xref: /openbmc/linux/fs/direct-io.c (revision 3996eabb)
1 /*
2  * fs/direct-io.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * O_DIRECT
7  *
8  * 04Jul2002	Andrew Morton
9  *		Initial version
10  * 11Sep2002	janetinc@us.ibm.com
11  * 		added readv/writev support.
12  * 29Oct2002	Andrew Morton
13  *		rewrote bio_add_page() support.
14  * 30Oct2002	pbadari@us.ibm.com
15  *		added support for non-aligned IO.
16  * 06Nov2002	pbadari@us.ibm.com
17  *		added asynchronous IO support.
18  * 21Jul2003	nathans@sgi.com
19  *		added IO completion notifier.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <asm/atomic.h>
39 
40 /*
41  * How many user pages to map in one call to get_user_pages().  This determines
42  * the size of a structure on the stack.
43  */
44 #define DIO_PAGES	64
45 
46 /*
47  * This code generally works in units of "dio_blocks".  A dio_block is
48  * somewhere between the hard sector size and the filesystem block size.  it
49  * is determined on a per-invocation basis.   When talking to the filesystem
50  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
51  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
52  * to bio_block quantities by shifting left by blkfactor.
53  *
54  * If blkfactor is zero then the user's request was aligned to the filesystem's
55  * blocksize.
56  */
57 
58 struct dio {
59 	/* BIO submission state */
60 	struct bio *bio;		/* bio under assembly */
61 	struct inode *inode;
62 	int rw;
63 	loff_t i_size;			/* i_size when submitted */
64 	int flags;			/* doesn't change */
65 	unsigned blkbits;		/* doesn't change */
66 	unsigned blkfactor;		/* When we're using an alignment which
67 					   is finer than the filesystem's soft
68 					   blocksize, this specifies how much
69 					   finer.  blkfactor=2 means 1/4-block
70 					   alignment.  Does not change */
71 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
72 					   been performed at the start of a
73 					   write */
74 	int pages_in_io;		/* approximate total IO pages */
75 	size_t	size;			/* total request size (doesn't change)*/
76 	sector_t block_in_file;		/* Current offset into the underlying
77 					   file in dio_block units. */
78 	unsigned blocks_available;	/* At block_in_file.  changes */
79 	sector_t final_block_in_request;/* doesn't change */
80 	unsigned first_block_in_page;	/* doesn't change, Used only once */
81 	int boundary;			/* prev block is at a boundary */
82 	int reap_counter;		/* rate limit reaping */
83 	get_block_t *get_block;		/* block mapping function */
84 	dio_iodone_t *end_io;		/* IO completion function */
85 	dio_submit_t *submit_io;	/* IO submition function */
86 	loff_t logical_offset_in_bio;	/* current first logical block in bio */
87 	sector_t final_block_in_bio;	/* current final block in bio + 1 */
88 	sector_t next_block_for_io;	/* next block to be put under IO,
89 					   in dio_blocks units */
90 	struct buffer_head map_bh;	/* last get_block() result */
91 
92 	/*
93 	 * Deferred addition of a page to the dio.  These variables are
94 	 * private to dio_send_cur_page(), submit_page_section() and
95 	 * dio_bio_add_page().
96 	 */
97 	struct page *cur_page;		/* The page */
98 	unsigned cur_page_offset;	/* Offset into it, in bytes */
99 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
100 	sector_t cur_page_block;	/* Where it starts */
101 	loff_t cur_page_fs_offset;	/* Offset in file */
102 
103 	/* BIO completion state */
104 	spinlock_t bio_lock;		/* protects BIO fields below */
105 	unsigned long refcount;		/* direct_io_worker() and bios */
106 	struct bio *bio_list;		/* singly linked via bi_private */
107 	struct task_struct *waiter;	/* waiting task (NULL if none) */
108 
109 	/* AIO related stuff */
110 	struct kiocb *iocb;		/* kiocb */
111 	int is_async;			/* is IO async ? */
112 	int io_error;			/* IO error in completion path */
113 	ssize_t result;                 /* IO result */
114 
115 	/*
116 	 * Page fetching state. These variables belong to dio_refill_pages().
117 	 */
118 	int curr_page;			/* changes */
119 	int total_pages;		/* doesn't change */
120 	unsigned long curr_user_address;/* changes */
121 
122 	/*
123 	 * Page queue.  These variables belong to dio_refill_pages() and
124 	 * dio_get_page().
125 	 */
126 	unsigned head;			/* next page to process */
127 	unsigned tail;			/* last valid page + 1 */
128 	int page_errors;		/* errno from get_user_pages() */
129 
130 	/*
131 	 * pages[] (and any fields placed after it) are not zeroed out at
132 	 * allocation time.  Don't add new fields after pages[] unless you
133 	 * wish that they not be zeroed.
134 	 */
135 	struct page *pages[DIO_PAGES];	/* page buffer */
136 };
137 
138 /*
139  * How many pages are in the queue?
140  */
141 static inline unsigned dio_pages_present(struct dio *dio)
142 {
143 	return dio->tail - dio->head;
144 }
145 
146 /*
147  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
148  */
149 static int dio_refill_pages(struct dio *dio)
150 {
151 	int ret;
152 	int nr_pages;
153 
154 	nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES);
155 	ret = get_user_pages_fast(
156 		dio->curr_user_address,		/* Where from? */
157 		nr_pages,			/* How many pages? */
158 		dio->rw == READ,		/* Write to memory? */
159 		&dio->pages[0]);		/* Put results here */
160 
161 	if (ret < 0 && dio->blocks_available && (dio->rw & WRITE)) {
162 		struct page *page = ZERO_PAGE(0);
163 		/*
164 		 * A memory fault, but the filesystem has some outstanding
165 		 * mapped blocks.  We need to use those blocks up to avoid
166 		 * leaking stale data in the file.
