1 /* 2 * fs/direct-io.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * O_DIRECT 7 * 8 * 04Jul2002 Andrew Morton 9 * Initial version 10 * 11Sep2002 janetinc@us.ibm.com 11 * added readv/writev support. 12 * 29Oct2002 Andrew Morton 13 * rewrote bio_add_page() support. 14 * 30Oct2002 pbadari@us.ibm.com 15 * added support for non-aligned IO. 16 * 06Nov2002 pbadari@us.ibm.com 17 * added asynchronous IO support. 18 * 21Jul2003 nathans@sgi.com 19 * added IO completion notifier. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/types.h> 25 #include <linux/fs.h> 26 #include <linux/mm.h> 27 #include <linux/slab.h> 28 #include <linux/highmem.h> 29 #include <linux/pagemap.h> 30 #include <linux/task_io_accounting_ops.h> 31 #include <linux/bio.h> 32 #include <linux/wait.h> 33 #include <linux/err.h> 34 #include <linux/blkdev.h> 35 #include <linux/buffer_head.h> 36 #include <linux/rwsem.h> 37 #include <linux/uio.h> 38 #include <linux/atomic.h> 39 #include <linux/prefetch.h> 40 41 /* 42 * How many user pages to map in one call to get_user_pages(). This determines 43 * the size of a structure in the slab cache 44 */ 45 #define DIO_PAGES 64 46 47 /* 48 * Flags for dio_complete() 49 */ 50 #define DIO_COMPLETE_ASYNC 0x01 /* This is async IO */ 51 #define DIO_COMPLETE_INVALIDATE 0x02 /* Can invalidate pages */ 52 53 /* 54 * This code generally works in units of "dio_blocks". A dio_block is 55 * somewhere between the hard sector size and the filesystem block size. it 56 * is determined on a per-invocation basis. When talking to the filesystem 57 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity 58 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted 59 * to bio_block quantities by shifting left by blkfactor. 60 * 61 * If blkfactor is zero then the user's request was aligned to the filesystem's 62 * blocksize. 63 */ 64 65 /* dio_state only used in the submission path */ 66 67 struct dio_submit { 68 struct bio *bio; /* bio under assembly */ 69 unsigned blkbits; /* doesn't change */ 70 unsigned blkfactor; /* When we're using an alignment which 71 is finer than the filesystem's soft 72 blocksize, this specifies how much 73 finer. blkfactor=2 means 1/4-block 74 alignment. Does not change */ 75 unsigned start_zero_done; /* flag: sub-blocksize zeroing has 76 been performed at the start of a 77 write */ 78 int pages_in_io; /* approximate total IO pages */ 79 sector_t block_in_file; /* Current offset into the underlying 80 file in dio_block units. */ 81 unsigned blocks_available; /* At block_in_file. changes */ 82 int reap_counter; /* rate limit reaping */ 83 sector_t final_block_in_request;/* doesn't change */ 84 int boundary; /* prev block is at a boundary */ 85 get_block_t *get_block; /* block mapping function */ 86 dio_submit_t *submit_io; /* IO submition function */ 87 88 loff_t logical_offset_in_bio; /* current first logical block in bio */ 89 sector_t final_block_in_bio; /* current final block in bio + 1 */ 90 sector_t next_block_for_io; /* next block to be put under IO, 91 in dio_blocks units */ 92 93 /* 94 * Deferred addition of a page to the dio. These variables are 95 * private to dio_send_cur_page(), submit_page_section() and 96 * dio_bio_add_page(). 97 */ 98 struct page *cur_page; /* The page */ 99 unsigned cur_page_offset; /* Offset into it, in bytes */ 100 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ 101 sector_t cur_page_block; /* Where it starts */ 102 loff_t cur_page_fs_offset; /* Offset in file */ 103 104 struct iov_iter *iter; 105 /* 106 * Page queue. These variables belong to dio_refill_pages() and 107 * dio_get_page(). 108 */ 109 unsigned head; /* next page to process */ 110 unsigned tail; /* last valid page + 1 */ 111 size_t from, to; 112 }; 113 114 /* dio_state communicated between submission path and end_io */ 115 struct dio { 116 int flags; /* doesn't change */ 117 int op; 118 int op_flags; 119 blk_qc_t bio_cookie; 120 struct gendisk *bio_disk; 121 struct inode *inode; 122 loff_t i_size; /* i_size when submitted */ 123 dio_iodone_t *end_io; /* IO completion function */ 124 125 void *private; /* copy from map_bh.b_private */ 126 127 /* BIO completion state */ 128 spinlock_t bio_lock; /* protects BIO fields below */ 129 int page_errors; /* errno from get_user_pages() */ 130 int is_async; /* is IO async ? */ 131 bool defer_completion; /* defer AIO completion to workqueue? */ 132 bool should_dirty; /* if pages should be dirtied */ 133 int io_error; /* IO error in completion path */ 134 unsigned long refcount; /* direct_io_worker() and bios */ 135 struct bio *bio_list; /* singly linked via bi_private */ 136 struct task_struct *waiter; /* waiting task (NULL if none) */ 137 138 /* AIO related stuff */ 139 struct kiocb *iocb; /* kiocb */ 140 ssize_t result; /* IO result */ 141 142 /* 143 * pages[] (and any fields placed after it) are not zeroed out at 144 * allocation time. Don't add new fields after pages[] unless you 145 * wish that they not be zeroed. 146 */ 147 union { 148 struct page *pages[DIO_PAGES]; /* page buffer */ 149 struct work_struct complete_work;/* deferred AIO completion */ 150 }; 151 } ____cacheline_aligned_in_smp; 152 153 static struct kmem_cache *dio_cache __read_mostly; 154 155 /* 156 * How many pages are in the queue? 