xref: /openbmc/linux/fs/direct-io.c (revision 414772b8f7d7a9ccbfb5f0f3fd51bbfb8d54501a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/direct-io.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * O_DIRECT
8  *
9  * 04Jul2002	Andrew Morton
10  *		Initial version
11  * 11Sep2002	janetinc@us.ibm.com
12  * 		added readv/writev support.
13  * 29Oct2002	Andrew Morton
14  *		rewrote bio_add_page() support.
15  * 30Oct2002	pbadari@us.ibm.com
16  *		added support for non-aligned IO.
17  * 06Nov2002	pbadari@us.ibm.com
18  *		added asynchronous IO support.
19  * 21Jul2003	nathans@sgi.com
20  *		added IO completion notifier.
21  */
22 
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/mm.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/pagemap.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/bio.h>
33 #include <linux/wait.h>
34 #include <linux/err.h>
35 #include <linux/blkdev.h>
36 #include <linux/buffer_head.h>
37 #include <linux/rwsem.h>
38 #include <linux/uio.h>
39 #include <linux/atomic.h>
40 #include <linux/prefetch.h>
41 
42 #include "internal.h"
43 
44 /*
45  * How many user pages to map in one call to iov_iter_extract_pages().  This
46  * determines the size of a structure in the slab cache
47  */
48 #define DIO_PAGES	64
49 
50 /*
51  * Flags for dio_complete()
52  */
53 #define DIO_COMPLETE_ASYNC		0x01	/* This is async IO */
54 #define DIO_COMPLETE_INVALIDATE		0x02	/* Can invalidate pages */
55 
56 /*
57  * This code generally works in units of "dio_blocks".  A dio_block is
58  * somewhere between the hard sector size and the filesystem block size.  it
59  * is determined on a per-invocation basis.   When talking to the filesystem
60  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
61  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
62  * to bio_block quantities by shifting left by blkfactor.
63  *
64  * If blkfactor is zero then the user's request was aligned to the filesystem's
65  * blocksize.
66  */
67 
68 /* dio_state only used in the submission path */
69 
70 struct dio_submit {
71 	struct bio *bio;		/* bio under assembly */
72 	unsigned blkbits;		/* doesn't change */
73 	unsigned blkfactor;		/* When we're using an alignment which
74 					   is finer than the filesystem's soft
75 					   blocksize, this specifies how much
76 					   finer.  blkfactor=2 means 1/4-block
77 					   alignment.  Does not change */
78 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
79 					   been performed at the start of a
80 					   write */
81 	int pages_in_io;		/* approximate total IO pages */
82 	sector_t block_in_file;		/* Current offset into the underlying
83 					   file in dio_block units. */
84 	unsigned blocks_available;	/* At block_in_file.  changes */
85 	int reap_counter;		/* rate limit reaping */
86 	sector_t final_block_in_request;/* doesn't change */
87 	int boundary;			/* prev block is at a boundary */
88 	get_block_t *get_block;		/* block mapping function */
89 
90 	loff_t logical_offset_in_bio;	/* current first logical block in bio */
91 	sector_t final_block_in_bio;	/* current final block in bio + 1 */
92 	sector_t next_block_for_io;	/* next block to be put under IO,
93 					   in dio_blocks units */
94 
95 	/*
96 	 * Deferred addition of a page to the dio.  These variables are
97 	 * private to dio_send_cur_page(), submit_page_section() and
98 	 * dio_bio_add_page().
99 	 */
100 	struct page *cur_page;		/* The page */
101 	unsigned cur_page_offset;	/* Offset into it, in bytes */
102 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
103 	sector_t cur_page_block;	/* Where it starts */
104 	loff_t cur_page_fs_offset;	/* Offset in file */
105 
106 	struct iov_iter *iter;
107 	/*
108 	 * Page queue.  These variables belong to dio_refill_pages() and
109 	 * dio_get_page().
110 	 */
111 	unsigned head;			/* next page to process */
112 	unsigned tail;			/* last valid page + 1 */
113 	size_t from, to;
114 };
115 
116 /* dio_state communicated between submission path and end_io */
117 struct dio {
118 	int flags;			/* doesn't change */
119 	blk_opf_t opf;			/* request operation type and flags */
120 	struct gendisk *bio_disk;
121 	struct inode *inode;
122 	loff_t i_size;			/* i_size when submitted */
123 	dio_iodone_t *end_io;		/* IO completion function */
124 	bool is_pinned;			/* T if we have pins on the pages */
125 
126 	void *private;			/* copy from map_bh.b_private */
127 
128 	/* BIO completion state */
129 	spinlock_t bio_lock;		/* protects BIO fields below */
130 	int page_errors;		/* err from iov_iter_extract_pages() */
131 	int is_async;			/* is IO async ? */
132 	bool defer_completion;		/* defer AIO completion to workqueue? */
133 	bool should_dirty;		/* if pages should be dirtied */
134 	int io_error;			/* IO error in completion path */
135 	unsigned long refcount;		/* direct_io_worker() and bios */
136 	struct bio *bio_list;		/* singly linked via bi_private */
137 	struct task_struct *waiter;	/* waiting task (NULL if none) */
138 
139 	/* AIO related stuff */
140 	struct kiocb *iocb;		/* kiocb */
141 	ssize_t result;                 /* IO result */
142 
143 	/*
144 	 * pages[] (and any fields placed after it) are not zeroed out at
145 	 * allocation time.  Don't add new fields after pages[] unless you
146 	 * wish that they not be zeroed.
147 	 */
148 	union {
149 		struct page *pages[DIO_PAGES];	/* page buffer */
150 		struct work_struct complete_work;/* deferred AIO completion */
151 	};
152 } ____cacheline_aligned_in_smp;
153 
154 static struct kmem_cache *dio_cache __read_mostly;
155 
156 /*
157  * How many pages are in the queue?
