
1145  * is always inlined. Otherwise gcc is unable to split the structure into
1146  * individual fields and will generate much worse code. This is important
1147  * for the whole file.
1148  */
1149 static inline ssize_t
1150 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1151 		      struct block_device *bdev, struct iov_iter *iter,
1152 		      get_block_t get_block, dio_iodone_t end_io,
1153 		      dio_submit_t submit_io, int flags)
1154 {
1155 	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
1156 	unsigned blkbits = i_blkbits;
1157 	unsigned blocksize_mask = (1 << blkbits) - 1;
1158 	ssize_t retval = -EINVAL;
1159 	size_t count = iov_iter_count(iter);
1160 	loff_t offset = iocb->ki_pos;
1161 	loff_t end = offset + count;
1162 	struct dio *dio;
1163 	struct dio_submit sdio = { 0, };
1164 	struct buffer_head map_bh = { 0, };
1165 	struct blk_plug plug;
1166 	unsigned long align = offset | iov_iter_alignment(iter);
1167 
1168 	/*
1169 	 * Avoid references to bdev if not absolutely needed to give
1170 	 * the early prefetch in the caller enough time.
1171 	 */
1172 
1173 	if (align & blocksize_mask) {
1174 		if (bdev)
1175 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
1176 		blocksize_mask = (1 << blkbits) - 1;
1177 		if (align & blocksize_mask)
1178 			goto out;
1179 	}
1180 
1181 	/* watch out for a 0 len io from a tricksy fs */
1182 	if (iov_iter_rw(iter) == READ && !iov_iter_count(iter))
1183 		return 0;
1184 
1185 	dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1186 	retval = -ENOMEM;
1187 	if (!dio)
1188 		goto out;
1189 	/*
1190 	 * Believe it or not, zeroing out the page array caused a .5%
1191 	 * performance regression in a database benchmark.  So, we take
1192 	 * care to only zero out what's needed.
1193 	 */
1194 	memset(dio, 0, offsetof(struct dio, pages));
1195 
1196 	dio->flags = flags;
1197 	if (dio->flags & DIO_LOCKING) {
1198 		if (iov_iter_rw(iter) == READ) {
1199 			struct address_space *mapping =
1200 					iocb->ki_filp->f_mapping;
1201 
1202 			/* will be released by direct_io_worker */
1203 			inode_lock(inode);
1204 
1205 			retval = filemap_write_and_wait_range(mapping, offset,
1206 							      end - 1);
1207 			if (retval) {
1208 				inode_unlock(inode);
1209 				kmem_cache_free(dio_cache, dio);
1210 				goto out;
1211 			}
1212 		}
1213 	}
1214 
1215 	/* Once we sampled i_size check for reads beyond EOF */
1216 	dio->i_size = i_size_read(inode);
1217 	if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1218 		if (dio->flags & DIO_LOCKING)
1219 			inode_unlock(inode);
1220 		kmem_cache_free(dio_cache, dio);
1221 		retval = 0;
1222 		goto out;
1223 	}
1224 
1225 	/*
1226 	 * For file extending writes updating i_size before data writeouts
1227 	 * complete can expose uninitialized blocks in dumb filesystems.
1228 	 * In that case we need to wait for I/O completion even if asked
1229 	 * for an asynchronous write.
1230 	 */
1231 	if (is_sync_kiocb(iocb))
1232 		dio->is_async = false;
1233 	else if (!(dio->flags & DIO_ASYNC_EXTEND) &&
1234 		 iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1235 		dio->is_async = false;
1236 	else
1237 		dio->is_async = true;
1238 
1239 	dio->inode = inode;
1240 	if (iov_iter_rw(iter) == WRITE) {
1241 		dio->op = REQ_OP_WRITE;
1242 		dio->op_flags = REQ_SYNC | REQ_IDLE;
1243 		if (iocb->ki_flags & IOCB_NOWAIT)
1244 			dio->op_flags |= REQ_NOWAIT;
1245 	} else {
1246 		dio->op = REQ_OP_READ;
1247 	}
1248 
1249 	/*
1250 	 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1251 	 * so that we can call ->fsync.
1252 	 */
1253 	if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1254 		retval = 0;
1255 		if ((iocb->ki_filp->f_flags & O_DSYNC) ||
1256 		    IS_SYNC(iocb->ki_filp->f_mapping->host))
1257 			retval = dio_set_defer_completion(dio);
1258 		else if (!dio->inode->i_sb->s_dio_done_wq) {
1259 			/*
1260 			 * In case of AIO write racing with buffered read we
1261 			 * need to defer completion. We can't decide this now,
1262 			 * however the workqueue needs to be initialized here.
1263 			 */
1264 			retval = sb_init_dio_done_wq(dio->inode->i_sb);
1265 		}
1266 		if (retval) {
1267 			/*
1268 			 * We grab i_mutex only for reads so we don't have
1269 			 * to release it here
1270 			 */
1271 			kmem_cache_free(dio_cache, dio);
1272 			goto out;
1273 		}
1274 	}
1275 
1276 	/*
1277 	 * Will be decremented at I/O completion time.