157 */ 158 static inline unsigned dio_pages_present(struct dio_submit *sdio) 159 { 160 return sdio->tail - sdio->head; 161 } 162 163 /* 164 * Go grab and pin some userspace pages. Typically we'll get 64 at a time. 165 */ 166 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio) 167 { 168 ssize_t ret; 169 170 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES, 171 &sdio->from); 172 173 if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) { 174 struct page *page = ZERO_PAGE(0); 175 /* 176 * A memory fault, but the filesystem has some outstanding 177 * mapped blocks. We need to use those blocks up to avoid 178 * leaking stale data in the file. 179 */ 180 if (dio->page_errors == 0) 181 dio->page_errors = ret; 182 get_page(page); 183 dio->pages[0] = page; 184 sdio->head = 0; 185 sdio->tail = 1; 186 sdio->from = 0; 187 sdio->to = PAGE_SIZE; 188 return 0; 189 } 190 191 if (ret >= 0) { 192 iov_iter_advance(sdio->iter, ret); 193 ret += sdio->from; 194 sdio->head = 0; 195 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE; 196 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1; 197 return 0; 198 } 199 return ret; 200 } 201 202 /* 203 * Get another userspace page. Returns an ERR_PTR on error. Pages are 204 * buffered inside the dio so that we can call get_user_pages() against a 205 * decent number of pages, less frequently. To provide nicer use of the 206 * L1 cache. 207 */ 208 static inline struct page *dio_get_page(struct dio *dio, 209 struct dio_submit *sdio) 210 { 211 if (dio_pages_present(sdio) == 0) { 212 int ret; 213 214 ret = dio_refill_pages(dio, sdio); 215 if (ret) 216 return ERR_PTR(ret); 217 BUG_ON(dio_pages_present(sdio) == 0); 218 } 219 return dio->pages[sdio->head]; 220 } 221 222 /** 223 * dio_complete() - called when all DIO BIO I/O has been completed 224 * @offset: the byte offset in the file of the completed operation 225 * 226 * This drops i_dio_count, lets interested parties know that a DIO operation 227 * has completed, and calculates the resulting return code for the operation. 228 * 229 * It lets the filesystem know if it registered an interest earlier via 230 * get_block. Pass the private field of the map buffer_head so that 231 * filesystems can use it to hold additional state between get_block calls and 232 * dio_complete. 233 */ 234 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags) 235 { 236 loff_t offset = dio->iocb->ki_pos; 237 ssize_t transferred = 0; 238 int err; 239 240 /* 241 * AIO submission can race with bio completion to get here while 242 * expecting to have the last io completed by bio completion. 243 * In that case -EIOCBQUEUED is in fact not an error we want 244 * to preserve through this call. 245 */ 246 if (ret == -EIOCBQUEUED) 247 ret = 0; 248 249 if (dio->result) { 250 transferred = dio->result; 251 252 /* Check for short read case */ 253 if ((dio->op == REQ_OP_READ) && 254 ((offset + transferred) > dio->i_size)) 255 transferred = dio->i_size - offset; 256 /* ignore EFAULT if some IO has been done */ 257 if (unlikely(ret == -EFAULT) && transferred) 258 ret = 0; 259 } 260 261 if (ret == 0) 262 ret = dio->page_errors; 263 if (ret == 0) 264 ret = dio->io_error; 265 if (ret == 0) 266 ret = transferred; 267 268 if (dio->end_io) { 269 // XXX: ki_pos?? 270 err = dio->end_io(dio->iocb, offset, ret, dio->private); 271 if (err) 272 ret = err; 273 } 274 275 /* 276 * Try again to invalidate clean pages which might have been cached by 277 * non-direct readahead, or faulted in by get_user_pages() if the source 278 * of the write was an mmap'ed region of the file we're writing. Either 279 * one is a pretty crazy thing to do, so we don't support it 100%. If 280 * this invalidation fails, tough, the write still worked... 281 * 282 * And this page cache invalidation has to be after dio->end_io(), as 283 * some filesystems convert unwritten extents to real allocations in 284 * end_io() when necessary, otherwise a racing buffer read would cache 285 * zeros from unwritten extents. 286 */ 287 if (flags & DIO_COMPLETE_INVALIDATE && 288 ret > 0 && dio->op == REQ_OP_WRITE && 289 dio->inode->i_mapping->nrpages) { 290 err = invalidate_inode_pages2_range(dio->inode->i_mapping, 291 offset >> PAGE_SHIFT, 292 (offset + ret - 1) >> PAGE_SHIFT); 293 WARN_ON_ONCE(err); 294 } 295 296 if (!(dio->flags & DIO_SKIP_DIO_COUNT)) 297 inode_dio_end(dio->inode); 298 299 if (flags & DIO_COMPLETE_ASYNC) { 300 /* 301 * generic_write_sync expects ki_pos to have been updated 302 * already, but the submission path only does this for 303 * synchronous I/O. 304 */ 305 dio->iocb->ki_pos += transferred; 306 307 if (dio->op == REQ_OP_WRITE) 308 ret = generic_write_sync(dio->iocb, transferred); 309 dio->iocb->ki_complete(dio->iocb, ret, 0); 310 } 311 312 kmem_cache_free(dio_cache, dio); 313 return ret; 314 } 315 316 static void dio_aio_complete_work(struct work_struct *work) 317 { 318 struct dio *dio = container_of(work, struct dio, complete_work); 319 320 dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE); 321 } 322 323 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio); 324 325 /* 326 * Asynchronous IO callback. 327 */ 328 static void dio_bio_end_aio(struct bio *bio) 329 { 330 struct dio *dio = bio->bi_private; 331 unsigned long remaining; 332 unsigned long flags; 333 bool defer_completion = false; 334 335 /* cleanup the bio */ 336 dio_bio_complete(dio, bio); 337 338 spin_lock_irqsave(&dio->bio_lock, flags); 339 remaining = --dio->refcount; 340 if (remaining == 1 && dio->waiter) 341 wake_up_process(dio->waiter); 342 spin_unlock_irqrestore(&dio->bio_lock, flags); 343 344 if (remaining == 0) { 345 /* 346 * Defer completion when defer_completion is set or 347 * when the inode has pages mapped and this is AIO write. 