xref: /openbmc/linux/fs/direct-io.c (revision 3e30a927)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/direct-io.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * O_DIRECT
8  *
9  * 04Jul2002	Andrew Morton
10  *		Initial version
11  * 11Sep2002	janetinc@us.ibm.com
12  * 		added readv/writev support.
13  * 29Oct2002	Andrew Morton
14  *		rewrote bio_add_page() support.
15  * 30Oct2002	pbadari@us.ibm.com
16  *		added support for non-aligned IO.
17  * 06Nov2002	pbadari@us.ibm.com
18  *		added asynchronous IO support.
19  * 21Jul2003	nathans@sgi.com
20  *		added IO completion notifier.
21  */
22 
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/mm.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/pagemap.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/bio.h>
33 #include <linux/wait.h>
34 #include <linux/err.h>
35 #include <linux/blkdev.h>
36 #include <linux/buffer_head.h>
37 #include <linux/rwsem.h>
38 #include <linux/uio.h>
39 #include <linux/atomic.h>
40 #include <linux/prefetch.h>
41 
42 #include "internal.h"
43 
44 /*
45  * How many user pages to map in one call to get_user_pages().  This determines
46  * the size of a structure in the slab cache
47  */
48 #define DIO_PAGES	64
49 
50 /*
51  * Flags for dio_complete()
52  */
53 #define DIO_COMPLETE_ASYNC		0x01	/* This is async IO */
54 #define DIO_COMPLETE_INVALIDATE		0x02	/* Can invalidate pages */
55 
56 /*
57  * This code generally works in units of "dio_blocks".  A dio_block is
58  * somewhere between the hard sector size and the filesystem block size.  it
59  * is determined on a per-invocation basis.   When talking to the filesystem
60  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
61  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
62  * to bio_block quantities by shifting left by blkfactor.
63  *
64  * If blkfactor is zero then the user's request was aligned to the filesystem's
65  * blocksize.
66  */
67 
68 /* dio_state only used in the submission path */
69 
70 struct dio_submit {
71 	struct bio *bio;		/* bio under assembly */
72 	unsigned blkbits;		/* doesn't change */
73 	unsigned blkfactor;		/* When we're using an alignment which
74 					   is finer than the filesystem's soft
75 					   blocksize, this specifies how much
76 					   finer.  blkfactor=2 means 1/4-block
77 					   alignment.  Does not change */
78 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
79 					   been performed at the start of a
80 					   write */
81 	int pages_in_io;		/* approximate total IO pages */
82 	sector_t block_in_file;		/* Current offset into the underlying
83 					   file in dio_block units. */
84 	unsigned blocks_available;	/* At block_in_file.  changes */
85 	int reap_counter;		/* rate limit reaping */
86 	sector_t final_block_in_request;/* doesn't change */
87 	int boundary;			/* prev block is at a boundary */
88 	get_block_t *get_block;		/* block mapping function */
89 	dio_submit_t *submit_io;	/* IO submition function */
90 
91 	loff_t logical_offset_in_bio;	/* current first logical block in bio */
92 	sector_t final_block_in_bio;	/* current final block in bio + 1 */
93 	sector_t next_block_for_io;	/* next block to be put under IO,
94 					   in dio_blocks units */
95 
96 	/*
97 	 * Deferred addition of a page to the dio.  These variables are
98 	 * private to dio_send_cur_page(), submit_page_section() and
99 	 * dio_bio_add_page().
100 	 */
101 	struct page *cur_page;		/* The page */
102 	unsigned cur_page_offset;	/* Offset into it, in bytes */
103 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
104 	sector_t cur_page_block;	/* Where it starts */
105 	loff_t cur_page_fs_offset;	/* Offset in file */
106 
107 	struct iov_iter *iter;
108 	/*
109 	 * Page queue.  These variables belong to dio_refill_pages() and
110 	 * dio_get_page().
111 	 */
112 	unsigned head;			/* next page to process */
113 	unsigned tail;			/* last valid page + 1 */
114 	size_t from, to;
115 };
116 
117 /* dio_state communicated between submission path and end_io */
118 struct dio {
119 	int flags;			/* doesn't change */
120 	int op;
121 	int op_flags;
122 	blk_qc_t bio_cookie;
123 	struct gendisk *bio_disk;
124 	struct inode *inode;
125 	loff_t i_size;			/* i_size when submitted */
126 	dio_iodone_t *end_io;		/* IO completion function */
127 
128 	void *private;			/* copy from map_bh.b_private */
129 
130 	/* BIO completion state */
131 	spinlock_t bio_lock;		/* protects BIO fields below */
132 	int page_errors;		/* errno from get_user_pages() */
133 	int is_async;			/* is IO async ? */
134 	bool defer_completion;		/* defer AIO completion to workqueue? */
135 	bool should_dirty;		/* if pages should be dirtied */
136 	int io_error;			/* IO error in completion path */
137 	unsigned long refcount;		/* direct_io_worker() and bios */
138 	struct bio *bio_list;		/* singly linked via bi_private */
139 	struct task_struct *waiter;	/* waiting task (NULL if none) */
140 
141 	/* AIO related stuff */
142 	struct kiocb *iocb;		/* kiocb */
143 	ssize_t result;                 /* IO result */
144 
145 	/*
146 	 * pages[] (and any fields placed after it) are not zeroed out at
147 	 * allocation time.  Don't add new fields after pages[] unless you
148 	 * wish that they not be zeroed.
149 	 */
150 	union {
151 		struct page *pages[DIO_PAGES];	/* page buffer */
152 		struct work_struct complete_work;/* deferred AIO completion */
153 	};
154 } ____cacheline_aligned_in_smp;
155 
156 static struct kmem_cache *dio_cache __read_mostly;
157 
158 /*
159  * How many pages are in the queue?
160  */
161 static inline unsigned dio_pages_present(struct dio_submit *sdio)
162 {
163 	return sdio->tail - sdio->head;
164 }
165 
166 /*
167  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
168  */
169 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
170 {
171 	ssize_t ret;
172 
173 	ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
174 				&sdio->from);
175 
176 	if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) {
177 		struct page *page = ZERO_PAGE(0);
178 		/*
179 		 * A memory fault, but the filesystem has some outstanding
180 		 * mapped blocks.  We need to use those blocks up to avoid
181 		 * leaking stale data in the file.