158  */
159 static inline unsigned dio_pages_present(struct dio_submit *sdio)
160 {
161 	return sdio->tail - sdio->head;
162 }
163 
164 /*
165  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
166  */
167 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
168 {
169 	struct page **pages = dio->pages;
170 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
171 	ssize_t ret;
172 
173 	ret = iov_iter_extract_pages(sdio->iter, &pages, LONG_MAX,
174 				     DIO_PAGES, 0, &sdio->from);
175 
176 	if (ret < 0 && sdio->blocks_available && dio_op == REQ_OP_WRITE) {
177 		/*
178 		 * A memory fault, but the filesystem has some outstanding
179 		 * mapped blocks.  We need to use those blocks up to avoid
180 		 * leaking stale data in the file.
181 		 */
182 		if (dio->page_errors == 0)
183 			dio->page_errors = ret;
184 		dio->pages[0] = ZERO_PAGE(0);
185 		sdio->head = 0;
186 		sdio->tail = 1;
187 		sdio->from = 0;
188 		sdio->to = PAGE_SIZE;
189 		return 0;
190 	}
191 
192 	if (ret >= 0) {
193 		ret += sdio->from;
194 		sdio->head = 0;
195 		sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
196 		sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
197 		return 0;
198 	}
199 	return ret;
200 }
201 
202 /*
203  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
204  * buffered inside the dio so that we can call iov_iter_extract_pages()
205  * against a decent number of pages, less frequently.  To provide nicer use of
206  * the L1 cache.
207  */
208 static inline struct page *dio_get_page(struct dio *dio,
209 					struct dio_submit *sdio)
210 {
211 	if (dio_pages_present(sdio) == 0) {
212 		int ret;
213 
214 		ret = dio_refill_pages(dio, sdio);
215 		if (ret)
216 			return ERR_PTR(ret);
217 		BUG_ON(dio_pages_present(sdio) == 0);
218 	}
219 	return dio->pages[sdio->head];
220 }
221 
222 static void dio_pin_page(struct dio *dio, struct page *page)
223 {
224 	if (dio->is_pinned)
225 		folio_add_pin(page_folio(page));
226 }
227 
228 static void dio_unpin_page(struct dio *dio, struct page *page)
229 {
230 	if (dio->is_pinned)
231 		unpin_user_page(page);
232 }
233 
234 /*
235  * dio_complete() - called when all DIO BIO I/O has been completed
236  *
237  * This drops i_dio_count, lets interested parties know that a DIO operation
238  * has completed, and calculates the resulting return code for the operation.
239  *
240  * It lets the filesystem know if it registered an interest earlier via
241  * get_block.  Pass the private field of the map buffer_head so that
242  * filesystems can use it to hold additional state between get_block calls and
243  * dio_complete.
244  */
245 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
246 {
247 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
248 	loff_t offset = dio->iocb->ki_pos;
249 	ssize_t transferred = 0;
250 	int err;
251 
252 	/*
253 	 * AIO submission can race with bio completion to get here while
254 	 * expecting to have the last io completed by bio completion.
255 	 * In that case -EIOCBQUEUED is in fact not an error we want
256 	 * to preserve through this call.
257 	 */
258 	if (ret == -EIOCBQUEUED)
259 		ret = 0;
260 
261 	if (dio->result) {
262 		transferred = dio->result;
263 
264 		/* Check for short read case */
265 		if (dio_op == REQ_OP_READ &&
266 		    ((offset + transferred) > dio->i_size))
267 			transferred = dio->i_size - offset;
268 		/* ignore EFAULT if some IO has been done */
269 		if (unlikely(ret == -EFAULT) && transferred)
270 			ret = 0;
271 	}
272 
273 	if (ret == 0)
274 		ret = dio->page_errors;
275 	if (ret == 0)
276 		ret = dio->io_error;
277 	if (ret == 0)
278 		ret = transferred;
279 
280 	if (dio->end_io) {
281 		// XXX: ki_pos??
282 		err = dio->end_io(dio->iocb, offset, ret, dio->private);
283 		if (err)
284 			ret = err;
285 	}
286 
287 	/*
288 	 * Try again to invalidate clean pages which might have been cached by
289 	 * non-direct readahead, or faulted in by get_user_pages() if the source
290 	 * of the write was an mmap'ed region of the file we're writing.  Either
291 	 * one is a pretty crazy thing to do, so we don't support it 100%.  If
292 	 * this invalidation fails, tough, the write still worked...
293 	 *
294 	 * And this page cache invalidation has to be after dio->end_io(), as
295 	 * some filesystems convert unwritten extents to real allocations in
296 	 * end_io() when necessary, otherwise a racing buffer read would cache
297 	 * zeros from unwritten extents.
298 	 */
299 	if (flags & DIO_COMPLETE_INVALIDATE &&
300 	    ret > 0 && dio_op == REQ_OP_WRITE)
301 		kiocb_invalidate_post_direct_write(dio->iocb, ret);
302 
303 	inode_dio_end(dio->inode);
304 
305 	if (flags & DIO_COMPLETE_ASYNC) {
306 		/*
307 		 * generic_write_sync expects ki_pos to have been updated
308 		 * already, but the submission path only does this for
309 		 * synchronous I/O.
310 		 */
311 		dio->iocb->ki_pos += transferred;
312 
313 		if (ret > 0 && dio_op == REQ_OP_WRITE)
314 			ret = generic_write_sync(dio->iocb, ret);
315 		dio->iocb->ki_complete(dio->iocb, ret);
316 	}
317 
318 	kmem_cache_free(dio_cache, dio);
319 	return ret;
320 }
321 
322 static void dio_aio_complete_work(struct work_struct *work)
323 {
324 	struct dio *dio = container_of(work, struct dio, complete_work);
325 
326 	dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
327 }
328 
329 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
330 
331 /*
332  * Asynchronous IO callback.