348 * We need to invalidate those pages because there is a 349 * chance they contain stale data in the case buffered IO 350 * went in between AIO submission and completion into the 351 * same region. 352 */ 353 if (dio->result) 354 defer_completion = dio->defer_completion || 355 (dio->op == REQ_OP_WRITE && 356 dio->inode->i_mapping->nrpages); 357 if (defer_completion) { 358 INIT_WORK(&dio->complete_work, dio_aio_complete_work); 359 queue_work(dio->inode->i_sb->s_dio_done_wq, 360 &dio->complete_work); 361 } else { 362 dio_complete(dio, 0, DIO_COMPLETE_ASYNC); 363 } 364 } 365 } 366 367 /* 368 * The BIO completion handler simply queues the BIO up for the process-context 369 * handler. 370 * 371 * During I/O bi_private points at the dio. After I/O, bi_private is used to 372 * implement a singly-linked list of completed BIOs, at dio->bio_list. 373 */ 374 static void dio_bio_end_io(struct bio *bio) 375 { 376 struct dio *dio = bio->bi_private; 377 unsigned long flags; 378 379 spin_lock_irqsave(&dio->bio_lock, flags); 380 bio->bi_private = dio->bio_list; 381 dio->bio_list = bio; 382 if (--dio->refcount == 1 && dio->waiter) 383 wake_up_process(dio->waiter); 384 spin_unlock_irqrestore(&dio->bio_lock, flags); 385 } 386 387 /** 388 * dio_end_io - handle the end io action for the given bio 389 * @bio: The direct io bio thats being completed 390 * 391 * This is meant to be called by any filesystem that uses their own dio_submit_t 392 * so that the DIO specific endio actions are dealt with after the filesystem 393 * has done it's completion work. 394 */ 395 void dio_end_io(struct bio *bio) 396 { 397 struct dio *dio = bio->bi_private; 398 399 if (dio->is_async) 400 dio_bio_end_aio(bio); 401 else 402 dio_bio_end_io(bio); 403 } 404 EXPORT_SYMBOL_GPL(dio_end_io); 405 406 static inline void 407 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio, 408 struct block_device *bdev, 409 sector_t first_sector, int nr_vecs) 410 { 411 struct bio *bio; 412 413 /* 414 * bio_alloc() is guaranteed to return a bio when called with 415 * __GFP_RECLAIM and we request a valid number of vectors. 416 */ 417 bio = bio_alloc(GFP_KERNEL, nr_vecs); 418 419 bio_set_dev(bio, bdev); 420 bio->bi_iter.bi_sector = first_sector; 421 bio_set_op_attrs(bio, dio->op, dio->op_flags); 422 if (dio->is_async) 423 bio->bi_end_io = dio_bio_end_aio; 424 else 425 bio->bi_end_io = dio_bio_end_io; 426 427 bio->bi_write_hint = dio->iocb->ki_hint; 428 429 sdio->bio = bio; 430 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset; 431 } 432 433 /* 434 * In the AIO read case we speculatively dirty the pages before starting IO. 435 * During IO completion, any of these pages which happen to have been written 436 * back will be redirtied by bio_check_pages_dirty(). 437 * 438 * bios hold a dio reference between submit_bio and ->end_io. 439 */ 440 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio) 441 { 442 struct bio *bio = sdio->bio; 443 unsigned long flags; 444 445 bio->bi_private = dio; 446 447 spin_lock_irqsave(&dio->bio_lock, flags); 448 dio->refcount++; 449 spin_unlock_irqrestore(&dio->bio_lock, flags); 450 451 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) 452 bio_set_pages_dirty(bio); 453 454 dio->bio_disk = bio->bi_disk; 455 456 if (sdio->submit_io) { 457 sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio); 458 dio->bio_cookie = BLK_QC_T_NONE; 459 } else 460 dio->bio_cookie = submit_bio(bio); 461 462 sdio->bio = NULL; 463 sdio->boundary = 0; 464 sdio->logical_offset_in_bio = 0; 465 } 466 467 /* 468 * Release any resources in case of a failure 469 */ 470 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio) 471 { 472 while (sdio->head < sdio->tail) 473 put_page(dio->pages[sdio->head++]); 474 } 475 476 /* 477 * Wait for the next BIO to complete. Remove it and return it. NULL is 478 * returned once all BIOs have been completed. This must only be called once 479 * all bios have been issued so that dio->refcount can only decrease. This 480 * requires that that the caller hold a reference on the dio. 481 */ 482 static struct bio *dio_await_one(struct dio *dio) 483 { 484 unsigned long flags; 485 struct bio *bio = NULL; 486 487 spin_lock_irqsave(&dio->bio_lock, flags); 488 489 /* 490 * Wait as long as the list is empty and there are bios in flight. bio 491 * completion drops the count, maybe adds to the list, and wakes while 492 * holding the bio_lock so we don't need set_current_state()'s barrier 493 * and can call it after testing our condition. 494 */ 495 while (dio->refcount > 1 && dio->bio_list == NULL) { 496 __set_current_state(TASK_UNINTERRUPTIBLE); 497 dio->waiter = current; 498 spin_unlock_irqrestore(&dio->bio_lock, flags); 499 if (!(dio->iocb->ki_flags & IOCB_HIPRI) || 500 !blk_poll(dio->bio_disk->queue, dio->bio_cookie)) 501 io_schedule(); 502 /* wake up sets us TASK_RUNNING */ 503 spin_lock_irqsave(&dio->bio_lock, flags); 504 dio->waiter = NULL; 505 } 506 if (dio->bio_list) { 507 bio = dio->bio_list; 508 dio->bio_list = bio->bi_private; 509 } 510 spin_unlock_irqrestore(&dio->bio_lock, flags); 511 return bio; 512 } 513 514 /* 515 * Process one completed BIO. No locks are held. 516 */ 517 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio) 518 { 519 struct bio_vec *bvec; 520 unsigned i; 521 blk_status_t err = bio->bi_status; 522 523 if (err) { 524 if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT)) 525 dio->io_error = -EAGAIN; 526 else 527 dio->io_error = -EIO; 528 } 529 530 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) { 531 bio_check_pages_dirty(bio); /* transfers ownership */ 532 } else { 533 bio_for_each_segment_all(bvec, bio, i) { 534 struct page *page = bvec->bv_page; 535 536 if (dio->op == REQ_OP_READ && !PageCompound(page) && 537 dio->should_dirty) 538 set_page_dirty_lock(page); 539 put_page(page); 540 } 541 bio_put(bio); 542 } 543 return err; 544 } 545 546 /* 547 * Wait on and process all in-flight BIOs. This must only be called once 548 * all bios have been issued so that the refcount can only decrease. 