182 		 */
183 		if (dio->page_errors == 0)
184 			dio->page_errors = ret;
185 		get_page(page);
186 		dio->pages[0] = page;
187 		sdio->head = 0;
188 		sdio->tail = 1;
189 		sdio->from = 0;
190 		sdio->to = PAGE_SIZE;
191 		return 0;
192 	}
193 
194 	if (ret >= 0) {
195 		iov_iter_advance(sdio->iter, ret);
196 		ret += sdio->from;
197 		sdio->head = 0;
198 		sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
199 		sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
200 		return 0;
201 	}
202 	return ret;
203 }
204 
205 /*
206  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
207  * buffered inside the dio so that we can call get_user_pages() against a
208  * decent number of pages, less frequently.  To provide nicer use of the
209  * L1 cache.
210  */
211 static inline struct page *dio_get_page(struct dio *dio,
212 					struct dio_submit *sdio)
213 {
214 	if (dio_pages_present(sdio) == 0) {
215 		int ret;
216 
217 		ret = dio_refill_pages(dio, sdio);
218 		if (ret)
219 			return ERR_PTR(ret);
220 		BUG_ON(dio_pages_present(sdio) == 0);
221 	}
222 	return dio->pages[sdio->head];
223 }
224 
225 /*
226  * dio_complete() - called when all DIO BIO I/O has been completed
227  *
228  * This drops i_dio_count, lets interested parties know that a DIO operation
229  * has completed, and calculates the resulting return code for the operation.
230  *
231  * It lets the filesystem know if it registered an interest earlier via
232  * get_block.  Pass the private field of the map buffer_head so that
233  * filesystems can use it to hold additional state between get_block calls and
234  * dio_complete.
235  */
236 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
237 {
238 	loff_t offset = dio->iocb->ki_pos;
239 	ssize_t transferred = 0;
240 	int err;
241 
242 	/*
243 	 * AIO submission can race with bio completion to get here while
244 	 * expecting to have the last io completed by bio completion.
245 	 * In that case -EIOCBQUEUED is in fact not an error we want
246 	 * to preserve through this call.
247 	 */
248 	if (ret == -EIOCBQUEUED)
249 		ret = 0;
250 
251 	if (dio->result) {
252 		transferred = dio->result;
253 
254 		/* Check for short read case */
255 		if ((dio->op == REQ_OP_READ) &&
256 		    ((offset + transferred) > dio->i_size))
257 			transferred = dio->i_size - offset;
258 		/* ignore EFAULT if some IO has been done */
259 		if (unlikely(ret == -EFAULT) && transferred)
260 			ret = 0;
261 	}
262 
263 	if (ret == 0)
264 		ret = dio->page_errors;
265 	if (ret == 0)
266 		ret = dio->io_error;
267 	if (ret == 0)
268 		ret = transferred;
269 
270 	if (dio->end_io) {
271 		// XXX: ki_pos??
272 		err = dio->end_io(dio->iocb, offset, ret, dio->private);
273 		if (err)
274 			ret = err;
275 	}
276 
277 	/*
278 	 * Try again to invalidate clean pages which might have been cached by
279 	 * non-direct readahead, or faulted in by get_user_pages() if the source
280 	 * of the write was an mmap'ed region of the file we're writing.  Either
281 	 * one is a pretty crazy thing to do, so we don't support it 100%.  If
282 	 * this invalidation fails, tough, the write still worked...
283 	 *
284 	 * And this page cache invalidation has to be after dio->end_io(), as
285 	 * some filesystems convert unwritten extents to real allocations in
286 	 * end_io() when necessary, otherwise a racing buffer read would cache
287 	 * zeros from unwritten extents.
288 	 */
289 	if (flags & DIO_COMPLETE_INVALIDATE &&
290 	    ret > 0 && dio->op == REQ_OP_WRITE &&
291 	    dio->inode->i_mapping->nrpages) {
292 		err = invalidate_inode_pages2_range(dio->inode->i_mapping,
293 					offset >> PAGE_SHIFT,
294 					(offset + ret - 1) >> PAGE_SHIFT);
295 		if (err)
296 			dio_warn_stale_pagecache(dio->iocb->ki_filp);
297 	}
298 
299 	inode_dio_end(dio->inode);
300 
301 	if (flags & DIO_COMPLETE_ASYNC) {
302 		/*
303 		 * generic_write_sync expects ki_pos to have been updated
304 		 * already, but the submission path only does this for
305 		 * synchronous I/O.
306 		 */
307 		dio->iocb->ki_pos += transferred;
308 
309 		if (ret > 0 && dio->op == REQ_OP_WRITE)
310 			ret = generic_write_sync(dio->iocb, ret);
311 		dio->iocb->ki_complete(dio->iocb, ret, 0);
312 	}
313 
314 	kmem_cache_free(dio_cache, dio);
315 	return ret;
316 }
317 
318 static void dio_aio_complete_work(struct work_struct *work)
319 {
320 	struct dio *dio = container_of(work, struct dio, complete_work);
321 
322 	dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
323 }
324 
325 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
326 
327 /*
328  * Asynchronous IO callback.
329  */
330 static void dio_bio_end_aio(struct bio *bio)
331 {
332 	struct dio *dio = bio->bi_private;
333 	unsigned long remaining;
334 	unsigned long flags;
335 	bool defer_completion = false;
336 
337 	/* cleanup the bio */
338 	dio_bio_complete(dio, bio);
339 
340 	spin_lock_irqsave(&dio->bio_lock, flags);
341 	remaining = --dio->refcount;
342 	if (remaining == 1 && dio->waiter)
343 		wake_up_process(dio->waiter);
344 	spin_unlock_irqrestore(&dio->bio_lock, flags);
345 
346 	if (remaining == 0) {
347 		/*
348 		 * Defer completion when defer_completion is set or
349 		 * when the inode has pages mapped and this is AIO write.
350 		 * We need to invalidate those pages because there is a
351 		 * chance they contain stale data in the case buffered IO
352 		 * went in between AIO submission and completion into the
353 		 * same region.