333  */
334 static void dio_bio_end_aio(struct bio *bio)
335 {
336 	struct dio *dio = bio->bi_private;
337 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
338 	unsigned long remaining;
339 	unsigned long flags;
340 	bool defer_completion = false;
341 
342 	/* cleanup the bio */
343 	dio_bio_complete(dio, bio);
344 
345 	spin_lock_irqsave(&dio->bio_lock, flags);
346 	remaining = --dio->refcount;
347 	if (remaining == 1 && dio->waiter)
348 		wake_up_process(dio->waiter);
349 	spin_unlock_irqrestore(&dio->bio_lock, flags);
350 
351 	if (remaining == 0) {
352 		/*
353 		 * Defer completion when defer_completion is set or
354 		 * when the inode has pages mapped and this is AIO write.
355 		 * We need to invalidate those pages because there is a
356 		 * chance they contain stale data in the case buffered IO
357 		 * went in between AIO submission and completion into the
358 		 * same region.
359 		 */
360 		if (dio->result)
361 			defer_completion = dio->defer_completion ||
362 					   (dio_op == REQ_OP_WRITE &&
363 					    dio->inode->i_mapping->nrpages);
364 		if (defer_completion) {
365 			INIT_WORK(&dio->complete_work, dio_aio_complete_work);
366 			queue_work(dio->inode->i_sb->s_dio_done_wq,
367 				   &dio->complete_work);
368 		} else {
369 			dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
370 		}
371 	}
372 }
373 
374 /*
375  * The BIO completion handler simply queues the BIO up for the process-context
376  * handler.
377  *
378  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
379  * implement a singly-linked list of completed BIOs, at dio->bio_list.
380  */
381 static void dio_bio_end_io(struct bio *bio)
382 {
383 	struct dio *dio = bio->bi_private;
384 	unsigned long flags;
385 
386 	spin_lock_irqsave(&dio->bio_lock, flags);
387 	bio->bi_private = dio->bio_list;
388 	dio->bio_list = bio;
389 	if (--dio->refcount == 1 && dio->waiter)
390 		wake_up_process(dio->waiter);
391 	spin_unlock_irqrestore(&dio->bio_lock, flags);
392 }
393 
394 static inline void
395 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
396 	      struct block_device *bdev,
397 	      sector_t first_sector, int nr_vecs)
398 {
399 	struct bio *bio;
400 
401 	/*
402 	 * bio_alloc() is guaranteed to return a bio when allowed to sleep and
403 	 * we request a valid number of vectors.
404 	 */
405 	bio = bio_alloc(bdev, nr_vecs, dio->opf, GFP_KERNEL);
406 	bio->bi_iter.bi_sector = first_sector;
407 	if (dio->is_async)
408 		bio->bi_end_io = dio_bio_end_aio;
409 	else
410 		bio->bi_end_io = dio_bio_end_io;
411 	if (dio->is_pinned)
412 		bio_set_flag(bio, BIO_PAGE_PINNED);
413 	sdio->bio = bio;
414 	sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
415 }
416 
417 /*
418  * In the AIO read case we speculatively dirty the pages before starting IO.
419  * During IO completion, any of these pages which happen to have been written
420  * back will be redirtied by bio_check_pages_dirty().
421  *
422  * bios hold a dio reference between submit_bio and ->end_io.
423  */
424 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
425 {
426 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
427 	struct bio *bio = sdio->bio;
428 	unsigned long flags;
429 
430 	bio->bi_private = dio;
431 
432 	spin_lock_irqsave(&dio->bio_lock, flags);
433 	dio->refcount++;
434 	spin_unlock_irqrestore(&dio->bio_lock, flags);
435 
436 	if (dio->is_async && dio_op == REQ_OP_READ && dio->should_dirty)
437 		bio_set_pages_dirty(bio);
438 
439 	dio->bio_disk = bio->bi_bdev->bd_disk;
440 
441 	submit_bio(bio);
442 
443 	sdio->bio = NULL;
444 	sdio->boundary = 0;
445 	sdio->logical_offset_in_bio = 0;
446 }
447 
448 /*
449  * Release any resources in case of a failure
450  */
451 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
452 {
453 	if (dio->is_pinned)
454 		unpin_user_pages(dio->pages + sdio->head,
455 				 sdio->tail - sdio->head);
456 	sdio->head = sdio->tail;
457 }
458 
459 /*
460  * Wait for the next BIO to complete.  Remove it and return it.  NULL is
461  * returned once all BIOs have been completed.  This must only be called once
462  * all bios have been issued so that dio->refcount can only decrease.  This
463  * requires that the caller hold a reference on the dio.
464  */
465 static struct bio *dio_await_one(struct dio *dio)
466 {
467 	unsigned long flags;
468 	struct bio *bio = NULL;
469 
470 	spin_lock_irqsave(&dio->bio_lock, flags);
471 
472 	/*
473 	 * Wait as long as the list is empty and there are bios in flight.  bio
474 	 * completion drops the count, maybe adds to the list, and wakes while
475 	 * holding the bio_lock so we don't need set_current_state()'s barrier
476 	 * and can call it after testing our condition.
477 	 */
478 	while (dio->refcount > 1 && dio->bio_list == NULL) {
479 		__set_current_state(TASK_UNINTERRUPTIBLE);
480 		dio->waiter = current;
481 		spin_unlock_irqrestore(&dio->bio_lock, flags);
482 		blk_io_schedule();
483 		/* wake up sets us TASK_RUNNING */
484 		spin_lock_irqsave(&dio->bio_lock, flags);
485 		dio->waiter = NULL;
486 	}
487 	if (dio->bio_list) {
488 		bio = dio->bio_list;
489 		dio->bio_list = bio->bi_private;
490 	}
491 	spin_unlock_irqrestore(&dio->bio_lock, flags);
492 	return bio;
493 }
494 
495 /*
496  * Process one completed BIO.  No locks are held.