549 * This just waits for all bios to make it through dio_bio_complete. IO 550 * errors are propagated through dio->io_error and should be propagated via 551 * dio_complete(). 552 */ 553 static void dio_await_completion(struct dio *dio) 554 { 555 struct bio *bio; 556 do { 557 bio = dio_await_one(dio); 558 if (bio) 559 dio_bio_complete(dio, bio); 560 } while (bio); 561 } 562 563 /* 564 * A really large O_DIRECT read or write can generate a lot of BIOs. So 565 * to keep the memory consumption sane we periodically reap any completed BIOs 566 * during the BIO generation phase. 567 * 568 * This also helps to limit the peak amount of pinned userspace memory. 569 */ 570 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio) 571 { 572 int ret = 0; 573 574 if (sdio->reap_counter++ >= 64) { 575 while (dio->bio_list) { 576 unsigned long flags; 577 struct bio *bio; 578 int ret2; 579 580 spin_lock_irqsave(&dio->bio_lock, flags); 581 bio = dio->bio_list; 582 dio->bio_list = bio->bi_private; 583 spin_unlock_irqrestore(&dio->bio_lock, flags); 584 ret2 = blk_status_to_errno(dio_bio_complete(dio, bio)); 585 if (ret == 0) 586 ret = ret2; 587 } 588 sdio->reap_counter = 0; 589 } 590 return ret; 591 } 592 593 /* 594 * Create workqueue for deferred direct IO completions. We allocate the 595 * workqueue when it's first needed. This avoids creating workqueue for 596 * filesystems that don't need it and also allows us to create the workqueue 597 * late enough so the we can include s_id in the name of the workqueue. 598 */ 599 int sb_init_dio_done_wq(struct super_block *sb) 600 { 601 struct workqueue_struct *old; 602 struct workqueue_struct *wq = alloc_workqueue("dio/%s", 603 WQ_MEM_RECLAIM, 0, 604 sb->s_id); 605 if (!wq) 606 return -ENOMEM; 607 /* 608 * This has to be atomic as more DIOs can race to create the workqueue 609 */ 610 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq); 611 /* Someone created workqueue before us? Free ours... */ 612 if (old) 613 destroy_workqueue(wq); 614 return 0; 615 } 616 617 static int dio_set_defer_completion(struct dio *dio) 618 { 619 struct super_block *sb = dio->inode->i_sb; 620 621 if (dio->defer_completion) 622 return 0; 623 dio->defer_completion = true; 624 if (!sb->s_dio_done_wq) 625 return sb_init_dio_done_wq(sb); 626 return 0; 627 } 628 629 /* 630 * Call into the fs to map some more disk blocks. We record the current number 631 * of available blocks at sdio->blocks_available. These are in units of the 632 * fs blocksize, i_blocksize(inode). 633 * 634 * The fs is allowed to map lots of blocks at once. If it wants to do that, 635 * it uses the passed inode-relative block number as the file offset, as usual. 636 * 637 * get_block() is passed the number of i_blkbits-sized blocks which direct_io 638 * has remaining to do. The fs should not map more than this number of blocks. 639 * 640 * If the fs has mapped a lot of blocks, it should populate bh->b_size to 641 * indicate how much contiguous disk space has been made available at 642 * bh->b_blocknr. 643 * 644 * If *any* of the mapped blocks are new, then the fs must set buffer_new(). 645 * This isn't very efficient... 646 * 647 * In the case of filesystem holes: the fs may return an arbitrarily-large 648 * hole by returning an appropriate value in b_size and by clearing 649 * buffer_mapped(). However the direct-io code will only process holes one 650 * block at a time - it will repeatedly call get_block() as it walks the hole. 651 */ 652 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio, 653 struct buffer_head *map_bh) 654 { 655 int ret; 656 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ 657 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */ 658 unsigned long fs_count; /* Number of filesystem-sized blocks */ 659 int create; 660 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor; 661 662 /* 663 * If there was a memory error and we've overwritten all the 664 * mapped blocks then we can now return that memory error 665 */ 666 ret = dio->page_errors; 667 if (ret == 0) { 668 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request); 669 fs_startblk = sdio->block_in_file >> sdio->blkfactor; 670 fs_endblk = (sdio->final_block_in_request - 1) >> 671 sdio->blkfactor; 672 fs_count = fs_endblk - fs_startblk + 1; 673 674 map_bh->b_state = 0; 675 map_bh->b_size = fs_count << i_blkbits; 676 677 /* 678 * For writes that could fill holes inside i_size on a 679 * DIO_SKIP_HOLES filesystem we forbid block creations: only 680 * overwrites are permitted. We will return early to the caller 681 * once we see an unmapped buffer head returned, and the caller 682 * will fall back to buffered I/O. 683 * 684 * Otherwise the decision is left to the get_blocks method, 685 * which may decide to handle it or also return an unmapped 686 * buffer head. 687 */ 688 create = dio->op == REQ_OP_WRITE; 689 if (dio->flags & DIO_SKIP_HOLES) { 690 if (fs_startblk <= ((i_size_read(dio->inode) - 1) >> 691 i_blkbits)) 692 create = 0; 693 } 694 695 ret = (*sdio->get_block)(dio->inode, fs_startblk, 696 map_bh, create); 697 698 /* Store for completion */ 699 