167 		 */
168 		if (dio->page_errors == 0)
169 			dio->page_errors = ret;
170 		page_cache_get(page);
171 		dio->pages[0] = page;
172 		dio->head = 0;
173 		dio->tail = 1;
174 		ret = 0;
175 		goto out;
176 	}
177 
178 	if (ret >= 0) {
179 		dio->curr_user_address += ret * PAGE_SIZE;
180 		dio->curr_page += ret;
181 		dio->head = 0;
182 		dio->tail = ret;
183 		ret = 0;
184 	}
185 out:
186 	return ret;
187 }
188 
189 /*
190  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
191  * buffered inside the dio so that we can call get_user_pages() against a
192  * decent number of pages, less frequently.  To provide nicer use of the
193  * L1 cache.
194  */
195 static struct page *dio_get_page(struct dio *dio)
196 {
197 	if (dio_pages_present(dio) == 0) {
198 		int ret;
199 
200 		ret = dio_refill_pages(dio);
201 		if (ret)
202 			return ERR_PTR(ret);
203 		BUG_ON(dio_pages_present(dio) == 0);
204 	}
205 	return dio->pages[dio->head++];
206 }
207 
208 /**
209  * dio_complete() - called when all DIO BIO I/O has been completed
210  * @offset: the byte offset in the file of the completed operation
211  *
212  * This releases locks as dictated by the locking type, lets interested parties
213  * know that a DIO operation has completed, and calculates the resulting return
214  * code for the operation.
215  *
216  * It lets the filesystem know if it registered an interest earlier via
217  * get_block.  Pass the private field of the map buffer_head so that
218  * filesystems can use it to hold additional state between get_block calls and
219  * dio_complete.
220  */
221 static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret, bool is_async)
222 {
223 	ssize_t transferred = 0;
224 
225 	/*
226 	 * AIO submission can race with bio completion to get here while
227 	 * expecting to have the last io completed by bio completion.
228 	 * In that case -EIOCBQUEUED is in fact not an error we want
229 	 * to preserve through this call.
230 	 */
231 	if (ret == -EIOCBQUEUED)
232 		ret = 0;
233 
234 	if (dio->result) {
235 		transferred = dio->result;
236 
237 		/* Check for short read case */
238 		if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
239 			transferred = dio->i_size - offset;
240 	}
241 
242 	if (ret == 0)
243 		ret = dio->page_errors;
244 	if (ret == 0)
245 		ret = dio->io_error;
246 	if (ret == 0)
247 		ret = transferred;
248 
249 	if (dio->end_io && dio->result) {
250 		dio->end_io(dio->iocb, offset, transferred,
251 			    dio->map_bh.b_private, ret, is_async);
252 	} else if (is_async) {
253 		aio_complete(dio->iocb, ret, 0);
254 	}
255 
256 	if (dio->flags & DIO_LOCKING)
257 		/* lockdep: non-owner release */
258 		up_read_non_owner(&dio->inode->i_alloc_sem);
259 
260 	return ret;
261 }
262 
263 static int dio_bio_complete(struct dio *dio, struct bio *bio);
264 /*
265  * Asynchronous IO callback.
266  */
267 static void dio_bio_end_aio(struct bio *bio, int error)
268 {
269 	struct dio *dio = bio->bi_private;
270 	unsigned long remaining;
271 	unsigned long flags;
272 
273 	/* cleanup the bio */
274 	dio_bio_complete(dio, bio);
275 
276 	spin_lock_irqsave(&dio->bio_lock, flags);
277 	remaining = --dio->refcount;
278 	if (remaining == 1 && dio->waiter)
279 		wake_up_process(dio->waiter);
280 	spin_unlock_irqrestore(&dio->bio_lock, flags);
281 
282 	if (remaining == 0) {
283 		dio_complete(dio, dio->iocb->ki_pos, 0, true);
284 		kfree(dio);
285 	}
286 }
287 
288 /*
289  * The BIO completion handler simply queues the BIO up for the process-context
290  * handler.
291  *
292  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
293  * implement a singly-linked list of completed BIOs, at dio->bio_list.
294  */
295 static void dio_bio_end_io(struct bio *bio, int error)
296 {
297 	struct dio *dio = bio->bi_private;
298 	unsigned long flags;
299 
300 	spin_lock_irqsave(&dio->bio_lock, flags);
301 	bio->bi_private = dio->bio_list;
302 	dio->bio_list = bio;
303 	if (--dio->refcount == 1 && dio->waiter)
304 		wake_up_process(dio->waiter);
305 	spin_unlock_irqrestore(&dio->bio_lock, flags);
306 }
307 
308 /**
309  * dio_end_io - handle the end io action for the given bio
310  * @bio: The direct io bio thats being completed
311  * @error: Error if there was one
312  *
313  * This is meant to be called by any filesystem that uses their own dio_submit_t
314  * so that the DIO specific endio actions are dealt with after the filesystem
315  * has done it's completion work.
316  */
317 void dio_end_io(struct bio *bio, int error)
318 {
319 	struct dio *dio = bio->bi_private;
320 
321 	if (dio->is_async)
322 		dio_bio_end_aio(bio, error);
323 	else
324 		dio_bio_end_io(bio, error);
325 }
326 EXPORT_SYMBOL_GPL(dio_end_io);
327 
328 static void
329 dio_bio_alloc(struct dio *dio, struct block_device *bdev,
330 		sector_t first_sector, int nr_vecs)
331 {
332 	struct bio *bio;
333 
334 	/*
335 	 * bio_alloc() is guaranteed to return a bio when called with
336 	 * __GFP_WAIT and we request a valid number of vectors.