497  */
498 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
499 {
500 	blk_status_t err = bio->bi_status;
501 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
502 	bool should_dirty = dio_op == REQ_OP_READ && dio->should_dirty;
503 
504 	if (err) {
505 		if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
506 			dio->io_error = -EAGAIN;
507 		else
508 			dio->io_error = -EIO;
509 	}
510 
511 	if (dio->is_async && should_dirty) {
512 		bio_check_pages_dirty(bio);	/* transfers ownership */
513 	} else {
514 		bio_release_pages(bio, should_dirty);
515 		bio_put(bio);
516 	}
517 	return err;
518 }
519 
520 /*
521  * Wait on and process all in-flight BIOs.  This must only be called once
522  * all bios have been issued so that the refcount can only decrease.
523  * This just waits for all bios to make it through dio_bio_complete.  IO
524  * errors are propagated through dio->io_error and should be propagated via
525  * dio_complete().
526  */
527 static void dio_await_completion(struct dio *dio)
528 {
529 	struct bio *bio;
530 	do {
531 		bio = dio_await_one(dio);
532 		if (bio)
533 			dio_bio_complete(dio, bio);
534 	} while (bio);
535 }
536 
537 /*
538  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
539  * to keep the memory consumption sane we periodically reap any completed BIOs
540  * during the BIO generation phase.
541  *
542  * This also helps to limit the peak amount of pinned userspace memory.
543  */
544 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
545 {
546 	int ret = 0;
547 
548 	if (sdio->reap_counter++ >= 64) {
549 		while (dio->bio_list) {
550 			unsigned long flags;
551 			struct bio *bio;
552 			int ret2;
553 
554 			spin_lock_irqsave(&dio->bio_lock, flags);
555 			bio = dio->bio_list;
556 			dio->bio_list = bio->bi_private;
557 			spin_unlock_irqrestore(&dio->bio_lock, flags);
558 			ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
559 			if (ret == 0)
560 				ret = ret2;
561 		}
562 		sdio->reap_counter = 0;
563 	}
564 	return ret;
565 }
566 
567 static int dio_set_defer_completion(struct dio *dio)
568 {
569 	struct super_block *sb = dio->inode->i_sb;
570 
571 	if (dio->defer_completion)
572 		return 0;
573 	dio->defer_completion = true;
574 	if (!sb->s_dio_done_wq)
575 		return sb_init_dio_done_wq(sb);
576 	return 0;
577 }
578 
579 /*
580  * Call into the fs to map some more disk blocks.  We record the current number
581  * of available blocks at sdio->blocks_available.  These are in units of the
582  * fs blocksize, i_blocksize(inode).
583  *
584  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
585  * it uses the passed inode-relative block number as the file offset, as usual.
586  *
587  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
588  * has remaining to do.  The fs should not map more than this number of blocks.
589  *
590  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
591  * indicate how much contiguous disk space has been made available at
592  * bh->b_blocknr.
593  *
594  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
595  * This isn't very efficient...
596  *
597  * In the case of filesystem holes: the fs may return an arbitrarily-large
598  * hole by returning an appropriate value in b_size and by clearing
599  * buffer_mapped().  However the direct-io code will only process holes one
600  * block at a time - it will repeatedly call get_block() as it walks the hole.
601  */
602 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
603 			   struct buffer_head *map_bh)
604 {
605 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
606 	int ret;
607 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
608 	sector_t fs_endblk;	/* Into file, in filesystem-sized blocks */
609 	unsigned long fs_count;	/* Number of filesystem-sized blocks */
610 	int create;
611 	unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
612 	loff_t i_size;
613 
614 	/*
615 	 * If there was a memory error and we've overwritten all the
616 	 * mapped blocks then we can now return that memory error
617 	 */
618 	ret = dio->page_errors;
619 	if (ret == 0) {
620 		BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
621 		fs_startblk = sdio->block_in_file >> sdio->blkfactor;
622 		fs_endblk = (sdio->final_block_in_request - 1) >>
623 					sdio->blkfactor;
624 		fs_count = fs_endblk - fs_startblk + 1;
625 
626 		map_bh->b_state = 0;
627 		map_bh->b_size = fs_count << i_blkbits;
628 
629 		/*
630 		 * For writes that could fill holes inside i_size on a
631 		 * DIO_SKIP_HOLES filesystem we forbid block creations: only
632 		 * overwrites are permitted. We will return early to the caller
633 		 * once we see an unmapped buffer head returned, and the caller
634 		 * will fall back to buffered I/O.
635 		 *
636 		 * Otherwise the decision is left to the get_blocks method,
637 		 * which may decide to handle it or also return an unmapped
638 		 * buffer head.
639 		 */
640 		create = dio_op == REQ_OP_WRITE;
641 		if (dio->flags & DIO_SKIP_HOLES) {
642 			i_size = i_size_read(dio->inode);
643 			if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits)
644 				create = 0;
645 		}
646 
647 		ret = (*sdio->get_block)(dio->inode, fs_startblk,
648 						map_bh, create);
649 
650 		/* Store for completion */
651 		dio->private = map_bh->b_private;
652 
653 		if (ret == 0 && buffer_defer_completion(map_bh))
654 			ret = dio_set_defer_completion(dio);
655 	}
656 	return ret;
657 }
658 
659 /*
660  * There is no bio.  Make one now.
661  */
662 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
663 		sector_t start_sector, struct buffer_head *map_bh)
664 {
665 	sector_t sector;
666 	int ret, nr_pages;
667 
668 	ret = dio_bio_reap(dio, sdio);
669 	if (ret)
670 		goto out;
671 	sector = start_sector << (sdio->blkbits - 9);
672 	nr_pages = bio_max_segs(sdio->pages_in_io);
673 	BUG_ON(nr_pages <= 0);
674 	dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
675 	sdio->boundary = 0;
676 out:
677 	return ret;
678 }
679 
680 /*
681  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
682  * that was successful then update final_block_in_bio and take a ref against
683  * the just-added page.