dio->private = map_bh->b_private; 700 701 if (ret == 0 && buffer_defer_completion(map_bh)) 702 ret = dio_set_defer_completion(dio); 703 } 704 return ret; 705 } 706 707 /* 708 * There is no bio. Make one now. 709 */ 710 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio, 711 sector_t start_sector, struct buffer_head *map_bh) 712 { 713 sector_t sector; 714 int ret, nr_pages; 715 716 ret = dio_bio_reap(dio, sdio); 717 if (ret) 718 goto out; 719 sector = start_sector << (sdio->blkbits - 9); 720 nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES); 721 BUG_ON(nr_pages <= 0); 722 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages); 723 sdio->boundary = 0; 724 out: 725 return ret; 726 } 727 728 /* 729 * Attempt to put the current chunk of 'cur_page' into the current BIO. If 730 * that was successful then update final_block_in_bio and take a ref against 731 * the just-added page. 732 * 733 * Return zero on success. Non-zero means the caller needs to start a new BIO. 734 */ 735 static inline int dio_bio_add_page(struct dio_submit *sdio) 736 { 737 int ret; 738 739 ret = bio_add_page(sdio->bio, sdio->cur_page, 740 sdio->cur_page_len, sdio->cur_page_offset); 741 if (ret == sdio->cur_page_len) { 742 /* 743 * Decrement count only, if we are done with this page 744 */ 745 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE) 746 sdio->pages_in_io--; 747 get_page(sdio->cur_page); 748 sdio->final_block_in_bio = sdio->cur_page_block + 749 (sdio->cur_page_len >> sdio->blkbits); 750 ret = 0; 751 } else { 752 ret = 1; 753 } 754 return ret; 755 } 756 757 /* 758 * Put cur_page under IO. The section of cur_page which is described by 759 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page 760 * starts on-disk at cur_page_block. 761 * 762 * We take a ref against the page here (on behalf of its presence in the bio). 763 * 764 * The caller of this function is responsible for removing cur_page from the 765 * dio, and for dropping the refcount which came from that presence. 766 */ 767 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio, 768 struct buffer_head *map_bh) 769 { 770 int ret = 0; 771 772 if (sdio->bio) { 773 loff_t cur_offset = sdio->cur_page_fs_offset; 774 loff_t bio_next_offset = sdio->logical_offset_in_bio + 775 sdio->bio->bi_iter.bi_size; 776 777 /* 778 * See whether this new request is contiguous with the old. 779 * 780 * Btrfs cannot handle having logically non-contiguous requests 781 * submitted. For example if you have 782 * 783 * Logical: [0-4095][HOLE][8192-12287] 784 * Physical: [0-4095] [4096-8191] 785 * 786 * We cannot submit those pages together as one BIO. So if our 787 * current logical offset in the file does not equal what would 788 * be the next logical offset in the bio, submit the bio we 789 * have. 790 */ 791 if (sdio->final_block_in_bio != sdio->cur_page_block || 792 cur_offset != bio_next_offset) 793 dio_bio_submit(dio, sdio); 794 } 795 796 if (sdio->bio == NULL) { 797 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 798 if (ret) 799 goto out; 800 } 801 802 if (dio_bio_add_page(sdio) != 0) { 803 dio_bio_submit(dio, sdio); 804 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 805 if (ret == 0) { 806 ret = dio_bio_add_page(sdio); 807 BUG_ON(ret != 0); 808 } 809 } 810 out: 811 return ret; 812 } 813 814 /* 815 * An autonomous function to put a chunk of a page under deferred IO. 816 * 817 * The caller doesn't actually know (or care) whether this piece of page is in 818 * a BIO, or is under IO or whatever. We just take care of all possible 819 * situations here. The separation between the logic of do_direct_IO() and 820 * that of submit_page_section() is important for clarity. Please don't break. 821 * 822 * The chunk of page starts on-disk at blocknr. 823 * 824 * We perform deferred IO, by recording the last-submitted page inside our 825 * private part of the dio structure. If possible, we just expand the IO 826 * across that page here. 827 * 828 * If that doesn't work out then we put the old page into the bio and add this 829 * page to the dio instead. 830 */ 831 static inline int 832 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page, 833 unsigned offset, unsigned len, sector_t blocknr, 834 struct buffer_head *map_bh) 835 { 836 int ret = 0; 837 838 if (dio->op == REQ_OP_WRITE) { 839 /* 840 * Read accounting is performed in submit_bio() 841 */ 842 task_io_account_write(len); 843 } 844 845 /* 846 * Can we just grow the current page's presence in the dio? 847 */ 848 if (sdio->cur_page == page && 849 sdio->cur_page_offset + sdio->cur_page_len == offset && 850 sdio->cur_page_block + 851 (sdio->cur_page_len >> sdio->blkbits) == blocknr) { 852 sdio->cur_page_len += len; 853 goto out; 854 } 855 856 /* 857 * If there's a deferred page already there then send it. 858 */ 859 if (sdio->cur_page) { 860 ret = dio_send_cur_page(dio, sdio, map_bh); 861 put_page(sdio->cur_page); 862 sdio->cur_page = NULL; 863 if (ret) 864 return ret; 865 } 866 867 get_page(page); /* It is in dio */ 868 sdio->cur_page = page; 869 sdio->cur_page_offset = offset; 870 sdio->cur_page_len = len; 871 sdio->cur_page_block = blocknr; 872 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits; 873 out: 874 /* 875 * If sdio->boundary then we want to schedule the IO now to 876 * avoid metadata seeks. 