354 		 */
355 		if (dio->result)
356 			defer_completion = dio->defer_completion ||
357 					   (dio->op == REQ_OP_WRITE &&
358 					    dio->inode->i_mapping->nrpages);
359 		if (defer_completion) {
360 			INIT_WORK(&dio->complete_work, dio_aio_complete_work);
361 			queue_work(dio->inode->i_sb->s_dio_done_wq,
362 				   &dio->complete_work);
363 		} else {
364 			dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
365 		}
366 	}
367 }
368 
369 /*
370  * The BIO completion handler simply queues the BIO up for the process-context
371  * handler.
372  *
373  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
374  * implement a singly-linked list of completed BIOs, at dio->bio_list.
375  */
376 static void dio_bio_end_io(struct bio *bio)
377 {
378 	struct dio *dio = bio->bi_private;
379 	unsigned long flags;
380 
381 	spin_lock_irqsave(&dio->bio_lock, flags);
382 	bio->bi_private = dio->bio_list;
383 	dio->bio_list = bio;
384 	if (--dio->refcount == 1 && dio->waiter)
385 		wake_up_process(dio->waiter);
386 	spin_unlock_irqrestore(&dio->bio_lock, flags);
387 }
388 
389 /**
390  * dio_end_io - handle the end io action for the given bio
391  * @bio: The direct io bio thats being completed
392  *
393  * This is meant to be called by any filesystem that uses their own dio_submit_t
394  * so that the DIO specific endio actions are dealt with after the filesystem
395  * has done it's completion work.
396  */
397 void dio_end_io(struct bio *bio)
398 {
399 	struct dio *dio = bio->bi_private;
400 
401 	if (dio->is_async)
402 		dio_bio_end_aio(bio);
403 	else
404 		dio_bio_end_io(bio);
405 }
406 EXPORT_SYMBOL_GPL(dio_end_io);
407 
408 static inline void
409 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
410 	      struct block_device *bdev,
411 	      sector_t first_sector, int nr_vecs)
412 {
413 	struct bio *bio;
414 
415 	/*
416 	 * bio_alloc() is guaranteed to return a bio when allowed to sleep and
417 	 * we request a valid number of vectors.
418 	 */
419 	bio = bio_alloc(GFP_KERNEL, nr_vecs);
420 
421 	bio_set_dev(bio, bdev);
422 	bio->bi_iter.bi_sector = first_sector;
423 	bio_set_op_attrs(bio, dio->op, dio->op_flags);
424 	if (dio->is_async)
425 		bio->bi_end_io = dio_bio_end_aio;
426 	else
427 		bio->bi_end_io = dio_bio_end_io;
428 
429 	bio->bi_write_hint = dio->iocb->ki_hint;
430 
431 	sdio->bio = bio;
432 	sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
433 }
434 
435 /*
436  * In the AIO read case we speculatively dirty the pages before starting IO.
437  * During IO completion, any of these pages which happen to have been written
438  * back will be redirtied by bio_check_pages_dirty().
439  *
440  * bios hold a dio reference between submit_bio and ->end_io.
441  */
442 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
443 {
444 	struct bio *bio = sdio->bio;
445 	unsigned long flags;
446 
447 	bio->bi_private = dio;
448 
449 	spin_lock_irqsave(&dio->bio_lock, flags);
450 	dio->refcount++;
451 	spin_unlock_irqrestore(&dio->bio_lock, flags);
452 
453 	if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty)
454 		bio_set_pages_dirty(bio);
455 
456 	dio->bio_disk = bio->bi_disk;
457 
458 	if (sdio->submit_io) {
459 		sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
460 		dio->bio_cookie = BLK_QC_T_NONE;
461 	} else
462 		dio->bio_cookie = submit_bio(bio);
463 
464 	sdio->bio = NULL;
465 	sdio->boundary = 0;
466 	sdio->logical_offset_in_bio = 0;
467 }
468 
469 /*
470  * Release any resources in case of a failure
471  */
472 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
473 {
474 	while (sdio->head < sdio->tail)
475 		put_page(dio->pages[sdio->head++]);
476 }
477 
478 /*
479  * Wait for the next BIO to complete.  Remove it and return it.  NULL is
480  * returned once all BIOs have been completed.  This must only be called once
481  * all bios have been issued so that dio->refcount can only decrease.  This
482  * requires that that the caller hold a reference on the dio.
483  */
484 static struct bio *dio_await_one(struct dio *dio)
485 {
486 	unsigned long flags;
487 	struct bio *bio = NULL;
488 
489 	spin_lock_irqsave(&dio->bio_lock, flags);
490 
491 	/*
492 	 * Wait as long as the list is empty and there are bios in flight.  bio
493 	 * completion drops the count, maybe adds to the list, and wakes while
494 	 * holding the bio_lock so we don't need set_current_state()'s barrier
495 	 * and can call it after testing our condition.
496 	 */
497 	while (dio->refcount > 1 && dio->bio_list == NULL) {
498 		__set_current_state(TASK_UNINTERRUPTIBLE);
499 		dio->waiter = current;
500 		spin_unlock_irqrestore(&dio->bio_lock, flags);
501 		if (!(dio->iocb->ki_flags & IOCB_HIPRI) ||
502 		    !blk_poll(dio->bio_disk->queue, dio->bio_cookie, true))
503 			io_schedule();
504 		/* wake up sets us TASK_RUNNING */
505 		spin_lock_irqsave(&dio->bio_lock, flags);
506 		dio->waiter = NULL;
507 	}
508 	if (dio->bio_list) {
509 		bio = dio->bio_list;
510 		dio->bio_list = bio->bi_private;
511 	}
512 	spin_unlock_irqrestore(&dio->bio_lock, flags);
513 	return bio;
514 }
515 
516 /*
517  * Process one completed BIO.  No locks are held.