337 	 */
338 	bio = bio_alloc(GFP_KERNEL, nr_vecs);
339 
340 	bio->bi_bdev = bdev;
341 	bio->bi_sector = first_sector;
342 	if (dio->is_async)
343 		bio->bi_end_io = dio_bio_end_aio;
344 	else
345 		bio->bi_end_io = dio_bio_end_io;
346 
347 	dio->bio = bio;
348 	dio->logical_offset_in_bio = dio->cur_page_fs_offset;
349 }
350 
351 /*
352  * In the AIO read case we speculatively dirty the pages before starting IO.
353  * During IO completion, any of these pages which happen to have been written
354  * back will be redirtied by bio_check_pages_dirty().
355  *
356  * bios hold a dio reference between submit_bio and ->end_io.
357  */
358 static void dio_bio_submit(struct dio *dio)
359 {
360 	struct bio *bio = dio->bio;
361 	unsigned long flags;
362 
363 	bio->bi_private = dio;
364 
365 	spin_lock_irqsave(&dio->bio_lock, flags);
366 	dio->refcount++;
367 	spin_unlock_irqrestore(&dio->bio_lock, flags);
368 
369 	if (dio->is_async && dio->rw == READ)
370 		bio_set_pages_dirty(bio);
371 
372 	if (dio->submit_io)
373 		dio->submit_io(dio->rw, bio, dio->inode,
374 			       dio->logical_offset_in_bio);
375 	else
376 		submit_bio(dio->rw, bio);
377 
378 	dio->bio = NULL;
379 	dio->boundary = 0;
380 	dio->logical_offset_in_bio = 0;
381 }
382 
383 /*
384  * Release any resources in case of a failure
385  */
386 static void dio_cleanup(struct dio *dio)
387 {
388 	while (dio_pages_present(dio))
389 		page_cache_release(dio_get_page(dio));
390 }
391 
392 /*
393  * Wait for the next BIO to complete.  Remove it and return it.  NULL is
394  * returned once all BIOs have been completed.  This must only be called once
395  * all bios have been issued so that dio->refcount can only decrease.  This
396  * requires that that the caller hold a reference on the dio.
397  */
398 static struct bio *dio_await_one(struct dio *dio)
399 {
400 	unsigned long flags;
401 	struct bio *bio = NULL;
402 
403 	spin_lock_irqsave(&dio->bio_lock, flags);
404 
405 	/*
406 	 * Wait as long as the list is empty and there are bios in flight.  bio
407 	 * completion drops the count, maybe adds to the list, and wakes while
408 	 * holding the bio_lock so we don't need set_current_state()'s barrier
409 	 * and can call it after testing our condition.
410 	 */
411 	while (dio->refcount > 1 && dio->bio_list == NULL) {
412 		__set_current_state(TASK_UNINTERRUPTIBLE);
413 		dio->waiter = current;
414 		spin_unlock_irqrestore(&dio->bio_lock, flags);
415 		io_schedule();
416 		/* wake up sets us TASK_RUNNING */
417 		spin_lock_irqsave(&dio->bio_lock, flags);
418 		dio->waiter = NULL;
419 	}
420 	if (dio->bio_list) {
421 		bio = dio->bio_list;
422 		dio->bio_list = bio->bi_private;
423 	}
424 	spin_unlock_irqrestore(&dio->bio_lock, flags);
425 	return bio;
426 }
427 
428 /*
429  * Process one completed BIO.  No locks are held.
430  */
431 static int dio_bio_complete(struct dio *dio, struct bio *bio)
432 {
433 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
434 	struct bio_vec *bvec = bio->bi_io_vec;
435 	int page_no;
436 
437 	if (!uptodate)
438 		dio->io_error = -EIO;
439 
440 	if (dio->is_async && dio->rw == READ) {
441 		bio_check_pages_dirty(bio);	/* transfers ownership */
442 	} else {
443 		for (page_no = 0; page_no < bio->bi_vcnt; page_no++) {
444 			struct page *page = bvec[page_no].bv_page;
445 
446 			if (dio->rw == READ && !PageCompound(page))
447 				set_page_dirty_lock(page);
448 			page_cache_release(page);
449 		}
450 		bio_put(bio);
451 	}
452 	return uptodate ? 0 : -EIO;
453 }
454 
455 /*
456  * Wait on and process all in-flight BIOs.  This must only be called once
457  * all bios have been issued so that the refcount can only decrease.
458  * This just waits for all bios to make it through dio_bio_complete.  IO
459  * errors are propagated through dio->io_error and should be propagated via
460  * dio_complete().
461  */
462 static void dio_await_completion(struct dio *dio)
463 {
464 	struct bio *bio;
465 	do {
466 		bio = dio_await_one(dio);
467 		if (bio)
468 			dio_bio_complete(dio, bio);
469 	} while (bio);
470 }
471 
472 /*
473  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
474  * to keep the memory consumption sane we periodically reap any completed BIOs
475  * during the BIO generation phase.
476  *
477  * This also helps to limit the peak amount of pinned userspace memory.