1278 	 */
1279 	if (!(dio->flags & DIO_SKIP_DIO_COUNT))
1280 		inode_dio_begin(inode);
1281 
1282 	retval = 0;
1283 	sdio.blkbits = blkbits;
1284 	sdio.blkfactor = i_blkbits - blkbits;
1285 	sdio.block_in_file = offset >> blkbits;
1286 
1287 	sdio.get_block = get_block;
1288 	dio->end_io = end_io;
1289 	sdio.submit_io = submit_io;
1290 	sdio.final_block_in_bio = -1;
1291 	sdio.next_block_for_io = -1;
1292 
1293 	dio->iocb = iocb;
1294 
1295 	spin_lock_init(&dio->bio_lock);
1296 	dio->refcount = 1;
1297 
1298 	dio->should_dirty = (iter->type == ITER_IOVEC);
1299 	sdio.iter = iter;
1300 	sdio.final_block_in_request =
1301 		(offset + iov_iter_count(iter)) >> blkbits;
1302 
1303 	/*
1304 	 * In case of non-aligned buffers, we may need 2 more
1305 	 * pages since we need to zero out first and last block.
1306 	 */
1307 	if (unlikely(sdio.blkfactor))
1308 		sdio.pages_in_io = 2;
1309 
1310 	sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1311 
1312 	blk_start_plug(&plug);
1313 
1314 	retval = do_direct_IO(dio, &sdio, &map_bh);
1315 	if (retval)
1316 		dio_cleanup(dio, &sdio);
1317 
1318 	if (retval == -ENOTBLK) {
1319 		/*
1320 		 * The remaining part of the request will be
1321 		 * be handled by buffered I/O when we return
1322 		 */
1323 		retval = 0;
1324 	}
1325 	/*
1326 	 * There may be some unwritten disk at the end of a part-written
1327 	 * fs-block-sized block.  Go zero that now.
1328 	 */
1329 	dio_zero_block(dio, &sdio, 1, &map_bh);
1330 
1331 	if (sdio.cur_page) {
1332 		ssize_t ret2;
1333 
1334 		ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1335 		if (retval == 0)
1336 			retval = ret2;
1337 		put_page(sdio.cur_page);
1338 		sdio.cur_page = NULL;
1339 	}
1340 	if (sdio.bio)
1341 		dio_bio_submit(dio, &sdio);
1342 
1343 	blk_finish_plug(&plug);
1344 
1345 	/*
1346 	 * It is possible that, we return short IO due to end of file.
1347 	 * In that case, we need to release all the pages we got hold on.
1348 	 */
1349 	dio_cleanup(dio, &sdio);
1350 
1351 	/*
1352 	 * All block lookups have been performed. For READ requests
1353 	 * we can let i_mutex go now that its achieved its purpose
1354 	 * of protecting us from looking up uninitialized blocks.
1355 	 */
1356 	if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1357 		inode_unlock(dio->inode);
1358 
1359 	/*
1360 	 * The only time we want to leave bios in flight is when a successful
1361 	 * partial aio read or full aio write have been setup.  In that case
1362 	 * bio completion will call aio_complete.  The only time it's safe to
1363 	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1364 	 * This had *better* be the only place that raises -EIOCBQUEUED.
1365 	 */
1366 	BUG_ON(retval == -EIOCBQUEUED);
1367 	if (dio->is_async && retval == 0 && dio->result &&
1368 	    (iov_iter_rw(iter) == READ || dio->result == count))
1369 		retval = -EIOCBQUEUED;
1370 	else
1371 		dio_await_completion(dio);
1372 
1373 	if (drop_refcount(dio) == 0) {
1374 		retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
1375 	} else
1376 		BUG_ON(retval != -EIOCBQUEUED);
1377 
1378 out:
1379 	return retval;
1380 }
1381 
1382 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1383 			     struct block_device *bdev, struct iov_iter *iter,
1384 			     get_block_t get_block,
1385 			     dio_iodone_t end_io, dio_submit_t submit_io,
1386 			     int flags)
1387 {
1388 	/*
1389 	 * The block device state is needed in the end to finally
1390 	 * submit everything.  Since it's likely to be cache cold
1391 	 * prefetch it here as first thing to hide some of the
1392 	 * latency.
1393 	 *
1394 	 * Attempt to prefetch the pieces we likely need later.
1395 	 */
1396 	prefetch(&bdev->bd_disk->part_tbl);
1397 	prefetch(bdev->bd_queue);
1398 	prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1399 
1400 	return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block,
1401 				     end_io, submit_io, flags);
1402 }
1403 
1404 EXPORT_SYMBOL(__blockdev_direct_IO);
1405 
1406 static __init int dio_init(void)
1407 {
1408 	dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1409 	return 0;
1410 }
1411 module_init(dio_init)
1412