518  */
519 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
520 {
521 	blk_status_t err = bio->bi_status;
522 	bool should_dirty = dio->op == REQ_OP_READ && dio->should_dirty;
523 
524 	if (err) {
525 		if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
526 			dio->io_error = -EAGAIN;
527 		else
528 			dio->io_error = -EIO;
529 	}
530 
531 	if (dio->is_async && should_dirty) {
532 		bio_check_pages_dirty(bio);	/* transfers ownership */
533 	} else {
534 		bio_release_pages(bio, should_dirty);
535 		bio_put(bio);
536 	}
537 	return err;
538 }
539 
540 /*
541  * Wait on and process all in-flight BIOs.  This must only be called once
542  * all bios have been issued so that the refcount can only decrease.
543  * This just waits for all bios to make it through dio_bio_complete.  IO
544  * errors are propagated through dio->io_error and should be propagated via
545  * dio_complete().
546  */
547 static void dio_await_completion(struct dio *dio)
548 {
549 	struct bio *bio;
550 	do {
551 		bio = dio_await_one(dio);
552 		if (bio)
553 			dio_bio_complete(dio, bio);
554 	} while (bio);
555 }
556 
557 /*
558  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
559  * to keep the memory consumption sane we periodically reap any completed BIOs
560  * during the BIO generation phase.
561  *
562  * This also helps to limit the peak amount of pinned userspace memory.
563  */
564 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
565 {
566 	int ret = 0;
567 
568 	if (sdio->reap_counter++ >= 64) {
569 		while (dio->bio_list) {
570 			unsigned long flags;
571 			struct bio *bio;
572 			int ret2;
573 
574 			spin_lock_irqsave(&dio->bio_lock, flags);
575 			bio = dio->bio_list;
576 			dio->bio_list = bio->bi_private;
577 			spin_unlock_irqrestore(&dio->bio_lock, flags);
578 			ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
579 			if (ret == 0)
580 				ret = ret2;
581 		}
582 		sdio->reap_counter = 0;
583 	}
584 	return ret;
585 }
586 
587 /*
588  * Create workqueue for deferred direct IO completions. We allocate the
589  * workqueue when it's first needed. This avoids creating workqueue for
590  * filesystems that don't need it and also allows us to create the workqueue
591  * late enough so the we can include s_id in the name of the workqueue.
592  */
593 int sb_init_dio_done_wq(struct super_block *sb)
594 {
595 	struct workqueue_struct *old;
596 	struct workqueue_struct *wq = alloc_workqueue("dio/%s",
597 						      WQ_MEM_RECLAIM, 0,
598 						      sb->s_id);
599 	if (!wq)
600 		return -ENOMEM;
601 	/*
602 	 * This has to be atomic as more DIOs can race to create the workqueue
603 	 */
604 	old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
605 	/* Someone created workqueue before us? Free ours... */
606 	if (old)
607 		destroy_workqueue(wq);
608 	return 0;
609 }
610 
611 static int dio_set_defer_completion(struct dio *dio)
612 {
613 	struct super_block *sb = dio->inode->i_sb;
614 
615 	if (dio->defer_completion)
616 		return 0;
617 	dio->defer_completion = true;
618 	if (!sb->s_dio_done_wq)
619 		return sb_init_dio_done_wq(sb);
620 	return 0;
621 }
622 
623 /*
624  * Call into the fs to map some more disk blocks.  We record the current number
625  * of available blocks at sdio->blocks_available.  These are in units of the
626  * fs blocksize, i_blocksize(inode).
627  *
628  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
629  * it uses the passed inode-relative block number as the file offset, as usual.
630  *
631  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
632  * has remaining to do.  The fs should not map more than this number of blocks.
633  *
634  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
635  * indicate how much contiguous disk space has been made available at
636  * bh->b_blocknr.
637  *
638  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
639  * This isn't very efficient...
640  *
641  * In the case of filesystem holes: the fs may return an arbitrarily-large
642  * hole by returning an appropriate value in b_size and by clearing
643  * buffer_mapped().  However the direct-io code will only process holes one
644  * block at a time - it will repeatedly call get_block() as it walks the hole.
645  */
646 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
647 			   struct buffer_head *map_bh)
648 {
649 	int ret;
650 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
651 	sector_t fs_endblk;	/* Into file, in filesystem-sized blocks */
652 	unsigned long fs_count;	/* Number of filesystem-sized blocks */
653 	int create;
654 	unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
655 	loff_t i_size;
656 
657 	/*
658 	 * If there was a memory error and we've overwritten all the
659 	 * mapped blocks then we can now return that memory error
660 	 */
661 	ret = dio->page_errors;
662 	if (ret == 0) {
663 		BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
664 		fs_startblk = sdio->block_in_file >> sdio->blkfactor;
665 		fs_endblk = (sdio->final_block_in_request - 1) >>
666 					sdio->blkfactor;
667 		fs_count = fs_endblk - fs_startblk + 1;
668 
669 		map_bh->b_state = 0;
670 		map_bh->b_size = fs_count << i_blkbits;
671 
672 		/*
673 		 * For writes that could fill holes inside i_size on a
674 		 * DIO_SKIP_HOLES filesystem we forbid block creations: only
675 		 * overwrites are permitted. We will return early to the caller
676 		 * once we see an unmapped buffer head returned, and the caller
677 		 * will fall back to buffered I/O.
678 		 *
679 		 * Otherwise the decision is left to the get_blocks method,
680 		 * which may decide to handle it or also return an unmapped
681 		 * buffer head.
682 		 */
683 		create = dio->op == REQ_OP_WRITE;
684 		if (dio->flags & DIO_SKIP_HOLES) {
685 			i_size = i_size_read(dio->inode);
686 			if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits)
687 				create = 0;
688 		}
689 
690 		ret = (*sdio->get_block)(dio->inode, fs_startblk,
691 						map_bh, create);
692 
693 		/* Store for completion */
694 		dio->private = map_bh->b_private;
695 
696 		if (ret == 0 && buffer_defer_completion(map_bh))
697 			ret = dio_set_defer_completion(dio);
698 	}
699 	return ret;
700 }
701 
702 /*
703  * There is no bio.  Make one now.