478  */
479 static int dio_bio_reap(struct dio *dio)
480 {
481 	int ret = 0;
482 
483 	if (dio->reap_counter++ >= 64) {
484 		while (dio->bio_list) {
485 			unsigned long flags;
486 			struct bio *bio;
487 			int ret2;
488 
489 			spin_lock_irqsave(&dio->bio_lock, flags);
490 			bio = dio->bio_list;
491 			dio->bio_list = bio->bi_private;
492 			spin_unlock_irqrestore(&dio->bio_lock, flags);
493 			ret2 = dio_bio_complete(dio, bio);
494 			if (ret == 0)
495 				ret = ret2;
496 		}
497 		dio->reap_counter = 0;
498 	}
499 	return ret;
500 }
501 
502 /*
503  * Call into the fs to map some more disk blocks.  We record the current number
504  * of available blocks at dio->blocks_available.  These are in units of the
505  * fs blocksize, (1 << inode->i_blkbits).
506  *
507  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
508  * it uses the passed inode-relative block number as the file offset, as usual.
509  *
510  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
511  * has remaining to do.  The fs should not map more than this number of blocks.
512  *
513  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
514  * indicate how much contiguous disk space has been made available at
515  * bh->b_blocknr.
516  *
517  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
518  * This isn't very efficient...
519  *
520  * In the case of filesystem holes: the fs may return an arbitrarily-large
521  * hole by returning an appropriate value in b_size and by clearing
522  * buffer_mapped().  However the direct-io code will only process holes one
523  * block at a time - it will repeatedly call get_block() as it walks the hole.
524  */
525 static int get_more_blocks(struct dio *dio)
526 {
527 	int ret;
528 	struct buffer_head *map_bh = &dio->map_bh;
529 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
530 	unsigned long fs_count;	/* Number of filesystem-sized blocks */
531 	unsigned long dio_count;/* Number of dio_block-sized blocks */
532 	unsigned long blkmask;
533 	int create;
534 
535 	/*
536 	 * If there was a memory error and we've overwritten all the
537 	 * mapped blocks then we can now return that memory error
538 	 */
539 	ret = dio->page_errors;
540 	if (ret == 0) {
541 		BUG_ON(dio->block_in_file >= dio->final_block_in_request);
542 		fs_startblk = dio->block_in_file >> dio->blkfactor;
543 		dio_count = dio->final_block_in_request - dio->block_in_file;
544 		fs_count = dio_count >> dio->blkfactor;
545 		blkmask = (1 << dio->blkfactor) - 1;
546 		if (dio_count & blkmask)
547 			fs_count++;
548 
549 		map_bh->b_state = 0;
550 		map_bh->b_size = fs_count << dio->inode->i_blkbits;
551 
552 		/*
553 		 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
554 		 * forbid block creations: only overwrites are permitted.
555 		 * We will return early to the caller once we see an
556 		 * unmapped buffer head returned, and the caller will fall
557 		 * back to buffered I/O.
558 		 *
559 		 * Otherwise the decision is left to the get_blocks method,
560 		 * which may decide to handle it or also return an unmapped
561 		 * buffer head.
562 		 */
563 		create = dio->rw & WRITE;
564 		if (dio->flags & DIO_SKIP_HOLES) {
565 			if (dio->block_in_file < (i_size_read(dio->inode) >>
566 							dio->blkbits))
567 				create = 0;
568 		}
569 
570 		ret = (*dio->get_block)(dio->inode, fs_startblk,
571 						map_bh, create);
572 	}
573 	return ret;
574 }
575 
576 /*
577  * There is no bio.  Make one now.
578  */
579 static int dio_new_bio(struct dio *dio, sector_t start_sector)
580 {
581 	sector_t sector;
582 	int ret, nr_pages;
583 
584 	ret = dio_bio_reap(dio);
585 	if (ret)
586 		goto out;
587 	sector = start_sector << (dio->blkbits - 9);
588 	nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev));
589 	nr_pages = min(nr_pages, BIO_MAX_PAGES);
590 	BUG_ON(nr_pages <= 0);
591 	dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages);
592 	dio->boundary = 0;
593 out:
594 	return ret;
595 }
596 
597 /*
598  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
599  * that was successful then update final_block_in_bio and take a ref against
600  * the just-added page.
601  *
602  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
603  */
604 static int dio_bio_add_page(struct dio *dio)
605 {
606 	int ret;
607 
608 	ret = bio_add_page(dio->bio, dio->cur_page,
609 			dio->cur_page_len, dio->cur_page_offset);
610 	if (ret == dio->cur_page_len) {
611 		/*
612 		 * Decrement count only, if we are done with this page
613 		 */
614 		if ((dio->cur_page_len + dio->cur_page_offset) == PAGE_SIZE)
615 			dio->pages_in_io--;
616 		page_cache_get(dio->cur_page);
617 		dio->final_block_in_bio = dio->cur_page_block +
618 			(dio->cur_page_len >> dio->blkbits);
619 		ret = 0;
620 	} else {
621 		ret = 1;
622 	}
623 	return ret;
624 }
625 
626 /*
627  * Put cur_page under IO.  The section of cur_page which is described by
628  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
629  * starts on-disk at cur_page_block.
630  *
631  * We take a ref against the page here (on behalf of its presence in the bio).
632  *
633  * The caller of this function is responsible for removing cur_page from the
634  * dio, and for dropping the refcount which came from that presence.
635  */
636 static int dio_send_cur_page(struct dio *dio)
637 {
638 	int ret = 0;
639 
640 	if (dio->bio) {
641 		loff_t cur_offset = dio->cur_page_fs_offset;
642 		loff_t bio_next_offset = dio->logical_offset_in_bio +
643 			dio->bio->bi_size;
644 
645 		/*
646 		 * See whether this new request is contiguous with the old.