877 */ 878 if (sdio->boundary) { 879 ret = dio_send_cur_page(dio, sdio, map_bh); 880 if (sdio->bio) 881 dio_bio_submit(dio, sdio); 882 put_page(sdio->cur_page); 883 sdio->cur_page = NULL; 884 } 885 return ret; 886 } 887 888 /* 889 * If we are not writing the entire block and get_block() allocated 890 * the block for us, we need to fill-in the unused portion of the 891 * block with zeros. This happens only if user-buffer, fileoffset or 892 * io length is not filesystem block-size multiple. 893 * 894 * `end' is zero if we're doing the start of the IO, 1 at the end of the 895 * IO. 896 */ 897 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio, 898 int end, struct buffer_head *map_bh) 899 { 900 unsigned dio_blocks_per_fs_block; 901 unsigned this_chunk_blocks; /* In dio_blocks */ 902 unsigned this_chunk_bytes; 903 struct page *page; 904 905 sdio->start_zero_done = 1; 906 if (!sdio->blkfactor || !buffer_new(map_bh)) 907 return; 908 909 dio_blocks_per_fs_block = 1 << sdio->blkfactor; 910 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1); 911 912 if (!this_chunk_blocks) 913 return; 914 915 /* 916 * We need to zero out part of an fs block. It is either at the 917 * beginning or the end of the fs block. 918 */ 919 if (end) 920 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; 921 922 this_chunk_bytes = this_chunk_blocks << sdio->blkbits; 923 924 page = ZERO_PAGE(0); 925 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes, 926 sdio->next_block_for_io, map_bh)) 927 return; 928 929 sdio->next_block_for_io += this_chunk_blocks; 930 } 931 932 /* 933 * Walk the user pages, and the file, mapping blocks to disk and generating 934 * a sequence of (page,offset,len,block) mappings. These mappings are injected 935 * into submit_page_section(), which takes care of the next stage of submission 936 * 937 * Direct IO against a blockdev is different from a file. Because we can 938 * happily perform page-sized but 512-byte aligned IOs. It is important that 939 * blockdev IO be able to have fine alignment and large sizes. 940 * 941 * So what we do is to permit the ->get_block function to populate bh.b_size 942 * with the size of IO which is permitted at this offset and this i_blkbits. 943 * 944 * For best results, the blockdev should be set up with 512-byte i_blkbits and 945 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives 946 * fine alignment but still allows this function to work in PAGE_SIZE units. 947 */ 948 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio, 949 struct buffer_head *map_bh) 950 { 951 const unsigned blkbits = sdio->blkbits; 952 const unsigned i_blkbits = blkbits + sdio->blkfactor; 953 int ret = 0; 954 955 while (sdio->block_in_file < sdio->final_block_in_request) { 956 struct page *page; 957 size_t from, to; 958 959 page = dio_get_page(dio, sdio); 960 if (IS_ERR(page)) { 961 ret = PTR_ERR(page); 962 goto out; 963 } 964 from = sdio->head ? 0 : sdio->from; 965 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE; 966 sdio->head++; 967 968 while (from < to) { 969 unsigned this_chunk_bytes; /* # of bytes mapped */ 970 unsigned this_chunk_blocks; /* # of blocks */ 971 unsigned u; 972 973 if (sdio->blocks_available == 0) { 974 /* 975 * Need to go and map some more disk 976 */ 977 unsigned long blkmask; 978 unsigned long dio_remainder; 979 980 ret = get_more_blocks(dio, sdio, map_bh); 981 if (ret) { 982 put_page(page); 983 goto out; 984 } 985 if (!buffer_mapped(map_bh)) 986 goto do_holes; 987 988 sdio->blocks_available = 989 map_bh->b_size >> blkbits; 990 sdio->next_block_for_io = 991 map_bh->b_blocknr << sdio->blkfactor; 992 if (buffer_new(map_bh)) { 993 clean_bdev_aliases( 994 map_bh->b_bdev, 995 map_bh->b_blocknr, 996 map_bh->b_size >> i_blkbits); 997 } 998 999 if (!sdio->blkfactor) 1000 goto do_holes; 1001 1002 blkmask = (1 << sdio->blkfactor) - 1; 1003 dio_remainder = (sdio->block_in_file & blkmask); 1004 1005 /* 1006 * If we are at the start of IO and that IO 1007 * starts partway into a fs-block, 1008 * dio_remainder will be non-zero. If the IO 1009 * is a read then we can simply advance the IO 1010 * cursor to the first block which is to be 1011 * read. But if the IO is a write and the 1012 * block was newly allocated we cannot do that; 1013 * the start of the fs block must be zeroed out 1014 * on-disk 1015 */ 1016 if (!buffer_new(map_bh)) 1017 sdio->next_block_for_io += dio_remainder; 1018 sdio->blocks_available -= dio_remainder; 1019 } 1020 do_holes: 1021 /* Handle holes */ 1022 if (!buffer_mapped(map_bh)) { 1023 loff_t i_size_aligned; 1024 1025 /* AKPM: eargh, -ENOTBLK is a hack */ 1026 if (dio->op == REQ_OP_WRITE) { 1027 put_page(page); 1028 return -ENOTBLK; 1029 } 1030 1031 /* 1032 * Be sure to account for a partial block as the 1033 * last block in the file 1034 */ 1035 i_size_aligned = ALIGN(i_size_read(dio->inode), 1036 1 << blkbits); 1037 if (sdio->block_in_file >= 1038 i_size_aligned >> blkbits) { 1039 /* We hit eof */ 1040 put_page(page); 1041 goto out; 1042 } 1043 zero_user(page, from, 1 << blkbits); 1044 sdio->block_in_file++; 1045 from += 1 << blkbits; 1046 dio->result += 1 << blkbits; 1047 goto next_block; 1048 } 1049 1050 /* 1051 * If we're performing IO which has an alignment which 1052 * is finer than the underlying fs, go check to see if 1053 * we must zero out the start of this block. 