704  */
705 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
706 		sector_t start_sector, struct buffer_head *map_bh)
707 {
708 	sector_t sector;
709 	int ret, nr_pages;
710 
711 	ret = dio_bio_reap(dio, sdio);
712 	if (ret)
713 		goto out;
714 	sector = start_sector << (sdio->blkbits - 9);
715 	nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
716 	BUG_ON(nr_pages <= 0);
717 	dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
718 	sdio->boundary = 0;
719 out:
720 	return ret;
721 }
722 
723 /*
724  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
725  * that was successful then update final_block_in_bio and take a ref against
726  * the just-added page.
727  *
728  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
729  */
730 static inline int dio_bio_add_page(struct dio_submit *sdio)
731 {
732 	int ret;
733 
734 	ret = bio_add_page(sdio->bio, sdio->cur_page,
735 			sdio->cur_page_len, sdio->cur_page_offset);
736 	if (ret == sdio->cur_page_len) {
737 		/*
738 		 * Decrement count only, if we are done with this page
739 		 */
740 		if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
741 			sdio->pages_in_io--;
742 		get_page(sdio->cur_page);
743 		sdio->final_block_in_bio = sdio->cur_page_block +
744 			(sdio->cur_page_len >> sdio->blkbits);
745 		ret = 0;
746 	} else {
747 		ret = 1;
748 	}
749 	return ret;
750 }
751 
752 /*
753  * Put cur_page under IO.  The section of cur_page which is described by
754  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
755  * starts on-disk at cur_page_block.
756  *
757  * We take a ref against the page here (on behalf of its presence in the bio).
758  *
759  * The caller of this function is responsible for removing cur_page from the
760  * dio, and for dropping the refcount which came from that presence.
761  */
762 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
763 		struct buffer_head *map_bh)
764 {
765 	int ret = 0;
766 
767 	if (sdio->bio) {
768 		loff_t cur_offset = sdio->cur_page_fs_offset;
769 		loff_t bio_next_offset = sdio->logical_offset_in_bio +
770 			sdio->bio->bi_iter.bi_size;
771 
772 		/*
773 		 * See whether this new request is contiguous with the old.
774 		 *
775 		 * Btrfs cannot handle having logically non-contiguous requests
776 		 * submitted.  For example if you have
777 		 *
778 		 * Logical:  [0-4095][HOLE][8192-12287]
779 		 * Physical: [0-4095]      [4096-8191]
780 		 *
781 		 * We cannot submit those pages together as one BIO.  So if our
782 		 * current logical offset in the file does not equal what would
783 		 * be the next logical offset in the bio, submit the bio we
784 		 * have.
785 		 */
786 		if (sdio->final_block_in_bio != sdio->cur_page_block ||
787 		    cur_offset != bio_next_offset)
788 			dio_bio_submit(dio, sdio);
789 	}
790 
791 	if (sdio->bio == NULL) {
792 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
793 		if (ret)
794 			goto out;
795 	}
796 
797 	if (dio_bio_add_page(sdio) != 0) {
798 		dio_bio_submit(dio, sdio);
799 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
800 		if (ret == 0) {
801 			ret = dio_bio_add_page(sdio);
802 			BUG_ON(ret != 0);
803 		}
804 	}
805 out:
806 	return ret;
807 }
808 
809 /*
810  * An autonomous function to put a chunk of a page under deferred IO.
811  *
812  * The caller doesn't actually know (or care) whether this piece of page is in
813  * a BIO, or is under IO or whatever.  We just take care of all possible
814  * situations here.  The separation between the logic of do_direct_IO() and
815  * that of submit_page_section() is important for clarity.  Please don't break.
816  *
817  * The chunk of page starts on-disk at blocknr.
818  *
819  * We perform deferred IO, by recording the last-submitted page inside our
820  * private part of the dio structure.  If possible, we just expand the IO
821  * across that page here.
822  *
823  * If that doesn't work out then we put the old page into the bio and add this
824  * page to the dio instead.
825  */
826 static inline int
827 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
828 		    unsigned offset, unsigned len, sector_t blocknr,
829 		    struct buffer_head *map_bh)
830 {
831 	int ret = 0;
832 
833 	if (dio->op == REQ_OP_WRITE) {
834 		/*
835 		 * Read accounting is performed in submit_bio()
836 		 */
837 		task_io_account_write(len);
838 	}
839 
840 	/*
841 	 * Can we just grow the current page's presence in the dio?
842 	 */
843 	if (sdio->cur_page == page &&
844 	    sdio->cur_page_offset + sdio->cur_page_len == offset &&
845 	    sdio->cur_page_block +
846 	    (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
847 		sdio->cur_page_len += len;
848 		goto out;
849 	}
850 
851 	/*
852 	 * If there's a deferred page already there then send it.
853 	 */
854 	if (sdio->cur_page) {
855 		ret = dio_send_cur_page(dio, sdio, map_bh);
856 		put_page(sdio->cur_page);
857 		sdio->cur_page = NULL;
858 		if (ret)
859 			return ret;
860 	}
861 
862 	get_page(page);		/* It is in dio */
863 	sdio->cur_page = page;
864 	sdio->cur_page_offset = offset;
865 	sdio->cur_page_len = len;
866 	sdio->cur_page_block = blocknr;
867 	sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
868 out:
869 	/*
870 	 * If sdio->boundary then we want to schedule the IO now to
871 	 * avoid metadata seeks.
872 	 */
873 	if (sdio->boundary) {
874 		ret = dio_send_cur_page(dio, sdio, map_bh);
875 		if (sdio->bio)
876 			dio_bio_submit(dio, sdio);
877 		put_page(sdio->cur_page);
878 		sdio->cur_page = NULL;
879 	}
880 	return ret;
881 }
882 
883 /*
884  * If we are not writing the entire block and get_block() allocated
885  * the block for us, we need to fill-in the unused portion of the
886  * block with zeros. This happens only if user-buffer, fileoffset or
887  * io length is not filesystem block-size multiple.
888  *
889  * `end' is zero if we're doing the start of the IO, 1 at the end of the
890  * IO.