647 		 *
648 		 * Btrfs cannot handl having logically non-contiguous requests
649 		 * submitted.  For exmple if you have
650 		 *
651 		 * Logical:  [0-4095][HOLE][8192-12287]
652 		 * Phyiscal: [0-4095]      [4096-8181]
653 		 *
654 		 * We cannot submit those pages together as one BIO.  So if our
655 		 * current logical offset in the file does not equal what would
656 		 * be the next logical offset in the bio, submit the bio we
657 		 * have.
658 		 */
659 		if (dio->final_block_in_bio != dio->cur_page_block ||
660 		    cur_offset != bio_next_offset)
661 			dio_bio_submit(dio);
662 		/*
663 		 * Submit now if the underlying fs is about to perform a
664 		 * metadata read
665 		 */
666 		else if (dio->boundary)
667 			dio_bio_submit(dio);
668 	}
669 
670 	if (dio->bio == NULL) {
671 		ret = dio_new_bio(dio, dio->cur_page_block);
672 		if (ret)
673 			goto out;
674 	}
675 
676 	if (dio_bio_add_page(dio) != 0) {
677 		dio_bio_submit(dio);
678 		ret = dio_new_bio(dio, dio->cur_page_block);
679 		if (ret == 0) {
680 			ret = dio_bio_add_page(dio);
681 			BUG_ON(ret != 0);
682 		}
683 	}
684 out:
685 	return ret;
686 }
687 
688 /*
689  * An autonomous function to put a chunk of a page under deferred IO.
690  *
691  * The caller doesn't actually know (or care) whether this piece of page is in
692  * a BIO, or is under IO or whatever.  We just take care of all possible
693  * situations here.  The separation between the logic of do_direct_IO() and
694  * that of submit_page_section() is important for clarity.  Please don't break.
695  *
696  * The chunk of page starts on-disk at blocknr.
697  *
698  * We perform deferred IO, by recording the last-submitted page inside our
699  * private part of the dio structure.  If possible, we just expand the IO
700  * across that page here.
701  *
702  * If that doesn't work out then we put the old page into the bio and add this
703  * page to the dio instead.
704  */
705 static int
706 submit_page_section(struct dio *dio, struct page *page,
707 		unsigned offset, unsigned len, sector_t blocknr)
708 {
709 	int ret = 0;
710 
711 	if (dio->rw & WRITE) {
712 		/*
713 		 * Read accounting is performed in submit_bio()
714 		 */
715 		task_io_account_write(len);
716 	}
717 
718 	/*
719 	 * Can we just grow the current page's presence in the dio?
720 	 */
721 	if (	(dio->cur_page == page) &&
722 		(dio->cur_page_offset + dio->cur_page_len == offset) &&
723 		(dio->cur_page_block +
724 			(dio->cur_page_len >> dio->blkbits) == blocknr)) {
725 		dio->cur_page_len += len;
726 
727 		/*
728 		 * If dio->boundary then we want to schedule the IO now to
729 		 * avoid metadata seeks.
730 		 */
731 		if (dio->boundary) {
732 			ret = dio_send_cur_page(dio);
733 			page_cache_release(dio->cur_page);
734 			dio->cur_page = NULL;
735 		}
736 		goto out;
737 	}
738 
739 	/*
740 	 * If there's a deferred page already there then send it.
741 	 */
742 	if (dio->cur_page) {
743 		ret = dio_send_cur_page(dio);
744 		page_cache_release(dio->cur_page);
745 		dio->cur_page = NULL;
746 		if (ret)
747 			goto out;
748 	}
749 
750 	page_cache_get(page);		/* It is in dio */
751 	dio->cur_page = page;
752 	dio->cur_page_offset = offset;
753 	dio->cur_page_len = len;
754 	dio->cur_page_block = blocknr;
755 	dio->cur_page_fs_offset = dio->block_in_file << dio->blkbits;
756 out:
757 	return ret;
758 }
759 
760 /*
761  * Clean any dirty buffers in the blockdev mapping which alias newly-created
762  * file blocks.  Only called for S_ISREG files - blockdevs do not set
763  * buffer_new
764  */
765 static void clean_blockdev_aliases(struct dio *dio)
766 {
767 	unsigned i;
768 	unsigned nblocks;
769 
770 	nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits;
771 
772 	for (i = 0; i < nblocks; i++) {
773 		unmap_underlying_metadata(dio->map_bh.b_bdev,
774 					dio->map_bh.b_blocknr + i);
775 	}
776 }
777 
778 /*
779  * If we are not writing the entire block and get_block() allocated
780  * the block for us, we need to fill-in the unused portion of the
781  * block with zeros. This happens only if user-buffer, fileoffset or
782  * io length is not filesystem block-size multiple.
783  *
784  * `end' is zero if we're doing the start of the IO, 1 at the end of the
785  * IO.
786  */
787 static void dio_zero_block(struct dio *dio, int end)
788 {
789 	unsigned dio_blocks_per_fs_block;
790 	unsigned this_chunk_blocks;	/* In dio_blocks */
791 	unsigned this_chunk_bytes;
792 	struct page *page;
793 
794 	dio->start_zero_done = 1;
795 	if (!dio->blkfactor || !buffer_new(&dio->map_bh))
796 		return;
797 
798 	dio_blocks_per_fs_block = 1 << dio->blkfactor;
799 	this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1);
800 
801 	if (!this_chunk_blocks)
802 		return;
803 
804 	/*
805 	 * We need to zero out part of an fs block.  It is either at the
806 	 * beginning or the end of the fs block.