684  *
685  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
686  */
687 static inline int dio_bio_add_page(struct dio *dio, struct dio_submit *sdio)
688 {
689 	int ret;
690 
691 	ret = bio_add_page(sdio->bio, sdio->cur_page,
692 			sdio->cur_page_len, sdio->cur_page_offset);
693 	if (ret == sdio->cur_page_len) {
694 		/*
695 		 * Decrement count only, if we are done with this page
696 		 */
697 		if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
698 			sdio->pages_in_io--;
699 		dio_pin_page(dio, sdio->cur_page);
700 		sdio->final_block_in_bio = sdio->cur_page_block +
701 			(sdio->cur_page_len >> sdio->blkbits);
702 		ret = 0;
703 	} else {
704 		ret = 1;
705 	}
706 	return ret;
707 }
708 
709 /*
710  * Put cur_page under IO.  The section of cur_page which is described by
711  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
712  * starts on-disk at cur_page_block.
713  *
714  * We take a ref against the page here (on behalf of its presence in the bio).
715  *
716  * The caller of this function is responsible for removing cur_page from the
717  * dio, and for dropping the refcount which came from that presence.
718  */
719 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
720 		struct buffer_head *map_bh)
721 {
722 	int ret = 0;
723 
724 	if (sdio->bio) {
725 		loff_t cur_offset = sdio->cur_page_fs_offset;
726 		loff_t bio_next_offset = sdio->logical_offset_in_bio +
727 			sdio->bio->bi_iter.bi_size;
728 
729 		/*
730 		 * See whether this new request is contiguous with the old.
731 		 *
732 		 * Btrfs cannot handle having logically non-contiguous requests
733 		 * submitted.  For example if you have
734 		 *
735 		 * Logical:  [0-4095][HOLE][8192-12287]
736 		 * Physical: [0-4095]      [4096-8191]
737 		 *
738 		 * We cannot submit those pages together as one BIO.  So if our
739 		 * current logical offset in the file does not equal what would
740 		 * be the next logical offset in the bio, submit the bio we
741 		 * have.
742 		 */
743 		if (sdio->final_block_in_bio != sdio->cur_page_block ||
744 		    cur_offset != bio_next_offset)
745 			dio_bio_submit(dio, sdio);
746 	}
747 
748 	if (sdio->bio == NULL) {
749 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
750 		if (ret)
751 			goto out;
752 	}
753 
754 	if (dio_bio_add_page(dio, sdio) != 0) {
755 		dio_bio_submit(dio, sdio);
756 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
757 		if (ret == 0) {
758 			ret = dio_bio_add_page(dio, sdio);
759 			BUG_ON(ret != 0);
760 		}
761 	}
762 out:
763 	return ret;
764 }
765 
766 /*
767  * An autonomous function to put a chunk of a page under deferred IO.
768  *
769  * The caller doesn't actually know (or care) whether this piece of page is in
770  * a BIO, or is under IO or whatever.  We just take care of all possible
771  * situations here.  The separation between the logic of do_direct_IO() and
772  * that of submit_page_section() is important for clarity.  Please don't break.
773  *
774  * The chunk of page starts on-disk at blocknr.
775  *
776  * We perform deferred IO, by recording the last-submitted page inside our
777  * private part of the dio structure.  If possible, we just expand the IO
778  * across that page here.
779  *
780  * If that doesn't work out then we put the old page into the bio and add this
781  * page to the dio instead.
782  */
783 static inline int
784 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
785 		    unsigned offset, unsigned len, sector_t blocknr,
786 		    struct buffer_head *map_bh)
787 {
788 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
789 	int ret = 0;
790 	int boundary = sdio->boundary;	/* dio_send_cur_page may clear it */
791 
792 	if (dio_op == REQ_OP_WRITE) {
793 		/*
794 		 * Read accounting is performed in submit_bio()
795 		 */
796 		task_io_account_write(len);
797 	}
798 
799 	/*
800 	 * Can we just grow the current page's presence in the dio?
801 	 */
802 	if (sdio->cur_page == page &&
803 	    sdio->cur_page_offset + sdio->cur_page_len == offset &&
804 	    sdio->cur_page_block +
805 	    (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
806 		sdio->cur_page_len += len;
807 		goto out;
808 	}
809 
810 	/*
811 	 * If there's a deferred page already there then send it.
812 	 */
813 	if (sdio->cur_page) {
814 		ret = dio_send_cur_page(dio, sdio, map_bh);
815 		dio_unpin_page(dio, sdio->cur_page);
816 		sdio->cur_page = NULL;
817 		if (ret)
818 			return ret;
819 	}
820 
821 	dio_pin_page(dio, page);		/* It is in dio */
822 	sdio->cur_page = page;
823 	sdio->cur_page_offset = offset;
824 	sdio->cur_page_len = len;
825 	sdio->cur_page_block = blocknr;
826 	sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
827 out:
828 	/*
829 	 * If boundary then we want to schedule the IO now to
830 	 * avoid metadata seeks.
831 	 */
832 	if (boundary) {
833 		ret = dio_send_cur_page(dio, sdio, map_bh);
834 		if (sdio->bio)
835 			dio_bio_submit(dio, sdio);
836 		dio_unpin_page(dio, sdio->cur_page);
837 		sdio->cur_page = NULL;
838 	}
839 	return ret;
840 }
841 
842 /*
843  * If we are not writing the entire block and get_block() allocated
844  * the block for us, we need to fill-in the unused portion of the
845  * block with zeros. This happens only if user-buffer, fileoffset or
846  * io length is not filesystem block-size multiple.