891  */
892 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
893 		int end, struct buffer_head *map_bh)
894 {
895 	unsigned dio_blocks_per_fs_block;
896 	unsigned this_chunk_blocks;	/* In dio_blocks */
897 	unsigned this_chunk_bytes;
898 	struct page *page;
899 
900 	sdio->start_zero_done = 1;
901 	if (!sdio->blkfactor || !buffer_new(map_bh))
902 		return;
903 
904 	dio_blocks_per_fs_block = 1 << sdio->blkfactor;
905 	this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
906 
907 	if (!this_chunk_blocks)
908 		return;
909 
910 	/*
911 	 * We need to zero out part of an fs block.  It is either at the
912 	 * beginning or the end of the fs block.
913 	 */
914 	if (end)
915 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
916 
917 	this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
918 
919 	page = ZERO_PAGE(0);
920 	if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
921 				sdio->next_block_for_io, map_bh))
922 		return;
923 
924 	sdio->next_block_for_io += this_chunk_blocks;
925 }
926 
927 /*
928  * Walk the user pages, and the file, mapping blocks to disk and generating
929  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
930  * into submit_page_section(), which takes care of the next stage of submission
931  *
932  * Direct IO against a blockdev is different from a file.  Because we can
933  * happily perform page-sized but 512-byte aligned IOs.  It is important that
934  * blockdev IO be able to have fine alignment and large sizes.
935  *
936  * So what we do is to permit the ->get_block function to populate bh.b_size
937  * with the size of IO which is permitted at this offset and this i_blkbits.
938  *
939  * For best results, the blockdev should be set up with 512-byte i_blkbits and
940  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
941  * fine alignment but still allows this function to work in PAGE_SIZE units.
942  */
943 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
944 			struct buffer_head *map_bh)
945 {
946 	const unsigned blkbits = sdio->blkbits;
947 	const unsigned i_blkbits = blkbits + sdio->blkfactor;
948 	int ret = 0;
949 
950 	while (sdio->block_in_file < sdio->final_block_in_request) {
951 		struct page *page;
952 		size_t from, to;
953 
954 		page = dio_get_page(dio, sdio);
955 		if (IS_ERR(page)) {
956 			ret = PTR_ERR(page);
957 			goto out;
958 		}
959 		from = sdio->head ? 0 : sdio->from;
960 		to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
961 		sdio->head++;
962 
963 		while (from < to) {
964 			unsigned this_chunk_bytes;	/* # of bytes mapped */
965 			unsigned this_chunk_blocks;	/* # of blocks */
966 			unsigned u;
967 
968 			if (sdio->blocks_available == 0) {
969 				/*
970 				 * Need to go and map some more disk
971 				 */
972 				unsigned long blkmask;
973 				unsigned long dio_remainder;
974 
975 				ret = get_more_blocks(dio, sdio, map_bh);
976 				if (ret) {
977 					put_page(page);
978 					goto out;
979 				}
980 				if (!buffer_mapped(map_bh))
981 					goto do_holes;
982 
983 				sdio->blocks_available =
984 						map_bh->b_size >> blkbits;
985 				sdio->next_block_for_io =
986 					map_bh->b_blocknr << sdio->blkfactor;
987 				if (buffer_new(map_bh)) {
988 					clean_bdev_aliases(
989 						map_bh->b_bdev,
990 						map_bh->b_blocknr,
991 						map_bh->b_size >> i_blkbits);
992 				}
993 
994 				if (!sdio->blkfactor)
995 					goto do_holes;
996 
997 				blkmask = (1 << sdio->blkfactor) - 1;
998 				dio_remainder = (sdio->block_in_file & blkmask);
999 
1000 				/*
1001 				 * If we are at the start of IO and that IO
1002 				 * starts partway into a fs-block,
1003 				 * dio_remainder will be non-zero.  If the IO
1004 				 * is a read then we can simply advance the IO
1005 				 * cursor to the first block which is to be
1006 				 * read.  But if the IO is a write and the
1007 				 * block was newly allocated we cannot do that;
1008 				 * the start of the fs block must be zeroed out
1009 				 * on-disk
1010 				 */
1011 				if (!buffer_new(map_bh))
1012 					sdio->next_block_for_io += dio_remainder;
1013 				sdio->blocks_available -= dio_remainder;
1014 			}
1015 do_holes:
1016 			/* Handle holes */
1017 			if (!buffer_mapped(map_bh)) {
1018 				loff_t i_size_aligned;
1019 
1020 				/* AKPM: eargh, -ENOTBLK is a hack */
1021 				if (dio->op == REQ_OP_WRITE) {
1022 					put_page(page);
1023 					return -ENOTBLK;
1024 				}
1025 
1026 				/*
1027 				 * Be sure to account for a partial block as the
1028 				 * last block in the file
1029 				 */
1030 				i_size_aligned = ALIGN(i_size_read(dio->inode),
1031 							1 << blkbits);
1032 				if (sdio->block_in_file >=
1033 						i_size_aligned >> blkbits) {
1034 					/* We hit eof */
1035 					put_page(page);
1036 					goto out;
1037 				}
1038 				zero_user(page, from, 1 << blkbits);
1039 				sdio->block_in_file++;
1040 				from += 1 << blkbits;
1041 				dio->result += 1 << blkbits;
1042 				goto next_block;
1043 			}
1044 
1045 			/*
1046 			 * If we're performing IO which has an alignment which
1047 			 * is finer than the underlying fs, go check to see if
1048 			 * we must zero out the start of this block.