807 	 */
808 	if (end)
809 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
810 
811 	this_chunk_bytes = this_chunk_blocks << dio->blkbits;
812 
813 	page = ZERO_PAGE(0);
814 	if (submit_page_section(dio, page, 0, this_chunk_bytes,
815 				dio->next_block_for_io))
816 		return;
817 
818 	dio->next_block_for_io += this_chunk_blocks;
819 }
820 
821 /*
822  * Walk the user pages, and the file, mapping blocks to disk and generating
823  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
824  * into submit_page_section(), which takes care of the next stage of submission
825  *
826  * Direct IO against a blockdev is different from a file.  Because we can
827  * happily perform page-sized but 512-byte aligned IOs.  It is important that
828  * blockdev IO be able to have fine alignment and large sizes.
829  *
830  * So what we do is to permit the ->get_block function to populate bh.b_size
831  * with the size of IO which is permitted at this offset and this i_blkbits.
832  *
833  * For best results, the blockdev should be set up with 512-byte i_blkbits and
834  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
835  * fine alignment but still allows this function to work in PAGE_SIZE units.
836  */
837 static int do_direct_IO(struct dio *dio)
838 {
839 	const unsigned blkbits = dio->blkbits;
840 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
841 	struct page *page;
842 	unsigned block_in_page;
843 	struct buffer_head *map_bh = &dio->map_bh;
844 	int ret = 0;
845 
846 	/* The I/O can start at any block offset within the first page */
847 	block_in_page = dio->first_block_in_page;
848 
849 	while (dio->block_in_file < dio->final_block_in_request) {
850 		page = dio_get_page(dio);
851 		if (IS_ERR(page)) {
852 			ret = PTR_ERR(page);
853 			goto out;
854 		}
855 
856 		while (block_in_page < blocks_per_page) {
857 			unsigned offset_in_page = block_in_page << blkbits;
858 			unsigned this_chunk_bytes;	/* # of bytes mapped */
859 			unsigned this_chunk_blocks;	/* # of blocks */
860 			unsigned u;
861 
862 			if (dio->blocks_available == 0) {
863 				/*
864 				 * Need to go and map some more disk
865 				 */
866 				unsigned long blkmask;
867 				unsigned long dio_remainder;
868 
869 				ret = get_more_blocks(dio);
870 				if (ret) {
871 					page_cache_release(page);
872 					goto out;
873 				}
874 				if (!buffer_mapped(map_bh))
875 					goto do_holes;
876 
877 				dio->blocks_available =
878 						map_bh->b_size >> dio->blkbits;
879 				dio->next_block_for_io =
880 					map_bh->b_blocknr << dio->blkfactor;
881 				if (buffer_new(map_bh))
882 					clean_blockdev_aliases(dio);
883 
884 				if (!dio->blkfactor)
885 					goto do_holes;
886 
887 				blkmask = (1 << dio->blkfactor) - 1;
888 				dio_remainder = (dio->block_in_file & blkmask);
889 
890 				/*
891 				 * If we are at the start of IO and that IO
892 				 * starts partway into a fs-block,
893 				 * dio_remainder will be non-zero.  If the IO
894 				 * is a read then we can simply advance the IO
895 				 * cursor to the first block which is to be
896 				 * read.  But if the IO is a write and the
897 				 * block was newly allocated we cannot do that;
898 				 * the start of the fs block must be zeroed out
899 				 * on-disk
900 				 */
901 				if (!buffer_new(map_bh))
902 					dio->next_block_for_io += dio_remainder;
903 				dio->blocks_available -= dio_remainder;
904 			}
905 do_holes:
906 			/* Handle holes */
907 			if (!buffer_mapped(map_bh)) {
908 				loff_t i_size_aligned;
909 
910 				/* AKPM: eargh, -ENOTBLK is a hack */
911 				if (dio->rw & WRITE) {
912 					page_cache_release(page);
913 					return -ENOTBLK;
914 				}
915 
916 				/*
917 				 * Be sure to account for a partial block as the
918 				 * last block in the file
919 				 */
920 				i_size_aligned = ALIGN(i_size_read(dio->inode),
921 							1 << blkbits);
922 				if (dio->block_in_file >=
923 						i_size_aligned >> blkbits) {
924 					/* We hit eof */
925 					page_cache_release(page);
926 					goto out;
927 				}
928 				zero_user(page, block_in_page << blkbits,
929 						1 << blkbits);
930 				dio->block_in_file++;
931 				block_in_page++;
932 				goto next_block;
933 			}
934 
935 			/*
936 			 * If we're performing IO which has an alignment which
937 			 * is finer than the underlying fs, go check to see if
938 			 * we must zero out the start of this block.