847  *
848  * `end' is zero if we're doing the start of the IO, 1 at the end of the
849  * IO.
850  */
851 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
852 		int end, struct buffer_head *map_bh)
853 {
854 	unsigned dio_blocks_per_fs_block;
855 	unsigned this_chunk_blocks;	/* In dio_blocks */
856 	unsigned this_chunk_bytes;
857 	struct page *page;
858 
859 	sdio->start_zero_done = 1;
860 	if (!sdio->blkfactor || !buffer_new(map_bh))
861 		return;
862 
863 	dio_blocks_per_fs_block = 1 << sdio->blkfactor;
864 	this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
865 
866 	if (!this_chunk_blocks)
867 		return;
868 
869 	/*
870 	 * We need to zero out part of an fs block.  It is either at the
871 	 * beginning or the end of the fs block.
872 	 */
873 	if (end)
874 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
875 
876 	this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
877 
878 	page = ZERO_PAGE(0);
879 	if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
880 				sdio->next_block_for_io, map_bh))
881 		return;
882 
883 	sdio->next_block_for_io += this_chunk_blocks;
884 }
885 
886 /*
887  * Walk the user pages, and the file, mapping blocks to disk and generating
888  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
889  * into submit_page_section(), which takes care of the next stage of submission
890  *
891  * Direct IO against a blockdev is different from a file.  Because we can
892  * happily perform page-sized but 512-byte aligned IOs.  It is important that
893  * blockdev IO be able to have fine alignment and large sizes.
894  *
895  * So what we do is to permit the ->get_block function to populate bh.b_size
896  * with the size of IO which is permitted at this offset and this i_blkbits.
897  *
898  * For best results, the blockdev should be set up with 512-byte i_blkbits and
899  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
900  * fine alignment but still allows this function to work in PAGE_SIZE units.
901  */
902 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
903 			struct buffer_head *map_bh)
904 {
905 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
906 	const unsigned blkbits = sdio->blkbits;
907 	const unsigned i_blkbits = blkbits + sdio->blkfactor;
908 	int ret = 0;
909 
910 	while (sdio->block_in_file < sdio->final_block_in_request) {
911 		struct page *page;
912 		size_t from, to;
913 
914 		page = dio_get_page(dio, sdio);
915 		if (IS_ERR(page)) {
916 			ret = PTR_ERR(page);
917 			goto out;
918 		}
919 		from = sdio->head ? 0 : sdio->from;
920 		to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
921 		sdio->head++;
922 
923 		while (from < to) {
924 			unsigned this_chunk_bytes;	/* # of bytes mapped */
925 			unsigned this_chunk_blocks;	/* # of blocks */
926 			unsigned u;
927 
928 			if (sdio->blocks_available == 0) {
929 				/*
930 				 * Need to go and map some more disk
931 				 */
932 				unsigned long blkmask;
933 				unsigned long dio_remainder;
934 
935 				ret = get_more_blocks(dio, sdio, map_bh);
936 				if (ret) {
937 					dio_unpin_page(dio, page);
938 					goto out;
939 				}
940 				if (!buffer_mapped(map_bh))
941 					goto do_holes;
942 
943 				sdio->blocks_available =
944 						map_bh->b_size >> blkbits;
945 				sdio->next_block_for_io =
946 					map_bh->b_blocknr << sdio->blkfactor;
947 				if (buffer_new(map_bh)) {
948 					clean_bdev_aliases(
949 						map_bh->b_bdev,
950 						map_bh->b_blocknr,
951 						map_bh->b_size >> i_blkbits);
952 				}
953 
954 				if (!sdio->blkfactor)
955 					goto do_holes;
956 
957 				blkmask = (1 << sdio->blkfactor) - 1;
958 				dio_remainder = (sdio->block_in_file & blkmask);
959 
960 				/*
961 				 * If we are at the start of IO and that IO
962 				 * starts partway into a fs-block,
963 				 * dio_remainder will be non-zero.  If the IO
964 				 * is a read then we can simply advance the IO
965 				 * cursor to the first block which is to be
966 				 * read.  But if the IO is a write and the
967 				 * block was newly allocated we cannot do that;
968 				 * the start of the fs block must be zeroed out
969 				 * on-disk
970 				 */
971 				if (!buffer_new(map_bh))
972 					sdio->next_block_for_io += dio_remainder;
973 				sdio->blocks_available -= dio_remainder;
974 			}
975 do_holes:
976 			/* Handle holes */
977 			if (!buffer_mapped(map_bh)) {
978 				loff_t i_size_aligned;
979 
980 				/* AKPM: eargh, -ENOTBLK is a hack */
981 				if (dio_op == REQ_OP_WRITE) {
982 					dio_unpin_page(dio, page);
983 					return -ENOTBLK;
984 				}
985 
986 				/*
987 				 * Be sure to account for a partial block as the
988 				 * last block in the file
989 				 */
990 				i_size_aligned = ALIGN(i_size_read(dio->inode),
991 							1 << blkbits);
992 				if (sdio->block_in_file >=
993 						i_size_aligned >> blkbits) {
994 					/* We hit eof */
995 					dio_unpin_page(dio, page);
996 					goto out;
997 				}
998 				zero_user(page, from, 1 << blkbits);
999 				sdio->block_in_file++;
1000 				from += 1 << blkbits;
1001 				dio->result += 1 << blkbits;
1002 				goto next_block;
1003 			}
1004 
1005 			/*
1006 			 * If we're performing IO which has an alignment which
1007 			 * is finer than the underlying fs, go check to see if
1008 			 * we must zero out the start of this block.