1054 */ 1055 if (unlikely(sdio->blkfactor && !sdio->start_zero_done)) 1056 dio_zero_block(dio, sdio, 0, map_bh); 1057 1058 /* 1059 * Work out, in this_chunk_blocks, how much disk we 1060 * can add to this page 1061 */ 1062 this_chunk_blocks = sdio->blocks_available; 1063 u = (to - from) >> blkbits; 1064 if (this_chunk_blocks > u) 1065 this_chunk_blocks = u; 1066 u = sdio->final_block_in_request - sdio->block_in_file; 1067 if (this_chunk_blocks > u) 1068 this_chunk_blocks = u; 1069 this_chunk_bytes = this_chunk_blocks << blkbits; 1070 BUG_ON(this_chunk_bytes == 0); 1071 1072 if (this_chunk_blocks == sdio->blocks_available) 1073 sdio->boundary = buffer_boundary(map_bh); 1074 ret = submit_page_section(dio, sdio, page, 1075 from, 1076 this_chunk_bytes, 1077 sdio->next_block_for_io, 1078 map_bh); 1079 if (ret) { 1080 put_page(page); 1081 goto out; 1082 } 1083 sdio->next_block_for_io += this_chunk_blocks; 1084 1085 sdio->block_in_file += this_chunk_blocks; 1086 from += this_chunk_bytes; 1087 dio->result += this_chunk_bytes; 1088 sdio->blocks_available -= this_chunk_blocks; 1089 next_block: 1090 BUG_ON(sdio->block_in_file > sdio->final_block_in_request); 1091 if (sdio->block_in_file == sdio->final_block_in_request) 1092 break; 1093 } 1094 1095 /* Drop the ref which was taken in get_user_pages() */ 1096 put_page(page); 1097 } 1098 out: 1099 return ret; 1100 } 1101 1102 static inline int drop_refcount(struct dio *dio) 1103 { 1104 int ret2; 1105 unsigned long flags; 1106 1107 /* 1108 * Sync will always be dropping the final ref and completing the 1109 * operation. AIO can if it was a broken operation described above or 1110 * in fact if all the bios race to complete before we get here. In 1111 * that case dio_complete() translates the EIOCBQUEUED into the proper 1112 * return code that the caller will hand to ->complete(). 1113 * 1114 * This is managed by the bio_lock instead of being an atomic_t so that 1115 * completion paths can drop their ref and use the remaining count to 1116 * decide to wake the submission path atomically. 1117 */ 1118 spin_lock_irqsave(&dio->bio_lock, flags); 1119 ret2 = --dio->refcount; 1120 spin_unlock_irqrestore(&dio->bio_lock, flags); 1121 return ret2; 1122 } 1123 1124 /* 1125 * This is a library function for use by filesystem drivers. 1126 * 1127 * The locking rules are governed by the flags parameter: 1128 * - if the flags value contains DIO_LOCKING we use a fancy locking 1129 * scheme for dumb filesystems. 1130 * For writes this function is called under i_mutex and returns with 1131 * i_mutex held, for reads, i_mutex is not held on entry, but it is 1132 * taken and dropped again before returning. 1133 * - if the flags value does NOT contain DIO_LOCKING we don't use any 1134 * internal locking but rather rely on the filesystem to synchronize 1135 * direct I/O reads/writes versus each other and truncate. 1136 * 1137 * To help with locking against truncate we incremented the i_dio_count 1138 * counter before starting direct I/O, and decrement it once we are done. 1139 * Truncate can wait for it to reach zero to provide exclusion. It is 1140 * expected that filesystem provide exclusion between new direct I/O 1141 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex, 1142 * but other filesystems need to take care of this on their own. 1143 * 1144 * NOTE: if you pass "sdio" to anything by pointer make sure that function 1145 * is always inlined. Otherwise gcc is unable to split the structure into 1146 * individual fields and will generate much worse code. This is important 1147 * for the whole file. 1148 */ 1149 static inline ssize_t 1150 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1151 struct block_device *bdev, struct iov_iter *iter, 1152 get_block_t get_block, dio_iodone_t end_io, 1153 dio_submit_t submit_io, int flags) 1154 { 1155 unsigned i_blkbits = READ_ONCE(inode->i_blkbits); 1156 unsigned blkbits = i_blkbits; 1157 unsigned blocksize_mask = (1 << blkbits) - 1; 1158 ssize_t retval = -EINVAL; 1159 size_t count = iov_iter_count(iter); 1160 loff_t offset = iocb->ki_pos; 1161 loff_t end = offset + count; 1162 struct dio *dio; 1163 struct dio_submit sdio = { 0, }; 1164 struct buffer_head map_bh = { 0, }; 1165 struct blk_plug plug; 1166 unsigned long align = offset | iov_iter_alignment(iter); 1167 1168 /* 1169 * Avoid references to bdev if not absolutely needed to give 1170 * the early prefetch in the caller enough time. 1171 */ 1172 1173 if (align & blocksize_mask) { 1174 if (bdev) 1175 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 1176 blocksize_mask = (1 << blkbits) - 1; 1177 if (align & blocksize_mask) 1178 goto out; 1179 } 1180 1181 /* watch out for a 0 len io from a tricksy fs */ 1182 if (iov_iter_rw(iter) == READ && !iov_iter_count(iter)) 1183 return 0; 1184 1185 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL); 1186 retval = -ENOMEM; 1187 if (!dio) 1188 goto out; 1189 /* 1190 * Believe it or not, zeroing out the page array caused a .5% 1191 * performance regression in a database benchmark. So, we take 1192 * care to only zero out what's needed. 1193 */ 1194 memset(dio, 0, offsetof(struct dio, pages)); 1195 1196 dio->flags = flags; 1197 if (dio->flags & DIO_LOCKING) { 1198 if (iov_iter_rw(iter) == READ) { 1199 struct address_space *mapping = 1200 iocb->ki_filp->f_mapping; 1201 1202 /* will be released by direct_io_worker */ 1203 inode_lock(inode); 1204 1205 retval = filemap_write_and_wait_range(mapping, offset, 1206 end - 1); 1207 if (retval) { 1208 inode_unlock(inode); 1209 kmem_cache_free(dio_cache, dio); 1210 goto out; 1211 } 1212 } 1213 } 1214 1215 /* Once we sampled i_size check for reads beyond EOF */ 1216 dio->i_size = i_size_read(inode); 1217 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) { 1218 if (dio->flags & DIO_LOCKING) 1219 inode_unlock(inode); 1220 kmem_cache_free(dio_cache, dio); 1221 retval = 0; 1222 goto out; 1223 } 1224 1225 /* 1226 * For file extending writes updating i_size before data writeouts 1227 * complete can expose uninitialized blocks in dumb filesystems. 