939 			 */
940 			if (unlikely(dio->blkfactor && !dio->start_zero_done))
941 				dio_zero_block(dio, 0);
942 
943 			/*
944 			 * Work out, in this_chunk_blocks, how much disk we
945 			 * can add to this page
946 			 */
947 			this_chunk_blocks = dio->blocks_available;
948 			u = (PAGE_SIZE - offset_in_page) >> blkbits;
949 			if (this_chunk_blocks > u)
950 				this_chunk_blocks = u;
951 			u = dio->final_block_in_request - dio->block_in_file;
952 			if (this_chunk_blocks > u)
953 				this_chunk_blocks = u;
954 			this_chunk_bytes = this_chunk_blocks << blkbits;
955 			BUG_ON(this_chunk_bytes == 0);
956 
957 			dio->boundary = buffer_boundary(map_bh);
958 			ret = submit_page_section(dio, page, offset_in_page,
959 				this_chunk_bytes, dio->next_block_for_io);
960 			if (ret) {
961 				page_cache_release(page);
962 				goto out;
963 			}
964 			dio->next_block_for_io += this_chunk_blocks;
965 
966 			dio->block_in_file += this_chunk_blocks;
967 			block_in_page += this_chunk_blocks;
968 			dio->blocks_available -= this_chunk_blocks;
969 next_block:
970 			BUG_ON(dio->block_in_file > dio->final_block_in_request);
971 			if (dio->block_in_file == dio->final_block_in_request)
972 				break;
973 		}
974 
975 		/* Drop the ref which was taken in get_user_pages() */
976 		page_cache_release(page);
977 		block_in_page = 0;
978 	}
979 out:
980 	return ret;
981 }
982 
983 /*
984  * Releases both i_mutex and i_alloc_sem
985  */
986 static ssize_t
987 direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode,
988 	const struct iovec *iov, loff_t offset, unsigned long nr_segs,
989 	unsigned blkbits, get_block_t get_block, dio_iodone_t end_io,
990 	dio_submit_t submit_io, struct dio *dio)
991 {
992 	unsigned long user_addr;
993 	unsigned long flags;
994 	int seg;
995 	ssize_t ret = 0;
996 	ssize_t ret2;
997 	size_t bytes;
998 
999 	dio->inode = inode;
1000 	dio->rw = rw;
1001 	dio->blkbits = blkbits;
1002 	dio->blkfactor = inode->i_blkbits - blkbits;
1003 	dio->block_in_file = offset >> blkbits;
1004 
1005 	dio->get_block = get_block;
1006 	dio->end_io = end_io;
1007 	dio->submit_io = submit_io;
1008 	dio->final_block_in_bio = -1;
1009 	dio->next_block_for_io = -1;
1010 
1011 	dio->iocb = iocb;
1012 	dio->i_size = i_size_read(inode);
1013 
1014 	spin_lock_init(&dio->bio_lock);
1015 	dio->refcount = 1;
1016 
1017 	/*
1018 	 * In case of non-aligned buffers, we may need 2 more
1019 	 * pages since we need to zero out first and last block.
1020 	 */
1021 	if (unlikely(dio->blkfactor))
1022 		dio->pages_in_io = 2;
1023 
1024 	for (seg = 0; seg < nr_segs; seg++) {
1025 		user_addr = (unsigned long)iov[seg].iov_base;
1026 		dio->pages_in_io +=
1027 			((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE
1028 				- user_addr/PAGE_SIZE);
1029 	}
1030 
1031 	for (seg = 0; seg < nr_segs; seg++) {
1032 		user_addr = (unsigned long)iov[seg].iov_base;
1033 		dio->size += bytes = iov[seg].iov_len;
1034 
1035 		/* Index into the first page of the first block */
1036 		dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
1037 		dio->final_block_in_request = dio->block_in_file +
1038 						(bytes >> blkbits);
1039 		/* Page fetching state */
1040 		dio->head = 0;
1041 		dio->tail = 0;
1042 		dio->curr_page = 0;
1043 
1044 		dio->total_pages = 0;
1045 		if (user_addr & (PAGE_SIZE-1)) {
1046 			dio->total_pages++;
1047 			bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
1048 		}
1049 		dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1050 		dio->curr_user_address = user_addr;
1051 
1052 		ret = do_direct_IO(dio);
1053 
1054 		dio->result += iov[seg].iov_len -
1055 			((dio->final_block_in_request - dio->block_in_file) <<
1056 					blkbits);
1057 
1058 		if (ret) {
1059 			dio_cleanup(dio);
1060 			break;
1061 		}
1062 	} /* end iovec loop */
1063 
1064 	if (ret == -ENOTBLK) {
1065 		/*
1066 		 * The remaining part of the request will be
1067 		 * be handled by buffered I/O when we return
1068 		 */
1069 		ret = 0;
1070 	}
1071 	/*
1072 	 * There may be some unwritten disk at the end of a part-written
1073 	 * fs-block-sized block.  Go zero that now.
1074 	 */
1075 	dio_zero_block(dio, 1);
1076 
1077 	if (dio->cur_page) {
1078 		ret2 = dio_send_cur_page(dio);
1079 		if (ret == 0)
1080 			ret = ret2;
1081 		page_cache_release(dio->cur_page);
1082 		dio->cur_page = NULL;
1083 	}
1084 	if (dio->bio)
1085 		dio_bio_submit(dio);
1086 
1087 	/*
1088 	 * It is possible that, we return short IO due to end of file.
1089 	 * In that case, we need to release all the pages we got hold on.
1090 	 */
1091 	dio_cleanup(dio);
1092 
1093 	/*
1094 	 * All block lookups have been performed. For READ requests
1095 	 * we can let i_mutex go now that its achieved its purpose
1096 	 * of protecting us from looking up uninitialized blocks.
1097 	 */
1098 	if (rw == READ && (dio->flags & DIO_LOCKING))
1099 		mutex_unlock(&dio->inode->i_mutex);
1100 
1101 	/*
1102 	 * The only time we want to leave bios in flight is when a successful
1103 	 * partial aio read or full aio write have been setup.  In that case
1104 	 * bio completion will call aio_complete.  The only time it's safe to
1105 	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1106 	 * This had *better* be the only place that raises -EIOCBQUEUED.
1107 	 */
1108 	BUG_ON(ret == -EIOCBQUEUED);
1109 	if (dio->is_async && ret == 0 && dio->result &&
1110 	    ((rw & READ) || (dio->result == dio->size)))
1111 		ret = -EIOCBQUEUED;
1112 
1113 	if (ret != -EIOCBQUEUED) {
1114 		/* All IO is now issued, send it on its way */
1115 		blk_run_address_space(inode->i_mapping);
1116 		dio_await_completion(dio);
1117 	}
1118 
1119 	/*
1120 	 * Sync will always be dropping the final ref and completing the
1121 	 * operation.  AIO can if it was a broken operation described above or
1122 	 * in fact if all the bios race to complete before we get here.  In
1123 	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1124 	 * return code that the caller will hand to aio_complete().