1009 			 */
1010 			if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1011 				dio_zero_block(dio, sdio, 0, map_bh);
1012 
1013 			/*
1014 			 * Work out, in this_chunk_blocks, how much disk we
1015 			 * can add to this page
1016 			 */
1017 			this_chunk_blocks = sdio->blocks_available;
1018 			u = (to - from) >> blkbits;
1019 			if (this_chunk_blocks > u)
1020 				this_chunk_blocks = u;
1021 			u = sdio->final_block_in_request - sdio->block_in_file;
1022 			if (this_chunk_blocks > u)
1023 				this_chunk_blocks = u;
1024 			this_chunk_bytes = this_chunk_blocks << blkbits;
1025 			BUG_ON(this_chunk_bytes == 0);
1026 
1027 			if (this_chunk_blocks == sdio->blocks_available)
1028 				sdio->boundary = buffer_boundary(map_bh);
1029 			ret = submit_page_section(dio, sdio, page,
1030 						  from,
1031 						  this_chunk_bytes,
1032 						  sdio->next_block_for_io,
1033 						  map_bh);
1034 			if (ret) {
1035 				dio_unpin_page(dio, page);
1036 				goto out;
1037 			}
1038 			sdio->next_block_for_io += this_chunk_blocks;
1039 
1040 			sdio->block_in_file += this_chunk_blocks;
1041 			from += this_chunk_bytes;
1042 			dio->result += this_chunk_bytes;
1043 			sdio->blocks_available -= this_chunk_blocks;
1044 next_block:
1045 			BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1046 			if (sdio->block_in_file == sdio->final_block_in_request)
1047 				break;
1048 		}
1049 
1050 		/* Drop the pin which was taken in get_user_pages() */
1051 		dio_unpin_page(dio, page);
1052 	}
1053 out:
1054 	return ret;
1055 }
1056 
1057 static inline int drop_refcount(struct dio *dio)
1058 {
1059 	int ret2;
1060 	unsigned long flags;
1061 
1062 	/*
1063 	 * Sync will always be dropping the final ref and completing the
1064 	 * operation.  AIO can if it was a broken operation described above or
1065 	 * in fact if all the bios race to complete before we get here.  In
1066 	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1067 	 * return code that the caller will hand to ->complete().
1068 	 *
1069 	 * This is managed by the bio_lock instead of being an atomic_t so that
1070 	 * completion paths can drop their ref and use the remaining count to
1071 	 * decide to wake the submission path atomically.
1072 	 */
1073 	spin_lock_irqsave(&dio->bio_lock, flags);
1074 	ret2 = --dio->refcount;
1075 	spin_unlock_irqrestore(&dio->bio_lock, flags);
1076 	return ret2;
1077 }
1078 
1079 /*
1080  * This is a library function for use by filesystem drivers.
1081  *
1082  * The locking rules are governed by the flags parameter:
1083  *  - if the flags value contains DIO_LOCKING we use a fancy locking
1084  *    scheme for dumb filesystems.
1085  *    For writes this function is called under i_mutex and returns with
1086  *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1087  *    taken and dropped again before returning.
1088  *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1089  *    internal locking but rather rely on the filesystem to synchronize
1090  *    direct I/O reads/writes versus each other and truncate.
1091  *
1092  * To help with locking against truncate we incremented the i_dio_count
1093  * counter before starting direct I/O, and decrement it once we are done.
1094  * Truncate can wait for it to reach zero to provide exclusion.  It is
1095  * expected that filesystem provide exclusion between new direct I/O
1096  * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1097  * but other filesystems need to take care of this on their own.
1098  *
1099  * NOTE: if you pass "sdio" to anything by pointer make sure that function
1100  * is always inlined. Otherwise gcc is unable to split the structure into
1101  * individual fields and will generate much worse code. This is important
1102  * for the whole file.
1103  */
1104 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1105 		struct block_device *bdev, struct iov_iter *iter,
1106 		get_block_t get_block, dio_iodone_t end_io,
1107 		int flags)
1108 {
1109 	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
1110 	unsigned blkbits = i_blkbits;
1111 	unsigned blocksize_mask = (1 << blkbits) - 1;
1112 	ssize_t retval = -EINVAL;
1113 	const size_t count = iov_iter_count(iter);
1114 	loff_t offset = iocb->ki_pos;
1115 	const loff_t end = offset + count;
1116 	struct dio *dio;
1117 	struct dio_submit sdio = { 0, };
1118 	struct buffer_head map_bh = { 0, };
1119 	struct blk_plug plug;
1120 	unsigned long align = offset | iov_iter_alignment(iter);
1121 
1122 	/*
1123 	 * Avoid references to bdev if not absolutely needed to give
1124 	 * the early prefetch in the caller enough time.
1125 	 */
1126 
1127 	/* watch out for a 0 len io from a tricksy fs */
1128 	if (iov_iter_rw(iter) == READ && !count)
1129 		return 0;
1130 
1131 	dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1132 	if (!dio)
1133 		return -ENOMEM;
1134 	/*
1135 	 * Believe it or not, zeroing out the page array caused a .5%
1136 	 * performance regression in a database benchmark.  So, we take
1137 	 * care to only zero out what's needed.
1138 	 */
1139 	memset(dio, 0, offsetof(struct dio, pages));
1140 
1141 	dio->flags = flags;
1142 	if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
1143 		/* will be released by direct_io_worker */
1144 		inode_lock(inode);
1145 	}
1146 	dio->is_pinned = iov_iter_extract_will_pin(iter);
1147 
1148 	/* Once we sampled i_size check for reads beyond EOF */
1149 	dio->i_size = i_size_read(inode);
1150 	if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1151 		retval = 0;
1152 		goto fail_dio;
1153 	}
1154 
1155 	if (align & blocksize_mask) {
1156 		if (bdev)
1157 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
1158 		blocksize_mask = (1 << blkbits) - 1;
1159 		if (align & blocksize_mask)
1160 			goto fail_dio;
1161 	}
1162 
1163 	if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
1164 		struct address_space *mapping = iocb->ki_filp->f_mapping;
1165 
1166 		retval = filemap_write_and_wait_range(mapping, offset, end - 1);
1167 		if (retval)
1168 			goto fail_dio;
1169 	}
1170 
1171 	/*
1172 	 * For file extending writes updating i_size before data writeouts
1173 	 * complete can expose uninitialized blocks in dumb filesystems.