1228 * In that case we need to wait for I/O completion even if asked 1229 * for an asynchronous write. 1230 */ 1231 if (is_sync_kiocb(iocb)) 1232 dio->is_async = false; 1233 else if (!(dio->flags & DIO_ASYNC_EXTEND) && 1234 iov_iter_rw(iter) == WRITE && end > i_size_read(inode)) 1235 dio->is_async = false; 1236 else 1237 dio->is_async = true; 1238 1239 dio->inode = inode; 1240 if (iov_iter_rw(iter) == WRITE) { 1241 dio->op = REQ_OP_WRITE; 1242 dio->op_flags = REQ_SYNC | REQ_IDLE; 1243 if (iocb->ki_flags & IOCB_NOWAIT) 1244 dio->op_flags |= REQ_NOWAIT; 1245 } else { 1246 dio->op = REQ_OP_READ; 1247 } 1248 1249 /* 1250 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue 1251 * so that we can call ->fsync. 1252 */ 1253 if (dio->is_async && iov_iter_rw(iter) == WRITE) { 1254 retval = 0; 1255 if ((iocb->ki_filp->f_flags & O_DSYNC) || 1256 IS_SYNC(iocb->ki_filp->f_mapping->host)) 1257 retval = dio_set_defer_completion(dio); 1258 else if (!dio->inode->i_sb->s_dio_done_wq) { 1259 /* 1260 * In case of AIO write racing with buffered read we 1261 * need to defer completion. We can't decide this now, 1262 * however the workqueue needs to be initialized here. 1263 */ 1264 retval = sb_init_dio_done_wq(dio->inode->i_sb); 1265 } 1266 if (retval) { 1267 /* 1268 * We grab i_mutex only for reads so we don't have 1269 * to release it here 1270 */ 1271 kmem_cache_free(dio_cache, dio); 1272 goto out; 1273 } 1274 } 1275 1276 /* 1277 * Will be decremented at I/O completion time. 1278 */ 1279 if (!(dio->flags & DIO_SKIP_DIO_COUNT)) 1280 inode_dio_begin(inode); 1281 1282 retval = 0; 1283 sdio.blkbits = blkbits; 1284 sdio.blkfactor = i_blkbits - blkbits; 1285 sdio.block_in_file = offset >> blkbits; 1286 1287 sdio.get_block = get_block; 1288 dio->end_io = end_io; 1289 sdio.submit_io = submit_io; 1290 sdio.final_block_in_bio = -1; 1291 sdio.next_block_for_io = -1; 1292 1293 dio->iocb = iocb; 1294 1295 spin_lock_init(&dio->bio_lock); 1296 dio->refcount = 1; 1297 1298 dio->should_dirty = (iter->type == ITER_IOVEC); 1299 sdio.iter = iter; 1300 sdio.final_block_in_request = 1301 (offset + iov_iter_count(iter)) >> blkbits; 1302 1303 /* 1304 * In case of non-aligned buffers, we may need 2 more 1305 * pages since we need to zero out first and last block. 1306 */ 1307 if (unlikely(sdio.blkfactor)) 1308 sdio.pages_in_io = 2; 1309 1310 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX); 1311 1312 blk_start_plug(&plug); 1313 1314 retval = do_direct_IO(dio, &sdio, &map_bh); 1315 if (retval) 1316 dio_cleanup(dio, &sdio); 1317 1318 if (retval == -ENOTBLK) { 1319 /* 1320 * The remaining part of the request will be 1321 * be handled by buffered I/O when we return 1322 */ 1323 retval = 0; 1324 } 1325 /* 1326 * There may be some unwritten disk at the end of a part-written 1327 * fs-block-sized block. Go zero that now. 1328 */ 1329 dio_zero_block(dio, &sdio, 1, &map_bh); 1330 1331 if (sdio.cur_page) { 1332 ssize_t ret2; 1333 1334 ret2 = dio_send_cur_page(dio, &sdio, &map_bh); 1335 if (retval == 0) 1336 retval = ret2; 1337 put_page(sdio.cur_page); 1338 sdio.cur_page = NULL; 1339 } 1340 if (sdio.bio) 1341 dio_bio_submit(dio, &sdio); 1342 1343 blk_finish_plug(&plug); 1344 1345 /* 1346 * It is possible that, we return short IO due to end of file. 1347 * In that case, we need to release all the pages we got hold on. 1348 */ 1349 dio_cleanup(dio, &sdio); 1350 1351 /* 1352 * All block lookups have been performed. For READ requests 1353 * we can let i_mutex go now that its achieved its purpose 1354 * of protecting us from looking up uninitialized blocks. 1355 */ 1356 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING)) 1357 inode_unlock(dio->inode); 1358 1359 /* 1360 * The only time we want to leave bios in flight is when a successful 1361 * partial aio read or full aio write have been setup. In that case 1362 * bio completion will call aio_complete. The only time it's safe to 1363 * call aio_complete is when we return -EIOCBQUEUED, so we key on that. 1364 * This had *better* be the only place that raises -EIOCBQUEUED. 1365 */ 1366 BUG_ON(retval == -EIOCBQUEUED); 1367 if (dio->is_async && retval == 0 && dio->result && 1368 (iov_iter_rw(iter) == READ || dio->result == count)) 1369 retval = -EIOCBQUEUED; 1370 else 1371 dio_await_completion(dio); 1372 1373 if (drop_refcount(dio) == 0) { 1374 retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE); 1375 } else 1376 BUG_ON(retval != -EIOCBQUEUED); 1377 1378 out: 1379 return retval; 1380 } 1381 1382 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1383 struct block_device *bdev, struct iov_iter *iter, 1384 get_block_t get_block, 1385 dio_iodone_t end_io, dio_submit_t submit_io, 1386 int flags) 1387 { 1388 /* 1389 * The block device state is needed in the end to finally 1390 * submit everything. Since it's likely to be cache cold 1391 * prefetch it here as first thing to hide some of the 1392 * latency. 1393 * 1394 * Attempt to prefetch the pieces we likely need later. 1395 */ 1396 prefetch(&bdev->bd_disk->part_tbl); 1397 prefetch(bdev->bd_queue); 1398 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES); 1399 1400 return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block, 1401 end_io, submit_io, flags); 1402 } 1403 1404 EXPORT_SYMBOL(__blockdev_direct_IO); 1405 1406 static __init int dio_init(void) 1407 { 1408 dio_cache = KMEM_CACHE(dio, SLAB_PANIC); 1409 return 0; 1410 } 1411 module_init(dio_init) 1412