1125 	 *
1126 	 * This is managed by the bio_lock instead of being an atomic_t so that
1127 	 * completion paths can drop their ref and use the remaining count to
1128 	 * decide to wake the submission path atomically.
1129 	 */
1130 	spin_lock_irqsave(&dio->bio_lock, flags);
1131 	ret2 = --dio->refcount;
1132 	spin_unlock_irqrestore(&dio->bio_lock, flags);
1133 
1134 	if (ret2 == 0) {
1135 		ret = dio_complete(dio, offset, ret, false);
1136 		kfree(dio);
1137 	} else
1138 		BUG_ON(ret != -EIOCBQUEUED);
1139 
1140 	return ret;
1141 }
1142 
1143 /*
1144  * This is a library function for use by filesystem drivers.
1145  *
1146  * The locking rules are governed by the flags parameter:
1147  *  - if the flags value contains DIO_LOCKING we use a fancy locking
1148  *    scheme for dumb filesystems.
1149  *    For writes this function is called under i_mutex and returns with
1150  *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1151  *    taken and dropped again before returning.
1152  *    For reads and writes i_alloc_sem is taken in shared mode and released
1153  *    on I/O completion (which may happen asynchronously after returning to
1154  *    the caller).
1155  *
1156  *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1157  *    internal locking but rather rely on the filesystem to synchronize
1158  *    direct I/O reads/writes versus each other and truncate.
1159  *    For reads and writes both i_mutex and i_alloc_sem are not held on
1160  *    entry and are never taken.
1161  */
1162 ssize_t
1163 __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1164 	struct block_device *bdev, const struct iovec *iov, loff_t offset,
1165 	unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1166 	dio_submit_t submit_io,	int flags)
1167 {
1168 	int seg;
1169 	size_t size;
1170 	unsigned long addr;
1171 	unsigned blkbits = inode->i_blkbits;
1172 	unsigned bdev_blkbits = 0;
1173 	unsigned blocksize_mask = (1 << blkbits) - 1;
1174 	ssize_t retval = -EINVAL;
1175 	loff_t end = offset;
1176 	struct dio *dio;
1177 
1178 	if (rw & WRITE)
1179 		rw = WRITE_ODIRECT_PLUG;
1180 
1181 	if (bdev)
1182 		bdev_blkbits = blksize_bits(bdev_logical_block_size(bdev));
1183 
1184 	if (offset & blocksize_mask) {
1185 		if (bdev)
1186 			 blkbits = bdev_blkbits;
1187 		blocksize_mask = (1 << blkbits) - 1;
1188 		if (offset & blocksize_mask)
1189 			goto out;
1190 	}
1191 
1192 	/* Check the memory alignment.  Blocks cannot straddle pages */
1193 	for (seg = 0; seg < nr_segs; seg++) {
1194 		addr = (unsigned long)iov[seg].iov_base;
1195 		size = iov[seg].iov_len;
1196 		end += size;
1197 		if ((addr & blocksize_mask) || (size & blocksize_mask))  {
1198 			if (bdev)
1199 				 blkbits = bdev_blkbits;
1200 			blocksize_mask = (1 << blkbits) - 1;
1201 			if ((addr & blocksize_mask) || (size & blocksize_mask))
1202 				goto out;
1203 		}
1204 	}
1205 
1206 	dio = kmalloc(sizeof(*dio), GFP_KERNEL);
1207 	retval = -ENOMEM;
1208 	if (!dio)
1209 		goto out;
1210 	/*
1211 	 * Believe it or not, zeroing out the page array caused a .5%
1212 	 * performance regression in a database benchmark.  So, we take
1213 	 * care to only zero out what's needed.
1214 	 */
1215 	memset(dio, 0, offsetof(struct dio, pages));
1216 
1217 	dio->flags = flags;
1218 	if (dio->flags & DIO_LOCKING) {
1219 		/* watch out for a 0 len io from a tricksy fs */
1220 		if (rw == READ && end > offset) {
1221 			struct address_space *mapping =
1222 					iocb->ki_filp->f_mapping;
1223 
1224 			/* will be released by direct_io_worker */
1225 			mutex_lock(&inode->i_mutex);
1226 
1227 			retval = filemap_write_and_wait_range(mapping, offset,
1228 							      end - 1);
1229 			if (retval) {
1230 				mutex_unlock(&inode->i_mutex);
1231 				kfree(dio);
1232 				goto out;
1233 			}
1234 		}
1235 
1236 		/*
1237 		 * Will be released at I/O completion, possibly in a
1238 		 * different thread.
1239 		 */
1240 		down_read_non_owner(&inode->i_alloc_sem);
1241 	}
1242 
1243 	/*
1244 	 * For file extending writes updating i_size before data
1245 	 * writeouts complete can expose uninitialized blocks. So
1246 	 * even for AIO, we need to wait for i/o to complete before
1247 	 * returning in this case.
1248 	 */
1249 	dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) &&
1250 		(end > i_size_read(inode)));
1251 
1252 	retval = direct_io_worker(rw, iocb, inode, iov, offset,
1253 				nr_segs, blkbits, get_block, end_io,
1254 				submit_io, dio);
1255 
1256 out:
1257 	return retval;
1258 }
1259 EXPORT_SYMBOL(__blockdev_direct_IO);
1260