1174 	 * In that case we need to wait for I/O completion even if asked
1175 	 * for an asynchronous write.
1176 	 */
1177 	if (is_sync_kiocb(iocb))
1178 		dio->is_async = false;
1179 	else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1180 		dio->is_async = false;
1181 	else
1182 		dio->is_async = true;
1183 
1184 	dio->inode = inode;
1185 	if (iov_iter_rw(iter) == WRITE) {
1186 		dio->opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
1187 		if (iocb->ki_flags & IOCB_NOWAIT)
1188 			dio->opf |= REQ_NOWAIT;
1189 	} else {
1190 		dio->opf = REQ_OP_READ;
1191 	}
1192 
1193 	/*
1194 	 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1195 	 * so that we can call ->fsync.
1196 	 */
1197 	if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1198 		retval = 0;
1199 		if (iocb_is_dsync(iocb))
1200 			retval = dio_set_defer_completion(dio);
1201 		else if (!dio->inode->i_sb->s_dio_done_wq) {
1202 			/*
1203 			 * In case of AIO write racing with buffered read we
1204 			 * need to defer completion. We can't decide this now,
1205 			 * however the workqueue needs to be initialized here.
1206 			 */
1207 			retval = sb_init_dio_done_wq(dio->inode->i_sb);
1208 		}
1209 		if (retval)
1210 			goto fail_dio;
1211 	}
1212 
1213 	/*
1214 	 * Will be decremented at I/O completion time.
1215 	 */
1216 	inode_dio_begin(inode);
1217 
1218 	retval = 0;
1219 	sdio.blkbits = blkbits;
1220 	sdio.blkfactor = i_blkbits - blkbits;
1221 	sdio.block_in_file = offset >> blkbits;
1222 
1223 	sdio.get_block = get_block;
1224 	dio->end_io = end_io;
1225 	sdio.final_block_in_bio = -1;
1226 	sdio.next_block_for_io = -1;
1227 
1228 	dio->iocb = iocb;
1229 
1230 	spin_lock_init(&dio->bio_lock);
1231 	dio->refcount = 1;
1232 
1233 	dio->should_dirty = user_backed_iter(iter) && iov_iter_rw(iter) == READ;
1234 	sdio.iter = iter;
1235 	sdio.final_block_in_request = end >> blkbits;
1236 
1237 	/*
1238 	 * In case of non-aligned buffers, we may need 2 more
1239 	 * pages since we need to zero out first and last block.
1240 	 */
1241 	if (unlikely(sdio.blkfactor))
1242 		sdio.pages_in_io = 2;
1243 
1244 	sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1245 
1246 	blk_start_plug(&plug);
1247 
1248 	retval = do_direct_IO(dio, &sdio, &map_bh);
1249 	if (retval)
1250 		dio_cleanup(dio, &sdio);
1251 
1252 	if (retval == -ENOTBLK) {
1253 		/*
1254 		 * The remaining part of the request will be
1255 		 * handled by buffered I/O when we return
1256 		 */
1257 		retval = 0;
1258 	}
1259 	/*
1260 	 * There may be some unwritten disk at the end of a part-written
1261 	 * fs-block-sized block.  Go zero that now.
1262 	 */
1263 	dio_zero_block(dio, &sdio, 1, &map_bh);
1264 
1265 	if (sdio.cur_page) {
1266 		ssize_t ret2;
1267 
1268 		ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1269 		if (retval == 0)
1270 			retval = ret2;
1271 		dio_unpin_page(dio, sdio.cur_page);
1272 		sdio.cur_page = NULL;
1273 	}
1274 	if (sdio.bio)
1275 		dio_bio_submit(dio, &sdio);
1276 
1277 	blk_finish_plug(&plug);
1278 
1279 	/*
1280 	 * It is possible that, we return short IO due to end of file.
1281 	 * In that case, we need to release all the pages we got hold on.
1282 	 */
1283 	dio_cleanup(dio, &sdio);
1284 
1285 	/*
1286 	 * All block lookups have been performed. For READ requests
1287 	 * we can let i_mutex go now that its achieved its purpose
1288 	 * of protecting us from looking up uninitialized blocks.
1289 	 */
1290 	if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1291 		inode_unlock(dio->inode);
1292 
1293 	/*
1294 	 * The only time we want to leave bios in flight is when a successful
1295 	 * partial aio read or full aio write have been setup.  In that case
1296 	 * bio completion will call aio_complete.  The only time it's safe to
1297 	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1298 	 * This had *better* be the only place that raises -EIOCBQUEUED.
1299 	 */
1300 	BUG_ON(retval == -EIOCBQUEUED);
1301 	if (dio->is_async && retval == 0 && dio->result &&
1302 	    (iov_iter_rw(iter) == READ || dio->result == count))
1303 		retval = -EIOCBQUEUED;
1304 	else
1305 		dio_await_completion(dio);
1306 
1307 	if (drop_refcount(dio) == 0) {
1308 		retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
1309 	} else
1310 		BUG_ON(retval != -EIOCBQUEUED);
1311 
1312 	return retval;
1313 
1314 fail_dio:
1315 	if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ)
1316 		inode_unlock(inode);
1317 
1318 	kmem_cache_free(dio_cache, dio);
1319 	return retval;
1320 }
1321 EXPORT_SYMBOL(__blockdev_direct_IO);
1322 
1323 static __init int dio_init(void)
1324 {
1325 	dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1326 	return 0;
1327 }
1328 module_init(dio_init)
1329