1049 			 */
1050 			if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1051 				dio_zero_block(dio, sdio, 0, map_bh);
1052 
1053 			/*
1054 			 * Work out, in this_chunk_blocks, how much disk we
1055 			 * can add to this page
1056 			 */
1057 			this_chunk_blocks = sdio->blocks_available;
1058 			u = (to - from) >> blkbits;
1059 			if (this_chunk_blocks > u)
1060 				this_chunk_blocks = u;
1061 			u = sdio->final_block_in_request - sdio->block_in_file;
1062 			if (this_chunk_blocks > u)
1063 				this_chunk_blocks = u;
1064 			this_chunk_bytes = this_chunk_blocks << blkbits;
1065 			BUG_ON(this_chunk_bytes == 0);
1066 
1067 			if (this_chunk_blocks == sdio->blocks_available)
1068 				sdio->boundary = buffer_boundary(map_bh);
1069 			ret = submit_page_section(dio, sdio, page,
1070 						  from,
1071 						  this_chunk_bytes,
1072 						  sdio->next_block_for_io,
1073 						  map_bh);
1074 			if (ret) {
1075 				put_page(page);
1076 				goto out;
1077 			}
1078 			sdio->next_block_for_io += this_chunk_blocks;
1079 
1080 			sdio->block_in_file += this_chunk_blocks;
1081 			from += this_chunk_bytes;
1082 			dio->result += this_chunk_bytes;
1083 			sdio->blocks_available -= this_chunk_blocks;
1084 next_block:
1085 			BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1086 			if (sdio->block_in_file == sdio->final_block_in_request)
1087 				break;
1088 		}
1089 
1090 		/* Drop the ref which was taken in get_user_pages() */
1091 		put_page(page);
1092 	}
1093 out:
1094 	return ret;
1095 }
1096 
1097 static inline int drop_refcount(struct dio *dio)
1098 {
1099 	int ret2;
1100 	unsigned long flags;
1101 
1102 	/*
1103 	 * Sync will always be dropping the final ref and completing the
1104 	 * operation.  AIO can if it was a broken operation described above or
1105 	 * in fact if all the bios race to complete before we get here.  In
1106 	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1107 	 * return code that the caller will hand to ->complete().
1108 	 *
1109 	 * This is managed by the bio_lock instead of being an atomic_t so that
1110 	 * completion paths can drop their ref and use the remaining count to
1111 	 * decide to wake the submission path atomically.
1112 	 */
1113 	spin_lock_irqsave(&dio->bio_lock, flags);
1114 	ret2 = --dio->refcount;
1115 	spin_unlock_irqrestore(&dio->bio_lock, flags);
1116 	return ret2;
1117 }
1118 
1119 /*
1120  * This is a library function for use by filesystem drivers.
1121  *
1122  * The locking rules are governed by the flags parameter:
1123  *  - if the flags value contains DIO_LOCKING we use a fancy locking
1124  *    scheme for dumb filesystems.
1125  *    For writes this function is called under i_mutex and returns with
1126  *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1127  *    taken and dropped again before returning.
1128  *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1129  *    internal locking but rather rely on the filesystem to synchronize
1130  *    direct I/O reads/writes versus each other and truncate.
1131  *
1132  * To help with locking against truncate we incremented the i_dio_count
1133  * counter before starting direct I/O, and decrement it once we are done.
1134  * Truncate can wait for it to reach zero to provide exclusion.  It is
1135  * expected that filesystem provide exclusion between new direct I/O
1136  * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1137  * but other filesystems need to take care of this on their own.
1138  *
1139  * NOTE: if you pass "sdio" to anything by pointer make sure that function
1140  * is always inlined. Otherwise gcc is unable to split the structure into
1141  * individual fields and will generate much worse code. This is important
1142  * for the whole file.
1143  */
1144 static inline ssize_t
1145 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1146 		      struct block_device *bdev, struct iov_iter *iter,
1147 		      get_block_t get_block, dio_iodone_t end_io,
1148 		      dio_submit_t submit_io, int flags)
1149 {
1150 	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
1151 	unsigned blkbits = i_blkbits;
1152 	unsigned blocksize_mask = (1 << blkbits) - 1;
1153 	ssize_t retval = -EINVAL;
1154 	const size_t count = iov_iter_count(iter);
1155 	loff_t offset = iocb->ki_pos;
1156 	const loff_t end = offset + count;
1157 	struct dio *dio;
1158 	struct dio_submit sdio = { 0, };
1159 	struct buffer_head map_bh = { 0, };
1160 	struct blk_plug plug;
1161 	unsigned long align = offset | iov_iter_alignment(iter);
1162 
1163 	/*
1164 	 * Avoid references to bdev if not absolutely needed to give
1165 	 * the early prefetch in the caller enough time.
1166 	 */
1167 
1168 	if (align & blocksize_mask) {
1169 		if (bdev)
1170 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
1171 		blocksize_mask = (1 << blkbits) - 1;
1172 		if (align & blocksize_mask)
1173 			goto out;
1174 	}
1175 
1176 	/* watch out for a 0 len io from a tricksy fs */
1177 	if (iov_iter_rw(iter) == READ && !count)
1178 		return 0;
1179 
1180 	dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1181 	retval = -ENOMEM;
1182 	if (!dio)
1183 		goto out;
1184 	/*
1185 	 * Believe it or not, zeroing out the page array caused a .5%
1186 	 * performance regression in a database benchmark.  So, we take
1187 	 * care to only zero out what's needed.
1188 	 */
1189 	memset(dio, 0, offsetof(struct dio, pages));
1190 
1191 	dio->flags = flags;
1192 	if (dio->flags & DIO_LOCKING) {
1193 		if (iov_iter_rw(iter) == READ) {
1194 			struct address_space *mapping =
1195 					iocb->ki_filp->f_mapping;
1196 
1197 			/* will be released by direct_io_worker */
1198 			inode_lock(inode);
1199 
1200 			retval = filemap_write_and_wait_range(mapping, offset,
1201 							      end - 1);
1202 			if (retval) {
1203 				inode_unlock(inode);
1204 				kmem_cache_free(dio_cache, dio);
1205 				goto out;
1206 			}
1207 		}
1208 	}
1209 
1210 	/* Once we sampled i_size check for reads beyond EOF */
1211 	dio->i_size = i_size_read(inode);
1212 	if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1213 		if (dio->flags & DIO_LOCKING)
1214 			inode_unlock(inode);
1215 		kmem_cache_free(dio_cache, dio);
1216 		retval = 0;
1217 		goto out;
1218 	}
1219 
1220 	/*
1221 	 * For file extending writes updating i_size before data writeouts
1222 	 * complete can expose uninitialized blocks in dumb filesystems.
1223 	 * In that case we need to wait for I/O completion even if asked
1224 	 * for an asynchronous write.
1225 	 */
1226 	if (is_sync_kiocb(iocb))
1227 		dio->is_async = false;
1228 	else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1229 		dio->is_async = false;
1230 	else
1231 		dio->is_async = true;
1232 
1233 	dio->inode = inode;
1234 	if (iov_iter_rw(iter) == WRITE) {
1235 		dio->op = REQ_OP_WRITE;
1236 		dio->op_flags = REQ_SYNC | REQ_IDLE;
1237 		if (iocb->ki_flags & IOCB_NOWAIT)
1238 			dio->op_flags |= REQ_NOWAIT;
1239 	} else {
1240 		dio->op = REQ_OP_READ;
1241 	}
1242 	if (iocb->ki_flags & IOCB_HIPRI)
1243 		dio->op_flags |= REQ_HIPRI;
1244 
1245 	/*
1246 	 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1247 	 * so that we can call ->fsync.
1248 	 */
1249 	if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1250 		retval = 0;
1251 		if (iocb->ki_flags & IOCB_DSYNC)
1252 			retval = dio_set_defer_completion(dio);
1253 		else if (!dio->inode->i_sb->s_dio_done_wq) {
1254 			/*
1255 			 * In case of AIO write racing with buffered read we
1256 			 * need to defer completion. We can't decide this now,
1257 			 * however the workqueue needs to be initialized here.
1258 			 */
1259 			retval = sb_init_dio_done_wq(dio->inode->i_sb);
1260 		}
1261 		if (retval) {
1262 			/*
1263 			 * We grab i_mutex only for reads so we don't have
1264 			 * to release it here
1265 			 */
1266 			kmem_cache_free(dio_cache, dio);
1267 			goto out;
1268 		}
1269 	}
1270 
1271 	/*
1272 	 * Will be decremented at I/O completion time.
1273 	 */
1274 	inode_dio_begin(inode);
1275 
1276 	retval = 0;
1277 	sdio.blkbits = blkbits;
1278 	sdio.blkfactor = i_blkbits - blkbits;
1279 	sdio.block_in_file = offset >> blkbits;
1280 
1281 	sdio.get_block = get_block;
1282 	dio->end_io = end_io;
1283 	sdio.submit_io = submit_io;
1284 	sdio.final_block_in_bio = -1;
1285 	sdio.next_block_for_io = -1;
1286 
1287 	dio->iocb = iocb;
1288 
1289 	spin_lock_init(&dio->bio_lock);
1290 	dio->refcount = 1;
1291 
1292 	dio->should_dirty = iter_is_iovec(iter) && iov_iter_rw(iter) == READ;
1293 	sdio.iter = iter;
1294 	sdio.final_block_in_request = end >> blkbits;
1295 
1296 	/*
1297 	 * In case of non-aligned buffers, we may need 2 more
1298 	 * pages since we need to zero out first and last block.
1299 	 */
1300 	if (unlikely(sdio.blkfactor))
1301 		sdio.pages_in_io = 2;
1302 
1303 	sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1304 
1305 	blk_start_plug(&plug);
1306 
1307 	retval = do_direct_IO(dio, &sdio, &map_bh);
1308 	if (retval)
1309 		dio_cleanup(dio, &sdio);
1310 
1311 	if (retval == -ENOTBLK) {
1312 		/*
1313 		 * The remaining part of the request will be
1314 		 * be handled by buffered I/O when we return
1315 		 */
1316 		retval = 0;
1317 	}
1318 	/*
1319 	 * There may be some unwritten disk at the end of a part-written
1320 	 * fs-block-sized block.  Go zero that now.
1321 	 */
1322 	dio_zero_block(dio, &sdio, 1, &map_bh);
1323 
1324 	if (sdio.cur_page) {
1325 		ssize_t ret2;
1326 
1327 		ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1328 		if (retval == 0)
1329 			retval = ret2;
1330 		put_page(sdio.cur_page);
1331 		sdio.cur_page = NULL;
1332 	}
1333 	if (sdio.bio)
1334 		dio_bio_submit(dio, &sdio);
1335 
1336 	blk_finish_plug(&plug);
1337 
1338 	/*
1339 	 * It is possible that, we return short IO due to end of file.
1340 	 * In that case, we need to release all the pages we got hold on.
1341 	 */
1342 	dio_cleanup(dio, &sdio);
1343 
1344 	/*
1345 	 * All block lookups have been performed. For READ requests
1346 	 * we can let i_mutex go now that its achieved its purpose
1347 	 * of protecting us from looking up uninitialized blocks.
1348 	 */
1349 	if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1350 		inode_unlock(dio->inode);
1351 
1352 	/*
1353 	 * The only time we want to leave bios in flight is when a successful
1354 	 * partial aio read or full aio write have been setup.  In that case
1355 	 * bio completion will call aio_complete.  The only time it's safe to
1356 	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1357 	 * This had *better* be the only place that raises -EIOCBQUEUED.
1358 	 */
1359 	BUG_ON(retval == -EIOCBQUEUED);
1360 	if (dio->is_async && retval == 0 && dio->result &&
1361 	    (iov_iter_rw(iter) == READ || dio->result == count))
1362 		retval = -EIOCBQUEUED;
1363 	else
1364 		dio_await_completion(dio);
1365 
1366 	if (drop_refcount(dio) == 0) {
1367 		retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
1368 	} else
1369 		BUG_ON(retval != -EIOCBQUEUED);
1370 
1371 out:
1372 	return retval;
1373 }
1374 
1375 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1376 			     struct block_device *bdev, struct iov_iter *iter,
1377 			     get_block_t get_block,
1378 			     dio_iodone_t end_io, dio_submit_t submit_io,
1379 			     int flags)
1380 {
1381 	/*
1382 	 * The block device state is needed in the end to finally
1383 	 * submit everything.  Since it's likely to be cache cold
1384 	 * prefetch it here as first thing to hide some of the
1385 	 * latency.
1386 	 *
1387 	 * Attempt to prefetch the pieces we likely need later.
1388 	 */
1389 	prefetch(&bdev->bd_disk->part_tbl);
1390 	prefetch(bdev->bd_queue);
1391 	prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1392 
1393 	return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block,
1394 				     end_io, submit_io, flags);
1395 }
1396 
1397 EXPORT_SYMBOL(__blockdev_direct_IO);
1398 
1399 static __init int dio_init(void)
1400 {
1401 	dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1402 	return 0;
1403 }
1404 module_init(dio_init)
1405